JP4119938B2 - SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME - Google Patents
SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME Download PDFInfo
- Publication number
- JP4119938B2 JP4119938B2 JP2007230194A JP2007230194A JP4119938B2 JP 4119938 B2 JP4119938 B2 JP 4119938B2 JP 2007230194 A JP2007230194 A JP 2007230194A JP 2007230194 A JP2007230194 A JP 2007230194A JP 4119938 B2 JP4119938 B2 JP 4119938B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- light emitting
- phosphor
- emitting device
- semiconductor light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48257—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
Landscapes
- Led Device Packages (AREA)
Abstract
Description
本発明は、新規な半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイスに関する。詳しくは、紫外線及び熱に対して高い耐久性を有し、透明性に優れた半導体発光デバイス用部材及びその製造方法、並びにこれを用いた半導体発光デバイスに関する。 The present invention relates to a novel semiconductor light-emitting device member, a method for manufacturing the same, and a semiconductor light-emitting device using the same. Specifically, the present invention relates to a semiconductor light-emitting device member having high durability against ultraviolet rays and heat and excellent in transparency, a method for producing the same, and a semiconductor light-emitting device using the same.
発光ダイオード(light emitting diode:以下適宜「LED」と略する。)や半導体レーザー等の半導体発光デバイスにおいては、半導体発光素子を透明の樹脂等の部材(半導体発光デバイス用部材)によって封止したものが一般的である。 In a semiconductor light emitting device such as a light emitting diode (hereinafter abbreviated as “LED” where appropriate) and a semiconductor laser, the semiconductor light emitting element is sealed with a member such as a transparent resin (a member for a semiconductor light emitting device). Is common.
この半導体発光デバイス用部材としては、例えばエポキシ樹脂が用いられている。また、この封止樹脂中に蛍光体などの顔料を含有させることによって、半導体発光素子からの発光波長を変換するものなどが知られている。 For example, an epoxy resin is used as the semiconductor light emitting device member. Moreover, what converts the light emission wavelength from a semiconductor light-emitting element by including pigments, such as fluorescent substance, in this sealing resin is known.
しかし、エポキシ樹脂は吸湿性が高いので、半導体発光デバイスを長時間使用した際に生ずる半導体発光素子からの熱によってクラックが生じたり、また水分の浸入により蛍光体や発光素子が劣化するなどの課題があった。 However, since epoxy resin is highly hygroscopic, there are problems such as cracks caused by heat from the semiconductor light-emitting element that occurs when the semiconductor light-emitting device is used for a long time, and deterioration of the phosphor and light-emitting element due to the ingress of moisture. was there.
また近年、発光波長の短波長化に伴いエポキシ樹脂が劣化して着色するために、長時間の点灯及び高出力での使用においては半導体発光デバイスの輝度が著しく低下するという課題もあった。 In recent years, since the epoxy resin deteriorates and becomes colored as the emission wavelength becomes shorter, there has been a problem that the luminance of the semiconductor light-emitting device is remarkably lowered when used for a long time and at a high output.
これらの課題に対して、エポキシ樹脂の代替品として耐熱性、紫外耐光性に優れるシリコーン樹脂が使用されるようになった。しかし、シリコーン樹脂は柔らかいために傷がつきやすく、密着性、透明性、耐候性はいまだ不十分であった。これに対し、耐熱性、紫外耐光性に優れた材料として、無機系封止材やこれを用いた半導体発光デバイスが提案されている(例えば特許文献1〜5参照)。
In response to these problems, silicone resins having excellent heat resistance and ultraviolet light resistance have been used as substitutes for epoxy resins. However, since the silicone resin is soft, it is easily damaged, and adhesion, transparency and weather resistance are still insufficient. In contrast, inorganic sealing materials and semiconductor light-emitting devices using the same have been proposed as materials excellent in heat resistance and ultraviolet light resistance (see, for example,
しかしながら、溶融ガラス等の無機材料は、取り扱い温度が350℃以上と高く、発光素子にダメージを与えるため、工業的に実現されていなかった。
また、ゾルゲル法により製造されるガラスでは、半導体発光デバイス用部材として成形する際の硬化収縮によるクラックの発生及び剥離の課題があり、長期に亘り厚膜状態で安定したものは未だ得られていなかった。
However, inorganic materials such as molten glass have not been industrially realized because the handling temperature is as high as 350 ° C. or higher and damages the light emitting element.
Moreover, in the glass manufactured by the sol-gel method, there is a problem of crack generation and peeling due to curing shrinkage when molding as a member for a semiconductor light-emitting device, and a glass that has been stable in a thick film state for a long time has not yet been obtained. It was.
例えば、特許文献1や特許文献2には、4官能のアルコキシシランを用いてガラス材料を形成する技術が記載されている。しかしながら、特許文献1や特許文献2に記載の技術により得られる無機材料に関していえば、4官能のアルコキシシランの加水分解液を半導体発光デバイスに塗布し、半導体発光デバイスの性能を損なわない150℃程度のマイルドな硬化温度で数時間程度硬化する場合、得られるガラス材料は、通常十数重量%以上のシラノールを含有する不完全なガラス体となっていた。したがって、特許文献1や特許文献2に記載の技術からは、溶融法ガラスのように真にシロキサン結合のみからなるガラス体を得ることはできなかった。
For example,
これは、一般の有機樹脂と異なり、特許文献1や特許文献2で用いた無機材料は架橋点が非常に多いために、構造の束縛が大きく、反応性末端が孤立して縮合することが出来ないためと推察される。このようなガラス体は緻密ではなく、また、その表面はシリカゲル同様に非常に親水性が高い状態となるため、十分な封止能力を持たない。
Unlike general organic resins, the inorganic materials used in
また、一般に、250℃以上の加熱により、このような反応しにくいシラノールはごく僅かに減少をはじめ、通常350℃以上、好ましくは400℃以上の高温で焼成すればシラノールの量を積極的に減少させることが出来る。しかし、これを利用して特許文献1や特許文献2に記載の無機材料からシラノールを除去しようとしたとしても、半導体発光デバイスの耐熱温度は通常260℃以下であるため、実現は困難である。
In general, by heating at 250 ° C. or higher, such a hard-to-react silanol starts to decrease slightly, and if it is baked at a high temperature of usually 350 ° C. or higher, preferably 400 ° C. or higher, the amount of silanol is actively reduced. It can be made. However, even if it is attempted to remove silanol from the inorganic materials described in
さらに、4官能のアルコキシシランは、脱水・脱アルコール縮合時に脱離する成分量が多いため、本質的に硬化時の収縮率が大きい。しかも、4官能のアルコキシシランは架橋度が高いために、乾燥工程にて、希釈溶剤の一部が蒸発した表面部分から硬化が始まり、溶剤を包含した硬いゲル体を形成してから内部の溶剤を放出する傾向があるため、溶媒蒸発に伴う収縮量も大きくなる。このため、特許文献1や特許文献2に記載の無機材料では、結果的に収縮による大きな内部応力が発生しクラックが多発する。したがって、4官能アルコキシシランのみを原料として半導体発光デバイス用部材として有用な大きなバルク体や厚膜を得ることは困難であった。
Furthermore, since tetrafunctional alkoxysilane has a large amount of components that are desorbed during dehydration and dealcoholization condensation, the shrinkage rate during curing is essentially large. Moreover, since the tetrafunctional alkoxysilane has a high degree of cross-linking, curing begins from the surface portion where a part of the diluted solvent evaporates in the drying step, and after forming a hard gel body containing the solvent, the internal solvent The amount of shrinkage accompanying solvent evaporation also increases. For this reason, in the inorganic materials described in
また、例えば、特許文献3には、有機基を含有するシラン化合物を原料とし、ゾルゲル法により3次元状の蛍光体層を寸法精度良く作製する技術が記載されている。しかしながら、特許文献3には架橋度に対する詳細な記載は無く、また、特許文献3記載の無機材料を得るためには高濃度の蛍光体粒子を必須とし、実質的にはこれが骨材として働き3次元の形状を保つために、無機材料中に蛍光体を含まない場合、透明でクラックの無い厚膜状のガラス状塗布物を得ることは出来なかった。 Further, for example, Patent Document 3 describes a technique for producing a three-dimensional phosphor layer with high dimensional accuracy by a sol-gel method using a silane compound containing an organic group as a raw material. However, Patent Document 3 does not have a detailed description of the degree of crosslinking, and in order to obtain the inorganic material described in Patent Document 3, a high concentration of phosphor particles is essential, which substantially functions as an aggregate. In order to maintain the shape of the dimension, when a phosphor is not contained in the inorganic material, it was not possible to obtain a thick glass-like coating material that is transparent and has no cracks.
さらに、特許文献3記載の技術では、触媒として酢酸が使用されているが、得られる無機材料から酢酸が除去されていないために、酢酸が半導体発光素子に悪影響を及ぼす。また、特許文献3記載の無機材料を形成する場合には、硬化に400℃の高温を要するため、半導体発光デバイスと共に加熱することは実質的に不可能で、かつ高温における無理な縮合によりその構造に歪みがたまり、クラック発生が抑止されていない。 Furthermore, in the technique described in Patent Document 3, acetic acid is used as a catalyst. However, since acetic acid is not removed from the obtained inorganic material, acetic acid has an adverse effect on the semiconductor light emitting device. In addition, when the inorganic material described in Patent Document 3 is formed, a high temperature of 400 ° C. is required for curing, so that it is substantially impossible to heat the semiconductor light emitting device together with the structure due to excessive condensation at a high temperature. As a result, distortion is accumulated and cracks are not suppressed.
また、例えば、特許文献4には、シリカ又はシロキサンを骨格とする無機物ゾルに無機光散乱剤を混合して得た無機コーティング剤を塗布して半導体発光デバイス用部材を得る技術が記載されている。しかしながら、特許文献4記載の無機材料には無機光散乱剤が必須であり、さらに、特許文献4には原料及び製造方法の詳細な記載が無く、正確に技術を再現することは不可能である。 Also, for example, Patent Document 4 describes a technique for obtaining a member for a semiconductor light emitting device by applying an inorganic coating agent obtained by mixing an inorganic light scattering agent to an inorganic sol having a skeleton of silica or siloxane. . However, an inorganic light scattering agent is indispensable for the inorganic material described in Patent Document 4, and furthermore, Patent Document 4 does not have a detailed description of raw materials and production methods, and it is impossible to accurately reproduce the technology. .
さらに、例えば、特許文献5には、ゾルゲル法ガラスを塗布して半導体発光デバイス用部材を得る技術が記載されている。しかしながら、特許文献3と同様、特許文献5記載の無機材料を得るには蛍光体が必須である。また、この蛍光体が骨材として働き、得られる無機材料は厚膜となっているが、膜厚100μmを超えるものではない。さらに、特許文献5には原料や製法が記載されておらず、一般的なアルコキシシランを使用して安定に技術を再現することは困難である。
Furthermore, for example,
以上の背景から、硬化条件がマイルドで透明性、耐光性、耐熱性に優れ、長期間使用してもクラックや剥離を生じることなく半導体発光デバイスを封止し、蛍光体を保持することのできる半導体発光デバイス用部材が求められていた。 From the above background, the curing conditions are mild and excellent in transparency, light resistance and heat resistance, and it is possible to seal the semiconductor light emitting device and retain the phosphor without cracking or peeling even after long-term use. A member for a semiconductor light emitting device has been demanded.
本発明は、上述の課題に鑑みてなされたものである。すなわち、本発明の目的は、透明性、耐光性、耐熱性に優れ、長期間使用してもクラックや剥離を生じることなく半導体発光デバイスを封止し、蛍光体を保持することのできる、新規な半導体発光デバイス用部材を提供することにある。 The present invention has been made in view of the above-described problems. That is, the object of the present invention is a novel, which is excellent in transparency, light resistance, heat resistance, can seal a semiconductor light emitting device and retain a phosphor without cracking or peeling even after long-term use. Another object is to provide a member for a semiconductor light emitting device.
本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、固体Si−核磁気共鳴(nuclear magnetic resonance:以下適宜「NMR」という。)スペクトルにおいて特定のピークを有するとともに、ケイ素含有率が特定の値以上であり、シラノール含有率が所定範囲にある高分子が、半導体発光デバイス用部材とした際に厚膜化が可能であり、厚膜部においてもクラックの発生が抑制され、且つ密着性、耐熱性、透明性に優れたものとなることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above object, the present inventors have a specific peak in a solid Si-nuclear magnetic resonance (hereinafter referred to as “NMR” as appropriate) spectrum and contain silicon. When the polymer having a rate equal to or higher than a specific value and having a silanol content in a predetermined range is used as a semiconductor light emitting device member, the occurrence of cracks is suppressed even in the thick film portion, And it discovered that it became the thing excellent in adhesiveness, heat resistance, and transparency, and completed this invention.
すなわち、本発明の要旨は、(1)固体Si−核磁気共鳴スペクトルにおいて、(i)ピークトップの位置がケミカルシフト−40ppm以上0ppm以下の領域にあり、ピークの半値幅が0.5ppm以上、3.0ppm以下であるピーク、及び、(ii)ピークトップの位置がケミカルシフト−80ppm以上−40ppm未満の領域にあり、ピークの半値幅が1.0ppm以上5.0ppm以下であるピークからなる群より選ばれるピークを、少なくとも1つ有するとともに、(2)ケイ素含有率が20重量%以上であり、(3)シラノール含有率が0.1重量%以上、10重量%以下であり、膜厚0.5mmでの350nm以上500nm以下の発光波長における光透過率が80%以上であり、SiX n Y 1 4-n (前記式中、Xは加水分解性基を表わし、Y 1 は1価の有機基を表わし、nはX基の数を表わす1以上4以下の整数を表わす。)で表わされる化合物及び/又はそのオリゴマーを加水分解・重縮合して得られる重縮合物を乾燥する工程を経て得られることを特徴とする、半導体発光デバイス用部材に存する。 That is, the gist of the present invention is as follows: (1) In the solid Si-nuclear magnetic resonance spectrum, (i) the peak top position is in the region of chemical shift −40 ppm or more and 0 ppm or less, and the peak half-value width is 0.5 ppm or more, A group consisting of a peak having a peak of 3.0 ppm or less and (ii) a peak having a peak position in the region of a chemical shift of −80 ppm or more and less than −40 ppm and a peak half-value width of 1.0 ppm or more and 5.0 ppm or less. the peaks more selected, which has at least one, (2) a silicon content of 20 wt% or more, (3) silanol content is 0.1 wt% or more state, and are 10 wt% or less, the film thickness and a light transmittance of 80% or more at 350nm or 500nm or less of the light emission wavelength at 0.5mm, SiX n Y 1 4- n ( in the formula, X is pressurized water Represents sex group, Y 1 represents a monovalent organic group, n represents 1 to 4 integer representing the number of X groups. Compounds represented by) and / or hydrolysis and polycondensation of the oligomer characterized in that it is obtained through a step of drying the polycondensate obtained Te, that Sons the member for a semiconductor light-emitting device.
ここで、該半導体発光デバイス用部材は、200℃に500時間放置した前後における、膜厚0.5mmでの波長405nmの光に対する透過率の維持率が、80%以上110%以下であることが好ましい。 Here, in the member for a semiconductor light emitting device, the transmittance maintenance rate for light having a wavelength of 405 nm at a thickness of 0.5 mm before and after being left at 200 ° C. for 500 hours is 80% or more and 110% or less. It has preferred.
また、中心波長380nm、放射強度0.4kW/m 2 の光を72時間照射した前後において、膜厚0.5mmでの波長405nmの光に対する透過率の維持率が、80%以上110%以下であることが好ましい。 In addition, before and after irradiating light with a central wavelength of 380 nm and a radiation intensity of 0.4 kW / m 2 for 72 hours, the transmittance maintenance ratio for light with a wavelength of 405 nm at a film thickness of 0.5 mm is 80% or more and 110% or less. there it is not preferable.
また、無機酸化物粒子を更に含んでなることが好ましい。 Furthermore, it preferably further comprise an inorganic oxide particles.
また、本発明の別の要旨は、上述の半導体発光デバイス用部材を製造する方法であって、前記加水分解・重縮合を溶媒の存在下で行なうとともに、得られる重縮合物を乾燥する工程が、該溶媒の沸点未満の温度にて溶媒を実質的に除去する第1の乾燥工程と、溶媒の沸点以上の温度にて乾燥する第2の乾燥工程とを有することを特徴とする、半導体発光デバイス用部材の製造方法に存する。 Another gist of the present invention is a method for producing the above-described member for a semiconductor light-emitting device, wherein the hydrolysis / polycondensation is performed in the presence of a solvent, and the obtained polycondensate is dried. And a first drying step for substantially removing the solvent at a temperature lower than the boiling point of the solvent, and a second drying step for drying at a temperature equal to or higher than the boiling point of the solvent. that Sons method of manufacturing a device member.
また、本発明の更に別の要旨は、上述の半導体発光デバイス用部材の製造方法であって、前記加水分解・重縮合を有機金属化合物触媒の存在下で行なうことを特徴とする、半導体発光デバイス用部材の製造方法に存する。 Still another subject matter of the present invention is a method for producing the above-described member for a semiconductor light emitting device, wherein the hydrolysis / polycondensation is performed in the presence of an organometallic compound catalyst. that Sons the manufacturing method of use member.
本発明の更に別の要旨は、上述の半導体発光デバイス用部材を少なくとも備えてなることを特徴とする、半導体発光デバイスに存する。Still another subject matter of the present invention lies in a semiconductor light-emitting device comprising at least the above-mentioned member for a semiconductor light-emitting device.
このとき、半導体発光デバイスの発光色が、白色または黄色であることが好ましい。 In this case, emission color of the semiconductor light emitting device, it is not preferable is white or yellow.
また、半導体発光デバイスの発光色が白色であり、発光効率が20lm/W以上であることが好ましい。 Further, an emission color of the semiconductor light emitting device is white, it is not preferable luminous efficiency is 20 lm / W or more.
また、半導体発光デバイスの発光色が白色であり、平均演色評価指数Raが80以上であることが好ましい。
本発明の更に別の要旨は、上述の半導体発光デバイスの製造方法であって、乾燥前の前記重縮合物を目的とする部位に塗布した後で、前記乾燥を行なうことを特徴とする、半導体発光デバイスの製造方法に存する。
Moreover, it is preferable that the luminescent color of a semiconductor light-emitting device is white and average color rendering evaluation index Ra is 80 or more.
Still another subject matter of the present invention is the above-described method for manufacturing a semiconductor light emitting device, wherein the drying is performed after the polycondensate before drying is applied to a target site. It exists in the manufacturing method of a light-emitting device.
本発明の半導体発光デバイス用部材は、従来の無機系の半導体発光デバイス用部材と比較して厚膜塗布が可能であり、半導体発光デバイス上に塗布、乾燥するだけで容易に半導体発光デバイスを封止し、蛍光体を保持することができる。また、透明性、耐光性、耐熱性に優れ、長期間使用してもクラックや剥離を生じることがない。 The member for a semiconductor light emitting device of the present invention can be coated with a thick film as compared with a conventional member for an inorganic semiconductor light emitting device, and the semiconductor light emitting device can be easily sealed simply by coating and drying on the semiconductor light emitting device. It can stop and hold | maintain a fluorescent substance. Moreover, it is excellent in transparency, light resistance, and heat resistance, and does not cause cracking or peeling even after long-term use.
以下、本発明を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内であれば種々に変更して実施することができる。 Hereinafter, the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the invention.
[I.半導体発光デバイス用部材]
本発明の半導体発光デバイス用部材は、以下の特徴(1)〜(3)を有する。
(1)固体Si−NMRスペクトルにおいて、
(i)ピークトップの位置がケミカルシフト−40ppm以上0ppm以下の領域にあり、ピークの半値幅が0.5ppm以上、3.0ppm以下であるピーク、及び、
(ii)ピークトップの位置がケミカルシフト−80ppm以上−40ppm未満の領域にあり、ピークの半値幅が1.0ppm以上5.0ppm以下であるピーク
からなる群より選ばれるピークを、少なくとも1つ有する。
(2)ケイ素含有率が20重量%以上である。
(3)シラノール含有率が、0.1重量%以上10重量%以下である。
以下、まずこれらの特徴(1)〜(3)から説明する。
[I. Semiconductor light emitting device member]
The member for semiconductor light emitting device of the present invention has the following features (1) to (3).
(1) In the solid Si-NMR spectrum,
(I) The peak top position is in the region of chemical shift −40 ppm or more and 0 ppm or less, and the peak half-width is 0.5 ppm or more and 3.0 ppm or less, and
(Ii) The position of the peak top is in a region where the chemical shift is −80 ppm or more and less than −40 ppm, and the peak half-value width is at least one peak selected from the group consisting of peaks of 1.0 ppm or more and 5.0 ppm or less. .
(2) The silicon content is 20% by weight or more.
(3) The silanol content is 0.1 wt% or more and 10 wt% or less.
Hereinafter, these features (1) to (3) will be described first.
〔I−1.固体Si−NMRスペクトル〕
ケイ素を主成分とする化合物は、SiO2・nH2Oの示性式で表されるが、構造的には、ケイ素原子Siの四面体の各頂点に酸素原子Oが結合され、これらの酸素原子Oに更にケイ素原子Siが結合してネット状に広がった構造を有する。そして、以下に示す模式図は、上記の四面体構造を無視し、Si−Oのネット構造を表わしたものであるが、Si−O−Si−O−の繰り返し単位において、酸素原子Oの一部が他の成員(例えば−H、−CH3など)で置換されているものもあり、一つのケイ素原子Siに注目した場合、模式図の(A)に示す様に4個の−OSiを有するケイ素原子Si(Q4)、模式図の(B)に示す様に3個の−OSiを有するケイ素原子Si(Q3)等が存在する。そして、固体Si−NMR測定において、上記の各ケイ素原子Siに基づくピークは、順次に、Q4ピーク、Q3ピーク、・・・と呼ばれる。
[I-1. Solid Si-NMR spectrum]
A compound containing silicon as a main component is represented by the SiO 2 · nH 2 O formula, but structurally, oxygen atoms O are bonded to each vertex of a tetrahedron of silicon atoms Si, and these oxygens A structure in which silicon atom Si is further bonded to atom O and spreads in a net shape. The schematic diagram shown below represents the Si—O net structure while ignoring the tetrahedral structure, and in the repeating unit of Si—O—Si—O—, Some are substituted with other members (for example, —H, —CH 3, etc.), and when attention is paid to one silicon atom Si, as shown in (A) of the schematic diagram, four —OSi are silicon atoms having Si (Q 4), a silicon atom Si (Q 3) having three -OSi as shown in the schematic diagram (B) or the like is present. Then, in the solid-state Si-NMR measurement, peaks based on each silicon atom Si above is sequentially referred to Q 4 peak, Q 3 peak, and ....
これら酸素原子が4つ結合したケイ素原子は、一般にQサイトと総称される。本発明においてはQサイトに由来するQ0〜Q4の各ピークをQnピーク群と呼ぶこととする。有機置換基を含まないシリカ膜のQnピーク群は、通常ケミカルシフト−80〜−130ppmの領域に連続した多峰性のピークとして観測される。 These silicon atoms having four bonded oxygen atoms are generally referred to as Q sites. In the present invention, Q 0 to Q 4 peaks derived from the Q site are referred to as a Q n peak group. The Q n peak group of the silica film containing no organic substituent is usually observed as a multimodal peak continuous in the region of chemical shift of −80 to −130 ppm.
これに対し、酸素原子が3つ結合し、それ以外の原子(通常は炭素である。)が1つ結合しているケイ素原子は、一般にTサイトと総称される。Tサイトに由来するピークはQサイトの場合と同様に、T0〜T3の各ピークとして観測される。本発明においてはTサイトに由来する各ピークをTnピーク群と呼ぶこととする。Tnピーク群は一般にQnピーク群より高磁場側(通常ケミカルシフト−80〜−40ppm)の領域に連続した多峰性のピークとして観測される。 In contrast, silicon atoms to which three oxygen atoms are bonded and other atoms (usually carbon) are bonded are generally referred to as T sites. The peak derived from the T site is observed as each peak of T 0 to T 3 as in the case of the Q site. In the present invention, each peak derived from the T site is called a T n peak group. The T n peak group is generally observed as a multimodal peak continuous in the region on the higher magnetic field side (usually −80 to −40 ppm) than the Q n peak group.
更に、酸素原子が2つ結合するとともに、それ以外の原子(通常は炭素である)が2つ結合しているケイ素原子は、一般にDサイトと総称される。Dサイトに由来するピークも、QサイトやTサイトに由来するピーク群と同様に、D0〜Dnの各ピーク(Dnピーク群)として観測され、QnやTnのピーク群より更に、高磁場側の領域(通常ケミカルシフト0〜−40ppmの領域)に、多峰性のピークとして観測される。これらのDn、Tn、Qnの各ピーク群の面積の比は、各ピーク群に対応する環境におかれたケイ素原子のモル比と夫々等しいので、全ピークの面積を全ケイ素原子のモル量とすれば、Dnピーク群及びTnピーク群の合計面積は通常これに対する炭素原子と直接結合した全ケイ素のモル量と対応することになる。 Furthermore, a silicon atom to which two oxygen atoms are bonded and two other atoms (usually carbon) are bonded is generally referred to as a D site. Similarly to the peak group derived from the Q site and the T site, the peak derived from the D site is also observed as each peak of D 0 to D n (D n peak group), which is further than the peak group of Q n and T n. It is observed as a multimodal peak in the region on the high magnetic field side (usually the region with a chemical shift of 0 to −40 ppm). The ratio of the area of each peak group of D n , T n , and Q n is equal to the molar ratio of silicon atoms placed in the environment corresponding to each peak group. In terms of the molar amount, the total area of the D n peak group and the T n peak group usually corresponds to the molar amount of all silicon directly bonded to the carbon atom.
本発明の半導体発光デバイス用部材の固体Si−NMRスペクトルを測定すると、有機基の炭素原子が直接結合したケイ素原子に由来するDnピーク群及びTnピーク群と、有機基の炭素原子と結合していないケイ素原子に由来するQnピーク群とが、各々異なる領域に出現する。これらのピークのうち−80ppm未満のピークは前述の通りQnピークに該当し、−80ppm以上のピークはDn、Tnピークに該当する。本発明の半導体発光デバイス用部材においてはQnピークは必須ではないが、Dn、Tnピーク領域に少なくとも1本、好ましくは複数本のピークが観測される。 Bond When measuring the solid Si-NMR spectrum of the semiconductor light-emitting device member of the present invention, the D n peak group and T n peak group originating from silicon atoms in which carbon atoms directly bonded organic group, and the carbon atom of an organic group Qn peaks derived from silicon atoms that are not present appear in different regions. Among these peaks, the peak of less than −80 ppm corresponds to the Q n peak as described above, and the peaks of −80 ppm or more correspond to the D n and T n peaks. In the member for a semiconductor light emitting device of the present invention, the Q n peak is not essential, but at least one, preferably a plurality of peaks are observed in the D n and T n peak regions.
なお、半導体発光デバイス用部材のケミカルシフトの値は、例えば実施例の説明において後述する方法を用いて固体Si−NMR測定を行ない、その結果に基づいて算出することができる。また、測定データの解析(半値幅やシラノール量解析)は、例えばガウス関数やローレンツ関数を使用した波形分離解析等により、各ピークを分割して抽出する方法で行なう。 In addition, the value of the chemical shift of the member for semiconductor light-emitting devices can be calculated based on the result of performing solid Si-NMR measurement using the method described later in the description of the examples. In addition, analysis of measurement data (half-width or silanol amount analysis) is performed by a method of dividing and extracting each peak by, for example, waveform separation analysis using a Gaussian function or a Lorentz function.
〔I−2.ケイ素含有率〕
本発明の半導体発光デバイス用部材は、ケイ素含有率が20重量%以上でなければならない(特徴(2))。従来の半導体発光デバイス用部材の基本骨格は炭素−炭素及び炭素−酸素結合を基本骨格としたエポキシ樹脂等の有機樹脂である。これに対し本発明の半導体発光デバイス用部材の基本骨格はガラス(ケイ酸塩ガラス)などと同じ無機質のシロキサン結合である。このシロキサン結合は、下記表1の化学結合の比較表からも明らかなように、半導体発光デバイス用部材として優れた以下の特徴がある。
[I-2. Silicon content)
The semiconductor light emitting device member of the present invention must have a silicon content of 20% by weight or more (feature (2)). A basic skeleton of a conventional member for a semiconductor light emitting device is an organic resin such as an epoxy resin having a carbon-carbon and carbon-oxygen bond as a basic skeleton. On the other hand, the basic skeleton of the semiconductor light emitting device member of the present invention is the same inorganic siloxane bond as glass (silicate glass). As is apparent from the chemical bond comparison table shown in Table 1 below, this siloxane bond has the following characteristics excellent as a member for a semiconductor light emitting device.
(I)結合エネルギーが大きく、熱分解・光分解しにくいため、耐光性が良好である。
(II)電気的に若干分極している。
(III)鎖状構造の自由度は大きく、フレキシブル性に富む構造が可能であり、シロキサン鎖中心に自由回転可能である。
(IV)酸化度が大きく、これ以上酸化されない。
(V)電気絶縁性に富む。
(I) Since the binding energy is large and thermal decomposition and photolysis are difficult, light resistance is good.
(II) It is slightly polarized electrically.
(III) The degree of freedom of the chain structure is large, a structure with high flexibility is possible, and the chain structure can freely rotate around the center of the siloxane chain.
(IV) The degree of oxidation is large and no further oxidation occurs.
(V) Rich in electrical insulation.
これらの特徴から、シロキサン結合が3次元的に、しかも高架橋度で結合した骨格で形成されるシリコーン系の半導体発光デバイス用部材は、エポキシ樹脂などの従来の樹脂系半導体発光デバイス用部材と異なりガラス或いは岩石などの無機質に近く、耐熱性・耐光性に富む保護皮膜となることが理解できる。特にメチル基を置換基とするシリコーン系半導体発光デバイス用部材は、紫外領域に吸収を持たないため光分解が起こりにくく、耐光性に優れる。 Because of these characteristics, a silicone-based semiconductor light-emitting device member formed of a skeleton in which siloxane bonds are three-dimensionally bonded with a high degree of crosslinking is different from a conventional resin-based semiconductor light-emitting device member such as an epoxy resin. Alternatively, it can be understood that the protective film is close to minerals such as rocks and is rich in heat resistance and light resistance. In particular, a silicone-based semiconductor light-emitting device member having a methyl group as a substituent does not absorb in the ultraviolet region, so that photolysis hardly occurs and light resistance is excellent.
本発明の半導体発光デバイス用部材のケイ素含有率は、上述の様に20重量%以上であるが、中でも25重量%以上が好ましく、30重量%以上がより好ましい。一方、上限としては、SiO2のみからなるガラスのケイ素含有率が47重量%であるという理由から、通常47重量%以下の範囲である。 As described above, the silicon content of the semiconductor light emitting device member of the present invention is 20% by weight or more, preferably 25% by weight or more, and more preferably 30% by weight or more. On the other hand, the upper limit is usually in the range of 47% by weight or less because the silicon content of the glass composed solely of SiO 2 is 47% by weight.
なお、半導体発光デバイス用部材のケイ素含有率は、例えば実施例の説明において後述する方法を用いて誘導結合高周波プラズマ分光(inductively coupled plasma spectrometry:以下適宜「ICP」と略する。)分析を行ない、その結果に基づいて算出することができる。 The silicon content of the semiconductor light emitting device member is analyzed by, for example, inductively coupled plasma spectroscopy (hereinafter abbreviated as “ICP” as appropriate) using a method described later in the description of the examples. It can be calculated based on the result.
〔I−3.シラノール含有率〕
本発明の半導体発光デバイス用部材は、シラノール含有率が、通常0.1重量%以上、好ましくは0.3重量%以上、また、通常10重量%以下、好ましくは8重量%以下、更に好ましくは5重量%以下の範囲であることが好ましい(特徴(3))。
[I-3. Silanol content)
The member for a semiconductor light emitting device of the present invention has a silanol content of usually 0.1% by weight or more, preferably 0.3% by weight or more, and usually 10% by weight or less, preferably 8% by weight or less, more preferably It is preferably in the range of 5% by weight or less (feature (3)).
通常、アルコキシシランを原料としてゾルゲル法により得られるガラス体は、150℃、3時間程度の温和な硬化条件では完全に重合して酸化物になることは無く、一定量のシラノールが残存する。テトラアルコキシシランのみより得られるガラス体は高硬度・高耐光性であるが、架橋度が高いため分子鎖の自由度が小さく、完全な縮合が起こらないため残存シラノールの量が多い。また、加水分解・縮合液を乾燥硬化する際には、架橋点が多いため増粘が早く、乾燥と硬化が同時に進むため大きな歪みを持ったバルク体となる。このような部材を半導体発光デバイス用部材として用いると、長期使用時には残存シラノールの縮合による新たな内部応力が発生し、クラックや剥離、断線などの不具合を生じやすい。また、部材の破断面にはシラノールがより多く、透湿性は少ないものの表面吸湿性が高く水分の浸入を招きやすい。400℃以上の高温焼成によりシラノール含有率を減少させることが可能であるが、半導体発光デバイスの耐熱性は260℃以下のものがほとんどであり、現実的ではない。 Usually, a glass body obtained by a sol-gel method using alkoxysilane as a raw material does not completely polymerize and become an oxide under mild curing conditions at 150 ° C. for about 3 hours, and a certain amount of silanol remains. A glass body obtained only from tetraalkoxysilane has high hardness and high light resistance, but has a high degree of cross-linking so that the degree of freedom of molecular chains is small, and complete condensation does not occur, so the amount of residual silanol is large. Further, when the hydrolysis / condensation liquid is dry-cured, the viscosity increases quickly due to the large number of cross-linking points, and the drying and curing proceed simultaneously, resulting in a bulk body having a large distortion. When such a member is used as a member for a semiconductor light emitting device, new internal stress is generated due to condensation of residual silanol during long-term use, and problems such as cracks, peeling, and disconnection are likely to occur. In addition, the fracture surface of the member has more silanol and less moisture permeability, but it has high surface hygroscopicity and tends to invade moisture. Although it is possible to reduce the silanol content by high-temperature baking at 400 ° C. or higher, the heat resistance of semiconductor light-emitting devices is almost 260 ° C. or lower, which is not realistic.
一方、本発明の半導体発光デバイス用部材は、シラノール含有率が低いため経時変化が少なく、長期の性能安定性に優れ、吸湿・透湿性何れも低い優れた性能を有する。但し、シラノールが全く含まれない部材は半導体発光デバイスとの密着性に劣るため、本発明においてはシラノール含有率に上記のごとく最適な範囲が存在する。 On the other hand, the semiconductor light-emitting device member of the present invention has excellent performance with low silanol content, little change with time, excellent long-term performance stability, and low moisture absorption and moisture permeability. However, since a member containing no silanol is inferior in adhesion to a semiconductor light emitting device, the optimum range of silanol content exists as described above in the present invention.
なお、半導体発光デバイス用部材のシラノール含有率は、例えば実施例の説明において後述する方法を用いて固体Si−NMRスペクトル測定を行ない、全ピーク面積に対するシラノール由来のピーク面積の比率より、全ケイ素原子中のシラノールとなっているケイ素原子の比率(%)を求め、別に分析したケイ素含有率と比較することにより算出することができる。 The silanol content of the semiconductor light-emitting device member is determined by, for example, performing solid Si-NMR spectrum measurement using the method described later in the description of the examples, and from the ratio of the peak area derived from silanol to the total peak area, It can be calculated by obtaining the ratio (%) of silicon atoms that are silanols in the interior and comparing it with the separately analyzed silicon content.
〔I−4.上記特徴(1)〜(3)により本発明の効果が得られる理由〕
本発明の半導体発光デバイス用部材は、上述の(1)〜(3)の特徴を備えることにより、厚膜部分でもクラックを生じず緻密に硬化し、ケースとの密着性・チップの封止特性に優れ、硬化後の光・熱に対する耐久性に優れる硬化物を得ることができる。この理由は定かではないが、次のように推測される。
[I-4. Reason why the effect of the present invention can be obtained by the above features (1) to (3)]
The semiconductor light-emitting device member of the present invention has the above-mentioned features (1) to (3), so that the thick film portion is hardly cured without cracking, and adheres to the case. And a cured product having excellent durability against light and heat after curing. The reason for this is not clear, but is presumed as follows.
無機ガラスからなる半導体発光デバイス用部材を得る方法としては、低融点ガラスを溶融して封止する溶融法と、比較的低温にてアルコキシシランなどを加水分解・重縮合した液を塗布し、乾燥硬化させるゾルゲル法がある。このうち溶融法から得られる部材は主としてQnピークのみが観測されるが、溶融に少なくとも350℃以上の高温を要し、半導体発光デバイスを熱劣化させるため現実的な方法ではない。 As a method for obtaining a semiconductor light emitting device member made of inorganic glass, a melting method in which low melting point glass is melted and sealed, and a solution obtained by hydrolyzing and polycondensing alkoxysilane at a relatively low temperature are applied and dried. There is a sol-gel method for curing. Of these members, only the Qn peak is mainly observed for the member obtained from the melting method, but it requires a high temperature of at least 350 ° C. for melting and is not a practical method because it causes thermal degradation of the semiconductor light emitting device.
一方、ゾルゲル法において4官能のシラン化合物から得られる加水分解・重縮合生成物は、完全無機のガラスとなり耐熱・耐候性に極めて優れたものであるが、硬化反応はシラノールの縮合(脱水・脱アルコール)反応により架橋が進行するので、脱水が起こる分重量減少、体積収縮を伴う。そのため、Qnピークを持つ4官能のシランのみで原料を構成すると、硬化収縮の程度が大きくなりすぎ、被膜にクラックが発生しやすくなり、厚膜化することができなくなる。このような系では、骨材として無機粒子を添加したり、重ね塗りにより膜厚増が試みられているが、一般に10μm程度が限界膜厚となる。半導体発光デバイス用部材としてゾルゲルガラスを用いる場合、複雑な形状の配線部分上にモールドする必要があるため、500〜1000μmの膜厚を確保しなければならないという課題があった。また、前記したように、残留シラノールを十分に減少させ、完全無機のガラスを得るためには400℃以上の高温での加熱を要し、半導体デバイスを熱劣化させるため現実的でなかった。 On the other hand, the hydrolysis / polycondensation product obtained from the tetrafunctional silane compound in the sol-gel method becomes a completely inorganic glass and is extremely excellent in heat resistance and weather resistance. Since the crosslinking proceeds due to the (alcohol) reaction, the dehydration occurs, resulting in weight reduction and volume shrinkage. Therefore, if the raw material is composed only of tetrafunctional silane having a Q n peak, the degree of curing shrinkage becomes too large, cracks are likely to occur in the coating, and it becomes impossible to increase the thickness. In such a system, attempts are made to increase the film thickness by adding inorganic particles as an aggregate or by overcoating, but generally the limit film thickness is about 10 μm. When sol-gel glass is used as a member for a semiconductor light-emitting device, there is a problem that a film thickness of 500 to 1000 μm must be secured because it is necessary to mold on a wiring portion having a complicated shape. Further, as described above, in order to sufficiently reduce the residual silanol and obtain a completely inorganic glass, heating at a high temperature of 400 ° C. or more is required, which is not realistic because the semiconductor device is thermally deteriorated.
これに対し、本発明の半導体発光デバイス用部材では、架橋密度を調整し、膜に可撓性を持たせるために、Tnピークを持つ3官能シラン及び/又はDnピークを持つ2官能シランを導入し、同時に加水分解・重縮合を行なうことにより、脱水縮合による体積減少量、及び架橋密度を機能に支障無い範囲で適度に減じ、かつ加水分解・縮合工程並びに乾燥工程を制御することにより、膜厚1000μmにも達する透明ガラス膜状の部材を得ることが可能となる。従って、本発明においては−80ppm以上に観測されるTnピーク及び/又はDnピークの存在が必須となる。 In contrast, in the semiconductor light-emitting device member of the present invention, by adjusting the crosslink density, in order to give flexibility to the film, bifunctional silane having a trifunctional silane and / or D n peak with T n peak By simultaneously carrying out hydrolysis and polycondensation, the volume reduction due to dehydration condensation and the crosslinking density can be appropriately reduced within a range that does not hinder the function, and the hydrolysis / condensation process and the drying process are controlled. It becomes possible to obtain a transparent glass film-like member having a film thickness of 1000 μm. Therefore, in the present invention, the presence of a T n peak and / or a D n peak observed at −80 ppm or more is essential.
このように2官能、或いは3官能の原料を主成分として厚膜化する方法としては、例えばメガネ等のハードコート膜の技術が知られているが、その膜厚は数μm以下である。これらハードコート膜では膜厚が薄いために溶媒の揮発が容易で均一な硬化が可能であり、基材との密着性及び線膨張係数の違いがクラックの主原因とされていた。これに対して本発明の半導体発光デバイス用部材では、膜厚が塗料並みに大きいために、膜自身にある程度の強度があり、多少の線膨張係数の違いは吸収可能となるが、溶剤乾燥による体積減のために薄膜の場合とは異なる内部応力発生が新たな課題となる。すなわち、LEDのカップ等の開口面積の狭い深型容器にモールドを行なう場合、膜深部での乾燥が不十分な状態で加熱硬化を行なうと、架橋後に溶媒揮発が起こり体積減となるため大きなクラックや発泡を生じる。このような膜には大きな内部応力がかかっており、この膜の固体Si−NMRを測定すると、検出されるDn、Tn、Qnピーク群は内部応力が小さい場合よりもシロキサン結合角に分布を生じ、各々、よりブロードなピークとなる。この事実は、Siに対して2個の−OSiで表される結合角にひずみが大きいことを意味する。すなわち同じ原料からなる膜でも、これらのピークの半値幅が狭いほどクラックが起きにくく高品質の膜となる。 As a method for thickening a bifunctional or trifunctional raw material as a main component in this manner, for example, a technique of a hard coat film such as glasses is known, but the film thickness is several μm or less. Since these hard coat films are thin, solvent volatilization is easy and uniform curing is possible, and differences in adhesion to the substrate and linear expansion coefficient have been the main cause of cracks. On the other hand, in the member for semiconductor light emitting device of the present invention, since the film thickness is as large as the paint, the film itself has a certain degree of strength, and a slight difference in linear expansion coefficient can be absorbed. Due to volume reduction, generation of internal stress different from the case of a thin film becomes a new problem. In other words, when molding into a deep container with a small opening area such as an LED cup, if heat curing is performed in a state where drying at the deep part of the film is insufficient, solvent volatilization occurs after crosslinking, resulting in a volume reduction and large cracks. And foaming occurs. A large internal stress is applied to such a film. When solid-state Si-NMR of this film is measured, the detected D n , T n , and Q n peak groups have a siloxane bond angle as compared with a case where the internal stress is small. A distribution is produced, each with a broader peak. This fact means that the bond angle represented by two -OSi with respect to Si has a large strain. That is, even with films made of the same raw material, the narrower the half-value width of these peaks, the less likely cracking occurs and the higher the quality film.
なお、ひずみに応じて半値幅が大きくなる現象は、Si原子の分子運動の拘束の度合いが大きいほどより鋭敏に観測され、その現れやすさはDn<Tn<Qnとなる。 It should be noted that the phenomenon in which the half-value width increases in accordance with the strain is observed more sensitively as the degree of restraint of the molecular motion of the Si atoms increases, and the ease of appearing becomes D n <T n <Q n .
本発明において、−80ppm以上の領域に観測されるピークの半値幅は、これまでにゾルゲル法にて知られている半導体発光デバイス用部材の半値幅範囲より小さい(狭い)ことを特徴とする。 In the present invention, the half width of the peak observed in the region of −80 ppm or more is characterized by being smaller (narrower) than the half width range of the semiconductor light emitting device member known so far by the sol-gel method.
ケミカルシフトごとに整理すると、本発明において、ピークトップの位置が−80ppm以上−40ppm未満に観測されるTnピーク群の半値幅は、通常5.0ppm以下、好ましくは4.0ppm以下、また、通常1.0ppm以上、好ましくは1.5ppm以上の範囲である。 When organized by chemical shift, in the present invention, the half width of the T n peak group observed at a peak top position of −80 ppm or more and less than −40 ppm is usually 5.0 ppm or less, preferably 4.0 ppm or less, The range is usually 1.0 ppm or more, preferably 1.5 ppm or more.
同様に、ピークトップの位置が−40ppm以上0ppm以下に観測されるDnピーク群の半値幅は、分子運動の拘束が小さいために全般にTnピーク群の場合より小さく、通常3.0ppm以下、好ましくは2.0ppm以下、また、通常0.5ppm以上の範囲である。 Similarly, the half-value width of the D n peak group observed at the peak top position of −40 ppm or more and 0 ppm or less is generally smaller than that of the T n peak group due to the small restraint of molecular motion, and usually 3.0 ppm or less. , Preferably 2.0 ppm or less, and usually in the range of 0.5 ppm or more.
上記のケミカルシフト領域において観測されるピークの半値幅が上記の範囲より大きいと、分子運動の拘束が大きくひずみの大きな状態となり、クラックが発生しやすく、耐熱・耐候耐久性に劣る部材となる虞がある。例えば、四官能シランを多用した場合や、乾燥工程において急速な乾燥を行ない大きな内部応力を蓄えた状態などにおいて、半値幅範囲が上記の範囲より大きくなる。 If the half width of the peak observed in the above chemical shift region is larger than the above range, the molecular motion is constrained and the strain becomes large, and cracks are likely to occur, which may result in a member having poor heat resistance and weather resistance. There is. For example, in the case where a large amount of tetrafunctional silane is used, or in the state where rapid drying is performed in the drying process and a large internal stress is stored, the full width at half maximum is larger than the above range.
また、ピークの半値幅が上記の範囲より小さい場合、その環境にあるSi原子はシロキサン架橋に関わらないことになり、例えばシリコーン樹脂のように架橋部分がSi−C結合で形成されジメチルシロキサン鎖のD2ピークのみが観測される例や、三官能シランが未架橋状態で残留する例など、シロキサン結合主体で形成される物質より耐熱・耐候耐久性に劣る部材となる虞がある。 In addition, when the half width of the peak is smaller than the above range, Si atoms in the environment are not involved in siloxane crosslinking. For example, the crosslinked portion is formed by Si—C bonds like a silicone resin, and the dimethylsiloxane chain There is a possibility that the member may be inferior in heat resistance and weather durability compared with a substance formed mainly of a siloxane bond, such as an example in which only the D2 peak is observed or an example in which trifunctional silane remains in an uncrosslinked state.
さらに、上述したように、本発明の半導体発光デバイス用部材の固体Si−核磁気共鳴スペクトルにおいては、Dn、Tnピーク領域に少なくとも1本、好ましくは複数本のピークが観測される。したがって、本発明の半導体発光デバイス用部材の固体Si−核磁気共鳴スペクトルは、上述した範囲の半値幅を有するDnピーク群及びTnピーク群からなる群より選ばれるピークを、少なくとも1本、好ましくは2本以上有するようことが望ましい。 Furthermore, as described above, in the solid Si-nuclear magnetic resonance spectrum of the member for semiconductor light emitting device of the present invention, at least one peak, preferably a plurality of peaks are observed in the D n and T n peak regions. Thus, the solid Si- nuclear magnetic resonance spectrum of the semiconductor light-emitting device member of the present invention, a peak selected from the group consisting of D n peak group and T n peak group having a FWHM ranging as described above, at least one, It is desirable to have two or more.
なお、本発明の半導体発光デバイス用部材の組成は、系内の架橋が主としてシリカを始めとする無機成分により形成される場合に限定される。すなわち、大量の有機成分中に少量のSi成分が含まれる半導体発光デバイス用部材において−80ppm以上に上述の半値幅範囲のピークが認められても、本発明に規定する良好な耐熱・耐光性及び塗布性能は得ることができない。なお、本発明の規定によるケイ素含有率20重量%以上の半導体発光デバイス用部材は、シリカ(SiO2)換算で43重量%以上のSiO2を含有する。 In addition, the composition of the member for a semiconductor light emitting device of the present invention is limited to the case where the crosslinking in the system is mainly formed of inorganic components including silica. That is, even if the peak of the above-mentioned half-value range is observed at -80 ppm or more in a semiconductor light-emitting device member containing a small amount of Si component in a large amount of organic component, good heat resistance and light resistance defined in the present invention and Application performance cannot be obtained. The semiconductor light emitting device member having a silicon content of 20% by weight or more according to the provisions of the present invention contains 43% by weight or more of SiO 2 in terms of silica (SiO 2 ).
また、本発明の半導体発光デバイス用部材は、適当量のシラノールを含有しているため、デバイス表面に存在する極性部分にシラノールが水素結合し、密着性が発現する。極性部分としては、例えば、水酸基やメタロキサン結合の酸素等が挙げられる。
また、本発明の半導体発光デバイス用部材は、適当な触媒の存在下で加熱することにより、デバイス表面の水酸基との間に脱水縮合による共有結合を形成し、さらに強固な密着性を発現することができる。
一方、シラノールが多すぎると、系内が増粘して塗布が困難になったり、活性が高くなり加熱により軽沸分が揮発する前に固化したりすることによって、発泡や内部応力の増大が生じ、クラックなどを誘起する虞がある。
Moreover, since the member for semiconductor light-emitting devices of the present invention contains an appropriate amount of silanol, silanol is hydrogen-bonded to the polar portion present on the device surface, thereby exhibiting adhesion. Examples of the polar part include a hydroxyl group and a metalloxane-bonded oxygen.
In addition, the semiconductor light-emitting device member of the present invention forms a covalent bond by dehydration condensation with the hydroxyl group on the device surface by heating in the presence of an appropriate catalyst, and expresses stronger adhesion. Can do.
On the other hand, if there is too much silanol, the inside of the system will thicken and it will be difficult to apply, or it will become highly active and solidify before the light boiling component volatilizes by heating, resulting in increased foaming and internal stress. This may cause cracks and the like.
〔I−5.UV透過率〕
本発明の半導体発光デバイス用部材は、膜厚0.5mmでの半導体発光デバイスの発光波長における光透過率が、通常80%以上、中でも85%以上、更には90%以上であることが好ましい。半導体発光デバイスは各種の技術によりその光取り出し効率が高められているが、チップを封止したり蛍光体を保持するための透光性部材の透明度が低いと、これを用いた半導体発光デバイスの輝度が低減するため、高輝度な半導体発光デバイス製品を得ることが困難になる。
[I-5. (UV transmittance)
The member for a semiconductor light-emitting device of the present invention preferably has a light transmittance of 80% or more, particularly 85% or more, and more preferably 90% or more at a light emission wavelength of a semiconductor light-emitting device having a film thickness of 0.5 mm. The light-emitting efficiency of semiconductor light-emitting devices has been enhanced by various technologies. However, if the transparency of a translucent member for sealing a chip or holding a phosphor is low, a semiconductor light-emitting device using the same Since the luminance is reduced, it is difficult to obtain a semiconductor light emitting device product with high luminance.
ここで「半導体発光デバイスの発光波長」とは、半導体発光デバイスの種類に応じて異なる値であるが、一般的には、通常300nm以上、好ましくは350nm以上、また、通常900nm以下、好ましくは500nm以下の範囲の波長を指す。この範囲の波長における光透過率が低いと、半導体発光デバイス用部材が光を吸収してしまい、光取り出し効率が低下して、高輝度のデバイスを得ることができなくなる。更に、光取り出し効率が低下した分のエネルギーは熱に変わり、デバイスの熱劣化の原因となるため好ましくない。 Here, the “emission wavelength of the semiconductor light-emitting device” is a value that varies depending on the type of the semiconductor light-emitting device, but is generally 300 nm or more, preferably 350 nm or more, and usually 900 nm or less, preferably 500 nm. It refers to the following range of wavelengths. When the light transmittance at a wavelength in this range is low, the semiconductor light emitting device member absorbs light, the light extraction efficiency is lowered, and a high-luminance device cannot be obtained. Furthermore, the energy corresponding to the decrease in the light extraction efficiency is changed to heat, which causes thermal deterioration of the device, which is not preferable.
なお、近紫外〜青色領域(350nm〜500nm)においては封止部材が光劣化しやすいので、この領域に発光波長を有する半導体発光デバイスに、耐久性に優れた本発明の半導体発光デバイス用部材を使用すれば、その効果が大きくなるので好ましい。 In the near ultraviolet to blue region (350 nm to 500 nm), the sealing member easily deteriorates. Therefore, the semiconductor light emitting device member of the present invention having excellent durability is applied to a semiconductor light emitting device having an emission wavelength in this region. If used, the effect is increased, which is preferable.
なお、半導体発光デバイス用部材の光透過率は、例えば実施例に記載の手法により、膜厚0.5mmに成形した平滑な表面の単独硬化物膜のサンプルを用いて、紫外分光光度計により測定することができる。 The light transmittance of the member for a semiconductor light emitting device is measured with an ultraviolet spectrophotometer using a sample of a single cured film having a smooth surface molded to a thickness of 0.5 mm, for example, by the method described in the examples. can do.
但し、半導体デバイスの形状は様々であり、大多数は0.1mmを超える厚膜状態での使用であるが、LEDチップ(発光素子)から離れた位置に薄膜状の蛍光体層(例えばナノ蛍光体粒子や蛍光イオンを含む厚さ数μmの層)を設ける場合や、LEDチップの直上に薄膜上に高屈折光取り出し膜を設ける場合等、薄膜使用の用途もある。この様な場合には、この膜厚において80%以上の透過率を示すことが好ましい。このような薄膜状の適用形態においても、本発明の半導体発光デバイス用部材は優れた耐光性、耐熱性を示し、封止性能に優れ、クラック等なく安定して成膜できる。 However, the shape of the semiconductor device is various, and the majority is used in a thick film state exceeding 0.1 mm. However, a thin phosphor layer (for example, nanofluorescence) is located at a position away from the LED chip (light emitting element). There are also applications using thin films, such as when providing a layer having a thickness of several μm containing body particles or fluorescent ions), or when providing a high refractive light extraction film on a thin film directly above the LED chip. In such a case, it is preferable to show a transmittance of 80% or more at this film thickness. Even in such a thin-film application mode, the semiconductor light emitting device member of the present invention exhibits excellent light resistance and heat resistance, has excellent sealing performance, and can be stably formed without cracks.
〔I−6.その他〕
本発明の半導体発光デバイス用部材は厚膜状に塗布可能であり、透明性に優れるとともに、封止性、耐熱性、耐紫外線性などにも優れるため、様々な形状の半導体発光デバイス用部材として適用することができる。特に、発光波長が青〜紫外域にある半導体発光デバイスにおいて、劣化の少ない有用な部材として使用することができる。
[I-6. Others]
The semiconductor light-emitting device member of the present invention can be applied in a thick film shape, is excellent in transparency, and has excellent sealing properties, heat resistance, ultraviolet resistance, etc. Can be applied. In particular, in a semiconductor light emitting device having an emission wavelength in a blue to ultraviolet region, it can be used as a useful member with little deterioration.
本発明の半導体発光デバイス用部材は、容器への密着性、耐熱性、及び耐UV性に優れる。このような有利な特性を有しているため、本発明の半導体発光デバイス用部材は、いずれも、半導体発光デバイスの封止剤等として好適に用いることが出来る。
以下、それぞれ説明する。
The semiconductor light-emitting device member of the present invention is excellent in adhesion to a container, heat resistance, and UV resistance. Since it has such advantageous characteristics, any of the members for a semiconductor light emitting device of the present invention can be suitably used as a sealing agent for a semiconductor light emitting device.
Each will be described below.
〔密着性〕
本発明の半導体発光デバイス用部材は、ポリフタルアシドなどの樹脂、セラミック又は金属の表面に存在する所定の官能基(例えば、水酸基、メタロキセン結合中の酸素など)と水素結合可能な官能基を有する。半導体発光デバイス用の容器(後述するカップ等)は、通常、セラミック又は金属で形成されている。また、セラミックや金属の表面には、通常は水酸基が存在する。一方、本発明の半導体発光デバイス用部材は、通常、当該水酸基と水素結合可能な官能基を有している。したがって、前記水素結合により、本発明の半導体発光デバイス用部材は、半導体発光デバイス用の容器に対する密着性に優れているのである。
[Adhesion]
The member for a semiconductor light-emitting device of the present invention has a functional group capable of hydrogen bonding with a predetermined functional group (for example, a hydroxyl group, oxygen in a metalloxene bond, etc.) present on the surface of a resin, ceramic or metal such as polyphthalacid. . A container (such as a cup described later) for a semiconductor light emitting device is usually formed of ceramic or metal. Moreover, a hydroxyl group usually exists on the surface of ceramic or metal. On the other hand, the member for a semiconductor light-emitting device of the present invention usually has a functional group capable of hydrogen bonding with the hydroxyl group. Therefore, due to the hydrogen bonding, the member for semiconductor light emitting device of the present invention is excellent in adhesion to the container for semiconductor light emitting device.
本発明の半導体発光デバイス用部材が有する、前記の水酸基に対して水素結合が可能な官能基としては、例えば、シラノールやアルコキシ基等が挙げられる。なお、前記官能基は1種でも良く、2種以上でもよい。
なお、本発明の半導体発光デバイス用部材が、前記のように、水酸基に対して水素結合が可能な官能基を有しているか否かは、固体Si−NMR、固体1H−NMR、赤外線吸収スペクトル(IR)、ラマンスペクトルなどの分光学的手法により確認することができる。
Examples of the functional group capable of hydrogen bonding with respect to the hydroxyl group of the member for a semiconductor light emitting device of the present invention include silanol and alkoxy group. The functional group may be one type or two or more types.
Note that, as described above, whether or not the member for a semiconductor light-emitting device of the present invention has a functional group capable of hydrogen bonding to a hydroxyl group depends on solid Si-NMR, solid 1 H-NMR, infrared absorption. It can be confirmed by spectroscopic techniques such as spectrum (IR) and Raman spectrum.
〔耐熱性〕
本発明の半導体発光デバイス用部材は、耐熱性に優れる。即ち、高温条件下に放置した場合でも、所定の波長を有する光における透過率が変動しにくい性質を有する。具体的には、本発明の半導体発光デバイス用部材は、200℃に500時間放置した前後において、波長405nmの光に対する透過率の維持率が、通常80%以上、好ましくは90%以上、より好ましくは95%以上であり、また、通常110%以下、好ましくは105%以下、より好ましくは100%以下である。
なお、前記の変動比は、紫外/可視分光光度計による透過率測定により、前述した〔透過度の測定〕と同様にして測定することができる。
〔Heat-resistant〕
The member for semiconductor light emitting device of the present invention is excellent in heat resistance. That is, even when left under a high temperature condition, the transmittance of light having a predetermined wavelength hardly changes. Specifically, in the member for a semiconductor light emitting device of the present invention, the transmittance maintenance factor for light having a wavelength of 405 nm is usually 80% or more, preferably 90% or more, and more preferably before and after being left at 200 ° C. for 500 hours. Is 95% or more, and is usually 110% or less, preferably 105% or less, more preferably 100% or less.
The variation ratio can be measured in the same manner as in the above [Measurement of transmittance] by measuring the transmittance with an ultraviolet / visible spectrophotometer.
〔耐UV性〕
本発明の半導体発光デバイス用部材は、耐光性に優れる。即ち、UV(紫外光)を照射した場合でも、所定の波長を有する光に対する透過率が変動しにくい性質を有する。具体的には、本発明の半導体発光デバイス用部材は、中心波長380nm、放射強度0.4kW/m2の光を72時間照射した前後において、波長405nmの光における透過率の維持率が、通常80%以上、好ましくは90%以上、より好ましくは95%以上であり、また、通常110%以下、好ましくは105%以下、より好ましくは100%以下である。
なお、前記の変動比は、紫外/可視分光光度計による透過率測定により、前述した〔透過度の測定〕と同様にして測定することができる。
[UV resistance]
The member for semiconductor light emitting device of the present invention is excellent in light resistance. That is, even when UV (ultraviolet light) is irradiated, the transmittance with respect to light having a predetermined wavelength is not easily changed. Specifically, the member for a semiconductor light-emitting device of the present invention has a transmittance maintenance ratio of light having a wavelength of 405 nm before and after irradiation with light having a center wavelength of 380 nm and a radiation intensity of 0.4 kW / m 2 for 72 hours. It is 80% or more, preferably 90% or more, more preferably 95% or more, and usually 110% or less, preferably 105% or less, more preferably 100% or less.
The variation ratio can be measured in the same manner as in the above [Measurement of transmittance] by measuring the transmittance with an ultraviolet / visible spectrophotometer.
[II.半導体発光デバイス用部材の製造方法]
本発明の半導体発光デバイス用部材を製造する方法は特に制限されないが、例えば、後述の一般式(1)や一般式(2)で表わされる化合物を加水分解・重縮合し、重縮合物を乾燥することにより得ることができる。以下、この製造方法(これを適宜「本発明の半導体発光デバイス用部材の製造方法」という。)について詳しく説明する。
[II. Manufacturing method of semiconductor light emitting device member]
The method for producing the semiconductor light emitting device member of the present invention is not particularly limited. For example, the compound represented by the following general formula (1) or general formula (2) is hydrolyzed and polycondensed, and the polycondensate is dried. Can be obtained. Hereinafter, this manufacturing method (this is appropriately referred to as “a method for manufacturing a member for a semiconductor light emitting device of the present invention”) will be described in detail.
〔II−1.原料〕
原料としては、下記一般式(1)で表わされる化合物(以下適宜「化合物(1)」という。)及び/又はそのオリゴマーを用いる。
As a raw material, a compound represented by the following general formula (1) (hereinafter referred to as “compound (1)” as appropriate) and / or an oligomer thereof are used.
一般式(1)中、Mは、ケイ素、アルミニウム、ジルコニウム、及びチタンからなる群より選択される少なくとも1種の元素である。中でも、ケイ素が好ましい。 In general formula (1), M is at least one element selected from the group consisting of silicon, aluminum, zirconium, and titanium. Of these, silicon is preferable.
一般式(1)中、mは、Mの価数を表わし、1以上、4以下の整数である。また、「m+」とは、それが正の価数であることを表わす。
nは、X基の数を表わし、1以上、4以下の整数である。但し、m≧nである。
In general formula (1), m represents the valence of M and is an integer of 1 or more and 4 or less. “M +” represents that it is a positive valence.
n represents the number of X groups and is an integer of 1 or more and 4 or less. However, m ≧ n.
一般式(1)中、Xは、溶液中の水や空気中の水分などにより加水分解されて、反応性に富む水酸基を生成する加水分解性基であり、従来より公知のものを任意に使用することができる。例えば、C1〜C5の低級アルコキシ基、アセトキシ基、ブタノキシム基、クロル基等が挙げられる。なお、ここでCi(iは自然数)という表記は、炭素数がi個であることを表わす。また、これらの加水分解性基は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。 In the general formula (1), X is a hydrolyzable group that is hydrolyzed with water in solution or moisture in the air to produce a hydroxyl group rich in reactivity, and any conventionally known one is arbitrarily used. can do. For example, C1-C5 lower alkoxy group, acetoxy group, butanoxime group, chloro group and the like can be mentioned. Here, Ci (i is a natural number) represents that the number of carbon atoms is i. Moreover, these hydrolysable groups may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
中でも、反応後に遊離する成分が中性であることから、C1〜C5の低級アルコキシ基が好ましい。特に、反応性に富み、遊離する溶剤が軽沸であることから、メトキシ基又はエトキシ基が好ましい。 Especially, since the component liberated after reaction is neutral, a C1-C5 lower alkoxy group is preferable. In particular, a methoxy group or an ethoxy group is preferable because it is highly reactive and a free solvent is light boiling.
さらに、一般式(1)中でXがアセトキシ基やクロル基である場合には、加水分解反応後に酢酸や塩酸を遊離するため、絶縁性が必要とされる半導体発光デバイス用部材として使用する場合には、酸成分を除去する工程を付加することが好ましい。 Furthermore, when X is an acetoxy group or a chloro group in the general formula (1), acetic acid and hydrochloric acid are liberated after the hydrolysis reaction, so that it is used as a member for a semiconductor light emitting device that requires insulation. It is preferable to add a step of removing the acid component.
一般式(1)中、Y1は、いわゆるシランカップリング剤の1価の有機基として公知のものを、いずれも任意に選択して使用することができる。中でも、本発明において一般式(1)におけるY1として特に有用な有機基とは、以下のY0に表される群(有用有機基群)から選ばれるものである。 In the general formula (1), Y 1 can be arbitrarily selected from any known monovalent organic groups of so-called silane coupling agents. Among them, the organic group particularly useful as Y 1 in the general formula (1) in the present invention is selected from the following group represented by Y 0 (useful organic group group).
<有用有機基群Y0>
Y0:脂肪族化合物、脂環式化合物、芳香族化合物、脂肪芳香族化合物より誘導される1価以上の有機基である。
また、群Y0に属する有機基の炭素数は、通常1以上、また、通常1000以下、好ましくは500以下、より好ましくは100以下、さらに好ましくは50以下である。
<Useful organic group Y 0 >
Y 0 is a monovalent or higher-valent organic group derived from an aliphatic compound, alicyclic compound, aromatic compound, or aliphatic aromatic compound.
The number of carbon atoms of the organic group belonging to the group Y 0 is usually 1 or more, and usually 1000 or less, preferably 500 or less, more preferably 100 or less, and further preferably 50 or less.
さらに、群Y0に属する有機基が有する水素原子のうち少なくとも一部は、下記に例示する原子及び/又は有機官能基等の置換基で置換されていても良い。この際、群Y0に属する有機基が有する水素原子のうちの複数が下記置換基で置換されていても良く、この場合、下記に示す置換基の中から選択した1種又は2種以上の組み合わせにより置換されていても良い。 Furthermore, at least a part of the hydrogen atoms of the organic group belonging to the group Y 0 may be substituted with a substituent such as an atom and / or an organic functional group exemplified below. At this time, a plurality of hydrogen atoms of the organic group belonging to the group Y 0 may be substituted with the following substituents. In this case, one or two or more kinds selected from the following substituents may be substituted. It may be replaced by a combination.
群Y0に属する有機基の水素原子と置換可能な置換基の例としては、F、Cl、Br、I等の原子;ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、メルカプト基、エポキシ基、エポキシシクロヘキシル基、グリシドキシ基、アミノ基、シアノ基、ニトロ基、スルホン酸基、カルボキシ基、ヒドロキシ基、アシル基、アルコキシ基、イミノ基、フェニル基等の有機官能基などが挙げられる。 Examples of substituents that can be substituted with hydrogen atoms of organic groups belonging to group Y 0 include atoms such as F, Cl, Br, I, etc .; vinyl groups, methacryloxy groups, acryloxy groups, styryl groups, mercapto groups, epoxy groups, Examples thereof include an organic functional group such as an epoxycyclohexyl group, a glycidoxy group, an amino group, a cyano group, a nitro group, a sulfonic acid group, a carboxy group, a hydroxy group, an acyl group, an alkoxy group, an imino group, and a phenyl group.
なお、上記全ての場合において、群Y0に属する有機基の有する水素原子と置換可能な置換基のうち、有機官能基については、その有機官能基の有する水素原子のうち少なくとも一部がF、Cl、Br、I等のハロゲン原子などで置換されていても良い。 In all of the above cases, among the substituents that can be substituted for the hydrogen atoms of the organic group belonging to the group Y 0 , for the organic functional group, at least a part of the hydrogen atoms of the organic functional group is F, It may be substituted with a halogen atom such as Cl, Br, or I.
ただし、群Y0に属する有機基の水素と置換可能な置換基として例示したもののなかでも、有機官能基は、導入しやすいものの一例であり、使用目的に応じてこの他各種の物理化学的機能性を持つ有機官能基を導入しても良い。
また、群Y0に属する有機基は、その中に連結基としてO、N、又はS等の各種の原子または原子団を有するものであっても良い。
However, among those exemplified as substituents capable of substituting for hydrogen of the organic group belonging to the group Y 0 , the organic functional group is an example that can be easily introduced, and various other physicochemical functions depending on the purpose of use. Organic functional groups having properties may be introduced.
In addition, the organic group belonging to the group Y 0 may have various atoms or atomic groups such as O, N, or S as a linking group therein.
一般式(1)中、Y1は、上記の有用有機基群Y0に属する有機基などから、その目的により様々な基を選択できるが、耐紫外線性、耐熱性に優れる点から、メチル基を主体とすることが好ましい。さらに、半導体発光デバイスを構成する他の材料との親和性向上、密着性向上、半導体発光デバイス用部材の屈折率調整などのために、適宜、他の有機基を選択するようにしてもよい。 In general formula (1), Y 1 can be selected from various groups depending on the purpose from the organic groups belonging to the useful organic group Y 0 described above, but from the viewpoint of excellent ultraviolet resistance and heat resistance, it is a methyl group. It is preferable to use as a main component. Furthermore, other organic groups may be appropriately selected for improving affinity with other materials constituting the semiconductor light emitting device, improving adhesion, adjusting the refractive index of the semiconductor light emitting device member, and the like.
上述の化合物(1)の具体例を挙げると、Mがケイ素である化合物としては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−(メタ)アクリロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、β−シアノエチルトリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、ジメチルジクロロシラン、ジフェニルジクロロシラン、メチルフェニルジメトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルクロロシラン、メチルトリクロロシラン、γ−アシノプロピルトリエトキシシラン、4−アシノブチルトリエトキシシラン、p−アミノフェニルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、アミノエチルアミノメチルフェネチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、4−アミノブチルトリエトキシシラン、N−(6−アミノヘキシル)アミノプロピルトリメトキシシラン、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリクロロシラン、(p−クロロメチル)フェニルトリメトキシシラン、4−クロロフェニルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、スチリルエチルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビニルトリクロロシラン、ビニルトリス(2−メトキシエトキシ)シラン、トリフルオロプロピルトリメトキシシランなどが挙げられる。 Specific examples of the above-mentioned compound (1) include compounds in which M is silicon, for example, dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, vinyltrimethoxysilane, vinyltriethoxy. Silane, vinyltriacetoxysilane, γ-aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ- (3,4-epoxycyclohexyl) ethyltriethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, phenyltrimethoxysilane, phenyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane γ-chloropropyltrimethoxysilane, β-cyanoethyltriethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, tetramethoxysilane, tetra Ethoxysilane, tetrapropoxysilane, tetrabutoxysilane, dimethyldichlorosilane, diphenyldichlorosilane, methylphenyldimethoxysilane, trimethylmethoxysilane, trimethylethoxysilane, trimethylchlorosilane, methyltrichlorosilane, γ-acinopropyltriethoxysilane, 4-amino Butyltriethoxysilane, p-aminophenyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimeth Xysilane, aminoethylaminomethylphenethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxy Silane, 4-aminobutyltriethoxysilane, N- (6-aminohexyl) aminopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltrichlorosilane, (p-chloromethyl) phenyltrimethoxysilane, 4-chlorophenyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, styrylethyltrimethoxy Silane, 3-mercaptopropyl trimethoxysilane, vinyl trichlorosilane, vinyltris (2-methoxyethoxy) silane, etc. trifluoropropyl trimethoxysilane.
また、化合物(1)のうち、Mがアルミニウムである化合物としては、例えば、アルミニウムトリイソプロポキシド、アルミニウムトリn−ブトキシド、アルミニウムトリt−ブトシキド、アルミニウムトリエトキシドなどが挙げられる。 Examples of the compound (1) in which M is aluminum include aluminum triisopropoxide, aluminum tri-n-butoxide, aluminum tri-t-butoxide, aluminum triethoxide, and the like.
また、化合物(1)のうち、Mがジルコニウムである化合物としては、例えば、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラn−プロポキシド、ジルコニウムテトラi−プロポキシド、ジルコニウムテトラn−ブトキシド、ジルコニウムテトラi−ブトキシド、ジルコニウムテトラt−ブトキシド、ジルコニウムジメタクリレートジブトキシドなどが挙げられる。 Examples of the compound (1) in which M is zirconium include, for example, zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium tetra i-propoxide, zirconium tetra n-butoxide, Zirconium tetra i-butoxide, zirconium tetra t-butoxide, zirconium dimethacrylate dibutoxide and the like can be mentioned.
また、化合物(1)のうち、Mがチタンである化合物としては、例えば、チタンテトライソプロポキシド、チタンテトラn−ブトキシド、チタンテトラi−ブトキシド、チタンメタクリレートトリイソプロポキシド、チタンテトラメトキシプロポキシド、チタンテトラn−プロポキシド、チタンテトラエトキシドなどが挙げられる。 Moreover, as a compound whose M is titanium among compounds (1), for example, titanium tetraisopropoxide, titanium tetra n-butoxide, titanium tetra i-butoxide, titanium methacrylate triisopropoxide, titanium tetramethoxypropoxide , Titanium tetra n-propoxide, titanium tetraethoxide and the like.
ただし、これらに具体的に例示した化合物は、入手容易な市販のカップリング剤の一部であり、更に詳しくは、例えば、科学技術総合研究所発行の「カップリング剤最適利用技術」9章のカップリング剤及び関連製品一覧表により示すことが出来る。また、当然のことながら、本発明に使用できるカップリング剤は、これらの例示により制限されるものではない。 However, the compounds specifically exemplified in these are some of commercially available coupling agents that are readily available. For more details, see, for example, “Optimum Utilization Technology for Coupling Agents” in Chapter 9 published by the Science and Technology Research Institute. It can be shown by a list of coupling agents and related products. Of course, the coupling agent that can be used in the present invention is not limited by these examples.
また、下記一般式(2)で表される化合物(以下適宜、「化合物(2)」という。)及び/又はそのオリゴマーも、上記化合物(1)と同様に使用することが出来る。
一般式(2)において、M、X及びY1は、それぞれ独立に、一般式(1)と同様のものを表わす。特にY1としては、一般式(1)の場合と同様、上記の有用有機基群Y0に属する有機基などから、その目的により様々な基を選択できるが、耐紫外線性、耐熱性に優れる点から、メチル基を主体とすることが好ましい。
また、一般式(2)において、sは、Mの価数を表わし、2以上、4以下の整数である。また、「s+」は、それが正の整数であることを表わす。
さらに、一般式(2)において、Y2は、u価の有機基を表わす。ただし、uは2以上の整数を表わす。したがって、一般式(2)中、Y2は、いわゆるシランカップリング剤の有機基として公知のもののうち2価以上のものを、任意に選択して使用することができる。
また、一般式(2)において、tは、1以上、s−1以下の整数を表わす。但し、t≦sである。
In the general formula (2), M, X and Y 1 each independently represent the same as in the general formula (1). In particular, as Y 1 , various groups can be selected according to the purpose from the organic groups belonging to the useful organic group group Y 0 as in the case of the general formula (1), but they are excellent in ultraviolet resistance and heat resistance. From the point of view, it is preferable to mainly use a methyl group.
Moreover, in General formula (2), s represents the valence of M and is an integer of 2-4. “S +” indicates that it is a positive integer.
Further, in the general formula (2), Y 2 represents a u-valent organic group. Here, u represents an integer of 2 or more. Therefore, in the general formula (2), Y 2 may be arbitrarily selected from divalent or higher ones among known organic groups of so-called silane coupling agents.
In the general formula (2), t represents an integer of 1 or more and s−1 or less. However, t ≦ s.
上記化合物(2)の例としては、各種有機ポリマーやオリゴマーに側鎖として加水分解性シリル基が複数結合しているものや、分子の複数の末端に加水分解性シリル基が結合しているものなどが挙げられる。 Examples of the compound (2) include those in which a plurality of hydrolyzable silyl groups are bonded as side chains to various organic polymers and oligomers, and those in which a hydrolyzable silyl group is bonded to a plurality of terminals of the molecule. Etc.
上記化合物(2)の具体例及びその製品名を以下に挙げる。
・ビス(トリエトキシシリルプロピル)テトラスルフィド
(信越化学製、KBE−846)
・2−ジエトキシメチルエチルシリルジメチル−2−フラニルシラン
(信越化学製、LS−7740)
・N,N’−ビス[3−(トリメトキシシリル)プロピル]エチレンジアミン
(チッソ製、サイラエースXS1003)
・N−グリシジル−N,N−ビス[3−(メチルジメトキシシリル)プロピル]アミン
(東芝シリコーン製、TSL8227)
・N−グリシジル−N,N−ビス[3−(トリメトキシシリル)プロピル]アミン
(東芝シリコーン製、TSL8228)
・N,N−ビス[(メチルジメトキシシリル)プロピル]アミン
(東芝シリコーン製、TSL8206)
・N,N−ビス[3−(メチルジメトキシシリル)プロピル]エチレンジアミン
(東芝シリコーン製、TSL8212)
・N,N−ビス[(メチルジメトキシシリル)プロピル]メタクリルアミド
(東芝シリコーン製、TSL8213)
・N,N−ビス[3−(トリメトキシシリル)プロピル]アミン
(東芝シリコーン製、TSL8208)
・N,N−ビス[3−(トリメトキシシリル)プロピル]エチレンジアミン
(東芝シリコーン製、TSL8214)
・N,N−ビス[3−(トリメトキシシリル)プロピル]メタクリルアミド
(東芝シリコーン製、TSL8215)
・N,N’,N”−トリス[3−(トリメトキシシリル)プロピル]イソシアヌレート
(ヒドラス化学製、12267−1)
・1,4−ビスヒドロキシジメチルシリルベンゼン
(信越化学製、LS−7325)
Specific examples of the compound (2) and product names thereof are listed below.
・ Bis (triethoxysilylpropyl) tetrasulfide (manufactured by Shin-Etsu Chemical, KBE-846)
2-diethoxymethylethylsilyldimethyl-2-furanylsilane (manufactured by Shin-Etsu Chemical, LS-7740)
N, N′-bis [3- (trimethoxysilyl) propyl] ethylenediamine (manufactured by Chisso, Silaace XS1003)
N-glycidyl-N, N-bis [3- (methyldimethoxysilyl) propyl] amine (Toshiba Silicone, TSL8227)
N-glycidyl-N, N-bis [3- (trimethoxysilyl) propyl] amine (Toshiba Silicone, TSL8228)
N, N-bis [(methyldimethoxysilyl) propyl] amine (Toshiba Silicone, TSL8206)
N, N-bis [3- (methyldimethoxysilyl) propyl] ethylenediamine (Toshiba Silicone, TSL8212)
N, N-bis [(methyldimethoxysilyl) propyl] methacrylamide (Toshiba Silicone, TSL8213)
N, N-bis [3- (trimethoxysilyl) propyl] amine (Toshiba Silicone, TSL8208)
N, N-bis [3- (trimethoxysilyl) propyl] ethylenediamine (Toshiba Silicone, TSL8214)
N, N-bis [3- (trimethoxysilyl) propyl] methacrylamide (Toshiba Silicone, TSL8215)
N, N ′, N ″ -tris [3- (trimethoxysilyl) propyl] isocyanurate (manufactured by Hydras Chemical, 12267-1)
・ 1,4-Bishydroxydimethylsilylbenzene (manufactured by Shin-Etsu Chemical Co., Ltd., LS-7325)
原料としては、これらの化合物(1)や化合物(2)のうち1種類だけを用いてよいが、二種類以上を任意の組み合わせ及び組成で混合してもかまわない。また、上記のように、これらの化合物(1)や化合物(2)のオリゴマーを原料にしてもかまわない。即ち、化合物(1)及び/又はそのオリゴマーを原料にしたり、化合物(2)及びそのオリゴマーを原料にしたりしてもよい。さらに、予め加水分解された(即ち、一般式(1),(2)において−XがOH基である)化合物(1)又は化合物(2)を用いるようにしてもよい。 As a raw material, you may use only 1 type among these compounds (1) and a compound (2), However, You may mix 2 or more types by arbitrary combinations and compositions. Further, as described above, oligomers of these compounds (1) and (2) may be used as raw materials. That is, the compound (1) and / or its oligomer may be used as a raw material, or the compound (2) and its oligomer may be used as a raw material. Further, the compound (1) or the compound (2) hydrolyzed in advance (that is, -X is an OH group in the general formulas (1) and (2)) may be used.
但し、本発明では原料として、Mとしてケイ素を含有し、且つ、有機基Y1又は有機基Y2を少なくとも1つ有する化合物(1)及び化合物(2)(加水分解されたものを含む)並びにそのオリゴマーを、少なくとも1種以上用いる必要がある。また、系内の架橋が主としてシロキサン結合を始めとする無機成分により形成されることが好ましいことから、化合物(1)及び化合物(2)をともに使用する場合には、化合物(1)が主体となることが好ましい。 However, in the present invention, as a raw material, compound (1) and compound (2) (including hydrolyzed ones) containing silicon as M and having at least one organic group Y 1 or organic group Y 2 and It is necessary to use at least one oligomer. In addition, since it is preferable that the crosslinking in the system is mainly formed by inorganic components including a siloxane bond, when the compound (1) and the compound (2) are used together, the compound (1) is mainly used. It is preferable to become.
さらに、原料として化合物(1)を用いる場合、製造される半導体発光デバイス用部材の硬度を硬くしようとするのであれば、原料として2官能の化合物(1)に対する3官能以上の化合物(1)(即ち、3官能又は4官能の化合物(1))の比率を大きくすることが好ましい。3官能以上の化合物は架橋成分となりうることから、3官能以上の化合物の比率を大きくすることにより、半導体発光デバイス用部材の架橋を促進することが出来るためである。 Further, when the compound (1) is used as a raw material, if the hardness of the manufactured semiconductor light emitting device member is to be increased, a trifunctional or higher functional compound (1) (2) as a raw material with respect to the bifunctional compound (1) ( That is, it is preferable to increase the ratio of the trifunctional or tetrafunctional compound (1)). This is because a trifunctional or higher functional compound can serve as a crosslinking component, and therefore, by increasing the ratio of the trifunctional or higher functional compound, the cross-linking of the semiconductor light emitting device member can be promoted.
ここで、架橋剤として4官能以上の化合物を用いる場合は、3官能の化合物を用いる場合に比較して2官能の使用比率を高くして系内全体の架橋度を調整することが好ましい。化合物(1)のオリゴマーを使用する場合には、2官能のみのオリゴマー、3官能のみのオリゴマー、4官能のみのオリゴマー、或いは、これら複数の単位を有するオリゴマー等がある。この際、最終的な半導体発光デバイス用部材全体において、2官能モノマー単位に対する3官能以上のモノマー単位の比率が大きくなると、上記と同様に硬い半導体発光デバイス用部材を得ることが出来る。 Here, when a tetrafunctional or higher functional compound is used as the crosslinking agent, it is preferable to adjust the cross-linking degree of the entire system by increasing the use ratio of the bifunctional as compared with the case of using the trifunctional compound. When the oligomer of the compound (1) is used, there are a bifunctional oligomer, a trifunctional oligomer, a tetrafunctional oligomer, an oligomer having a plurality of these units, and the like. At this time, when the ratio of the trifunctional or higher monomer unit to the bifunctional monomer unit is increased in the entire final semiconductor light emitting device member, a hard semiconductor light emitting device member can be obtained in the same manner as described above.
また、化合物(2)を用いる場合にも基本的な考え方は上記の化合物(1)を用いる場合と同じである。ただし、化合物(2)の有機基部分の分子量が大きい場合には、分子量が小さい場合と比較して、実質的に架橋点間距離が大きくなるので、柔軟性が増す傾向にある。 In addition, when using the compound (2), the basic concept is the same as when using the above compound (1). However, when the molecular weight of the organic group portion of the compound (2) is large, the distance between cross-linking points is substantially increased as compared with the case where the molecular weight is small, so that the flexibility tends to increase.
ここで化合物(2)及び/又はそのオリゴマーを主原料として用いると系内の主鎖構造が有機結合主体となり耐久性に劣るものとなる虞がある。このため、化合物(2)は主として密着性付与や屈折率調整、反応性制御、無機粒子分散性付与などの機能性付与のため最小限の使用量用いることが望ましい。化合物(1)及び/又はそのオリゴマー(化合物(1)由来成分)と、化合物(2)及び/又はそのオリゴマー(化合物(2)由来成分)を同時に使用する場合には原料の総重量における化合物(2)由来成分の使用量割合が通常30重量%以下、好ましくは20重量%以下、さらに好ましくは10重量%以下であることが望ましい。 Here, when the compound (2) and / or the oligomer thereof is used as a main raw material, the main chain structure in the system becomes an organic bond main body and may be inferior in durability. For this reason, it is desirable to use the minimum amount of the compound (2) for providing functions such as adhesion, refractive index adjustment, reactivity control, and inorganic particle dispersibility. When compound (1) and / or its oligomer (component derived from compound (1)) and compound (2) and / or its oligomer (component derived from compound (2)) are used at the same time, the compound ( 2) It is desirable that the amount of the derived component used is usually 30% by weight or less, preferably 20% by weight or less, more preferably 10% by weight or less.
このように、固体Si−NMRのピーク半値幅が本発明の範囲である半導体発光デバイス用部材は、2官能のモノマー単位と3官能以上のモノマー単位との比率を制御することにより架橋度が調整され、応力歪が少なく、半導体発光デバイス用部材として有用な適度の可とう性を得ることができるようになっている。 As described above, the member for a semiconductor light emitting device in which the peak half width of the solid Si-NMR is within the range of the present invention is adjusted in the degree of crosslinking by controlling the ratio of the bifunctional monomer unit and the trifunctional or higher monomer unit. Therefore, the stress distortion is small, and it is possible to obtain moderate flexibility useful as a member for a semiconductor light emitting device.
〔II−2.加水分解・重縮合工程〕
本発明ではまず、上述の化合物(1)及び化合物(2)並びにそのオリゴマーのうち1種以上を加水分解・重縮合反応させる(加水分解・重縮合工程)。この加水分解・重縮合反応は、公知の方法によって行なうことができる。なお、以下適宜、化合物(1)及び化合物(2)並びにそのオリゴマーを区別せずに指す場合、「原料化合物」という。
[II-2. (Hydrolysis / polycondensation process)
In the present invention, at least one of the above-mentioned compound (1), compound (2) and oligomer thereof is subjected to hydrolysis / polycondensation reaction (hydrolysis / polycondensation step). This hydrolysis / polycondensation reaction can be carried out by a known method. Hereinafter, when referring to the compound (1), the compound (2) and the oligomer thereof without distinction, they are referred to as “raw material compounds”.
原料化合物の加水分解・重縮合反応を行なうために使用する水の理論量は、下記式(3)に示す反応式に基づき、系内の加水分解性基の総量の1/2モル比である。 The theoretical amount of water used for conducting the hydrolysis / polycondensation reaction of the raw material compound is a 1/2 molar ratio of the total amount of hydrolyzable groups in the system based on the reaction formula shown in the following formula (3). .
本明細書では、この加水分解時に必要な水の理論量、即ち、加水分解性基の総量の1/2モル比に相当する水の量を基準(加水分解率100%)とし、加水分解時に使用する水の量をこの基準量に対する百分率、即ち「加水分解率」で表わす。
In this specification, the theoretical amount of water required for the hydrolysis, that is, the amount of water corresponding to 1/2 molar ratio of the total amount of hydrolyzable groups is used as a reference (
本発明において、加水分解・重縮合反応を行なうために使用する水の量は、上述の加水分解率で表わした場合に、通常80%以上、中でも100%以上の範囲が好ましい。加水分解率がこの範囲より少ない場合、加水分解・重合が不十分なため、硬化時に原料が揮発したり、硬化物の強度が不十分となったりするおそれがある。一方、加水分解率が200%を超える場合、硬化途中の系内には常に遊離の水が残存し、チップや蛍光体に水分による劣化をもたらしたり、カップ部が吸水し、硬化時の発泡、クラック、剥離の原因となったりする場合がある。但し、加水分解反応において重要なのは100%近傍以上(例えば80%以上)の水で加水分解・重縮合を行なうということであり、塗布前に遊離の水を除く工程を付加すれば、200%を超える加水分解率を適用することは可能である。この場合、あまり大量の水を使用すると、除去すべき水の量や相溶剤として使用する溶媒の量が増え、濃縮工程が煩雑になったり、重縮合が進みすぎて部材の塗布性能が低下したりすることがあるので、加水分解率の上限は通常500%以下、中でも300%以下、好ましくは200%以下の範囲とすることが好ましい。 In the present invention, the amount of water used for carrying out the hydrolysis / polycondensation reaction is usually 80% or more, preferably 100% or more, when expressed by the above hydrolysis rate. When the hydrolysis rate is less than this range, the hydrolysis and polymerization are insufficient, so that the raw material may volatilize during curing or the strength of the cured product may be insufficient. On the other hand, if the hydrolysis rate exceeds 200%, free water always remains in the curing system, causing deterioration of the chip and phosphor due to moisture, or the cup part absorbs water, and foaming during curing. It may cause cracks and peeling. However, what is important in the hydrolysis reaction is that hydrolysis and polycondensation are performed with water of around 100% or more (for example, 80% or more). If a step of removing free water is added before coating, 200% is obtained. It is possible to apply a hydrolysis rate exceeding. In this case, if too much water is used, the amount of water to be removed and the amount of solvent used as a compatibilizer increase, the concentration process becomes complicated, and polycondensation proceeds so much that the coating performance of the member decreases. Therefore, the upper limit of the hydrolysis rate is usually 500% or less, particularly 300% or less, preferably 200% or less.
原料化合物を加水分解・縮重合する際には、既知の触媒などを共存させて、加水分解・縮重合を促進しても良い。この場合、使用する触媒としては、酢酸、プロピオン酸、酪酸などの有機酸や、硝酸、塩酸、リン酸、硫酸などの無機酸、有機金属化合物触媒を用いることができる。このうち、半導体発光デバイスと直接接する部分に使用する部材とする場合には、絶縁特性に影響の少ない有機金属化合物触媒が好ましい。 When the raw material compound is hydrolyzed / condensed, a known catalyst or the like may be allowed to coexist to promote hydrolysis / condensation polymerization. In this case, as a catalyst to be used, an organic acid such as acetic acid, propionic acid or butyric acid, an inorganic acid such as nitric acid, hydrochloric acid, phosphoric acid or sulfuric acid, or an organometallic compound catalyst can be used. Of these, in the case of a member used in a portion in direct contact with the semiconductor light emitting device, an organometallic compound catalyst that has little influence on the insulating properties is preferable.
上記の原料化合物の加水分解・重縮合物は、好ましくは液状である。しかし、固体状の加水分解・重縮合物でも、溶媒を用いることにより液状となるものであれば、使用することができる。 The hydrolysis / polycondensation product of the raw material compound is preferably liquid. However, even a solid hydrolysis / polycondensate can be used as long as it becomes liquid by using a solvent.
加水分解・重縮合反応時に系内が分液し不均一となる場合には、溶媒を使用しても良い。溶媒としては、例えば、C1〜C3の低級アルコール類、ジメチルホルムアミド、ジメチルスルホキシド、アセトン、テトラヒドロフラン、メチルセロソルブ、エチルセロソルブ、メチルエチルケトン、その他の水と均一に混合できる溶媒を任意に用いることができるが、中でも強い酸性や塩基性を示さないものが加水分解・重縮合に悪影響を与えない理由から好ましい。溶媒は1種を単独で使用しても良いが、複数種を併用することもできる。溶媒使用量は自由に選択できるが、半導体発光デバイスに塗布する際には溶媒を除去することが多いため、必要最低限の量とすることが好ましい。また、溶媒除去を容易にするため、沸点が100℃以下、より好ましくは80℃以下の溶媒を選択することが好ましい。なお、外部より溶媒を添加しなくても加水分解反応によりアルコール等の溶媒が生成するため、反応当初は不均一でも反応中に均一になる場合もある。 When the inside of the system is separated and becomes non-uniform during the hydrolysis / polycondensation reaction, a solvent may be used. As the solvent, for example, C1-C3 lower alcohols, dimethylformamide, dimethyl sulfoxide, acetone, tetrahydrofuran, methyl cellosolve, ethyl cellosolve, methyl ethyl ketone, and other solvents that can be mixed uniformly with water can be arbitrarily used. Of these, those which do not exhibit strong acidity or basicity are preferred because they do not adversely affect hydrolysis and polycondensation. The solvent may be used alone or in combination of two or more. The amount of solvent used can be freely selected. However, since the solvent is often removed when applied to a semiconductor light emitting device, it is preferably set to the minimum necessary amount. In order to facilitate the removal of the solvent, it is preferable to select a solvent having a boiling point of 100 ° C. or lower, more preferably 80 ° C. or lower. In addition, even if it does not add a solvent from the exterior, since solvents, such as alcohol, are produced | generated by a hydrolysis reaction, even if it is heterogeneous at the beginning of reaction, it may become uniform during reaction.
上記原料化合物の加水分解・重縮合反応は、常圧で実施する場合、通常15℃以上、好ましくは20℃以上、より好ましくは40℃以上、また、通常140℃以下、好ましくは135℃以下、より好ましくは130℃以下の範囲で行なう。加圧下で液相を維持することでより高い温度で行なうことも可能であるが、150℃を越えないことが好ましい。 When the hydrolysis / polycondensation reaction of the raw material compound is carried out at normal pressure, it is usually 15 ° C or higher, preferably 20 ° C or higher, more preferably 40 ° C or higher, and usually 140 ° C or lower, preferably 135 ° C or lower. More preferably, it is performed in a range of 130 ° C. or lower. Although it is possible to carry out at a higher temperature by maintaining the liquid phase under pressure, it is preferable not to exceed 150 ° C.
加水分解・重縮合反応時間は反応温度により異なるが、通常0.1時間以上、好ましくは1時間以上、更に好ましくは3時間以上、また、通常100時間以下、好ましくは20時間以下、更に好ましくは15時間以下の範囲で実施される。 Although the hydrolysis / polycondensation reaction time varies depending on the reaction temperature, it is usually 0.1 hour or longer, preferably 1 hour or longer, more preferably 3 hours or longer, and usually 100 hours or shorter, preferably 20 hours or shorter, more preferably It is carried out in the range of 15 hours or less.
以上の加水分解・重縮合条件において、時間が短くなったり温度が低すぎたりすると、加水分解・重合が不十分なため硬化時に原料が揮発したり、硬化物の強度が不十分となるおそれがある。また、時間が長くなったり温度が高すぎたりすると、重合物の分子量が高くなり、系内のシラノール量が減少し、塗布時に密着性不良が生じたり硬化が早すぎて硬化物の構造が不均一となり、クラックを生じやすくなる。以上の傾向を踏まえて、所望の物性値に応じて条件を適宜選択することが望ましい。 Under the above hydrolysis / polycondensation conditions, if the time is shortened or the temperature is too low, the hydrolysis / polymerization is insufficient, and the raw material may volatilize during curing or the strength of the cured product may be insufficient. is there. In addition, if the time is too long or the temperature is too high, the molecular weight of the polymer increases and the amount of silanol in the system decreases, resulting in poor adhesion at the time of application or curing too early, resulting in a poor cured structure. It becomes uniform and tends to cause cracks. Based on the above tendency, it is desirable to appropriately select conditions according to desired physical property values.
上記加水分解・重縮合反応が終了した後、得られた加水分解・重縮合物はその使用時まで室温以下で保管されるが、この期間にもゆっくりと重縮合が進行するため、特に厚膜状の部材として使用する場合には前記加温による加水分解・重縮合反応が終了した時点より室温保管にて通常60日以内、好ましくは30日以内、更に好ましくは15日以内に使用に供することが好ましい。必要に応じ凍らない範囲にて低温保管することにより、この期間を延長することができる。 After the hydrolysis / polycondensation reaction is completed, the obtained hydrolysis / polycondensation product is stored at room temperature or lower until the time of use. When used as a shaped member, it should be used within 60 days, preferably within 30 days, more preferably within 15 days at room temperature storage after the completion of the hydrolysis and polycondensation reaction by heating. Is preferred. This period can be extended by low-temperature storage in a range that does not freeze as required.
〔II−3.乾燥〕
上述の加水分解・重縮合反応により得られた加水分解・重縮合物を乾燥する(乾燥工程)ことにより、本発明の半導体発光デバイス用部材を得ることができる。この加水分解・重縮合物は上述のように通常は液状であるが、これを目的とする形状の型に入れた状態で乾燥を行なうことにより、目的とする形状を有する本発明の半導体発光デバイス用部材を形成することが可能となる。また、この加水分解・重縮合物を目的とする部位に塗布した状態で乾燥を行なうことにより、目的とする部位に直接、本発明の半導体発光デバイス用部材を形成することが可能となる。なお、この液状の加水分解・重縮合物を、本明細書では適宜「加水分解・重縮合液」又は「半導体発光デバイス用部材形成液」というものとする。
[II-3. Dry)
The member for a semiconductor light emitting device of the present invention can be obtained by drying the hydrolysis / polycondensate obtained by the hydrolysis / polycondensation reaction described above (drying step). As described above, the hydrolyzed / polycondensed product is usually in a liquid state, but is dried in a state where the hydrolyzed / polycondensed product is placed in a mold having a desired shape, thereby having the desired shape. It becomes possible to form a member for use. Further, by drying the hydrolyzate / polycondensate applied to the target site, the member for a semiconductor light emitting device of the present invention can be formed directly on the target site. Note that this liquid hydrolysis / polycondensate is referred to as “hydrolysis / polycondensation liquid” or “member light-emitting device member forming liquid” as appropriate in this specification.
本発明においては、上述の加水分解・重縮合反応を溶媒の存在下にて行なうとともに、この乾燥工程を、該溶媒の沸点以下の温度にて溶媒を実質的に除去する第1の乾燥工程と、該溶媒の沸点以上の温度にて乾燥する第2の乾燥工程とに分けて行なうことが好ましい。なお、ここで言う「溶媒」には、Mm+XnY1 m-nや(Ms+XtY1 s-t-1)uY2で表わされる上述の原料化合物の加水分解・重縮合反応により生成される、XH等で表わされる溶媒も含まれる。また、本明細書における「乾燥」とは、上述の原料化合物の加水分解・重縮合物が溶媒を失い、更に重合・硬化してメタロキサン結合を形成する工程を指す。 In the present invention, the above hydrolysis / polycondensation reaction is performed in the presence of a solvent, and this drying step is a first drying step in which the solvent is substantially removed at a temperature not higher than the boiling point of the solvent. It is preferable to carry out separately from the second drying step of drying at a temperature equal to or higher than the boiling point of the solvent. Here, it referred to "solvent", is produced by the hydrolysis and polycondensation reaction of M m + X n Y 1 mn and (M s + X t Y 1 st-1) described above starting compounds represented by u Y 2 Or a solvent represented by XH or the like. In addition, “drying” in the present specification refers to a step in which the hydrolysis / polycondensate of the raw material compound loses the solvent and is further polymerized / cured to form a metalloxane bond.
第1の乾燥工程は、原料化合物の加水分解・重縮合物の更なる重合を積極的に進めることなく、含有される溶媒を該溶媒の沸点以下、好ましくは沸点未満の温度にて実質的に除去するものである。即ち、この工程にて得られる生成物は、乾燥前の加水分解・重縮合物が濃縮され、水素結合により粘稠な液或いは柔らかい膜状になったものである。該溶媒の沸点以上の温度で第1の乾燥を行なうと、得られる膜に溶媒の蒸気による発泡が生じ、欠陥の無い均質な膜が得にくくなる。この第1の乾燥工程は、薄膜状の部材とした場合など溶媒の蒸発の効率がよい場合は単独のステップで行なっても良いが、カップ上にモールドした場合など蒸発効率の悪い場合においては複数のステップに分けて昇温しても良い。また、極端に蒸発効率が悪い形状の場合は、予め別の効率良い容器にて乾燥濃縮を行なった上で、流動性が残る状態で塗布し、更に乾燥を実施してもよい。蒸発効率の悪い場合には、大風量の通風乾燥など部材の表面のみ濃縮が進む手段をとらず、部材全体が均一に乾燥するよう工夫することが好ましい。 In the first drying step, the solvent contained is substantially reduced at a temperature below the boiling point of the solvent, preferably below the boiling point, without actively proceeding with further polymerization of the hydrolysis / polycondensate of the raw material compound. To be removed. That is, the product obtained in this step is a product obtained by condensing the hydrolyzed / polycondensed product before drying into a viscous liquid or a soft film by hydrogen bonding. When the first drying is performed at a temperature equal to or higher than the boiling point of the solvent, the resulting film is foamed by the vapor of the solvent, making it difficult to obtain a uniform film having no defects. This first drying step may be performed in a single step when the evaporation efficiency of the solvent is good, such as when it is a thin-film member, but a plurality of cases when the evaporation efficiency is poor such as when molded on a cup. The temperature may be increased in steps of In the case of a shape with extremely poor evaporation efficiency, it may be dried and concentrated in advance in another efficient container, and then applied in a state where the fluidity remains, and further dried. When the evaporation efficiency is poor, it is preferable to devise a method in which the whole member is uniformly dried without taking a means of concentrating only the surface of the member, such as ventilation drying with a large amount of air.
第2の乾燥工程は、上述の加水分解・重縮合物の溶媒が第1の乾燥工程により実質的に無くなった状態において、この加水分解・重縮合物を溶媒の沸点以上の温度で加熱し、メタロキサン結合を形成することにより、安定な硬化物とするものである。この工程において溶媒が多く残留していると、架橋反応が進行しつつ溶媒蒸発による体積減が生じるため、大きな内部応力が生じ、収縮による剥離やクラックの原因となる。メタロキサン結合は通常100℃以上で効率良く形成されるため、第2の乾燥工程は好ましくは100℃以上、更に好ましくは120℃以上で実施される。但し、半導体発光デバイスと共に加熱される場合は、通常はデバイス構成要素の耐熱温度以下の温度、好ましくは200℃以下で乾燥を実施することが好ましい。第2の乾燥工程における硬化時間は触媒濃度や部材の厚みなどにより一概には決まらないが、通常0.1時間以上、好ましくは0.5時間以上、更に好ましくは1時間以上、また、通常10時間以下、好ましくは5時間以下、更に好ましくは3時間以下の範囲で実施される。 In the second drying step, the hydrolysis / polycondensate is heated at a temperature equal to or higher than the boiling point of the solvent in a state where the solvent of the hydrolysis / polycondensation product is substantially eliminated by the first drying step, By forming a metalloxane bond, a stable cured product is obtained. If a large amount of solvent remains in this step, the volume is reduced due to evaporation of the solvent while the crosslinking reaction proceeds, so that a large internal stress is generated, causing peeling and cracking due to shrinkage. Since the metalloxane bond is usually formed efficiently at 100 ° C. or higher, the second drying step is preferably performed at 100 ° C. or higher, more preferably 120 ° C. or higher. However, when it is heated together with the semiconductor light emitting device, it is usually preferable to carry out the drying at a temperature not higher than the heat resistance temperature of the device component, preferably 200 ° C. or lower. The curing time in the second drying step is not generally determined by the catalyst concentration, the thickness of the member, etc., but is usually 0.1 hour or longer, preferably 0.5 hour or longer, more preferably 1 hour or longer, and usually 10 It is carried out for a period of time or less, preferably 5 hours or less, more preferably 3 hours or less.
このように溶媒除去の工程(第1の乾燥工程)と硬化の工程(第2の乾燥工程)とを明確に分けることにより、本発明の物性を持つ耐光性、耐熱性に優れる半導体発光デバイス用部材をクラック・剥離することなく得ることが可能となる。 Thus, by clearly separating the solvent removal step (first drying step) and the curing step (second drying step), the semiconductor light emitting device having the physical properties of the present invention and excellent in light resistance and heat resistance. The member can be obtained without cracking or peeling.
なお、実質的に上述の第1の乾燥工程及び第2の乾燥工程が実現される限り、各工程における昇温条件は特に制限されない。即ち、各乾燥工程の間、一定の温度で保持しても良く、連続的又は断続的に温度を変化させても良い。また、各乾燥工程を更に複数回に分けて行なってもよい。更には、第1の乾燥工程の間に一時的に溶媒の沸点以上の温度となったり、第2の乾燥工程の間に溶媒の沸点未満の温度となる期間が介在したりする場合でも、実質的に上述したような溶媒除去の工程(第1の乾燥工程)と硬化の工程(第2の乾燥工程)とが独立して達成される限り、本発明の範囲に含まれるものとする。 In addition, as long as the above-mentioned 1st drying process and 2nd drying process are implement | achieved substantially, the temperature rising conditions in each process are not restrict | limited in particular. That is, it may be held at a constant temperature during each drying step, or the temperature may be changed continuously or intermittently. In addition, each drying step may be further divided into a plurality of times. Furthermore, even when the temperature temporarily becomes higher than the boiling point of the solvent during the first drying step, or when there is a period during which the temperature becomes lower than the boiling point of the solvent during the second drying step, In particular, so long as the solvent removal step (first drying step) and the curing step (second drying step) as described above are achieved independently, they are included in the scope of the present invention.
〔II−4.その他〕
上述の乾燥工程の後、得られた半導体発光デバイス用部材に対し、必要に応じて各種の後処理を施しても良い。後処理の種類としては、モールド部との密着性の改善のための表面処理、反射防止膜の作製、光取り出し効率向上のための微細凹凸面の作製等が挙げられる。
[II-4. Others]
After the above-described drying step, various post-treatments may be performed on the obtained semiconductor light-emitting device member as necessary. Examples of the post-treatment include surface treatment for improving adhesion to the mold part, production of an antireflection film, production of a fine uneven surface for improving light extraction efficiency, and the like.
[III.半導体発光デバイス用部材の用途]
本発明の半導体発光デバイス用部材の用途は特に制限されず、半導体発光素子等を封止するための部材(封止剤)に代表される各種の用途に使用することができる。中でも、後述の蛍光体粒子及び/又は無機酸化物粒子を併用することによって、特定の用途により好適に使用することが可能となる。以下、これらの蛍光体粒子及び無機酸化物粒子の併用について説明する。
[III. Applications of semiconductor light emitting device components]
The use of the member for a semiconductor light-emitting device of the present invention is not particularly limited, and can be used for various uses represented by a member (sealing agent) for sealing a semiconductor light-emitting element or the like. Especially, it becomes possible to use suitably by a specific use by using together the below-mentioned fluorescent substance particle and / or inorganic oxide particle. Hereinafter, the combined use of these phosphor particles and inorganic oxide particles will be described.
〔III−1.蛍光体の併用〕
本発明の半導体発光デバイス用部材は、例えば、半導体発光デバイス用部材中に蛍光体を分散させて、半導体発光デバイスのカップ内にモールドしたり、適当な透明支持体上に薄層状に塗布することにより、波長変換用部材として使用することができる。なお、蛍光体は1種類を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で併用しても良い。
[III-1. (Use of phosphor together)
The member for a semiconductor light emitting device of the present invention is, for example, a phosphor dispersed in a member for a semiconductor light emitting device and molded into a cup of a semiconductor light emitting device or applied in a thin layer on a suitable transparent support. Therefore, it can be used as a wavelength conversion member. In addition, fluorescent substance may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
〔蛍光体〕
蛍光体の組成には特に制限はないが、結晶母体であるY2O3、Zn2SiO4等に代表される金属酸化物、Ca5(PO4)3Cl等に代表されるリン酸塩及びZnS、SrS、CaS等に代表される硫化物に、Ce、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb等の希土類金属のイオンやAg、Cu、Au、Al、Mn、Sb等の金属のイオンを付活剤または共付活剤として組み合わせたものが好ましい。
[Phosphor]
There are no particular restrictions on the composition of the phosphor, but metal oxides such as Y 2 O 3 and Zn 2 SiO 4 which are crystal bases, and phosphates such as Ca 5 (PO 4 ) 3 Cl and the like. And sulfides represented by ZnS, SrS, CaS, etc., ions of rare earth metals such as Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Ag, Cu, Au A combination of metal ions such as Al, Mn, and Sb as an activator or a coactivator is preferable.
結晶母体の好ましい例としては、例えば、(Zn,Cd)S、SrGa2S4、SrS、ZnS等の硫化物、Y2O2S等の酸硫化物、(Y,Gd)3Al5O12、YAlO3、BaMgAl10O17、(Ba,Sr)(Mg,Mn)Al10O17、(Ba,Sr,Ca)(Mg,Zn,Mn)Al10O17、BaAl12O19、CeMgAl11O19、(Ba,Sr,Mg)O・Al2O3、BaAl2Si2O8、SrAl2O4、Sr4Al14O25、Y3Al5O12等のアルミン酸塩、Y2SiO5、Zn2SiO4等の珪酸塩、SnO2、Y2O3等の酸化物、GdMgB5O10、(Y,Gd)BO3等の硼酸円、Ca10(PO4)6(F,Cl)2、(Sr,Ca,Ba,Mg)10(PO4)6Cl2等のハロリン酸塩、Sr2P2O7、(La,Ce)PO4等のリン酸塩等を挙げることができる。 Preferred examples of the crystal matrix include sulfides such as (Zn, Cd) S, SrGa 2 S 4 , SrS, and ZnS, oxysulfides such as Y 2 O 2 S, and (Y, Gd) 3 Al 5 O. 12 , YAlO 3 , BaMgAl 10 O 17 , (Ba, Sr) (Mg, Mn) Al 10 O 17 , (Ba, Sr, Ca) (Mg, Zn, Mn) Al 10 O 17 , BaAl 12 O 19 , CeMgAl 11 O 19 , (Ba, Sr, Mg) O.Al 2 O 3 , BaAl 2 Si 2 O 8 , SrAl 2 O 4 , Sr 4 Al 14 O 25 , aluminate such as Y 3 Al 5 O 12 , Y Silicates such as 2 SiO 5 and Zn 2 SiO 4 , oxides such as SnO 2 and Y 2 O 3 , boric acid circles such as GdMgB 5 O 10 and (Y, Gd) BO 3 , Ca 10 (PO 4 ) 6 ( F, Cl) 2, (Sr , Ca, Ba, Mg) 10 (PO 4) halophosphate such as 6 Cl 2, Sr 2 P 2 7, it may be mentioned (La, Ce) phosphate PO 4, etc. and the like.
ただし、上記の結晶母体及び付活剤または共付活剤は、元素組成には特に制限はなく、同族の元素と一部置き換えることもでき、得られた蛍光体は近紫外から可視領域の光を吸収して可視光を発するものであれば用いることが可能である。 However, the above-mentioned crystal matrix and activator or coactivator are not particularly limited in elemental composition, and can be partially replaced with elements of the same family, and the obtained phosphor is light in the near ultraviolet to visible region. Any material that absorbs and emits visible light can be used.
具体的には、蛍光体として以下に挙げるものを用いることが可能であるが、これらはあくまでも例示であり、本発明で使用できる蛍光体はこれらに限られるものではない。なお、以下の例示では、構造の一部のみが異なる蛍光体を、適宜省略して示している。例えば、「Y2SiO5:Ce3+」、「Y2SiO5:Tb3+」及び「Y2SiO5:Ce3+,Tb3+」を「Y2SiO5:Ce3+,Tb3+」と、「La2O2S:Eu」、「Y2O2S:Eu」及び「(La,Y)2O2S:Eu」を「(La,Y)2O2S:Eu」とまとめて示している。省略箇所はカンマ(,)で区切って示す。 Specifically, the following phosphors can be used, but these are merely examples, and phosphors that can be used in the present invention are not limited to these. In the following examples, phosphors that differ only in part of the structure are omitted as appropriate. For example, “Y 2 SiO 5 : Ce 3+ ”, “Y 2 SiO 5 : Tb 3+ ” and “Y 2 SiO 5 : Ce 3+ , Tb 3+ ” are changed to “Y 2 SiO 5 : Ce 3+ , Tb”. 3+ "," La 2 O 2 S: Eu "," Y 2 O 2 S: Eu "and" (La, Y) 2 O 2 S: Eu "and" (La, Y) 2 O 2 S: “Eu” collectively. Omitted parts are separated by commas (,).
・赤色蛍光体:
赤色の蛍光を発する蛍光体(以下適宜、「赤色蛍光体」という)が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常570nm以上、好ましくは580nm以上、また、通常700nm以下、好ましくは680nm以下が望ましい。
・ Red phosphor:
Illustrating the specific wavelength range of the fluorescence emitted by the phosphor emitting red fluorescence (hereinafter referred to as “red phosphor” as appropriate), the peak wavelength is usually 570 nm or more, preferably 580 nm or more, and usually 700 nm or less. Preferably, it is 680 nm or less.
このような赤色蛍光体としては、例えば、赤色破断面を有する破断粒子から構成され、赤色領域の発光を行なう(Mg,Ca,Sr,Ba)2Si5N8:Euで表わされるユウロピウム付活アルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、赤色領域の発光を行なう(Y,La,Gd,Lu)2O2S:Euで表わされるユウロピウム付活希土類オキシカルコゲナイド系蛍光体等が挙げられる。 Examples of such a red phosphor include europium activation represented by (Mg, Ca, Sr, Ba) 2 Si 5 N 8 : Eu that is composed of fractured particles having a red fracture surface and emits light in the red region. An alkaline earth silicon nitride-based phosphor, composed of growing particles having a substantially spherical shape as a regular crystal growth shape, emits light in the red region (Y, La, Gd, Lu) 2 O 2 S: Eu Examples thereof include europium-activated rare earth oxychalcogenide phosphors.
さらに、特開2004−300247号公報に記載された、Ti、Zr、Hf、Nb、Ta、W、及びMoよりなる群から選ばれる少なくも1種の元素を含有する酸窒化物及び/又は酸硫化物を含有する蛍光体であって、Al元素の一部又は全てがGa元素で置換されたアルファサイアロン構造をもつ酸窒化物を含有する蛍光体も、本実施形態において用いることができる。なお、これらは酸窒化物及び/又は酸硫化物を含有する蛍光体である。 Furthermore, the oxynitride and / or acid containing at least one element selected from the group consisting of Ti, Zr, Hf, Nb, Ta, W, and Mo described in JP-A-2004-300247 A phosphor containing a sulfide and containing an oxynitride having an alpha sialon structure in which a part or all of the Al element is substituted with a Ga element can also be used in this embodiment. These are phosphors containing oxynitride and / or oxysulfide.
また、そのほか、赤色蛍光体としては、(La,Y)2O2S:Eu等のEu付活酸硫化物蛍光体、Y(V,P)O4:Eu、Y2O3:Eu等のEu付活酸化物蛍光体、(Ba,Sr,Ca,Mg)2SiO4:Eu,Mn、(Ba,Mg)2SiO4:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、(Ca,Sr)S:Eu等のEu付活硫化物蛍光体、YAlO3:Eu等のEu付活アルミン酸塩蛍光体、LiY9(SiO4)6O2:Eu、Ca2Y8(SiO4)6O2:Eu、(Sr,Ba,Ca)3SiO5:Eu、Sr2BaSiO5:Eu等のEu付活珪酸塩蛍光体、(Y,Gd)3Al5O12:Ce、(Tb,Gd)3Al5O12:Ce等のCe付活アルミン酸塩蛍光体、(Ca,Sr,Ba)2Si5N8:Eu、(Mg,Ca,Sr,Ba)SiN2:Eu、(Mg,Ca,Sr,Ba)AlSiN3:Eu等のEu付活窒化物蛍光体、(Mg,Ca,Sr,Ba)AlSiN3:Ce等のCe付活窒化物蛍光体、(Sr,Ca,Ba,Mg)10(PO4)6Cl2:Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、(Ba3Mg)Si2O8:Eu,Mn、(Ba,Sr,Ca,Mg)3(Zn,Mg)Si2O8:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、3.5MgO・0.5MgF2・GeO2:Mn等のMn付活ゲルマン酸塩蛍光体、Eu付活αサイアロン等のEu付活酸窒化物蛍光体、(Gd,Y,Lu,La)2O3:Eu,Bi等のEu,Bi付活酸化物蛍光体、(Gd,Y,Lu,La)2O2S:Eu,Bi等のEu,Bi付活酸硫化物蛍光体、(Gd,Y,Lu,La)VO4:Eu,Bi等のEu,Bi付活バナジン酸塩蛍光体、SrY2S4:Eu,Ce等のEu,Ce付活硫化物蛍光体、CaLa2S4:Ce等のCe付活硫化物蛍光体、(Ba,Sr,Ca)MgP2O7:Eu,Mn、(Sr,Ca,Ba,Mg,Zn)2P2O7:Eu,Mn等のEu,Mn付活リン酸塩蛍光体、(Y,Lu)2WO6:Eu,Mo等のEu,Mo付活タングステン酸塩蛍光体、(Ba,Sr,Ca)xSiyNz:Eu,Ce(但し、x、y、zは、1以上の整数)等のEu,Ce付活窒化物蛍光体、(Ca,Sr,Ba,Mg)10(PO4)6(F,Cl,Br,OH):Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、((Y,Lu,Gd,Tb)1-xScxCey)2(Ca,Mg)1-r(Mg,Zn)2+rSiz-qGeqO12+δ等のCe付活珪酸塩蛍光体等を用いることも可能である。 In addition, examples of red phosphors include Eu-activated oxysulfide phosphors such as (La, Y) 2 O 2 S: Eu, Y (V, P) O 4 : Eu, Y 2 O 3 : Eu, and the like. Eu-activated oxide phosphors of (Ba, Sr, Ca, Mg) 2 SiO 4 : Eu, Mn, (Ba, Mg) 2 SiO 4 : Eu, Mn-activated silicate phosphors such as Eu, Mn, Eu-activated sulfide phosphors such as (Ca, Sr) S: Eu, Eu-activated aluminate phosphors such as YAlO 3 : Eu, LiY 9 (SiO 4 ) 6 O 2 : Eu, Ca 2 Y 8 ( SiO 4 ) 6 O 2 : Eu, (Sr, Ba, Ca) 3 SiO 5 : Eu, Sr 2 BaSiO 5 : Eu-activated silicate phosphor such as Eu, (Y, Gd) 3 Al 5 O 12 : Ce , (Tb, Gd) 3 Al 5 O 12: Ce -activated aluminate phosphor such as Ce, (Ca, Sr, Ba ) 2 Si 5 N 8: Eu, ( g, Ca, Sr, Ba) SiN 2: Eu, (Mg, Ca, Sr, Ba) AlSiN 3: Eu -activated nitride phosphor such as Eu, (Mg, Ca, Sr , Ba) AlSiN 3: Ce , etc. Ce-activated nitride phosphor, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, Mn-activated halophosphate phosphor such as Eu, Mn, (Ba 3 Mg) Si 2 O 8: Eu, Mn, ( Ba, Sr, Ca, Mg) 3 (Zn, Mg) Si 2 O 8: Eu, Eu such as Mn, Mn-activated silicate phosphor, 3.5MgO · 0.5MgF 2 GeO 2 : Mn-activated germanate phosphor such as Mn, Eu-activated oxynitride phosphor such as Eu-activated α sialon, (Gd, Y, Lu, La) 2 O 3 : Eu, Bi, etc. eu, Bi-activated oxide phosphor, (Gd, Y, Lu, La) 2 O 2 S: Eu, Eu Bi, etc., with Bi Oxysulfide phosphor, (Gd, Y, Lu, La) VO 4: Eu, Eu Bi, etc., Bi-activated vanadate phosphor, SrY 2 S 4: Eu, such as Ce Eu, Ce-activated sulfide Phosphor, Ca-activated sulfide phosphor such as CaLa 2 S 4 : Ce, (Ba, Sr, Ca) MgP 2 O 7 : Eu, Mn, (Sr, Ca, Ba, Mg, Zn) 2 P 2 O 7 : Eu, Mn activated phosphate phosphor such as Eu, Mn, (Y, Lu) 2 WO 6 : Eu, Mo activated tungstate phosphor such as Eu, Mo, (Ba, Sr, Ca) ) X Si y Nz : Eu, Ce activated nitride phosphor such as Eu, Ce (where x, y, z are integers of 1 or more), (Ca, Sr, Ba, Mg) 10 (PO 4 ) 6 (F, Cl, Br , OH): Eu, Eu such as Mn, Mn-activated halophosphate phosphor, ((Y, Lu, Gd , Tb) 1-x S It is also possible to use x Ce y) 2 (Ca, Mg) 1-r (Mg, Zn) 2 + r Si zq Ge q O 12 + δ Ce -activated silicate phosphor such like.
赤色蛍光体としては、β―ジケトネート、β−ジケトン、芳香族カルボン酸、又は、ブレンステッド酸等のアニオンを配位子とする希土類元素イオン錯体からなる赤色有機蛍光体、ペリレン系顔料(例えば、ジベンゾ{[f,f’]−4,4’,7,7’−テトラフェニル}ジインデノ[1,2,3−cd:1’,2’,3’−lm]ペリレン)、アントラキノン系顔料、レーキ系顔料、アゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン系顔料、イソインドリノン系顔料、フタロシアニン系顔料、トリフェニルメタン系塩基性染料、インダンスロン系顔料、インドフェノール系顔料、シアニン系顔料、ジオキサジン系顔料を用いることも可能である。 Examples of the red phosphor include β-diketonates, β-diketones, aromatic carboxylic acids, red organic phosphors composed of rare earth element ion complexes having an anion such as Bronsted acid as ligands, and perylene pigments (for example, Dibenzo {[f, f ′]-4,4 ′, 7,7′-tetraphenyl} diindeno [1,2,3-cd: 1 ′, 2 ′, 3′-lm] perylene), anthraquinone pigment, Lake pigments, azo pigments, quinacridone pigments, anthracene pigments, isoindoline pigments, isoindolinone pigments, phthalocyanine pigments, triphenylmethane basic dyes, indanthrone pigments, indophenol pigments, It is also possible to use a cyanine pigment or a dioxazine pigment.
また、赤色蛍光体のうち、ピーク波長が580nm以上、好ましくは590nm以上、また、620nm以下、好ましくは610nm以下の範囲内にあるものは、橙色蛍光体として好適に用いることができる。このような橙色蛍光体の例としては、(Sr,Ba)3SiO5:Eu、(Sr,Mg)3(PO4)2:Sn2+、SrCaAlSiN3:Eu等が挙げられる。 Among the red phosphors, those having a peak wavelength in the range of 580 nm or more, preferably 590 nm or more, and 620 nm or less, preferably 610 nm or less can be suitably used as the orange phosphor. Examples of such orange phosphors include (Sr, Ba) 3 SiO 5 : Eu, (Sr, Mg) 3 (PO 4 ) 2 : Sn 2+ , SrCaAlSiN 3 : Eu, and the like.
・緑色蛍光体:
緑色の蛍光を発する蛍光体(以下適宜、「緑色蛍光体」という)が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常490nm以上、好ましくは500nm以上、また、通常570nm以下、好ましくは550nm以下が望ましい。
・ Green phosphor:
Illustrating a specific wavelength range of fluorescence emitted by a phosphor emitting green fluorescence (hereinafter referred to as “green phosphor” as appropriate), the peak wavelength is usually 490 nm or more, preferably 500 nm or more, and usually 570 nm or less. Preferably, it is 550 nm or less.
このような緑色蛍光体として、例えば、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Mg,Ca,Sr,Ba)Si2O2N2:Euで表わされるユウロピウム付活アルカリ土類シリコンオキシナイトライド系蛍光体、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Ba,Ca,Sr,Mg)2SiO4:Euで表わされるユウロピウム付活アルカリ土類シリケート系蛍光体等が挙げられる。 As such a green phosphor, for example, a europium activated alkali represented by (Mg, Ca, Sr, Ba) Si 2 O 2 N 2 : Eu that is composed of fractured particles having a fracture surface and emits light in the green region. Europium-activated alkaline earth silicate composed of an earth silicon oxynitride phosphor, broken particles having a fracture surface, and emitting green light (Ba, Ca, Sr, Mg) 2 SiO 4 : Eu System phosphors and the like.
また、そのほか、緑色蛍光体としては、Sr4Al14O25:Eu、(Ba,Sr,Ca)Al2O4:Eu等のEu付活アルミン酸塩蛍光体、(Sr,Ba)Al2Si2O8:Eu、(Ba,Mg)2SiO4:Eu、(Ba,Sr,Ca,Mg)2SiO4:Eu、(Ba,Sr,Ca)2(Mg,Zn)Si2O7:Eu等のEu付活珪酸塩蛍光体、Y2SiO5:Ce,Tb等のCe,Tb付活珪酸塩蛍光体、Sr2P2O7−Sr2B2O5:Eu等のEu付活硼酸リン酸塩蛍光体、Sr2Si3O8−2SrCl2:Eu等のEu付活ハロ珪酸塩蛍光体、Zn2SiO4:Mn等のMn付活珪酸塩蛍光体、CeMgAl11O19:Tb、Y3Al5O12:Tb等のTb付活アルミン酸塩蛍光体、Ca2Y8(SiO4)6O2:Tb、La3Ga5SiO14:Tb等のTb付活珪酸塩蛍光体、(Sr,Ba,Ca)Ga2S4:Eu,Tb,Sm等のEu,Tb,Sm付活チオガレート蛍光体、Y3(Al,Ga)5O12:Ce、(Y,Ga,Tb,La,Sm,Pr,Lu)3(Al,Ga)5O12:Ce等のCe付活アルミン酸塩蛍光体、Ca3Sc2Si3O12:Ce、Ca3(Sc,Mg,Na,Li)2Si3O12:Ce等のCe付活珪酸塩蛍光体、CaSc2O4:Ce等のCe付活酸化物蛍光体、SrSi2O2N2:Eu、(Sr,Ba,Ca)Si2O2N2:Eu、Eu付活βサイアロン、Eu付活αサイアロン等のEu付活酸窒化物蛍光体、BaMgAl10O17:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、SrAl2O4:Eu等のEu付活アルミン酸塩蛍光体、(La,Gd,Y)2O2S:Tb等のTb付活酸硫化物蛍光体、LaPO4:Ce,Tb等のCe,Tb付活リン酸塩蛍光体、ZnS:Cu,Al、ZnS:Cu,Au,Al等の硫化物蛍光体、(Y,Ga,Lu,Sc,La)BO3:Ce,Tb、Na2Gd2B2O7:Ce,Tb、(Ba,Sr)2(Ca,Mg,Zn)B2O6:K,Ce,Tb等のCe,Tb付活硼酸塩蛍光体、Ca8Mg(SiO4)4Cl2:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体、(Sr,Ca,Ba)(Al,Ga,In)2S4:Eu等のEu付活チオアルミネート蛍光体やチオガレート蛍光体、(Ca,Sr)8(Mg,Zn)(SiO4)4Cl2:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体等を用いることも可能である。 In addition, as the green phosphor, Eu-activated aluminate phosphors such as Sr 4 Al 14 O 25 : Eu, (Ba, Sr, Ca) Al 2 O 4 : Eu, (Sr, Ba) Al 2 Si 2 O 8: Eu, ( Ba, Mg) 2 SiO 4: Eu, (Ba, Sr, Ca, Mg) 2 SiO 4: Eu, (Ba, Sr, Ca) 2 (Mg, Zn) Si 2 O 7 : Eu-activated silicate phosphor such as Eu, Y 2 SiO 5 : Ce, Tb-activated silicate phosphor such as Ce and Tb, Sr 2 P 2 O 7 —Sr 2 B 2 O 5 : Eu such as Eu Activated borate phosphor, Sr 2 Si 3 O 8 -2SrCl 2 : Eu activated halosilicate phosphor such as Eu, Zn 2 SiO 4 : Mn activated silicate phosphor such as Mn, CeMgAl 11 O 19: Tb, Y 3 Al 5 O 12: Tb -activated aluminate phosphors such as Tb, Ca 2 Y 8 (SiO 4) 6 O 2 Tb, La 3 Ga 5 SiO 14 : Tb -activated silicate phosphors such as Tb, (Sr, Ba, Ca ) Ga 2 S 4: Eu, Tb, and Sm, such as Eu, Tb, Sm-activated thiogallate phosphor, Ce-activated aluminate phosphor such as Y 3 (Al, Ga) 5 O 12 : Ce, (Y, Ga, Tb, La, Sm, Pr, Lu) 3 (Al, Ga) 5 O 12 : Ce, Ca-activated silicate phosphor such as Ca 3 Sc 2 Si 3 O 12 : Ce, Ca 3 (Sc, Mg, Na, Li) 2 Si 3 O 12 : Ce, Ce-activated such as CaSc 2 O 4 : Ce Eu-activated oxynitride fluorescence such as oxide phosphor, SrSi 2 O 2 N 2 : Eu, (Sr, Ba, Ca) Si 2 O 2 N 2 : Eu, Eu-activated β sialon, Eu-activated α-sialon body, BaMgAl 10 O 17: Eu, Eu such as Mn, Mn-activated aluminate phosphor, SrAl 2 O 4: Eu Eu-activated aluminate phosphor, (La, Gd, Y) 2 O 2 S: Tb Tsukekatsusan sulfide phosphor such as Tb, LaPO 4: Ce, and Tb, etc. Ce, Tb-activated phosphate Phosphor, ZnS: Cu, Al, ZnS: Sulfide phosphor such as Cu, Au, Al, (Y, Ga, Lu, Sc, La) BO 3 : Ce, Tb, Na 2 Gd 2 B 2 O 7 : Ce, Tb, (Ba, Sr) 2 (Ca, Mg, Zn) B 2 O 6 : Ce, Tb-activated borate phosphor such as K, Ce, Tb, Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu, Mn-activated halosilicate phosphors such as Eu and Mn, (Sr, Ca, Ba) (Al, Ga, In) 2 S 4 : Eu-activated thioaluminate phosphors and thiogallate phosphors such as Eu, (Ca, Sr) 8 (Mg , Zn) (SiO 4) 4 Cl 2: Eu, Eu such as Mn, Mn-activated halo silicate phosphor It is also possible to use such.
また、緑色蛍光体としては、ピリジン−フタルイミド縮合誘導体、ベンゾオキサジノン系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、ヘキシルサリチレートを配位子として有するテルビウム錯体等の有機蛍光体を用いることも可能である。 Examples of green phosphors include pyridine-phthalimide condensed derivatives, benzoxazinone-based, quinazolinone-based, coumarin-based, quinophthalone-based, naltalimide-based fluorescent dyes, terbium complexes having hexyl salicylate as a ligand, etc. It is also possible to use organic phosphors.
・青色蛍光体:
青色の蛍光を発する蛍光体(以下適宜、「青色蛍光体」という)が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常420nm以上、好ましくは440nm以上、また、通常480nm以下、好ましくは470nm以下が望ましい。
・ Blue phosphor:
Illustrating the specific wavelength range of the fluorescence emitted by the phosphor emitting blue fluorescence (hereinafter referred to as “blue phosphor” as appropriate), the peak wavelength is usually 420 nm or more, preferably 440 nm or more, and usually 480 nm or less. Preferably, it is 470 nm or less.
このような青色蛍光体としては、規則的な結晶成長形状としてほぼ六角形状を有する成長粒子から構成され、青色領域の発光を行なうBaMgAl10O17:Euで表わされるユウロピウム付活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)5(PO4)3Cl:Euで表わされるユウロピウム付活ハロリン酸カルシウム系蛍光体、規則的な結晶成長形状としてほぼ立方体形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)2B5O9Cl:Euで表わされるユウロピウム付活アルカリ土類クロロボレート系蛍光体、破断面を有する破断粒子から構成され、青緑色領域の発光を行なう(Sr,Ca,Ba)Al2O4:Euまたは(Sr,Ca,Ba)4Al14O25:Euで表わされるユウロピウム付活アルカリ土類アルミネート系蛍光体等が挙げられる。 As such a blue phosphor, a europium-activated barium magnesium aluminate system represented by BaMgAl 10 O 17 : Eu composed of growing particles having a substantially hexagonal shape as a regular crystal growth shape and emitting light in a blue region. Europium activated halo represented by (Ca, Sr, Ba) 5 (PO 4 ) 3 Cl: Eu, which is composed of phosphors and growing particles having a substantially spherical shape as a regular crystal growth shape, and emits light in the blue region. Calcium phosphate-based phosphor, composed of growing particles having an approximately cubic shape as a regular crystal growth shape, emits light in the blue region, and is activated by europium represented by (Ca, Sr, Ba) 2 B 5 O 9 Cl: Eu It is composed of alkaline earth chloroborate phosphors and fractured particles having fractured surfaces, and emits light in the blue-green region (S , Ca, Ba) Al 2 O 4: Eu or (Sr, Ca, Ba) 4 Al 14 O 25: activated alkaline earth with europium aluminate-based phosphor such as represented by Eu and the like.
また、そのほか、青色蛍光体としては、Sr2P2O7:Sn等のSn付活リン酸塩蛍光体、Sr4Al14O25:Eu、BaMgAl10O17:Eu、BaAl8O13:Eu等のEu付活アルミン酸塩蛍光体、SrGa2S4:Ce、CaGa2S4:Ce等のCe付活チオガレート蛍光体、(Ba,Sr,Ca)MgAl10O17:Eu、BaMgAl10O17:Eu,Tb,Sm等のEu付活アルミン酸塩蛍光体、(Ba,Sr,Ca)MgAl10O17:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、(Sr,Ca,Ba,Mg)10(PO4)6Cl2:Eu、(Ba,Sr,Ca)5(PO4)3(Cl,F,Br,OH):Eu,Mn,Sb等のEu付活ハロリン酸塩蛍光体、BaAl2Si2O8:Eu、(Sr,Ba)3MgSi2O8:Eu等のEu付活珪酸塩蛍光体、Sr2P2O7:Eu等のEu付活リン酸塩蛍光体、ZnS:Ag、ZnS:Ag,Al等の硫化物蛍光体、Y2SiO5:Ce等のCe付活珪酸塩蛍光体、CaWO4等のタングステン酸塩蛍光体、(Ba,Sr,Ca)BPO5:Eu,Mn、(Sr,Ca)10(PO4)6・nB2O3:Eu、2SrO・0.84P2O5・0.16B2O3:Eu等のEu,Mn付活硼酸リン酸塩蛍光体、Sr2Si3O8・2SrCl2:Eu等のEu付活ハロ珪酸塩蛍光体等を用いることも可能である。 In addition, as the blue phosphor, Sn-activated phosphate phosphors such as Sr 2 P 2 O 7 : Sn, Sr 4 Al 14 O 25 : Eu, BaMgAl 10 O 17 : Eu, BaAl 8 O 13 : Eu-activated aluminate phosphors such as Eu, Ce-activated thiogallate phosphors such as SrGa 2 S 4 : Ce, CaGa 2 S 4 : Ce, (Ba, Sr, Ca) MgAl 10 O 17 : Eu, BaMgAl 10 O 17 : Eu-activated aluminate phosphor such as Eu, Tb, Sm, (Ba, Sr, Ca) MgAl 10 O 17 : Eu, Mn-activated aluminate phosphor such as Eu, Mn, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, (Ba, Sr, Ca) 5 (PO 4 ) 3 (Cl, F, Br, OH): Eu activation such as Eu, Mn, Sb Halophosphate phosphor, BaAl 2 Si 2 O 8 : Eu, (Sr, Ba) 3 Eu-activated silicate phosphor such as MgSi 2 O 8 : Eu, Eu-activated phosphate phosphor such as Sr 2 P 2 O 7 : Eu, sulfide fluorescence such as ZnS: Ag, ZnS: Ag, Al Body, Ce activated silicate phosphor such as Y 2 SiO 5 : Ce, tungstate phosphor such as CaWO 4 , (Ba, Sr, Ca) BPO 5 : Eu, Mn, (Sr, Ca) 10 (PO 4 ) 6 · nB 2 O 3 : Eu, 2SrO · 0.84P 2 O 5 · 0.16B 2 O 3 : Eu, Mn-activated borate phosphate phosphor such as Eu, Sr 2 Si 3 O 8 · 2SrCl 2 : Eu-activated halosilicate phosphor such as Eu can be used.
また、青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾオキサゾール系、スチリル系、クマリン系、ピラリゾン系、トリアゾール系化合物の蛍光色素、ツリウム錯体等の有機蛍光体等を用いることも可能である。
なお、蛍光体は1種類を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で併用しても良い。
In addition, as the blue phosphor, for example, naphthalic acid imide-based, benzoxazole-based, styryl-based, coumarin-based, pyrarizone-based, triazole-based compound fluorescent dyes, organic phosphors such as thulium complexes, and the like can be used. .
In addition, fluorescent substance may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
これらの蛍光体粒子の中央粒径は特に限定されないが、通常100nm以上、好ましくは2μm以上、特に好ましくは5μm以上、また、通常100μm以下、好ましくは50μm以下、特に好ましくは20μm以下である。また、蛍光体粒子の形状も、半導体発光デバイス用部材の形成に影響を与えない限り、例えば、蛍光体部形成液(上述の半導体発光デバイス用部材形成液に蛍光体を加えて得られる液)の流動性等に影響を与えない限り、特に限定されない。 The median particle diameter of these phosphor particles is not particularly limited, but is usually 100 nm or more, preferably 2 μm or more, particularly preferably 5 μm or more, and usually 100 μm or less, preferably 50 μm or less, particularly preferably 20 μm or less. In addition, as long as the shape of the phosphor particles does not affect the formation of the semiconductor light emitting device member, for example, a phosphor part forming liquid (a liquid obtained by adding a phosphor to the above semiconductor light emitting device member forming liquid) There is no particular limitation as long as it does not affect the fluidity or the like.
本発明において、蛍光体粒子を加える方法は特に制限されない。蛍光体粒子の分散状態が良好な場合であれば、上述の半導体発光デバイス用部材形成液に後混合するだけでよい。蛍光体粒子の凝集が起こりやすい場合には、加水分解前の原料化合物を含む反応用溶液(以下適宜「加水分解前溶液」という。)に蛍光体粒子を前もって混合し、蛍光体粒子の存在下で加水分解・重縮合を行なうと、粒子の表面が一部シランカップリング処理され、蛍光体粒子の分散状態が改善される。 In the present invention, the method for adding phosphor particles is not particularly limited. If the dispersed state of the phosphor particles is good, it is only necessary to post-mix the phosphor particles in the above-described member forming liquid for semiconductor light emitting device. In the case where the aggregation of the phosphor particles is likely to occur, the phosphor particles are mixed in advance with a reaction solution containing the raw material compound before hydrolysis (hereinafter referred to as “pre-hydrolysis solution” as appropriate), and in the presence of the phosphor particles. When the hydrolysis / polycondensation is carried out at, the surface of the particles is partially subjected to silane coupling treatment, and the dispersed state of the phosphor particles is improved.
なお、蛍光体の中には加水分解性のものもあるが、本発明の半導体発光デバイス用部材は、塗布前の液状態(半導体発光デバイス用部材形成液)において、水分はシラノール体として潜在的に存在し、遊離の水分はほとんど存在しないので、そのような蛍光体でも加水分解してしまうことなく使用することが可能である。また、加水分解・重縮合後の半導体発光デバイス用部材形成液を脱水・脱アルコール処理を行なってから使用すれば、そのような蛍光体との併用が容易となる利点もある。 Although some phosphors are hydrolyzable, the member for a semiconductor light emitting device of the present invention is potentially water as a silanol body in a liquid state before application (member forming liquid for a semiconductor light emitting device). Therefore, such phosphors can be used without being hydrolyzed. Further, when the hydrolyzed / polycondensed semiconductor light-emitting device member forming solution is used after being subjected to dehydration and dealcoholization treatment, there is also an advantage that the combined use with such a phosphor becomes easy.
更に、本発明の半導体発光デバイス用部材は、イオン状の蛍光物質や有機・無機の蛍光成分を均一・透明に溶解・分散させた蛍光ガラスとすることも出来る。 Furthermore, the member for a semiconductor light emitting device of the present invention may be a fluorescent glass in which an ionic fluorescent material or an organic / inorganic fluorescent component is dissolved and dispersed uniformly and transparently.
〔III−2.無機酸化物粒子の併用〕
また、本発明の半導体発光デバイス用部材には、光学的特性や作業性を向上させるため、また、以下の<1>〜<5>の何れかの効果を得ることを目的として、更に無機酸化物粒子を含有させても良い。
[III-2. Combined use of inorganic oxide particles)
In addition, the member for a semiconductor light emitting device of the present invention is further subjected to inorganic oxidation for the purpose of improving optical characteristics and workability and for obtaining any of the following effects <1> to <5>. Material particles may be included.
<1>半導体発光デバイス用部材に光散乱物質として無機酸化物粒子を混入し、半導体発光デバイスの光を散乱させることにより、蛍光体に当たる半導体発光素子の光量を増加させ、波長変換効率を向上させると共に、半導体発光デバイスから外部に放出される光の指向角を広げる。
<2>半導体発光デバイス用部材に結合剤として無機酸化物粒子を配合することにより、クラックの発生を防止する。
<3>半導体発光デバイス用部材形成液に、粘度調整剤として無機酸化物粒子を配合することにより、当該形成液の粘度を高くする。
<4>半導体発光デバイス用部材に無機酸化物粒子を配合することにより、その収縮を低減する。
<5>半導体発光デバイス用部材に無機酸化物粒子を配合することにより、その屈折率を調整して、光取り出し効率を向上させる。
<1> By mixing inorganic oxide particles as a light-scattering substance in a member for a semiconductor light-emitting device and scattering the light of the semiconductor light-emitting device, the light amount of the semiconductor light-emitting element that hits the phosphor is increased and the wavelength conversion efficiency is improved. At the same time, the directivity angle of light emitted from the semiconductor light emitting device to the outside is expanded.
<2> The generation of cracks is prevented by blending inorganic oxide particles as a binder in the semiconductor light emitting device member.
<3> By adding inorganic oxide particles as a viscosity modifier to the semiconductor light emitting device member forming liquid, the viscosity of the forming liquid is increased.
<4> The shrinkage is reduced by blending the inorganic oxide particles in the semiconductor light emitting device member.
<5> By blending inorganic oxide particles with the semiconductor light emitting device member, the refractive index is adjusted to improve the light extraction efficiency.
この場合は、半導体発光デバイス用部材形成液に、蛍光体の粉末と共に、無機酸化物粒子を目的に応じて適量混合すればよい。この場合、混合する無機酸化物粒子の種類及び量によって得られる効果が異なる。 In this case, an appropriate amount of inorganic oxide particles may be mixed in the semiconductor light emitting device member forming liquid together with the phosphor powder according to the purpose. In this case, the effect obtained depends on the type and amount of the inorganic oxide particles to be mixed.
例えば、無機酸化物粒子が粒径約10nmの超微粒子状シリカ(日本アエロジル株式会社製、商品名:AEROSIL#200)の場合、半導体発光デバイス用部材形成液のチクソトロピック性が増大するため、上記<3>の効果が大きい。 For example, when the inorganic oxide particles are ultrafine silica having a particle size of about 10 nm (product name: AEROSIL # 200, manufactured by Nippon Aerosil Co., Ltd.), the thixotropic property of the member forming liquid for semiconductor light emitting devices is increased. The effect <3> is great.
また、無機酸化物粒子が粒径約数μmの破砕シリカ若しくは真球状シリカの場合、チクソトロピック性の増加はほとんど無く、半導体発光デバイス用部材の骨材としての働きが中心となるので、上記<2>及び<4>の効果が大きい。 In addition, when the inorganic oxide particles are crushed silica or spherical silica having a particle size of about several μm, there is almost no increase in thixotropic property, and the function as an aggregate of a member for a semiconductor light emitting device is the center. The effects of 2> and <4> are great.
また、半導体発光デバイス用部材とは屈折率が異なる粒径約1μmの無機酸化物粒子を用いると、半導体発光デバイス用部材と無機酸化物粒子との界面における光散乱が大きくなるので、上記<1>の効果が大きい。 Further, when inorganic oxide particles having a particle diameter of about 1 μm, which has a refractive index different from that of the semiconductor light emitting device member, are used, light scattering at the interface between the semiconductor light emitting device member and the inorganic oxide particles becomes large. The effect of> is great.
また、半導体発光デバイス用部材より屈折率の大きな粒径3〜5nm、具体的には発光波長以下の粒径をもつ無機酸化物粒子を用いると、半導体発光デバイス用部材の透明性を保ったまま屈折率を向上させることができるので、上記<5>の効果が大きい。 In addition, when inorganic oxide particles having a particle size of 3 to 5 nm, specifically a particle diameter equal to or smaller than the emission wavelength, are used, the transparency of the semiconductor light-emitting device member is maintained while the refractive index is larger than that of the semiconductor light-emitting device member. Since the refractive index can be improved, the effect <5> is great.
従って、混合する無機酸化物粒子の種類は目的に応じて選択すれば良い。また、その種類は単一でも良く、複数種を組み合わせてもよい。また、分散性を改善するためにシランカップリング剤などの表面処理剤で表面処理されていても良い。 Accordingly, the type of inorganic oxide particles to be mixed may be selected according to the purpose. Moreover, the kind may be single and may combine multiple types. Moreover, in order to improve dispersibility, it may be surface-treated with a surface treatment agent such as a silane coupling agent.
使用する無機酸化物粒子の種類としては、シリカ、チタン酸バリウム、酸化チタン、酸化ジルコニウム、酸化ニオブ、酸化アルミニウム、酸化セリウム、酸化イットリウムなどが例示されるが、目的に応じて他の物質を選択することもでき、これらに限定されるものではない。 Examples of inorganic oxide particles to be used include silica, barium titanate, titanium oxide, zirconium oxide, niobium oxide, aluminum oxide, cerium oxide, yttrium oxide, etc., but other substances can be selected depending on the purpose. However, the present invention is not limited to these.
無機酸化物粒子の形態は粉体状、スラリー状等、目的に応じいかなる形態でもよいが、透明性を保つ必要がある場合は、本発明の半導体発光デバイス用部材と屈折率を同等としたり、水系・溶剤系の透明ゾルとして半導体発光デバイス用部材形成液に加えたりすることが好ましい。 The form of the inorganic oxide particles may be any form depending on the purpose, such as powder form, slurry form, etc., but if necessary to maintain transparency, the refractive index of the semiconductor light-emitting device member of the present invention is equivalent, It is preferable to add it as a water-based / solvent-based transparent sol to the semiconductor light-emitting device member forming liquid.
[IV.半導体発光デバイス]
以下、本発明の半導体発光デバイス用部材を用いた半導体発光デバイス(本発明の半導体発光デバイス)について、実施形態を挙げて説明する。なお、以下の各実施形態では、半導体発光デバイスを適宜「発光装置」と略称するものとする。また、どの部位に本発明の半導体発光デバイス用部材を用いるかについては、全ての実施形態の説明の後にまとめて説明する。但し、これらの実施形態はあくまでも説明の便宜のために用いるものであって、本発明の半導体発光デバイス用部材を適用した発光装置(半導体発光デバイス)の例は、これらの実施形態に限られるものではない。
[IV. Semiconductor light emitting device]
Hereinafter, a semiconductor light emitting device using the member for a semiconductor light emitting device of the present invention (semiconductor light emitting device of the present invention) will be described with reference to embodiments. In each of the following embodiments, the semiconductor light emitting device is appropriately abbreviated as “light emitting device”. Further, to which part the member for the semiconductor light emitting device of the present invention is used will be described collectively after the description of all the embodiments. However, these embodiments are merely used for convenience of explanation, and examples of light-emitting devices (semiconductor light-emitting devices) to which the member for semiconductor light-emitting devices of the present invention is applied are limited to these embodiments. is not.
〔基本概念〕
本発明の半導体発光デバイス用部材を用いた半導体発光デバイスは、例えば、以下のA)、B)の適用例がある。本発明の半導体発光デバイス用部材は、何れの適用例においても、従来の半導体発光デバイス用部材と比較して、優れた光耐久性及び熱耐久性を示し、クラックや剥離が起きにくく、輝度の低下が少ない。したがって、本発明の半導体発光デバイス用部材によれば、長期にわたって信頼性の高い部材を提供することができる。
A)発光素子の発光色をそのまま利用する半導体発光デバイス。
B)発光素子の近傍に蛍光体部を配設し、発光素子からの光により蛍光体部中の蛍光体や蛍光体成分を励起させ、蛍光を利用して所望の波長の光を発光する半導体発光デバイス。
〔Basic concept〕
The semiconductor light emitting device using the member for semiconductor light emitting device of the present invention has application examples of the following A) and B), for example. The member for a semiconductor light-emitting device of the present invention shows excellent light durability and thermal durability compared to conventional members for a semiconductor light-emitting device in any application example. There is little decrease. Therefore, according to the member for semiconductor light emitting device of the present invention, a highly reliable member can be provided over a long period of time.
A) A semiconductor light emitting device that uses the light emission color of the light emitting element as it is.
B) A semiconductor in which a phosphor part is disposed in the vicinity of the light emitting element, the phosphor and the phosphor component in the phosphor part are excited by light from the light emitting element, and light having a desired wavelength is emitted using the fluorescence. Light emitting device.
A)の適用例においては、本発明の半導体発光デバイス用部材の高い耐久性、透明性および封止剤性能を生かし、単独使用にて高耐久封止剤、光取り出し膜、各種機能性成分保持剤として用いることができる。特に、本発明の半導体発光デバイス用部材を上記無機酸化物粒子等を保持する機能性成分保持剤として用い、本発明の半導体発光デバイス用部材に透明高屈折成分を保持させた場合には、本発明の半導体発光デバイス用部材を発光素子の出光面と密着させて使用し、かつ、発光素子に近い屈折率にすることで、発光素子の出光面での反射を低減し、より高い光取り出し効率を得ることが可能となる。 In the application example of A), taking advantage of the high durability, transparency and sealing agent performance of the semiconductor light-emitting device member of the present invention, a high durability sealing agent, a light extraction film, and various functional components are retained when used alone. It can be used as an agent. In particular, when the semiconductor light-emitting device member of the present invention is used as a functional component retaining agent that retains the inorganic oxide particles and the like, the semiconductor light-emitting device member of the present invention retains a transparent high refractive component, By using the semiconductor light-emitting device member of the invention in close contact with the light-emitting surface of the light-emitting element and making the refractive index close to that of the light-emitting element, reflection on the light-emitting surface of the light-emitting element is reduced, and higher light extraction efficiency Can be obtained.
また、B)の適用例においても、本発明の半導体発光デバイス用部材は、上記のA)の適用例と同様の優れた性能を発揮することができ、かつ、蛍光体や蛍光体成分を保持することにより高耐久性で光取り出し効率の高い蛍光体部を形成することができる。さらに、本発明の半導体発光デバイス用部材に、蛍光体や蛍光体成分に加えて透明高屈折成分を併せて保持させた場合、本発明の半導体発光デバイス用部材の屈折率を発光素子や蛍光体の屈折率近傍にすることで、界面反射を低減し、より高い光取り出し効率を得ることができる。 Moreover, also in the application example of B), the member for semiconductor light-emitting devices of the present invention can exhibit the same excellent performance as the application example of the above A), and retains the phosphor and the phosphor component. By doing so, a phosphor part with high durability and high light extraction efficiency can be formed. Further, when the member for semiconductor light emitting device of the present invention is held together with a transparent high refractive component in addition to the phosphor and the phosphor component, the refractive index of the member for semiconductor light emitting device of the present invention is changed to a light emitting element or phosphor. By setting the refractive index in the vicinity, the interface reflection can be reduced and higher light extraction efficiency can be obtained.
以下に、本発明の半導体発光デバイス用部材を適用した各実施形態の基本概念について、図49(a)、(b)を参照しながら説明する。なお、図49は各実施形態の基本概念の説明図であり、(a)は上記のA)の適用例に対応し、(b)は上記のB)の適用例に対応している。 Below, the basic concept of each embodiment to which the member for semiconductor light emitting device of the present invention is applied will be described with reference to FIGS. 49 (a) and 49 (b). FIG. 49 is an explanatory diagram of the basic concept of each embodiment. (A) corresponds to the application example of the above A), and (b) corresponds to the application example of the above B).
各実施形態の発光装置(半導体発光デバイス)1A,1Bは、図49(a),(b)に示すように、LEDチップからなる発光素子2と、発光素子2の近傍に配設された本発明の半導体発光デバイス用部材3A,3Bとを備えている。
The light-emitting devices (semiconductor light-emitting devices) 1A and 1B of the respective embodiments are, as shown in FIGS. The semiconductor light emitting
ただし、図49(a)に示すような、上記A)の適用例に対応した実施形態(実施形態A−1,A−2)においては、発光装置1Aは半導体発光デバイス用部材3Aに蛍光体や蛍光体成分を含まない。この場合、半導体発光デバイス用部材3Aは、発光素子2の封止、光取り出し機能、機能性成分保持などの各機能を発揮する。なお、以下の説明において、蛍光体や蛍光体成分を含有しない半導体デバイス用部材3Aを、適宜「透明部材」と呼ぶ。
However, in the embodiments (embodiments A-1 and A-2) corresponding to the application example of A) as shown in FIG. 49A, the light-emitting
一方、図49(b)に示すような、上記B)の適用例に対応した実施形態(実施形態B−1〜B−40)においては、発光装置1Bは半導体発光デバイス用部材3Bに蛍光体や蛍光体成分を含む。この場合、半導体デバイス用部材3Bは、図49(a)の半導体デバイス用部材3Aが発揮しうる諸機能に加え、波長変換機能も発揮できる。なお、以下の説明において、蛍光体や蛍光体成分を含有する半導体デバイス用部材3Bを、適宜「蛍光体部」と呼ぶ。また、蛍光体部は、その形状や機能などに応じて、適宜、符号33,34などで示す場合もある。
On the other hand, in the embodiment (embodiments B-1 to B-40) corresponding to the application example of B) as shown in FIG. 49 (b), the
発光素子2は、例えば、青色光ないし紫外光を放射するLEDチップにより構成されるが、これら以外の発光色のLEDチップであってもよい。
The
また、透明部材3Aは、発光素子2の高耐久性封止剤、光取出し膜、諸機能付加膜などの機能を発揮するものである。透明部材3Aは単独で用いてもよいが、蛍光体や蛍光体成分を除けば本発明の効果を著しく損なわない限り任意の添加剤を含有させることができる。
In addition, the
一方、蛍光体部3Bは、発光素子2の高耐久性封止剤、光取出し膜、諸機能付加膜などの機能を発揮しうると共に、発光素子2からの光により励起されて所望の波長の光を発光する波長変換機能を発揮するものである。蛍光体部3Bは、発光素子2からの光により励起されて所望の波長の光を発光する蛍光物質を少なくとも含んでいればよい。このような蛍光物質の例としては、上に例示した各種の蛍光体が挙げられる。蛍光体部3Bの発光色としては、赤色(R),緑色(G),青色(B)の3原色は勿論のこと、蛍光灯のような白色や電球のような黄色も可能である。要するに、蛍光体部3Bは、励起光とは異なる所望の波長の光を放射する波長変換機能を有している。
On the other hand, the
図49(a)に示す上述の発光装置1Aでは、発光素子2から放射された光4は、透明部材3Aを透過し、発光装置1Aの外部に放射される。したがって、発光装置1Aでは、発光素子2から放射された光4は、発光素子2から放射された際の発光色のままで利用される。
In the above-described light
一方、図49(b)に示す発光装置1Bでは、発光素子2から放射された光の一部4aは蛍光体部3Bをそのまま透過し、発光装置1Bの外部へ放射される。また、発光装置1Bでは、発光素子2から放射された光の他の一部4bが蛍光体部3Bに吸収されて蛍光体部3Bが励起され、蛍光体部3Bに含有される蛍光体粒子、蛍光イオン、蛍光染料等の蛍光成分特有の波長の光5が発光装置1Bの外部へ放射される。
On the other hand, in the
したがって、発光装置1Bからは、発光素子2で発光して蛍光体部3Bを透過した光4aと蛍光体部3Bで発光した光5との合成光6が、波長変換された光として放射されることになり、発光素子2の発光色と蛍光体部3Bの発光色とで発光装置1B全体としての発光色が決まることになる。なお、発光素子2で発光して蛍光体部3Bを透過する光4aは必ずしも必要ではない。
Therefore, from the
[A.蛍光を利用しない実施形態]
〔実施形態A−1〕
本実施形態の発光装置1Aは、図1に示すように、プリント配線17が施された絶縁基板16上に発光素子2が表面実装されている。この発光素子2は発光層部21のp形半導体層(図示せず)及びn形半導体層(図示せず)それぞれが、導電ワイヤ15,15を介してプリント配線17,17に電気的に接続されている。なお、導電ワイヤ15,15は、発光素子2から放射される光を妨げないように、断面積の小さいものが用いられている。
[A. Embodiment not using fluorescence]
[Embodiment A-1]
In the
ここにおいて、発光素子2としては、紫外〜赤外域までどのような波長の光を発するものを用いてもよいが、ここでは、窒化ガリウム系のLEDチップを用いているものとする。また、この発光素子2は、図1における下面側にn形半導体層(図示せず)、上面側にp形半導体層(図示せず)が形成されており、p形半導体層側から光出力を取り出すから図1の上方を前方として説明する。
Here, as the
また、絶縁基板16上には発光素子2を囲む枠状の枠材18が固着されており、枠材18の内側には発光素子2を封止・保護する封止部19を設けてある。この封止部19は、本発明の半導体発光デバイス用部材である透明部材3Aにより形成されたもので、上記の半導体発光デバイス用部材形成液でポッティングを行なうことにより形成できる。
Further, a frame-shaped
しかして、本実施形態の発光装置1Aは、発光素子2と、透明部材3Aとを備えているため、発光装置1Aの光耐久性、熱耐久性を向上させることができる。また、封止部3Aにクラックや剥離が起きにくいため、封止部3Aの透明性を高めることが可能となる。
Since the
さらに、従来に比べて光色むらや光色ばらつきを少なくすることができるとともに、外部への光の取り出し効率を高めることができる。すなわち、封止部3Aを、曇りや濁りがなく透明性が高いものとすることができるため、光色の均一性に優れ、発光装置1A間の光色ばらつきもほとんどなく、発光素子2の光の外部への取り出し効率を従来に比べて高めることができる。また、発光物質の耐候性を高めることができ、従来に比べて発光装置1Aの長寿命化を図ることが可能となる。
Furthermore, light color unevenness and light color variation can be reduced as compared with the conventional case, and the light extraction efficiency can be increased. That is, since the sealing
〔実施形態A−2〕
本実施形態の発光装置1Aは、図2に示すように、発光素子2の前面を透明部材3Aが覆っており、また、その透明部材上に、透明部材3Aとは異なる材料で封止部19が形成された他は、上記の実施形態A−1と同様に構成されている。また、発光素子2表面の透明部材3Aは、光取出し膜、封止膜として機能する透明の薄膜であり、例えば、発光素子2のチップ形成時に上記の半導体発光デバイス用部材形成液をスピンコーティング等で塗布することにより形成できる。なお、実施形態A−1と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment A-2]
As shown in FIG. 2, in the
しかして、本実施形態の発光装置1Aにおいても、実施形態A−1と同様に、発光素子2と、透明部材3Aとを備えているため、発光装置1Aの光耐久性、熱耐久性を向上させることができ、封止部3Aにクラックや剥離が起きにくいため、封止部3Aの透明性を高めることが可能となる。
さらに、実施形態A−1と同様の利点を得ることも可能である。
Thus, the
Furthermore, it is possible to obtain the same advantages as those of the embodiment A-1.
[B.蛍光を利用した実施形態]
〔実施形態B−1〕
本実施形態の発光装置1Bは、図3(a)に示すように、LEDチップからなる発光素子2と、透光性の透明な材料を砲弾形に成形したモールド部11とを備えている。モールド部11は発光素子2を覆っており、発光素子2は導電性材料により形成したリード端子12,13に電気的に接続されている。リード端子12,13はリードフレームにより形成されている。
[B. Embodiment using fluorescence]
[Embodiment B-1]
As shown in FIG. 3A, the light-emitting
発光素子2は、窒化ガリウム系のLEDチップであり、図3(a)における下面側にn形半導体層(図示せず)、上面側にp形半導体層(図示せず)が形成されており、p形半導体層側から光出力を取り出すから図3の上方を前方として説明する。発光素子2の後面はリード端子13の前端部に取り付けられたミラー(カップ部)14に対してダイボンドによって接合されている。また、発光素子2は、上述のp形半導体層及びn形半導体層それぞれに導電ワイヤ(例えば、金ワイヤ)15,15がボンディングにより接続され、この導電ワイヤ15,15を介して発光素子2とリード端子12,13とが電気的に接続されている。なお、導電ワイヤ15,15は発光素子2から放射される光を妨げないように断面積の小さいものが用いられている。
The light-emitting
ミラー14は発光素子2の側面及び後面から放射された光を前方に反射する機能を有し、LEDチップから放射された光及びミラー14により前方に反射された光は、レンズとして機能するモールド部11の前端部を通してモールド部11から前方に放射される。モールド部11は、ミラー14、導電ワイヤ15,15、リード端子12,13の一部とともに、発光素子2を覆っており、発光素子2が大気中の水分などと反応することによる特性の劣化が防止されている。各リード端子12,13の後端部はそれぞれモールド部11の後面から外部に突出している。
The
ところで、発光素子2は、図3(b)に示すように、窒化ガリウム系半導体からなる発光層部21が、蛍光体部3B上に半導体プロセスを利用して形成されており、蛍光体部3Bの後面には反射層23が形成されている。発光層部21からの発光による光は全方位に放射されるが、蛍光体部3Bに吸収された一部の光は蛍光体部3Bを励起し、上記蛍光成分特有の波長の光を放射する。この蛍光体部3Bで発光した光は反射層3によって反射されて前方へ放射される。したがって、発光装置1Bは、発光層部21から放射された光と蛍光体部3Bから放射された光との合成光が得られることになる。
Incidentally, as shown in FIG. 3B, in the
しかして、本実施形態の発光装置1Bは、発光素子2と、発光素子2からの光により励起されて所望の波長の光を発光する蛍光体部3Bとを備えてなる。ここで、蛍光体部3Bとして透光性に優れたものを用いれば、発光素子2から放射された光の一部がそのまま外部へ放射されるとともに、発光素子2から放射された光の他の一部によって発光中心となる蛍光成分が励起されて当該蛍光成分特有の発光による光が外部へ放射されるから、発光素子2から放射される光と蛍光体部3Bの蛍光成分から放射される光との合成光を得ることができ、また、従来に比べて光色むらや光色ばらつきを少なくすることができるとともに、外部への光の取り出し効率を高めることができる。すなわち、蛍光体部3Bとして、曇りや濁りがなく透明性が高いものを用いれば、光色の均一性に優れ、発光装置1B間の光色ばらつきもほとんどなく、発光素子2の光の外部への取り出し効率を従来に比べて高めることができる。また、発光物質の耐候性を高めることができ、従来に比べて発光装置1Bの長寿命化を図ることが可能となる。
Thus, the
また、本実施形態の発光装置1Bでは、蛍光体部3Bが発光素子2を形成する基板に兼用されているので、発光素子2からの光の一部により蛍光体部中の発光中心となる蛍光体を効率良く励起することができ、当該蛍光成分特有の発光による光の輝度を高めることができる。
Further, in the
〔実施形態B−2〕
本実施形態の発光装置1Bは、図4に示すように、プリント配線17が施された絶縁基板16上に発光素子2が表面実装されている。ここにおいて、発光素子2は、実施形態B−1と同様の構成であって、窒化ガリウム系半導体からなる発光層部21が蛍光体部3B上に形成され、蛍光体部3Bの後面に反射層23が形成されている。また、発光素子2は発光層部21のp形半導体層(図示せず)及びn形半導体層(図示せず)それぞれが、導電ワイヤ15,15を介してプリント配線17,17に電気的に接続されている。
[Embodiment B-2]
In the
また、絶縁基板16上には発光素子2を囲む枠状の枠材18が固着されており、枠材18の内側には発光素子2を封止・保護する封止部19を設けてある。
Further, a frame-shaped
しかして、本実施形態の発光装置1Bにおいても、実施形態B−1と同様に、発光素子2と、発光素子2からの光により励起されて所望の波長の光を発光する蛍光体部3Bとを備えてなるので、発光素子2からの光と蛍光体からの光との合成光を得ることができる。また、実施形態B−1と同様、従来に比べて光色むらや光色ばらつきを少なくすることができるとともに、外部への光の取り出し効率を高めることができ、長寿命化を図ることも可能となる。
Thus, also in the
〔実施形態B−3〕
本実施形態の発光装置1Bの基本構成は実施形態B−2と略同じであって、実施形態B−2で説明した枠材18(図4参照)を用いておらず、図5に示すように、封止部19の形状が異なる。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-3]
The basic configuration of the
本実施形態における封止部19は、発光素子2を封止する円錐台状の封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。
The sealing
しかして、本実施形態の発光装置1Bでは、実施形態B−2に比べて部品点数を少なくすることができ、小型化及び軽量化を図ることができる。しかも、封止部19の一部にレンズとして機能するレンズ機能部19bを設けたことにより、指向性の優れた配光を得ることができる。
Therefore, in the
〔実施形態B−4〕
本実施形態の発光装置1Bの基本構成は実施形態B−2と略同じであって、図6に示すように、絶縁基板16の一面(図6における上面)に発光素子2を収納する凹所16aが設けられており、凹所16aの底部に発光素子2が実装され、凹所16a内に封止部19を設けている点に特徴がある。ここにおいて、絶縁基板16に形成されたプリント配線17,17は凹所16aの底部まで延長され、導電ワイヤ15,15を介して発光素子2の窒化ガリウム系半導体からなる発光層部21に電気的に接続されている。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-4]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは封止部19が絶縁基板16の上面に形成された凹所16aを充填することで形成されているので、実施形態B−2で説明した枠材18(図5参照)や実施形態B−3で説明した成形用金型を用いることなく封止部19を形成することができ、実施形態B−2,B−3に比べて発光素子2の封止工程を簡便に行えるという利点がある。
Therefore, in the
〔実施形態B−5〕
本実施形態の発光装置1Bの基本構成は実施形態B−4と略同じであって、図7に示すように、発光素子2が絶縁基板16に所謂フリップチップ実装されている点に特徴がある。すなわち、発光素子2は、発光層部21のp形半導体層(図示せず)及びn形半導体層(図示せず)それぞれの表面側に導電性材料からなるバンプ24,24が設けられており、発光層部21がフェースダウンでバンプ24,24を介して絶縁基板16のプリント配線17,17と電気的に接続されている。したがって、本実施形態における発光素子2は、絶縁基板16に最も近い側に発光層部21が配設され、絶縁基板16から最も遠い側に反射層23が配設され、発光層部21と反射層23との間に蛍光体部3Bが介在することになる。なお、実施形態B−4と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-5]
The basic configuration of the
本実施形態の発光装置1Bでは、反射層23で図7における下方(後方)へ反射された光は、凹所16aの内周面で反射されて同図における上方(前方)へ放射される。ここにおいて、凹所16aの内周面であってプリント配線17,17以外の部位には、反射率の高い材料からなる反射層を別途に設けることが望ましい。
In the
しかして、本実施形態の発光装置1Bでは絶縁基板16に設けられたプリント配線17,17と発光素子2とを接続するために実施形態B−4のような導電ワイヤ15,15を必要としないので、実施形態B−4に比べて機械的強度及び信頼性を向上させることが可能となる。
Therefore, in the
〔実施形態B−6〕
本実施形態の発光装置1Bの基本構成は実施形態B−5と略同じであって、図8に示すように、実施形態B−5で説明した反射層23を設けていない点が相違する。要するに、本実施形態の発光装置1Bでは、発光層部21で発光した光及び蛍光体部3Bで発光した光が封止部19を透過してそのまま前方へ放射されることになる。なお、実施形態B−5と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-6]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、実施形態B−5に比べて部品点数を削減できて製造が容易になる。
Therefore, in the
〔実施形態B−7〕
本実施形態の発光装置1Bの基本構成は実施形態B−1と略同じであって、図9に示すように、発光素子2を覆うモールド部11を備えており、モールド部11を蛍光体部と一体に形成している点に特徴がある。なお、実施形態B−1と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-7]
The basic configuration of the
本実施形態の発光装置1Bの製造にあたっては、モールド部11を設けていない仕掛品を蛍光体部形成液を溜めた成形金型の中に浸漬し、溶媒を乾燥除去する方法などによってモールド部11を形成している。
In the manufacture of the
しかして、本実施形態では、モールド部11が蛍光体部と一体に形成されているので、蛍光体部として後述するように本発明の半導体発光デバイス用部材を用いることにより、モールド部11の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
Therefore, in this embodiment, since the
〔実施形態B−8〕
本実施形態の発光装置1Bの基本構成は実施形態B−1と略同じであって、図10に示すように、モールド部11の外面に後面が開口されたカップ状の蛍光体部3Bが装着されている点に特徴がある。すなわち、本実施形態では、実施形態B−1のように発光素子2に蛍光体部3Bを設ける代わりに、モールド部11の外周に沿う形状の蛍光体部3Bを設けているのである。なお、実施形態B−1と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-8]
The basic configuration of the
本実施形態における蛍光体部3Bは、実施形態B−7で説明した溶媒乾燥法により薄膜として形成してもよいし、あるいは予め固体の蛍光体部をカップ状に成形加工した部材をモールド部11に装着するようにしてもよい。
The
しかして、本実施形態の発光装置1Bでは、実施形態B−7の発光装置1Bのようにモールド部11全体を蛍光体部と一体に形成する場合に比べて、蛍光体部の材料使用量の削減を図ることができ、低コスト化を図れる。
Therefore, in the
〔実施形態B−9〕
本実施形態の発光装置1Bの基本構成は、実施形態B−2と略同じであって、図11に示すように、絶縁基板16の一面(図11の上面)側において発光素子2を囲むように配設された枠状の枠材18を備えており、枠材18の内側の封止部19を実施形態B−2で説明した蛍光体部3Bと同様の蛍光体部により形成している点に特徴がある。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-9]
The basic configuration of the
しかして、本実施形態では、封止部19が蛍光体部により形成されているので、蛍光体部として後述するように本発明の半導体発光デバイス用部材を用いることにより、モールド部11の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
In this embodiment, since the sealing
〔実施形態B−10〕
本実施形態の発光装置1Bの基本構成は、実施形態B−2と略同じであって、図12に示すように、絶縁基板16の一面(図12の上面)側において発光素子2を囲むように配設された枠状の枠材18を備えており、枠材18の内側の封止部19を実施形態B−2で説明した蛍光体部3Bと同様の蛍光体部により形成している点に特徴がある。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-10]
The basic configuration of the
しかして、本実施形態では、封止部19が蛍光体部により形成されているので、蛍光体部として後述するように本発明の半導体発光デバイス用部材を用いることにより、モールド部11の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
In this embodiment, since the sealing
また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部により形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態B−9に比べてより一層効率的に行えるという利点がある。
In the present embodiment, the
〔実施形態B−11〕
本実施形態の発光装置1Bの基本構成は実施形態B−2と略同じであって、図13に示すように、透光性材料よりなる封止部19の上面に、あらかじめレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は、実施形態B−2で説明した蛍光体部3Bと同様の材質よりなり、発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-11]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行うことができる。
Thus, in the
〔実施形態B−12〕
本実施形態の発光装置1Bの基本構成は実施形態B−2と略同じであって、図14に示すように、透光性材料よりなる封止部19の上面に、あらかじめレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は、実施形態B−2で説明した蛍光体部3Bと同様と同様の材質よりなり、発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-12]
The basic configuration of the light-emitting
しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行うことができる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成されているので、蛍光体部の励起、発光を実施形態B−11に比べてより一層効率的に行えるという利点がある。
Thus, in the
〔実施形態B−13〕
本実施形態の発光装置1Bの基本構成は実施形態B−3と略同じであって、図15に示すように、絶縁基板16の上面側において発光素子2を覆う封止部19を備えており、封止部19が蛍光体部により形成されている点に特徴がある。ここに、封止部19は、実施形態B−3と同様に、発光素子2を封止する円錐台状の封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態B−3と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-13]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、封止部19が発光素子2を封止・保護する機能だけでなく、発光素子2からの光を波長変換する波長変換機能、発光の指向性を制御するレンズ機能を有することになる。また、封止部19の耐候性を高めることができ、長寿命化を図ることができる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部により形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態B−12に比べてより一層効率的に行えるという利点がある。
Thus, in the
〔実施形態B−14〕
本実施形態の発光装置1Bの基本構成は実施形態B−3と略同じであって、図16に示すように、絶縁基板16の一面(図16の上面)側において発光素子2を覆う封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここに、封止部19は、実施形態B−3と同様に、発光素子2を封止する円錐台状の封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態B−3と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-14]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、封止部19が発光素子2を封止・保護する機能だけでなく、発光素子2からの光を波長変換する波長変換機能、発光の指向性を制御するレンズ機能を有することになる。また、封止部19の耐候性を高めることができ、長寿命化を図ることができる。
Thus, in the
〔実施形態B−15〕
本実施形態の発光装置1Bの基本構成は実施形態B−3と略同じであって、図17に示すように、絶縁基板16の上面側において発光素子2を覆うドーム状の蛍光体部34を配設し、蛍光体部34の外面側に透光性樹脂からなる封止部19が形成されている点に特徴がある。ここに、封止部19は、実施形態B−3と同様に、発光素子2を封止する封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態B−3と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-15]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、実施形態B−13,B−14に比べて蛍光体部34の材料使用量を低減することができる。また、本実施形態では、発光素子2を覆うドーム状の蛍光体部34が配設されているので、蛍光体部として後述するように本発明の半導体発光デバイス用部材を用いることにより、外部からの水分などによる発光素子2の劣化をより確実に防止することができ、長寿命化を図ることができる。
Thus, in the
〔実施形態B−16〕
本実施形態の発光装置1Bの基本構成は実施形態B−3と略同じであって、図18に示すように、絶縁基板16の上面側において発光素子2を覆うドーム状の蛍光体部34を配設し、蛍光体部34の外面側に封止部19が形成されている点に特徴がある。ここに、封止部19は、実施形態B−3と同様に、発光素子2を封止する封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態B−3と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-16]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、実施形態B−13,B−14に比べて蛍光体部34の材料使用量を低減することができる。また、本実施形態では、発光素子2を覆うドーム状の蛍光体部34が配設されているので、蛍光体部として後述するように本発明の半導体発光デバイス用部材を用いることにより、外部からの水分などによる発光素子2の劣化をより確実に防止することができ、長寿命化を図ることができる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部により形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態B−15に比べてより一層効率的に行えるという利点がある。
Thus, in the
〔実施形態B−17〕
本実施形態の発光装置1Bの基本構成は実施形態B−4と略同じであって、図19に示すように、絶縁基板16の一面(図19における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部により形成されている点に特徴がある。ここにおいて、蛍光体部は実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−4と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-17]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部により形成されているので、蛍光体部として後述するように本発明の半導体発光デバイス用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部3Bにより形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態B−15に比べてより一層効率的に行えるという利点がある。
Therefore, in the
〔実施形態B−18〕
本実施形態の発光装置1Bの基本構成は実施形態B−4と略同じであって、図20に示すように、絶縁基板16の一面(図20における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、蛍光体部3Bは実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−4と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-18]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部により形成されているので、蛍光体部3Bとして後述するように本発明の半導体発光デバイス用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
Therefore, in the
〔実施形態B−19〕
本実施形態の発光装置1Bの基本構成は実施形態B−4と略同じであって、図21に示すように、封止部19の上面(光取り出し面)に予めレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−4と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-19]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行うことができる。
Thus, in the
〔実施形態B−20〕
本実施形態の発光装置1Bの基本構成は実施形態B−4と略同じであって、図22に示すように、封止部19の上面(光取り出し面)に予めレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−4と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-20]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行うことができる。また、本実施形態では、発光素子2の発光層部21の後面にも蛍光体部3Bが配設されているので、実施形態B−19に比べて蛍光体部の励起、発光がより一層効率的に行われるという利点がある。
Thus, in the
〔実施形態B−21〕
本実施形態の発光装置1Bの基本構成は実施形態B−5と略同じであって、図23に示すように、絶縁基板16の一面(図23における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、封止部19は、予め、図24に示すように、外周形状が凹所16aに対応する形状であって発光素子2に対応する部位に発光素子2を収納するための凹部19cを有する形状に加工したものを、発光素子2が実装された絶縁基板16の凹所16aに装着しているので、封止工程を簡便化することができる。また、封止部19を形成する蛍光体部3Bは実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−5と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-21]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部により形成されているので、蛍光体部3Bとして後述するように本発明の半導体発光デバイス用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。また、本実施形態では、発光素子2の発光層部21から前方へ放射された光が反射層23によって一旦、凹所16aの内底面側に向けて反射されるので、凹所16aの内底面及び内周面に反射層を設けておけば、凹所16aの内底面及び内周面でさらに反射されて前方へ放射されることになって光路長を長くとれ、蛍光体部3Bにより効率的に励起、発光を行うことができるという利点がある。
Therefore, in the
〔実施形態B−22〕
本実施形態の発光装置1Bの基本構成は実施形態B−5と略同じであって、図25に示すように、絶縁基板16の一面(図25における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、封止部19は、予め、図26に示すように、外周形状が凹所16aに対応する形状であって発光素子2に対応する部位に発光素子2を収納するための凹部19cを有する形状に加工したものを、発光素子2が実装された絶縁基板16の凹所16aに装着しているので、封止工程を簡便化することができる。また、封止部19を形成する蛍光体部3Bは実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−5と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-22]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部3Bにより形成されているので、蛍光体部3Bとして後述するように本発明の半導体発光デバイス用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
Therefore, in the
〔実施形態B−23〕
本実施形態の発光装置1Bの基本構成は実施形態B−6と略同じであって、図27に示すように、発光素子2の上面に、予めロッド状に加工した蛍光体部3Bを配設している点に特徴がある。ここにおいて、発光素子2及び蛍光体部3Bの周囲には透光性材料からなる封止部19が形成されており、蛍光体部3Bは一端面(図27における下端面)が発光素子2の発光層部21に密着し他端面(図27における上端面)が露出している。なお、実施形態B−6と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-23]
The basic configuration of the light-emitting
しかして、本実施形態の発光装置1Bでは、上記一端面が発光素子2の発光層部21に密着する蛍光体部3Bがロッド状に形成されているので、発光層部21で発光した光を蛍光体部3Bの上記一端面を通して蛍光体部3Bへ効率的に取り込むことができ、取り込んだ光により励起された蛍光体部3Bの発光を蛍光体部3Bの上記他端面を通して外部へ効率的に放射させることができる。なお、本実施形態では、蛍光体部3Bを比較的大径のロッド状に形成して1つだけ用いているが、図28に示すように蛍光体部3Bを比較的小径のファイバ状に形成して複数本の蛍光体部3Bを並べて配設するようにしてもよい。また、蛍光体部3Bの断面形状は円形に限らず、例えば四角形状に形成してもよいし、その他の形状に形成してもよいのは勿論である。
Therefore, in the
〔実施形態B−24〕
本実施形態の発光装置1Bの基本構成は実施形態B−23と略同じであって、図29に示すように、絶縁基板16の凹所16a内に設けた封止部19を備え、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、封止部19は、予め、図30に示すように、外周形状が凹所16aに対応する形状であって発光素子2に対応する部位に発光素子2を収納するための貫通孔19dを有する形状に加工したものを、発光素子2が実装された絶縁基板16の凹所16aに装着しているので、封止工程を簡便化することができる。また、封止部19を形成する蛍光体部3Bは実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−23と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-24]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、封止部19も蛍光体部3Bにより形成されているので、長寿命化及び発光の高効率化を図ることができる。なお、本実施形態では、蛍光体部3Bを比較的大径のロッド状に形成して1つだけ用いているが、図31に示すように蛍光体部3Bを比較的小径のファイバ状に形成して複数本の蛍光体部3Bを並べて配設するようにしてもよい。また、蛍光体部3Bの断面形状は円形に限らず、例えば四角形状に形成してもよいし、その他の形状に形成してもよいのは勿論である。
Therefore, in the
〔実施形態B−25〕
本実施形態の発光装置1Bの基本構成は実施形態B−2と略同じであって、図32に示すように絶縁基板16の一面(図32における上面)側に配設された枠材18を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、枠材18の内側の封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散されている点に特徴がある。また、本実施形態では、蛍光体部3Bとして、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP2O5・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-25]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。
Therefore, in the
したがって、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。本実施形態では、蛍光体部3Bから青色光が放射されるとともに、蛍光体粉末から黄色光が放射され、いずれの発光色とも異なる白色光を得ることができる。
Therefore, if a material that emits near-ultraviolet light is selected as the material of the light emitting
なお、既存の蛍光体粉末や蛍光体部の蛍光体粒子ではそれぞれに発光可能な材料が限定されており、いずれか一方だけでは所望の光色が得られないこともあり、このような場合には本実施形態は極めて有効である。つまり、蛍光体部3Bだけで所望の光色特性が得られない場合には、蛍光体部3Bに欠けている適当な光色特性を有する蛍光体粉末を併用して補完することにより、所望の光色特性の発光装置1Bが実現できる。また、本実施形態では、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。ここに、蛍光体部3Bと蛍光体粉末とで発光色を略同色とする場合には、例えば、蛍光体部3Bの蛍光体粒子として赤色光を発光するP2O5・SrF2・BaF2:Eu3+を用いるとともに、蛍光体粉末として赤色光を発光するY2O2S:Eu3+を用いれば、赤色発光の高効率化を図れる。この蛍光体部3Bと蛍光体粉末との組み合わせは一例であって他の組み合わせを採用してもよいことは勿論である。
In addition, in existing phosphor powders and phosphor particles in the phosphor part, materials that can emit light are limited, and a desired light color may not be obtained with only one of them, in such cases This embodiment is extremely effective. That is, when a desired light color characteristic cannot be obtained only by the
〔実施形態B−26〕
本実施形態の発光装置1Bの基本構成は実施形態B−3と略同じであって、図33に示すように、絶縁基板16の一面(図33の上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP2O5・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−3と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-26]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
Therefore, in the
〔実施形態B−27〕
本実施形態の発光装置1Bの基本構成は実施形態B−4と略同じであって、図34に示すように、絶縁基板16の上面に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP2O5・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−4と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-27]
The basic configuration of the light-emitting
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
Therefore, in the
〔実施形態B−28〕
本実施形態の発光装置1Bの基本構成は実施形態B−5と略同じであって、図35に示すように、絶縁基板16の一面(図35における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP2O5・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−5と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-28]
The basic configuration of the light-emitting
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
Therefore, in the
〔実施形態B−29〕
本実施形態の発光装置1Bの基本構成は実施形態B−6と略同じであって、図36に示すように、絶縁基板16の一面(図36における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP2O5・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−6と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-29]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
Therefore, in the
〔実施形態B−30〕
本実施形態の発光装置1Bの基本構成は実施形態B−1と略同じであって、図37(a),(b)に示すように、砲弾形のモールド部11を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、モールド部11として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、モールド部11が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP2O5・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−1と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-30]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末がモールド部11に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bとモールド部11中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
Thus, in the
〔実施形態B−31〕
本実施形態の発光装置1Bの基本構成は実施形態B−8と略同じであって、図38に示すように、砲弾形のモールド部11を備え、発光素子2の発光層部21(図38では図示を略している。)がAlGaN系で近紫外光を発光するものであり、モールド部11として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、モールド部11が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP2O5・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−8と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-31]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末がモールド部11に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bとモールド部11中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
Thus, in the
〔実施形態B−32〕
本実施形態の発光装置1Bの基本構成は実施形態B−11と略同じであって、図39に示すように、絶縁基板16の一面(図39の上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP2O5・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−11と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-32]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
Therefore, in the
〔実施形態B−33〕
本実施形態の発光装置1Bの基本構成は実施形態B−15と略同じであって、図40に示すように、絶縁基板16の一面(図40の上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP2O5・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−15と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-33]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
Therefore, in the
〔実施形態B−34〕
本実施形態の発光装置1Bの基本構成は実施形態B−19と略同じであって、図41に示すように、絶縁基板16の一面(図41における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP2O5・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−19と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-34]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
Therefore, in the
〔実施形態B−35〕
本実施形態の発光装置1Bの基本構成は実施形態B−12,B−22と略同じであって、図42に示すように、絶縁基板16の一面(図42における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP2O5・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−12,B−22と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-35]
The basic configuration of the light-emitting
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
Therefore, in the
〔実施形態B−36〕
本実施形態の発光装置1Bの基本構成は実施形態B−12と略同じであって、図43に示すように、絶縁基板16の上面側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP2O5・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−12と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-36]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
Therefore, in the
〔実施形態B−37〕
本実施形態の発光装置1Bの基本構成は実施形態B−16と略同じであって、図44に示すように、絶縁基板16の一面(図44の上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP2O5・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−16と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-37]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
Therefore, in the
〔実施形態B−38〕
本実施形態の発光装置1Bの基本構成は実施形態B−20と略同じであって、図45に示すように、絶縁基板16の一面(図45における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP2O5・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−20と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-38]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
Therefore, in the
〔実施形態B−39〕
本実施形態の発光装置1Bの基本構成は実施形態B−5,B−12と略同じであって、図46に示すように、絶縁基板16の一面(図46における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP2O5・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−5,B−12と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-39]
The basic configuration of the
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
Therefore, in the
〔実施形態B−40〕
本実施形態の発光装置1Bの基本構成は実施形態B−20,B−21と略同じであって、図47に示すように、絶縁基板16の一面(図47における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP2O5・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−20,B−21と同様の構成要素には同一の符号を付して説明を省略する。
[Embodiment B-40]
The basic configuration of the light-emitting
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
Therefore, in the
ところで、上記各実施形態では、蛍光体部3Bを所望の形状に加工したりゾルゲル法で形成したりしているが、図48に示すように、蛍光体部3Bを直径が可視波長よりもやや大きな球状に形成して多数の蛍光体部3Bを透光性材料からなる固体媒質35中に分散させて上記各実施形態における蛍光体部の代わりに用いるようにすれば、可視波長域での蛍光体部の透明性を維持しながらも蛍光体部の材料使用量の低減化を図ることができ、低コスト化を図れる。
Incidentally, in each of the above embodiments, the
また、上記各実施形態の発光装置1Bは1個の発光素子2しか備えていないが、複数個の発光素子2により1単位のモジュールを構成し、モジュールの少なくとも一部に発光物質としての蛍光体部を近接して配設するようにしてもよいことは勿論である。なお、例えば実施形態B−1で説明したような砲弾形のモールド部11を備える発光装置の場合には複数個の発光装置を同一プリント基板に実装して1単位のモジュールを構成するようにしてもよい。また、例えば実施形態B−2で説明したような表面実装型の発光装置については複数個の発光素子2を同一の絶縁基板16上に配設して1単位のモジュールを構成するようにしてもよい。
In addition, the
〔半導体発光デバイス用部材の適用〕
以上説明した各実施形態A−1,A−2,B−1〜B−40の発光装置(半導体発光デバイス)1A,1Bにおいて、本発明の半導体発光デバイス部材を適用する箇所は特に制限されない。上記の各実施形態においては、透明部材3Aや蛍光体部3B,33,34などを形成する部材として本発明の半導体発光デバイス部材を適用した例を示したが、これ以外にも、例えば上述のモールド部11、枠材18、封止部19等を形成する部材として好適に用いることができる。これらの部材として本発明の半導体発光デバイス部材を用いることにより、上述した優れた封止性、透明性、耐光性、耐熱性、長期間使用に伴うクラックや剥離の抑制等の各種の効果を得ることが可能となる。
[Application of members for semiconductor light emitting devices]
In the light-emitting devices (semiconductor light-emitting devices) 1A and 1B of the embodiments A-1, A-2, B-1 to B-40 described above, there are no particular restrictions on the locations to which the semiconductor light-emitting device member of the present invention is applied. In each of the above embodiments, the example in which the semiconductor light emitting device member of the present invention is applied as a member for forming the
また、本発明の半導体発光デバイス部材を適用する場合には、本発明を適用する箇所に応じて、適宜変形を加えるのが好ましい。例えば、蛍光体部3B,33,34に本発明を適用する場合には、上述した蛍光体粒子又は蛍光体イオンや蛍光染料等の蛍光成分を本発明の半導体発光デバイス用部材に混合して用いればよい。これによって、上に挙げた各種効果に加え、蛍光体の保持性を高めるという効果を得ることができる。
Moreover, when applying the semiconductor light-emitting device member of this invention, it is preferable to modify suitably according to the location which applies this invention. For example, when the present invention is applied to the
また、本発明の半導体発光デバイス用部材は耐久性に優れているので、蛍光体を含まず単独で使用しても、光耐久性(紫外線耐久性)や熱耐久性に優れた封止材料(無機系接着剤用途)として、発光素子(LEDチップ等)を封止することが可能である。
また、先述した無機酸化物粒子を本発明の半導体発光デバイス用部材に混合して用いれば、上に挙げた各種効果に加え、無機酸化物粒子の併用の説明において先述した効果を得ることが可能となる。特に、無機酸化物粒子を併用することにより、発光素子の屈折率と近い屈折率となるように調整したものは、好適な光取り出し膜として作用する。
Moreover, since the member for semiconductor light-emitting devices of the present invention is excellent in durability, a sealing material excellent in light durability (ultraviolet light durability) and heat durability even when used alone without containing a phosphor ( As an inorganic adhesive, it is possible to seal a light emitting element (LED chip or the like).
Moreover, if the inorganic oxide particles described above are mixed and used in the semiconductor light emitting device member of the present invention, in addition to the various effects listed above, the effects described above in the description of the combined use of the inorganic oxide particles can be obtained. It becomes. In particular, a material adjusted to have a refractive index close to that of the light emitting element by using inorganic oxide particles in combination acts as a suitable light extraction film.
〔半導体発光デバイスの用途等〕
半導体発光デバイスは、例えば、発光装置に用いることができる。半導体発光デバイスを発光装置に用いる場合、当該発光装置は、赤色蛍光体、青色蛍光体及び緑色蛍光体の混合物を含む蛍光体含有層を、光源上に配置すればよい。この場合、赤色蛍光体は、青色蛍光体、緑色蛍光体とは必ずしも同一の層中に混合されなくてもよく、例えば、青色蛍光体と緑色蛍光体を含有する層の上に赤色蛍光体を含有する層が積層されていてもよい。
[Applications of semiconductor light-emitting devices]
The semiconductor light emitting device can be used for a light emitting device, for example. In the case where a semiconductor light emitting device is used for a light emitting device, the light emitting device may be provided with a phosphor containing layer containing a mixture of a red phosphor, a blue phosphor and a green phosphor on a light source. In this case, the red phosphor does not necessarily have to be mixed in the same layer as the blue phosphor and the green phosphor. For example, the red phosphor is placed on the layer containing the blue phosphor and the green phosphor. The layer to contain may be laminated | stacked.
発光装置において、蛍光体含有層は光源の上部に設けることができる。蛍光体含有層は、光源と封止樹脂部との間の接触層として、または、封止樹脂部の外側のコーティング層として、または、外部キャップの内側のコーティング層として提供できる。また、封止樹脂内に蛍光体を含有させた形態をとることもできる。 In the light emitting device, the phosphor-containing layer can be provided above the light source. The phosphor-containing layer can be provided as a contact layer between the light source and the sealing resin portion, as a coating layer outside the sealing resin portion, or as a coating layer inside the outer cap. Moreover, the form which contained the fluorescent substance in sealing resin can also be taken.
使用される封止樹脂としては、本発明の半導体発光デバイス用部材を用いることができる。また、その他の樹脂を使用することもできる。そのような樹脂としては、通常、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられる。具体的には、例えば、ポリメタアクリル酸メチル等のメタアクリル樹脂;ポリスチレン、スチレン−アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フェノキシ樹脂;ブチラール樹脂;ポリビニルアルコール;エチルセルロース、セルロースアセテート、セルロースアセテートブチレート等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;シリコーン樹脂等が挙げられる。また、無機系材料、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル−ゲル法により加水分解重合して成る溶液又はこれらの組み合わせを固化した無機系材料、例えばシロキサン結合を有する無機系材料を用いることができる。 As the sealing resin used, the member for semiconductor light emitting device of the present invention can be used. Other resins can also be used. Examples of such a resin usually include a thermoplastic resin, a thermosetting resin, and a photocurable resin. Specifically, for example, methacrylic resin such as polymethylmethacrylate; styrene resin such as polystyrene and styrene-acrylonitrile copolymer; polycarbonate resin; polyester resin; phenoxy resin; butyral resin; polyvinyl alcohol; Cellulose resins such as cellulose acetate butyrate; epoxy resins; phenol resins; silicone resins. Further, an inorganic material such as a siloxane bond formed by solidifying a solution obtained by hydrolytic polymerization of a solution containing an inorganic material such as a metal alkoxide, ceramic precursor polymer or metal alkoxide by a sol-gel method, or a combination thereof. An inorganic material can be used.
バインダー樹脂に対する蛍光体の使用量は特に限定されるものではないが、通常、バインダー樹脂100重量部に対して0.01〜100重量部、好ましくは0.1〜80重量部、好ましくは1〜60重量部である。 Although the usage-amount of the fluorescent substance with respect to binder resin is not specifically limited, Usually, 0.01-100 weight part with respect to 100 weight part of binder resin, Preferably it is 0.1-80 weight part, Preferably it is 1-1. 60 parts by weight.
また、封止樹脂に、色調補正用の色素、酸化防止剤、燐系加工安定剤等の加工・酸化および熱安定化剤、紫外線吸収剤等の耐光性安定化剤およびシランカップリング剤を含有させることができる。 In addition, the sealing resin contains dyes for color correction, antioxidants, processing / oxidation and heat stabilizers such as phosphorus-based processing stabilizers, light-resistant stabilizers such as UV absorbers, and silane coupling agents. Can be made.
光源は、350nm〜500nmの範囲にピーク波長を有する光を発光するものであれば特に制限は無いが、具体例としては、発光ダイオード(LED)またはレーザーダイオード(LD)等を挙げることができる。その中でも、GaN系化合物半導体を使用した、GaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、20mAの電流負荷に対し、通常GaN系LEDやLDはSiC系の100倍以上の 発光強度を有する。GaN系LEDやLDにおいては、AlXGaYN発光層、GaN発光層、またはInXGaYN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInXGaYN発光層を有するものが発光強度が非常に強いので、特に好ましく、GaN系LDにおいては、InXGaYN層とGaN層の多重量子井戸構造のものが発光強度が非常に強いので、特に好ましい。 The light source is not particularly limited as long as it emits light having a peak wavelength in the range of 350 nm to 500 nm, and specific examples include a light emitting diode (LED) or a laser diode (LD). Of these, GaN LEDs and LDs using GaN compound semiconductors are preferred. This is because GaN-based LEDs and LDs have significantly higher light emission output and external quantum efficiency than SiC-based LEDs that emit light in this region, and are extremely bright with very low power when combined with the phosphor. This is because light emission can be obtained. For example, for a current load of 20 mA, GaN LEDs and LDs usually have a light emission intensity that is 100 times or more that of SiC. A GaN-based LED or LD preferably has an Al x Ga Y N light emitting layer, a GaN light emitting layer, or an In x Ga Y N light emitting layer. Among GaN-based LEDs, those having an In X Ga Y N light-emitting layer are particularly preferable because the emission intensity is very strong, and in GaN-based LDs, the multiple quantum of the In X Ga Y N layer and the GaN layer is preferred. A well structure is particularly preferable because the emission intensity is very strong.
なお、上記においてX+Yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。 In the above, the value of X + Y is usually a value in the range of 0.8 to 1.2. In the GaN-based LED, those in which the light emitting layer is doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics.
GaN系LEDはこれら発光層、p層、n層、電極、および基板を基本構成要素としたものであり、発光層をn型とp型のAlXGaYN層、GaN層、またはInXGaYN層などでサンドイッチにしたヘテロ構造を有しているものが発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが発光効率がさらに高く、より好ましい。 A GaN-based LED has these light-emitting layer, p-layer, n-layer, electrode, and substrate as basic constituent elements. The light-emitting layer is made of n-type and p-type Al x Ga y N layers, GaN layers, or In x. Those having a heterostructure sandwiched between Ga Y N layers and the like have high luminous efficiency, and those having a heterostructure having a quantum well structure have higher luminous efficiency and are more preferable.
発光装置は、白色光を発するものであり、装置の発光効率が20lm/W以上、好ましくは22lm/W以上、より好ましくは25lm/W以上であり、特に好ましくは28lm/W以上であり、平均演色評価指数Raが80以上、好ましくは85以上、より好ましくは88以上である。 The light emitting device emits white light, and the light emission efficiency of the device is 20 lm / W or more, preferably 22 lm / W or more, more preferably 25 lm / W or more, and particularly preferably 28 lm / W or more. The color rendering index Ra is 80 or more, preferably 85 or more, more preferably 88 or more.
発光装置は、単独で、又は複数個を組み合わせることにより、例えば、照明ランプ、液晶パネル用等のバックライト、超薄型照明等の種々の照明装置、画像表示装置として使用することができる。 The light-emitting device can be used alone or in combination, for example, as an illumination lamp, a backlight for a liquid crystal panel, various illumination devices such as ultra-thin illumination, and an image display device.
以下、実施例を挙げて本発明をより具体的に説明するが、それらは本発明の説明を目的とするものであって、本発明をこれらの態様に限定することを意図したものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, they are for the purpose of explaining the present invention, and are not intended to limit the present invention to these embodiments.
[I.分析方法]
後述する各実施例及び各比較例の半導体発光デバイス用部材について、以下の手順で分析を行なった。
[I. Analysis method]
About the member for semiconductor light-emitting device of each Example and each comparative example which are mentioned later, it analyzed in the following procedures.
〔I−1.固体Si−NMRスペクトル測定及びシラノール含有率の算出〕
各実施例及び各比較例の半導体発光デバイス用部材について、以下の条件で固体Si−NMRスペクトル測定及び波形分離解析を行なった。得られた波形データより、各実施例及び各比較例の半導体発光デバイス用部材について、各々のピークの半値幅を求めた。また、全ピーク面積に対するシラノール由来のピーク面積の比率より、全ケイ素原子中のシラノールとなっているケイ素原子の比率(%)を求め、別に分析したケイ素含有率と比較することによりシラノール含有率を求めた。
[I-1. Solid Si-NMR spectrum measurement and silanol content calculation]
About the member for semiconductor light-emitting devices of each Example and each comparative example, solid Si-NMR spectrum measurement and waveform separation analysis were performed on condition of the following. From the obtained waveform data, the full width at half maximum of each peak was obtained for the members for semiconductor light emitting devices of each Example and each Comparative Example. In addition, from the ratio of the peak area derived from silanol to the total peak area, the ratio (%) of silicon atoms that are silanols in all silicon atoms is obtained, and the silanol content is determined by comparing with the silicon content analyzed separately. Asked.
<装置条件>
装置:Chemagnetics社 Infinity CMX−400 核磁気共鳴分光装置
29Si共鳴周波数:79.436MHz
プローブ:7.5mmφCP/MAS用プローブ
測定温度:室温
試料回転数:4kHz
測定法:シングルパルス法
1Hデカップリング周波数:50kHz
29Siフリップ角:90゜
29Si90゜パルス幅:5.0μs
くり返し時間:600s
積算回数:128回
観測幅:30kHz
ブロードニングファクター:20Hz
<Device conditions>
Apparatus: Chemmagnetics Infinity CMX-400 Nuclear magnetic resonance spectrometer
29 Si resonance frequency: 79.436 MHz
Probe: 7.5 mmφ CP / MAS probe Measurement temperature: Room temperature Sample rotation speed: 4 kHz
Measurement method: Single pulse method
1 H decoupling frequency: 50 kHz
29 Si flip angle: 90 °
29 Si 90 ° pulse width: 5.0μs
Repeat time: 600s
Integration count: 128 times Observation width: 30 kHz
Broadening factor: 20Hz
<データ処理法>
実施例1〜3及び比較例1,3の半導体発光デバイス用部材については、512ポイントを測定データとして取り込み、8192ポイントにゼロフィリングしてフーリエ変換した。一方、シリコーン樹脂からなる比較例2の半導体発光デバイス用部材については、ピークが非常にシャープであったので、2048ポイントを測定データとして取り込み、8192ポイントにゼロフィリングしてフーリエ変換した。
<Data processing method>
About the semiconductor light-emitting device members of Examples 1 to 3 and Comparative Examples 1 and 3, 512 points were taken as measurement data, zero-filled to 8192 points, and Fourier transformed. On the other hand, since the peak of the member for semiconductor light emitting device of Comparative Example 2 made of silicone resin was very sharp, 2048 points were taken as measurement data, and zero-filled to 8192 points and Fourier transformed.
<波形分離解析法>
フーリエ変換後のスペクトルの各ピークについてローレンツ波形及びガウス波形或いは両者の混合により作成したピーク形状の中心位置、高さ、半値幅を可変パラメータとして、非線形最小二乗法により最適化計算を行なった。
<Waveform separation analysis method>
For each peak of the spectrum after Fourier transform, optimization calculation was performed by a non-linear least square method using the center position, height, and half width of the peak shape created by Lorentz waveform and Gaussian waveform or a mixture of both as variable parameters.
なお、ピークの同定はAIChE Journal,44(5),p.1141,1998年等を参考にした。 In addition, identification of a peak is AIChE Journal, 44 (5), p. Reference was made to 1141, 1998, etc.
〔I−2.ケイ素含有率の測定〕
各実施例及び各比較例の半導体発光デバイス用部材の単独硬化物を100μm程度に粉砕し、白金るつぼ中にて大気中、450℃で1時間、ついで750℃で1時間、950℃で1.5時間保持して焼成し、炭素成分を除去した後、得られた残渣少量に10倍量以上の炭酸ナトリウムを加えてバーナー加熱し溶融させ、これを冷却して脱塩水を加え、更に塩酸にてpHを中性程度に調整しつつケイ素として数ppm程度になるよう定容し、ICP分析を行なった。
[I-2. (Measurement of silicon content)
A single cured product of the semiconductor light emitting device member of each example and each comparative example was pulverized to about 100 μm, and in a platinum crucible in air at 450 ° C. for 1 hour, then 750 ° C. for 1 hour, and 950 ° C. at 1. After baking for 5 hours to remove the carbon component, add 10 times or more of sodium carbonate to a small amount of the resulting residue, heat with a burner to melt, cool this, add demineralized water, and further add hydrochloric acid. Then, the volume was adjusted to about several ppm as silicon while adjusting the pH to neutral, and ICP analysis was performed.
〔I−3.透過度の測定〕
各実施例及び各比較例の半導体発光デバイス用部材の、傷や凹凸による散乱の無い厚さ約0.5mmの平滑な表面の単独硬化物膜を用いて、紫外分光光度計(島津製作所製 UV−3100)を使用し、波長200nm〜800nmにおいて透過度測定を行なった。
[I-3. (Measurement of transmittance)
An ultraviolet spectrophotometer (UV manufactured by Shimadzu Corporation) was used, using a single cured film having a smooth surface with a thickness of about 0.5 mm, which is free from scattering due to scratches and irregularities, of the members for semiconductor light emitting devices of each Example and each Comparative Example. -3100), and the transmittance was measured at a wavelength of 200 nm to 800 nm.
〔I−4.TG−DTAの測定〕
各実施例及び各比較例の半導体発光デバイス用部材の10mg程度の破砕片を用いて、熱重量・示差熱(thermogravimetry − differential thermal analysis:以下適宜「TG−DTA」と略す。)測定装置(セイコーインスツルメンツ社製TG/DTA6200)により、空気20ml/min流通下、昇温速度20℃/minで35℃から500℃まで加熱し、加熱重量減の測定を行なった。
[I-4. Measurement of TG-DTA]
Thermogravimetry-differential thermal analysis (hereinafter abbreviated as “TG-DTA” where appropriate) using a piece of about 10 mg of the semiconductor light emitting device member of each Example and each Comparative Example (Seiko). Instruments TG / DTA6200) was heated from 35 ° C. to 500 ° C. at a heating rate of 20 ° C./min under a flow of air of 20 ml / min, and the weight loss by heating was measured.
〔I−5.吸湿率の測定〕
各実施例及び各比較例の半導体発光デバイス用部材の単独硬化物を1mm角に粗粉砕し、150℃で3時間保持して乾燥後、秤量瓶に1g量り取り、25℃、70RH%にて吸湿率試験を行ない、恒量まで吸湿したことを確認して、下記式により吸湿率を算出した。
A single cured product of the semiconductor light emitting device member of each example and each comparative example was roughly crushed into 1 mm square, held at 150 ° C. for 3 hours, dried, weighed 1 g into a weighing bottle, and at 25 ° C. and 70 RH%. A moisture absorption rate test was performed, and it was confirmed that moisture was absorbed to a constant weight, and the moisture absorption rate was calculated by the following formula.
〔I−6.紫外耐光性試験〕
各実施例及び各比較例の半導体発光デバイス用部材について、テフロン(登録商標)シャーレを用いて作製した直径5cm、膜厚約1mmのサンプルを用い、下記条件にて紫外光を照射し、照射前後の膜の様子を比較した。
[I-6. (Ultraviolet light resistance test)
About the member for semiconductor light-emitting devices of each Example and each comparative example, it irradiated with ultraviolet light on the following conditions using the sample of diameter 5cm produced using the Teflon (trademark) petri dish, and about 1 mm of film thickness, before and after irradiation. The state of the film was compared.
照射装置:スガ試験機株式会社製加速耐光試験機 メタリングウエザーメーターMV3000
照射波長:255nmからそれ以降。主波長は300nm〜450nm(480nm〜580nmに輝線有り)
照射時間:72時間
Irradiation device: Suga Test Instruments Co., Ltd. Accelerated Light Resistance Tester Metalling Weather Meter MV3000
Irradiation wavelength: 255 nm or later. Main wavelength is 300 nm to 450 nm (with emission line at 480 nm to 580 nm)
Irradiation time: 72 hours
[II.半導体発光デバイス用部材の製造]
〔実施例1〕
メチルトリメトキシシラン12.7g、ジメチルジメトキシシラン11.2g、メタノール3.3g、水8.1g、触媒として5%アセチルアセトンアルミニウム塩メタノール溶液4.8gを、密閉できる容器に入れて混合し、密栓してスターラーで撹拌しながら50℃の温水バスにて8時間加熱した後、室温に戻し、加水分解・重縮合液を調液した。この液の加水分解率は192%である。
[II. Manufacture of members for semiconductor light emitting devices]
[Example 1]
12.7 g of methyltrimethoxysilane, 11.2 g of dimethyldimethoxysilane, 3.3 g of methanol, 8.1 g of water, and 4.8 g of 5% acetylacetone aluminum salt methanol solution as a catalyst are put in a sealable container, mixed and sealed. The mixture was heated with a hot water bath at 50 ° C. for 8 hours while stirring with a stirrer, and then returned to room temperature to prepare a hydrolysis / polycondensation solution. The hydrolysis rate of this liquid is 192%.
この加水分解・重縮合液をマイクロピペットを用いて4、5回に分け、総量で11μl、405nmの発光波長を持つGaN系の半導体発光デバイス上に滴下した。各回の滴下の後、室温で暫く放置し、溶媒が揮発して次の1回分(約2μl)を入れることができるようになったら、次を滴下した。次いで、35℃で30分間、次いで50℃で1時間保持し第1の乾燥を行なった後、150℃で3時間保持し第2の乾燥を行なったところ、クラックの無い透明な封止部材(半導体発光デバイス用部材:サンプルA)が形成された。得られた半導体発光デバイスに20mAの通電を行ない、輝度の測定を行なった。 This hydrolysis / polycondensation solution was divided into 4 or 5 times using a micropipette and dropped onto a GaN-based semiconductor light-emitting device having a total amount of 11 μl and an emission wavelength of 405 nm. After each dropping, the solution was allowed to stand at room temperature for a while, and when the solvent was volatilized and the next one (about 2 μl) could be added, the next was dropped. Next, after holding at 35 ° C. for 30 minutes and then at 50 ° C. for 1 hour for the first drying, holding at 150 ° C. for 3 hours to perform the second drying, a transparent sealing member without cracks ( Semiconductor light emitting device member: Sample A) was formed. The obtained semiconductor light emitting device was energized with 20 mA, and the luminance was measured.
また、上述の加水分解・重縮合液8.1mlを直径5cmのテフロン(登録商標)シャーレに入れ、防爆炉中、微風下、40℃で4時間保持し、次いで40℃から65℃まで3時間かけて昇温し第1の乾燥を行なった後、150℃で3時間保持し第2の乾燥を行なったところ、厚さ約1mmの独立した円形透明ガラス膜(半導体発光デバイス用部材:サンプルB)が得られた。このサンプルBは上述の〔I−6.紫外耐光性試験〕に供した。 In addition, 8.1 ml of the above-mentioned hydrolysis / polycondensation liquid is put in a Teflon (registered trademark) petri dish with a diameter of 5 cm, and kept in an explosion-proof furnace at 40 ° C. for 4 hours in a breeze. The temperature was raised and the first drying was performed, followed by holding at 150 ° C. for 3 hours to perform the second drying. As a result, an independent circular transparent glass film having a thickness of about 1 mm (semiconductor light emitting device member: sample B) )was gotten. This sample B is the above-mentioned [I-6. UV light resistance test].
また、加水分解・重縮合液の液量を4.1mlに減らして同様の操作を行なうことにより、厚さ約0.5mmの独立した円形透明ガラス膜(半導体発光デバイス用部材:サンプルC)を得た。このサンプルCは上述の〔I−3.透過度の測定〕に供した。また、上述の〔I−1.固体Si−NMRスペクトル測定及びシラノール含有率の算出〕〔I−2.ケイ素含有率の測定〕〔I−4.TG−DTA〕〔I−5.吸湿率の測定〕は、このサンプルCを乳鉢粉砕したものを用いて行なった。なお、本実施例の固体Si−NMRスペクトルを図50に示す。 In addition, by performing the same operation by reducing the amount of the hydrolysis / polycondensation liquid to 4.1 ml, an independent circular transparent glass film (semiconductor light emitting device member: sample C) having a thickness of about 0.5 mm is obtained. Obtained. This sample C is the above-mentioned [I-3. The transmittance was measured. The above-mentioned [I-1. Measurement of solid Si-NMR spectrum and calculation of silanol content] [I-2. Measurement of silicon content] [I-4. TG-DTA] [I-5. The measurement of the moisture absorption rate] was carried out using a mortar pulverized sample C. In addition, the solid Si-NMR spectrum of a present Example is shown in FIG.
〔実施例2〕
メチルトリメトキシシラン9.03g、ジメチルジメトキシシラン7.97g、水5.73g、屈折率調整剤として粒子径が5nmのシリカコーティング付チタニアゾル(固形分20重量%のメタノール分散液13.9g)、触媒として5%アセチルアセトンアルミニウム塩メタノール溶液3.40gを、密閉できる容器に入れて混合し、密栓してスターラーで撹拌しながら50℃の温水バスにて8時間加熱したのち室温に戻し、加水分解・重縮合液を調液した。この液の加水分解率は192%である。
[Example 2]
9.03 g of methyltrimethoxysilane, 7.97 g of dimethyldimethoxysilane, 5.73 g of water, titania sol with silica coating having a particle diameter of 5 nm as a refractive index adjusting agent (13.9 g of methanol dispersion with a solid content of 20% by weight), catalyst As a solution, 3.40 g of 5% acetylacetone aluminum salt methanol solution was put in a container that can be sealed, mixed, sealed, heated with a stirrer in a 50 ° C. hot water bath for 8 hours, and then returned to room temperature. A condensate was prepared. The hydrolysis rate of this liquid is 192%.
この加水分解・重縮合液13μlを、実施例1と同様の手順で、マイクロピペットにて405nmの発光波長を持つGaN系の半導体発光デバイス上に滴下し、35℃で30分間、次いで50℃で1時間保持し第1の乾燥を行なった後、150℃で3時間保持し第2の乾燥を行なったところ、クラックの無い透明な封止部材(半導体発光デバイス用部材:サンプルA)が形成された。得られた半導体発光デバイスに20mAの通電を行ない、輝度の測定を行なった。 13 μl of this hydrolysis / polycondensation solution was dropped on a GaN-based semiconductor light-emitting device having an emission wavelength of 405 nm with a micropipette in the same procedure as in Example 1, at 35 ° C. for 30 minutes, and then at 50 ° C. After holding for 1 hour and performing the first drying, holding at 150 ° C. for 3 hours and performing the second drying results in the formation of a transparent sealing member without cracks (semiconductor light emitting device member: sample A). It was. The obtained semiconductor light emitting device was energized with 20 mA, and the luminance was measured.
また、上述の加水分解・重縮合液7.9mlを直径5cmのテフロン(登録商標)シャーレに入れて実施例1と同様の条件で乾燥したところ、厚さ約1mmの独立した円形透明ガラス膜(半導体発光デバイス用部材:サンプルB)が得られた。このサンプルBは上述の〔I−6.紫外耐光性試験〕に供した。 Moreover, when 7.9 ml of the above-mentioned hydrolysis / polycondensation liquid was placed in a Teflon (registered trademark) petri dish having a diameter of 5 cm and dried under the same conditions as in Example 1, an independent circular transparent glass film having a thickness of about 1 mm ( A member for semiconductor light emitting device: Sample B) was obtained. This sample B is the above-mentioned [I-6. UV light resistance test].
また、加水分解・重縮合液の液量を4.0mlに減らして同様の操作を行なうことにより、厚さ約0.5mmの独立した円形透明ガラス膜(半導体発光デバイス用部材:サンプルC)を得た。このサンプルCは上述の〔I−3.透過度の測定〕に供した。また、上述の〔I−1.固体Si−NMRスペクトル測定及びシラノール含有率の算出〕〔I−2.ケイ素含有率の測定〕〔I−4.TG−DTA〕〔I−5.吸湿率の測定〕は、このサンプルCを乳鉢粉砕したものを用いて行なった。なお、本実施例の固体Si−NMRスペクトルを図51に示す。また、サンプルCを乳鉢粉砕した微粉を用いて液浸法にて屈折率を測定したところ、1.48であった。 In addition, by reducing the amount of the hydrolysis / polycondensation liquid to 4.0 ml and performing the same operation, an independent circular transparent glass film (semiconductor light emitting device member: sample C) having a thickness of about 0.5 mm was obtained. Obtained. This sample C is the above-mentioned [I-3. The transmittance was measured. The above-mentioned [I-1. Measurement of solid Si-NMR spectrum and calculation of silanol content] [I-2. Measurement of silicon content] [I-4. TG-DTA] [I-5. The measurement of the moisture absorption rate] was carried out using a mortar pulverized sample C. In addition, the solid Si-NMR spectrum of a present Example is shown in FIG. Moreover, it was 1.48 when the refractive index was measured with the immersion method using the fine powder which grind | pulverized the sample C in the mortar.
〔実施例3〕
メチルトリメトキシシラン11.4g、ジメチルジメトキシシラン10.0g、水4.5g、日産化学製メタノールシリカゾル(30重量%)9.8g、触媒として5%アセチルアセトンアルミニウム塩メタノール溶液4.3gを、密閉できる容器にて混合し、密栓してスターラーで撹拌しながら50℃の温水バスにて8時間加熱したのち室温に戻し、加水分解・重縮合液を調液した。この液の加水分解率は120%である。
Example 3
11.4 g of methyltrimethoxysilane, 10.0 g of dimethyldimethoxysilane, 4.5 g of water, 9.8 g of methanol silica sol (30% by weight) manufactured by Nissan Chemical Industries, and 4.3 g of 5% acetylacetone aluminum salt methanol solution as a catalyst can be sealed. The mixture was mixed in a container, sealed, heated with a hot water bath at 50 ° C. for 8 hours while stirring with a stirrer, and then returned to room temperature to prepare a hydrolysis / polycondensation solution. The hydrolysis rate of this liquid is 120%.
この加水分解・重縮合液10μlをマイクロピペットにて405nmの発光波長を持つGaN系の半導体発光デバイス上に各々滴下し、35℃で30分間、次いで50℃で1時間保持し第1の乾燥を行なった後、150℃で3時間保持し第2の乾燥を行なったところ、クラックの無い透明な封止部材(半導体発光デバイス用部材:サンプルA)となった。得られた半導体発光デバイスに20mAの通電を行ない、輝度の測定を行なった。 10 μl of this hydrolysis / polycondensation solution is dropped on a GaN-based semiconductor light-emitting device having an emission wavelength of 405 nm with a micropipette and kept at 35 ° C. for 30 minutes and then at 50 ° C. for 1 hour to perform the first drying. After performing, it was kept at 150 ° C. for 3 hours and subjected to the second drying. As a result, a transparent sealing member without cracks (semiconductor light emitting device member: sample A) was obtained. The obtained semiconductor light emitting device was energized with 20 mA, and the luminance was measured.
また、上述の加水分解・重縮合液7.2mlを直径5cmのテフロン(登録商標)シャーレに入れて実施例1と同様の条件で乾燥したところ、厚さ約1mmの独立した円形透明ガラス膜(半導体発光デバイス用部材:サンプルB)が得られた。このサンプルBは上述の〔I−6.紫外耐光性試験〕に供した。 Moreover, when 7.2 ml of the above-mentioned hydrolysis / polycondensation liquid was placed in a Teflon (registered trademark) petri dish having a diameter of 5 cm and dried under the same conditions as in Example 1, an independent circular transparent glass film having a thickness of about 1 mm ( A member for semiconductor light emitting device: Sample B) was obtained. This sample B is the above-mentioned [I-6. UV light resistance test].
また、加水分解・重縮合液の液量を3.6mlに減らして同様の操作を行なうことにより、厚さ約0.5mmの独立した円形透明ガラス膜(半導体発光デバイス用部材:サンプルC)を得た。このサンプルCは上述の〔I−3.透過度の測定〕に供した。また、上述の〔I−1.固体Si−NMRスペクトル測定及びシラノール含有率の算出〕〔I−2.ケイ素含有率の測定〕〔I−4.TG−DTA〕〔I−5.吸湿率の測定〕は、このサンプルCを乳鉢粉砕したものを用いて行なった。なお、本実施例の固体Si−NMRスペクトルを図52に示す。 In addition, by reducing the amount of the hydrolysis / polycondensation liquid to 3.6 ml and performing the same operation, an independent circular transparent glass film (semiconductor light emitting device member: sample C) having a thickness of about 0.5 mm is obtained. Obtained. This sample C is the above-mentioned [I-3. The transmittance was measured. The above-mentioned [I-1. Measurement of solid Si-NMR spectrum and calculation of silanol content] [I-2. Measurement of silicon content] [I-4. TG-DTA] [I-5. The measurement of the moisture absorption rate] was carried out using a mortar pulverized sample C. In addition, the solid Si-NMR spectrum of a present Example is shown in FIG.
〔比較例1〕
メチルシリケート(三菱化学社製 MKCシリケートMS51)30.80g、メタノール56.53g、水6.51g、触媒として5%アセチルアセトンアルミニウム塩メタノール溶液6.16gを、密閉できる容器にて混合し、密栓してスターラーで撹拌しながら50度の温水バスにて8時間加熱したのち室温に戻し、加水分解・重縮合液を調液した。この液の加水分解率は113%である。
[Comparative Example 1]
30.80 g of methyl silicate (MKC silicate MS51, manufactured by Mitsubishi Chemical Corporation), 56.53 g of methanol, 6.51 g of water, and 6.16 g of 5% acetylacetone aluminum salt methanol solution as a catalyst are mixed in a sealable container and sealed. While stirring with a stirrer, the mixture was heated for 8 hours in a hot water bath at 50 ° C. and then returned to room temperature to prepare a hydrolysis / polycondensation solution. The hydrolysis rate of this liquid is 113%.
この加水分解・重縮合液をマイクロピペットにて405nmの発光波長を持つGaN系の半導体発光デバイス上に各々滴下し、35℃で30分間、次いで50℃で1時間保持し第1の乾燥を行なった後、150℃で3時間保持し第2の乾燥を行なったところ、大量のクラックが発生し、封止部材(半導体発光デバイス用部材)として使用することはできなかった。 This hydrolysis / polycondensation liquid is dropped on a GaN-based semiconductor light-emitting device having an emission wavelength of 405 nm with a micropipette, and kept at 35 ° C. for 30 minutes and then at 50 ° C. for 1 hour to perform first drying. Then, when it was kept at 150 ° C. for 3 hours and subjected to the second drying, a large number of cracks were generated, and it could not be used as a sealing member (semiconductor light emitting device member).
また、上述の加水分解・重縮合液10mlを直径5cmのテフロン(登録商標)シャーレに入れて実施例1と同様の条件で乾燥したところ、厚さ約0.3mmのガラス膜が得られたが、乾燥途中の段階で大量のクラックが発生して粉々となり、独立した円形透明ガラス膜として取り出すことはできなかった。 Further, when 10 ml of the above-mentioned hydrolysis / polycondensation liquid was placed in a Teflon (registered trademark) petri dish having a diameter of 5 cm and dried under the same conditions as in Example 1, a glass film having a thickness of about 0.3 mm was obtained. In the middle of drying, a large number of cracks were generated and shattered, and could not be taken out as an independent circular transparent glass film.
また、上記のガラス粉を用いて、上述の〔I−1.固体Si−NMRスペクトル測定及びシラノール含有率の算出〕〔I−2.ケイ素含有率の測定〕〔I−4.TG−DTA〕〔I−5.吸湿率の測定〕をおこなった。なお、本比較例の固体Si−NMRスペクトルを図53に示す。 In addition, the above-mentioned [I-1. Measurement of solid Si-NMR spectrum and calculation of silanol content] [I-2. Measurement of silicon content] [I-4. TG-DTA] [I-5. Measurement of moisture absorption rate]. In addition, the solid Si-NMR spectrum of this comparative example is shown in FIG.
〔比較例2〕
半導体発光デバイス用モールド剤として使用されている市販のシリコーン樹脂(東レダウコーニング社製 JCR6101UP)をマイクロピペットにて405nmの発光波長を持つGaN系の半導体発光デバイス上に各々滴下し、150℃で2時間加熱して硬化させたところ、エラストマー状の封止部材(半導体発光デバイス用部材:サンプルA)となった。得られた半導体発光デバイスに20mAの通電を行ない、輝度の測定を行なった。
[Comparative Example 2]
A commercially available silicone resin (JCR6101UP manufactured by Toray Dow Corning Co., Ltd.) used as a molding agent for semiconductor light-emitting devices is dropped on a GaN-based semiconductor light-emitting device having a light emission wavelength of 405 nm with a micropipette, and each 2 at 150 ° C. When cured by heating for a time, an elastomeric sealing member (semiconductor light emitting device member: sample A) was obtained. The obtained semiconductor light emitting device was energized with 20 mA, and the luminance was measured.
また、上述のシリコーン樹脂をテフロン(登録商標)板上にアプリケーター塗工し、25℃で1時間、真空脱気を行なった後、150℃で2時間加熱して硬化した後、これを剥がして厚さ約1mm及び0.5mmのエラストマー状膜(半導体発光デバイス用部材:サンプルB及びサンプルC)を得た。サンプルBは上述の〔I−6.紫外耐光性試験〕に供した。サンプルCは上述の〔I−3.透過度の測定〕に供した。また、上述の〔I−1.固体Si−NMRスペクトル測定及びシラノール含有率の算出〕〔I−2.ケイ素含有率の測定〕〔I−4.TG−DTA〕〔I−5.吸湿率の測定〕は、このサンプルCをフリーザーミルを用いて粉砕したものを用いて行なった。なお、本比較例の固体Si−NMRスペクトルを図54に示す。 Also, after applying the above silicone resin on a Teflon (registered trademark) plate, vacuum degassing at 25 ° C. for 1 hour, curing by heating at 150 ° C. for 2 hours, and then peeling it off Elastomeric films (semiconductor light emitting device members: Sample B and Sample C) having thicknesses of about 1 mm and 0.5 mm were obtained. Sample B is the above-mentioned [I-6. UV light resistance test]. Sample C is the above-mentioned [I-3. The transmittance was measured. The above-mentioned [I-1. Measurement of solid Si-NMR spectrum and calculation of silanol content] [I-2. Measurement of silicon content] [I-4. TG-DTA] [I-5. The measurement of the moisture absorption rate] was performed using the sample C pulverized using a freezer mill. In addition, the solid Si-NMR spectrum of this comparative example is shown in FIG.
〔比較例3〕
半導体発光デバイス用モールド剤として使用されている市販の2液硬化型芳香族エポキシ樹脂をマイクロピペットにて405nmの発光波長を持つGaN系の半導体発光デバイス上に各々滴下し、120℃で4時間加熱して硬化させたところ、硬く透明な封止部材(半導体発光デバイス用部材)となった。得られた半導体発光デバイスに20mAの通電を行ない、輝度の測定を行なった。
[Comparative Example 3]
A commercially available two-component curable aromatic epoxy resin used as a molding agent for semiconductor light-emitting devices is dropped onto a GaN-based semiconductor light-emitting device having an emission wavelength of 405 nm with a micropipette and heated at 120 ° C. for 4 hours. Then, when cured, it became a hard and transparent sealing member (semiconductor light emitting device member). The obtained semiconductor light emitting device was energized with 20 mA, and the luminance was measured.
また、上述のエポキシ樹脂を直径5cmテフロン(登録商標)シャーレに入れ、25℃で1時間、真空脱気を行なった後、120℃で4時間加熱して硬化したところ、厚さ約1mm及び0.5mmの青みがかった円形透明樹脂膜(半導体発光デバイス用部材:サンプルB及びサンプルC)が独立膜として得られた。サンプルBは上述の〔I−6.紫外耐光性試験〕に供した。サンプルCは上述の〔I−3.透過度の測定〕に供した。また、上述の〔I−1.固体Si−NMRスペクトル測定及びシラノール含有率の算出〕〔I−2.ケイ素含有率の測定〕〔I−4.TG−DTA〕〔I−5.吸湿率の測定〕は、このサンプルCをフリーザーミルを用いて粉砕したものを用いて行なった。 Moreover, after putting the above-mentioned epoxy resin in a 5 cm diameter Teflon (registered trademark) petri dish, performing vacuum degassing at 25 ° C. for 1 hour, and curing by heating at 120 ° C. for 4 hours, the thickness was about 1 mm and 0 mm. A 5 mm bluish circular transparent resin film (semiconductor light emitting device members: Sample B and Sample C) was obtained as an independent film. Sample B is the above-mentioned [I-6. UV light resistance test]. Sample C is the above-mentioned [I-3. The transmittance was measured. The above-mentioned [I-1. Measurement of solid Si-NMR spectrum and calculation of silanol content] [I-2. Measurement of silicon content] [I-4. TG-DTA] [I-5. The measurement of the moisture absorption rate] was performed using the sample C pulverized using a freezer mill.
〔比較例4〕
メチルトリメトキシシラン13.6gと、水5.2gと、触媒として5%アセチルアセトンアルミニウム塩メタノール溶液2.7gとを、密閉できる容器に入れて混合し、密栓してスターラーで撹拌しながら50℃の温水バスにて8時間加熱した後、室温に戻し、加水分解・重縮合液を調液した。この液の加水分解率は192%である。この加水分解・重縮合液を、マイクロピペットを用いて4、5回に分け、総量で11μl、405nmの発光波長を持つGaN系の半導体発光デバイス上に滴下した。各回の滴下の後、室温で暫く放置し、溶媒が揮発して次の1回分(約2μl)を入れることができるようになったら、次を滴下した。その後35℃で1時間、次いで50℃で1時間保持し、第1の乾燥を行なった後、150℃で3時間保持し第2の乾燥を行なったところ、透明な封止部材が形成されたが、大きなクラック及び剥離が生じ、封止部材(半導体発光デバイス用部材)として使用不可能であった。
[Comparative Example 4]
13.6 g of methyltrimethoxysilane, 5.2 g of water, and 2.7 g of 5% acetylacetone aluminum salt methanol solution as a catalyst are mixed in a container that can be sealed, sealed, and stirred at 50 ° C. with a stirrer. After heating in a hot water bath for 8 hours, the temperature was returned to room temperature, and a hydrolysis / polycondensation solution was prepared. The hydrolysis rate of this liquid is 192%. This hydrolysis / polycondensation solution was divided into 4 or 5 times using a micropipette and dropped onto a GaN-based semiconductor light-emitting device having a total amount of 11 μl and an emission wavelength of 405 nm. After each dropping, the solution was allowed to stand at room temperature for a while, and when the solvent was volatilized and the next one (about 2 μl) could be added, the next was dropped. After holding at 35 ° C. for 1 hour and then at 50 ° C. for 1 hour and performing the first drying, holding at 150 ° C. for 3 hours and performing the second drying, a transparent sealing member was formed. However, a big crack and peeling generate | occur | produced and it was unusable as a sealing member (member for semiconductor light-emitting devices).
また、上述の加水分解・重縮合液8.0mlを直径5cmのテフロン(登録商標)シャーレに入れ、防爆炉中、微風下、40℃で4時間保持し、次いで40℃から65℃まで3時間かけて昇温し、第1の乾燥を行なった後、150℃で3時間保持し第2の乾燥を行なったところ、厚さ約1mmのわん曲及び発泡の目立つ不定形のガラス膜(半導体発光デバイス用部材:サンプルB)が得られた。このサンプルBは上述の〔I−5.紫外耐光性試験〕に供した。 In addition, 8.0 ml of the above-mentioned hydrolysis / polycondensation liquid is placed in a Teflon (registered trademark) petri dish having a diameter of 5 cm, and kept in an explosion-proof furnace at 40 ° C. for 4 hours in a breeze, and then for 3 hours from 40 ° C. to 65 ° C. After heating for 1 hour and holding for 2 hours at 150 ° C. for 2 hours, an irregular glass film with a thickness of about 1 mm and conspicuous foaming (semiconductor light emission) Device member: Sample B) was obtained. This sample B is the above-mentioned [I-5. UV light resistance test].
また、加水分解・重縮合液の液量を4.0mlに減らして同様の操作を行なうことにより、厚さ約0.5mmのわん曲及び発泡の目立つ不定形のガラス膜(半導体発光デバイス用部材:サンプルC)を得た。このサンプルCは上述の〔I−3.透過度の測定〕に供した。また、上述の〔I−1.固体Si−NMRスペクトル測定〕〔I−2.ケイ素含有率の測定〕〔I−4.TG−DTAの測定〕〔I−6.真空脱気時における重量減少率の定量〕は、このサンプルCを乳鉢粉砕したものを用いて行なった。なお、本実施例の固体Si−NMRスペクトルを図55に示す。 In addition, by reducing the volume of the hydrolysis / polycondensation liquid to 4.0 ml and carrying out the same operation, an irregular glass film with a thickness of about 0.5 mm and a conspicuous foam (member for a semiconductor light emitting device) : Sample C) was obtained. This sample C is the above-mentioned [I-3. The transmittance was measured. The above-mentioned [I-1. Solid Si-NMR spectrum measurement] [I-2. Measurement of silicon content] [I-4. Measurement of TG-DTA] [I-6. The determination of the weight reduction rate during vacuum degassing] was performed using a mortar pulverized sample C. In addition, the solid Si-NMR spectrum of a present Example is shown in FIG.
[III.半導体発光デバイス用部材の評価]
上記[II.半導体発光デバイス用部材の製造]の手順により得られた各実施例及び各比較例の半導体発光デバイス及び半導体発光デバイス用部材について、上記[I.分析方法]の手順により分析を行なった。その結果を下記表2に示す。
[III. Evaluation of members for semiconductor light emitting devices]
Above [II. About the semiconductor light-emitting device and member for semiconductor light-emitting devices of each Example and each comparative example obtained by the procedure of [Manufacture of member for semiconductor light-emitting device]. Analysis was performed according to the procedure of [Analysis method]. The results are shown in Table 2 below.
下記表2に示すように、クラックの発生により封止部材が形成されなかった実施例1を除き、各実施例及び各比較例において得られた半導体発光デバイスの輝度は、封止部材(半導体発光デバイス用部材)の形成前と比較して向上していた。 As shown in Table 2 below, the brightness of the semiconductor light emitting devices obtained in each of the examples and the comparative examples is the sealing member (semiconductor light emitting) except for Example 1 where the sealing member was not formed due to the occurrence of cracks. It was improved as compared with that before the formation of the device member.
また、下記表2に示すように、本発明の規定を満たす実施例1〜3の半導体発光デバイス用部材は、耐熱性・紫外耐光性に優れるのみならず、テトラアルコキシシランのみからなる比較例1の半導体発光デバイス用部材よりも、水分との親和性が小さく、吸湿による劣化を起こしにくい。また、適度に残留する少量シラノールが接着性を発現し、チップ等の無機素材との密着性が良い。更に、部材の骨格及び架橋点がシロキサン構造により形成されるため、長期にわたって安定な物性変化の無い半導体発光デバイス用部材を提供することができる。 Moreover, as shown in Table 2 below, the semiconductor light emitting device members of Examples 1 to 3 that satisfy the provisions of the present invention are not only excellent in heat resistance and ultraviolet light resistance, but are also Comparative Example 1 consisting only of tetraalkoxysilane. Compared with a member for a semiconductor light emitting device, the affinity for moisture is small, and deterioration due to moisture absorption is less likely to occur. Moreover, a small amount of silanol remaining moderately exhibits adhesiveness, and has good adhesion to inorganic materials such as chips. Furthermore, since the skeleton and cross-linking points of the member are formed of a siloxane structure, it is possible to provide a member for a semiconductor light-emitting device that is stable over a long period and has no change in physical properties.
本発明の半導体発光デバイス用部材の用途は特に制限されず、半導体発光素子等を封止するための部材(封止剤)に代表される各種の用途に、好適に使用することができる。中でも、青色LED又は近紫外光LED用の封止剤又は光取り出し膜、並びに、青色LED又は近紫外光LED等の発光素子を光源とする高出力白色LED用蛍光体保持剤として特に好適に使用することができる。 The use of the member for a semiconductor light emitting device of the present invention is not particularly limited, and can be suitably used for various uses represented by a member (sealing agent) for sealing a semiconductor light emitting element or the like. Among them, it is particularly suitably used as a sealant or light extraction film for blue LEDs or near-ultraviolet LEDs, and as a phosphor holding agent for high-power white LEDs using light emitting elements such as blue LEDs or near-ultraviolet LEDs as light sources. can do.
1,1A,1B 発光装置(半導体発光デバイス)
2 発光素子
3A 透明部材(半導体デバイス用部材)
3B 蛍光体部(半導体デバイス用部材)
4a,4b 発光素子から放射された光の一部
5 蛍光体部に含有される蛍光体粒子、蛍光イオン、蛍光染料などの蛍光成分特有の波長の光
11 モールド部
12,13 リード端子
14 ミラー(カップ部)
15 導電ワイヤ
16 絶縁基板
16a 凹所
17 プリント配線
18 枠材
19 封止部
19a 封止機能部
19b レンズ機能部
19c 凹部
19d 貫通孔
21 発光層部
23 反射層
24 バンプ
33,34 蛍光体部
35 固体媒質
1,1A, 1B Light emitting device (semiconductor light emitting device)
2
3B phosphor part (semiconductor device member)
4a, 4b Part of the light emitted from the
DESCRIPTION OF
Claims (11)
(i)ピークトップの位置がケミカルシフト−40ppm以上0ppm以下の領域にあり、ピークの半値幅が0.5ppm以上、3.0ppm以下であるピーク、及び、
(ii)ピークトップの位置がケミカルシフト−80ppm以上−40ppm未満の領域にあり、ピークの半値幅が1.0ppm以上5.0ppm以下であるピーク
からなる群より選ばれるピークを、少なくとも1つ有するとともに、
(2)ケイ素含有率が20重量%以上であり、
(3)シラノール含有率が0.1重量%以上、10重量%以下であり、
膜厚0.5mmでの350nm以上500nm以下の発光波長における光透過率が80%以上であり、
SiXnY1 4-n(前記式中、Xは加水分解性基を表わし、Y1は1価の有機基を表わし、nはX基の数を表わす1以上4以下の整数を表わす。)で表わされる化合物及び/又はそのオリゴマーを加水分解・重縮合して得られる重縮合物を乾燥する工程を経て得られる
ことを特徴とする、半導体発光デバイス用部材。 (1) In the solid Si-nuclear magnetic resonance spectrum,
(I) The peak top position is in the region of chemical shift −40 ppm or more and 0 ppm or less, and the peak half-width is 0.5 ppm or more and 3.0 ppm or less, and
(Ii) The peak top position is in a region where the chemical shift is −80 ppm or more and less than −40 ppm, and the peak half-value width is at least one peak selected from the group consisting of peaks of 1.0 ppm or more and 5.0 ppm or less. With
(2) The silicon content is 20% by weight or more,
(3) Silanol content is 0.1 wt% or more and 10 wt% or less,
The light transmittance at an emission wavelength of 350 nm or more and 500 nm or less at a film thickness of 0.5 mm is 80% or more,
SiX n Y 1 4-n (wherein X represents a hydrolyzable group, Y 1 represents a monovalent organic group, and n represents an integer of 1 to 4 representing the number of X groups). A member for a semiconductor light-emitting device, which is obtained through a step of drying a polycondensate obtained by hydrolysis and polycondensation of a compound represented by formula (1) and / or an oligomer thereof.
ことを特徴とする、請求項1記載の半導体発光デバイス用部材。 2. The semiconductor light emitting device according to claim 1, wherein a transmittance maintaining ratio for light having a wavelength of 405 nm at a film thickness of 0.5 mm is between 80% and 110% before and after being left at 200 ° C. for 500 hours. Device components.
ことを特徴とする、請求項1または2記載の半導体発光デバイス用部材。 Before and after irradiating light with a central wavelength of 380 nm and a radiation intensity of 0.4 kW / m 2 for 72 hours, the transmittance maintenance ratio for light with a wavelength of 405 nm at a film thickness of 0.5 mm is 80% or more and 110% or less. The member for a semiconductor light-emitting device according to claim 1, wherein:
ことを特徴とする、請求項1〜3の何れか一項に記載の半導体発光デバイス用部材。 The member for semiconductor light-emitting devices according to claim 1, further comprising inorganic oxide particles.
前記加水分解・重縮合を溶媒の存在下で行なうとともに、
得られる重縮合物を乾燥する工程が、該溶媒の沸点未満の温度にて溶媒を実質的に除去する第1の乾燥工程と、溶媒の沸点以上の温度にて乾燥する第2の乾燥工程とを有する
ことを特徴とする、半導体発光デバイス用部材の製造方法。 It is a manufacturing method of the member for semiconductor light emitting devices according to any one of claims 1 to 4,
Performing the hydrolysis and polycondensation in the presence of a solvent;
The step of drying the resulting polycondensate includes a first drying step of substantially removing the solvent at a temperature below the boiling point of the solvent, and a second drying step of drying at a temperature equal to or higher than the boiling point of the solvent. The manufacturing method of the member for semiconductor light-emitting devices characterized by having.
前記加水分解・重縮合を有機金属化合物触媒の存在下で行なう
ことを特徴とする、半導体発光デバイス用部材の製造方法。 It is a manufacturing method of the member for semiconductor light emitting devices according to any one of claims 1 to 4,
A method for producing a member for a semiconductor light-emitting device, wherein the hydrolysis / polycondensation is performed in the presence of an organometallic compound catalyst.
ことを特徴とする、請求項7記載の半導体発光デバイス。 8. The semiconductor light emitting device according to claim 7, wherein the emission color is white or yellow.
ことを特徴とする、請求項8記載の半導体発光デバイス。 9. The semiconductor light emitting device according to claim 8, wherein the emission color is white and the luminous efficiency is 20 lm / W or more.
ことを特徴とする、請求項8または9記載の半導体発光デバイス。 10. The semiconductor light emitting device according to claim 8, wherein the emission color is white and the average color rendering index Ra is 80 or more.
乾燥前の前記重縮合物を目的とする部位に塗布した後で、前記乾燥を行なう
ことを特徴とする、半導体発光デバイスの製造方法。 A method of manufacturing a semiconductor light emitting device according to any one of claims 7 to 10,
A method for producing a semiconductor light-emitting device, wherein the drying is performed after the polycondensate before drying is applied to a target site.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007230194A JP4119938B2 (en) | 2005-02-23 | 2007-09-05 | SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005047742 | 2005-02-23 | ||
JP2005086305 | 2005-03-24 | ||
JP2005276754 | 2005-09-22 | ||
JP2007230194A JP4119938B2 (en) | 2005-02-23 | 2007-09-05 | SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006047276A Division JP4882413B2 (en) | 2005-02-23 | 2006-02-23 | SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008004961A JP2008004961A (en) | 2008-01-10 |
JP4119938B2 true JP4119938B2 (en) | 2008-07-16 |
Family
ID=39009040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007230194A Active JP4119938B2 (en) | 2005-02-23 | 2007-09-05 | SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4119938B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6299811B2 (en) * | 2015-11-04 | 2018-03-28 | 日亜化学工業株式会社 | Light emitting device |
US9920907B2 (en) | 2015-11-04 | 2018-03-20 | Nichia Corporation | Light emitting device |
-
2007
- 2007-09-05 JP JP2007230194A patent/JP4119938B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008004961A (en) | 2008-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4882413B2 (en) | SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME | |
JP4967370B2 (en) | SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME | |
JP5742916B2 (en) | Silicone-based semiconductor light-emitting device member, method for producing the same, and semiconductor light-emitting device using the same | |
JP6213585B2 (en) | Semiconductor device member and semiconductor light emitting device | |
KR100922488B1 (en) | Semiconductor light emitting device member, method for manufacturing such semiconductor light emitting device member and semiconductor light emitting device using such semiconductor light emitting device member | |
JP4876626B2 (en) | SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME | |
JP5761397B2 (en) | Member forming liquid for semiconductor light emitting device, member for semiconductor light emitting device, member for aerospace industry, semiconductor light emitting device, and phosphor composition | |
JP2007116139A (en) | Member for semiconductor light-emitting device, method of manufacturing the same, and semiconductor light-emitting device using the same | |
JP4835199B2 (en) | SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME | |
JP5446078B2 (en) | SEMICONDUCTOR DEVICE MEMBER, SEMICONDUCTOR DEVICE MEMBER FORMING METHOD AND SEMICONDUCTOR DEVICE MEMBER MANUFACTURING METHOD, SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME, SEMICONDUCTOR DEVICE MEMBER FORMING SOLUTION, AND PHOSPHOR COMPOSITION | |
JP4119940B2 (en) | SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME | |
JP4615626B1 (en) | SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME | |
JP2009224754A (en) | Semiconductor light emitting device, lighting apparatus, and image display device | |
JP4119939B2 (en) | SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME | |
JP4119938B2 (en) | SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME | |
JP5694875B2 (en) | SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20071120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071127 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080401 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080425 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4119938 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120502 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130502 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140502 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |