JP5154962B2 - Precast concrete structural member joint structure, building, and construction method of building - Google Patents

Precast concrete structural member joint structure, building, and construction method of building Download PDF

Info

Publication number
JP5154962B2
JP5154962B2 JP2008023249A JP2008023249A JP5154962B2 JP 5154962 B2 JP5154962 B2 JP 5154962B2 JP 2008023249 A JP2008023249 A JP 2008023249A JP 2008023249 A JP2008023249 A JP 2008023249A JP 5154962 B2 JP5154962 B2 JP 5154962B2
Authority
JP
Japan
Prior art keywords
column
pin
joint
building
structural member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008023249A
Other languages
Japanese (ja)
Other versions
JP2009185447A (en
Inventor
恭章 平川
信行 柳澤
邦江 池内
満 竹内
栄作 河合
憲二 星隈
秀幸 成田
光平 岸本
哲 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2008023249A priority Critical patent/JP5154962B2/en
Publication of JP2009185447A publication Critical patent/JP2009185447A/en
Application granted granted Critical
Publication of JP5154962B2 publication Critical patent/JP5154962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Description

本発明は、プレキャストコンクリート(以下、「PCa」と称す)製の構造部材の接合構造、PCa製の構造部材の接合構造を有する建物、及びPCa製の構造部材の接合構造を有する建物の施工方法に関する。   The present invention relates to a joint structure of a structural member made of precast concrete (hereinafter referred to as “PCa”), a building having a joint structure of a structural member made of PCa, and a construction method for a building having a joint structure of a structural member made of PCa. About.

近代建築においては、間取りの自由度が高い等の理由からラーメン構造が一般的に広く採用され、更に、工期の短縮化等の観点から、工場等で製作・加工した柱、梁等を現場で組み立てるプレキャスト工法が多く用いられている。工場等でプレキャスト化される梁は、運搬時における重量、形状等の制約により、複数のPCa製の梁部材に分割され、現場において接合される。しかし、PCa製の梁部材同士の接合には、一般的に型枠の仮設、鉄筋継手手段による鉄筋接合、コンクリートの打設等の作業が発生し、更なる工期の短縮、施工コストの削減が困難であった。   In modern architecture, a ramen structure is generally widely used because of its high degree of freedom in floor plans, etc. In addition, from the viewpoint of shortening the construction period, pillars and beams manufactured and processed at factories etc. are used on site. Many precast construction methods are used. A beam to be precast in a factory or the like is divided into a plurality of PCa beam members due to restrictions on weight, shape, etc. during transportation, and joined on site. However, joints between beam members made of PCa generally involve temporary work of formwork, rebar joining by means of rebar joint means, concrete placement, etc., further shortening the construction period and reducing construction costs. It was difficult.

このようなPCa製の梁部材同士の接合作業を簡略化すべく、特許文献1には、図24に示すように、PCa製の梁部材200とPCa製の梁部材202とを、梁の中央部で接合する柱梁接合構造体204が提案されている。この柱梁接合構造体204では、柱206及び柱208と一体化された梁部材200に対して、柱210の上端部210Aに載置された梁部材202を水平方向に移動して、梁部材202の端面202Aから突出する梁主筋212を、梁部材200の端面200Aに埋設された機械式継手214に挿入する。そして、機械式継手214にモルタル(不図示)を注入し、梁主筋212と梁主筋216とを接続することで、梁部材200と梁部材202とを一体化している。しかしながら、柱梁接合構造体204は、現場打ちコンクリートを不要とするものの、梁主筋212と梁主筋216との接続作業を要し、また、梁部材200の端面200Aに機械式継手214を埋設するため、梁部材200の制作費がかさむ。   In order to simplify the joining work between such beam members made of PCa, as shown in FIG. 24, in Patent Document 1, a beam member 200 made of PCa and a beam member 202 made of PCa are connected to the central portion of the beam. A beam-to-column joint structure 204 is proposed which is joined together. In this column-beam joint structure 204, the beam member 202 placed on the upper end portion 210 </ b> A of the column 210 is moved in the horizontal direction with respect to the beam member 200 integrated with the column 206 and the column 208, thereby The beam main reinforcement 212 protruding from the end surface 202A of 202 is inserted into the mechanical joint 214 embedded in the end surface 200A of the beam member 200. The beam member 200 and the beam member 202 are integrated by injecting mortar (not shown) into the mechanical joint 214 and connecting the beam main reinforcement 212 and the beam main reinforcement 216. However, the column beam connection structure 204 does not require cast-in-place concrete, but requires connection work between the beam main bar 212 and the beam main bar 216, and embeds the mechanical joint 214 on the end surface 200A of the beam member 200. Therefore, the production cost of the beam member 200 is increased.

また、特許文献2には、鉄骨造の建物において、梁の端部と柱をボルトでピン接合とする柱梁接合構造が提案されている。しかしながら、この柱梁接合構造は、梁の端部に発生する曲げモーメントを小さく抑えるべく、コンクリートスラブが硬化するまで梁の端部と柱の接合部を一時的にピン接合にするが、コンクリートスラブの硬化後、梁の端部と柱との接合部を溶接して剛接合にする。即ち、ピン接合を用いて架構、建物を構成するものではない。そもそも、特許文献2は、梁の端部と柱の接合構造を提供するものであり、PCa製の梁部材同士の接合構造を開示するものではない。
特開2004−346587号公報 特開平8−218640号公報
Patent Document 2 proposes a beam-to-column connection structure in which a beam end and a column are pin-connected by bolts in a steel structure building. However, this beam-column joint structure is designed to temporarily pin-join the beam end to the column joint until the concrete slab hardens in order to keep the bending moment generated at the beam end small. After hardening, the joint between the end of the beam and the column is welded to form a rigid joint. That is, it does not constitute a frame or a building using pin joints. In the first place, Patent Document 2 provides a joint structure between an end portion of a beam and a column, and does not disclose a joint structure between beam members made of PCa.
Japanese Patent Application Laid-Open No. 2004-346587 JP-A-8-218640

本発明は、上記の事実を考慮し、PCa製の構造部材の梁部とPCa製の梁部材との接合作業の手間を低減できるプレキャストコンクリート構造部材の接合構造、プレキャストコンクリート構造部材の接合構造を有する建物、及びプレキャストコンクリート構造部材の接合構造を有する建物の施工方法を提供することを目的とする。   In consideration of the above-mentioned facts, the present invention provides a precast concrete structural member joining structure and a precast concrete structural member joining structure that can reduce the labor of joining the beam portion of the PCa structural member and the PCa beam member. It is an object of the present invention to provide a method for constructing a building having a joint structure of a building having a precast concrete structure member.

請求項1に記載の発明は、柱梁仕口部と前記柱梁仕口部の側方に設けられる梁部とを一体にして形成したプレキャストコンクリート製の構造部材と、柱に支持されるプレキャストコンクリート製の梁部材と、を有し、前記構造部材の前記梁部と前記梁部材とを各々の主筋を継がずにピン接合するピン接合手段と、を有することを特徴とする。 The invention according to claim 1 is a precast concrete structural member formed by integrating a column beam joint and a beam provided on a side of the column beam joint, and a precast supported by the column. A concrete beam member, and a pin joining means for joining the beam part of the structural member and the beam member to each other without joining the main bars .

上記の構成によれば、隣接する構造部材の梁部と梁部材とをピン接合手段により各々の主筋を継がずにピン接合する。一般的に、梁に発生する地震荷重に起因する曲げモーメントは、柱梁の仕口部で最大となり、梁の中央部に向うに従って徐々に小さくなる。このように発生する曲げモーメントが相対的に小さい位置で構造部材の梁部と梁部材とを接合して梁を形成する場合、構造力学上、梁鉄筋を継いで剛接合とする必要性が薄れる。特に梁の中央部では、曲げモーメントが発生せず(以下、このような応力状態になる点を「反曲点」と称す)、当該部に配筋された梁鉄筋には応力が生じないため、梁鉄筋を継ぐ必要がない。請求項1に係る発明は、このような梁の応力状態に則して、梁に発生する曲げモーメントが小さい位置、即ち、曲げモーメントが最大となる柱梁仕口部を除いた梁の中間部で、隣接する構造部材の梁部と梁部材とをピン接合する。従って、隣接する構造部材の梁部と梁部材の梁鉄筋を継ぐ作業がなくなり、また、鉄筋継手手段等が不要となるため、施工性の向上、コスト削減を図ることができる。 According to said structure, the beam part and beam member of an adjacent structural member are pin-joined by the pin joining means, without connecting each main reinforcement . In general, the bending moment resulting from the seismic load generated on the beam is maximum at the joint of the column beam and gradually decreases toward the center of the beam. When a beam is formed by joining a beam part of a structural member and a beam member at a position where the bending moment generated in this way is relatively small, the necessity of joining the beam reinforcing bar to make a rigid joint is reduced due to structural mechanics. . In particular, no bending moment is generated in the central part of the beam (hereinafter, the point where such a stress state occurs is referred to as the “inflection point”), and no stress is generated in the beam reinforcement placed in that part. There is no need to join beam reinforcement. In the invention according to claim 1, in accordance with the stress state of the beam, a position where the bending moment generated in the beam is small, that is, an intermediate portion of the beam excluding the column beam joint where the bending moment is maximized. Then, the beam portion of the adjacent structural member and the beam member are pin-joined. Accordingly, there is no work for joining the beam portion of the adjacent structural member and the beam reinforcing bar of the beam member, and the reinforcing bar joint means and the like are not required, so that the workability can be improved and the cost can be reduced.

請求項2に記載の発明は、請求項1に記載のプレキャストコンクリート構造部材の接合構造において、前記構造部材が、前記柱梁仕口部の上方及び下方の少なくとも一方に設けられ前記柱梁仕口部と一体とされる柱部、を有することを特徴とする。   According to a second aspect of the present invention, in the joint structure of precast concrete structural members according to the first aspect, the structural members are provided on at least one of the upper side and the lower side of the column beam joint part. It has the pillar part integrated with a part, It is characterized by the above-mentioned.

上記の構成によれば、柱梁仕口部の上方及び下方の少なくとも一方に柱部を設けて、柱梁仕口部と一体化する。従って、現場における柱梁仕口部の接合箇所が減るため施工性が向上する。また、柱梁仕口部と柱部を一体化することで部材数が減るため揚重回数が減り、工期の短縮化を図ることができる。   According to said structure, a column part is provided in at least one of the upper and lower sides of a column beam joint part, and it integrates with a column beam joint part. Accordingly, since the number of joints of the column beam joints at the site is reduced, workability is improved. Further, since the number of members is reduced by integrating the column beam joint portion and the column portion, the number of lifting operations can be reduced, and the construction period can be shortened.

請求項3に記載の発明は、請求項1又は2に記載のプレキャストコンクリート構造部材の接合構造において、前記ピン接合手段が、対向する前記構造部材の前記梁部の端面及び前記梁部材の端面の少なくとも一方に形成されたコッターであることを特徴とする。   According to a third aspect of the present invention, there is provided the precast concrete structural member joining structure according to the first or second aspect, wherein the pin joining means includes an end face of the beam portion and an end face of the beam member that face each other. The cotter is formed on at least one side.

上記の構成によれば、対向する構造部材の端面及び梁部材の端面の少なくとも一方に形成されたコッターに、モルタル等の充填材を充填して、隣接する構造部材の梁部と梁部材とをピン接合する。従って、隣接する構造部材の梁部と梁部材の梁鉄筋を継ぐ作業がなくなり、接合作業が簡略化される。また、一方の端面に形成された凹状のコッターに、他方の端面に形成された凸状のコッターを挿入して接合する場合、凹状のコッターと凸状のコッターとの間に隙間(遊び)を設け、グラウト等の充填材を充填することで施工誤差を吸収できる。さらに、コッターを設けることによって、梁に発生するせん断力を確実に伝達することができる。   According to the above configuration, the cotter formed on at least one of the end surface of the opposing structural member and the end surface of the beam member is filled with the filler such as mortar, and the beam portion and the beam member of the adjacent structural member are connected. Pin join. Accordingly, there is no work of joining the beam portions of the adjacent structural members and the beam reinforcing bars of the beam members, and the joining work is simplified. In addition, when a convex cotter formed on the other end surface is joined to a concave cotter formed on one end surface, a gap (play) is created between the concave cotter and the convex cotter. Installation errors can be absorbed by providing and filling fillers such as grout. Furthermore, by providing a cotter, the shearing force generated in the beam can be reliably transmitted.

請求項4に記載の発明は、請求項1又は2に記載のプレキャストコンクリート構造部材の接合構造において、前記ピン接合手段が、対向する前記構造部材の前記梁部の端面及び前記梁部材の端面に形成された穴部と、前記穴部へ挿入されるピン部材と、から構成されることを特徴とする。   According to a fourth aspect of the present invention, there is provided the precast concrete structural member joining structure according to the first or second aspect, wherein the pin joining means is provided on an end surface of the beam portion and an end surface of the beam member of the opposing structural member. It is comprised from the formed hole part and the pin member inserted in the said hole part, It is characterized by the above-mentioned.

上記の構成によれば、対向する構造部材の梁部の端面及び梁部材の端面に形成された穴部に、ピン部材を挿入することで、隣接する構造部材の梁部と梁部材とをピン接合する。従って、構造部材の梁部と梁部材の梁鉄筋を継ぐ作業がなくなり、接合作業が簡略化される。また、ピン部材を構成する材料・大きさを変更するだけで、負担せん断力に応じた強度・剛性を有する接合部を得ることができる。   According to the above configuration, by inserting the pin member into the end surface of the beam portion of the opposing structural member and the hole formed in the end surface of the beam member, the beam portion and the beam member of the adjacent structural member are pinned. Join. Therefore, the work of joining the beam portion of the structural member and the beam reinforcing bar of the beam member is eliminated, and the joining work is simplified. Moreover, the joining part which has the intensity | strength and rigidity according to a burden shear force can be obtained only by changing the material and magnitude | size which comprise a pin member.

請求項5に記載の発明は、請求項1〜4の何れか1項に記載のプレキャストコンクリート構造部材の接合構造から構成される架構を有する建物であって、前記架構は、前記構造部材の前記梁部と前記梁部材とを接合して形成される梁を有し、前記梁部と前記梁部材とが、前記梁の中央部で前記ピン接合手段によりピン接合されたことを特徴とする。   Invention of Claim 5 is a building which has a frame comprised from the joining structure of the precast concrete structural member of any one of Claims 1-4, Comprising: The said frame is the said structure member. It has a beam formed by joining a beam part and the beam member, and the beam part and the beam member are pin-joined by the pin joining means at a central part of the beam.

上記の構成によれば、隣接する構造部材の梁部と梁部材とが、架構の梁の中央部でピン接合手段によりピン接合されている。梁の中央部では、地震荷重に起因する曲げモーメントが発生せず、当該部に配筋された梁鉄筋には応力が生じないため、梁鉄筋を継ぐ必要がない。請求項5に記載の発明は、このように応力的に最も有利な梁の中央部で、構造部材と梁部材とをピン接合する。従って、施工性の向上、コスト削減を図ることができる。   According to said structure, the beam part and beam member of an adjacent structural member are pin-joined by the pin joining means in the center part of the beam of a frame. In the central part of the beam, no bending moment due to the seismic load is generated, and no stress is generated in the beam reinforcing bar arranged in the part, so there is no need to join the beam reinforcing bar. According to the fifth aspect of the present invention, the structural member and the beam member are pin-joined at the central portion of the beam that is most advantageous in terms of stress. Therefore, improvement in workability and cost reduction can be achieved.

請求項6に記載の発明は、柱梁仕口部と前記柱梁仕口部の側方に設けられる梁部と前記柱梁仕口部の上方及び下方の少なくとも一方に設けられた柱部とを一体にして形成したプレキャストコンクリート製の構造部材と、柱に支持されるプレキャストコンクリート製の梁部材と、柱部材と、から構成される架構を有する建物であって、前記架構は、前記構造部材の前記梁部と前記梁部材とを接合して形成される梁と、前記構造部材の前記柱部と前記柱部材とを接合して形成される柱と、を有し、前記梁部と前記梁部材又は前記柱部と前記柱部材が、前記梁の中央部又は前記柱の中央部でピン接合手段により各々の主筋を継がずにピン接合されたことを特徴とする。 The invention according to claim 6 includes: a column beam joint portion; a beam portion provided on a side of the column beam joint portion; and a column portion provided on at least one of an upper side and a lower side of the column beam joint portion; Is a building having a frame composed of a structural member made of precast concrete formed integrally, a beam member made of precast concrete supported by a column, and a column member, wherein the frame is the structural member A beam formed by joining the beam portion and the beam member, and a column formed by joining the column portion and the column member of the structural member, and the beam portion and the The beam member or the column portion and the column member are pin-joined by the pin joining means at the center portion of the beam or the center portion of the column without connecting the respective main bars .

上記の構成によれば、隣接する構造部材の梁部と梁部材又は隣接する構造部材の柱部と柱部材とが、架構の梁の中央部又は架構の柱の中央部で、ピン接合手段により各々の主筋を継がずにピン接合されている。梁の応力状態と同様に、一般的に柱に発生する地震荷重に起因する曲げモーメントは、柱梁の仕口部で最大となり、柱の中央部でゼロ(反曲点)となる。そのため、柱の中央部では、地震荷重に起因する曲げモーメントが発生せず、当該部に配筋された柱鉄筋には応力が生じないため、柱鉄筋を継ぐ必要がない。請求項6に係る発明は、このような柱の応力状態に則して、柱の中央部で構造部材の柱部と柱部材とをピン接合する。従って、隣接する構造部材の梁部と梁部材との接合作業の手間だけでなく、構造部材の柱部と柱部材との接合においても柱鉄筋の接続作業がなくなり、接合作業の手間を低減することができる。また、鉄筋継手手段等が不要となるため、コスト削減を図ることができる。 According to said structure, the beam part and beam member of an adjacent structural member, or the column part and column member of an adjacent structural member are the center part of the beam of a frame, or the center part of the column of a frame, by a pin joining means. Pin jointed without connecting each main muscle . Similar to the stress state of the beam, the bending moment due to the seismic load that is generally generated in the column is maximized at the joint of the column beam and is zero (inflection point) at the center of the column. Therefore, in the central part of the column, no bending moment due to the seismic load is generated, and no stress is generated in the column reinforcing bar arranged in the part, so that it is not necessary to connect the column reinforcing bar. In the invention according to claim 6, in accordance with such a stress state of the column, the column portion of the structural member and the column member are pin-joined at the center portion of the column. Therefore, not only the work of joining the beam part of the adjacent structural member and the beam member, but also the work of joining the column reinforcing bar in the joining of the column part of the structural member and the column member is eliminated, and the work of joining work is reduced. be able to. Moreover, since a reinforcing bar joint means etc. becomes unnecessary, cost reduction can be aimed at.

請求項7に記載の発明は、請求項5又は6に記載の建物において、前記架構から構成された複数層の前記建物を平面視したとき、最下層の前記架構の柱が、一つ置きに基礎に支持されていることを特徴とする。   According to a seventh aspect of the present invention, in the building according to the fifth or sixth aspect, when the building of a plurality of layers composed of the frame is viewed in plan, every other column of the frame in the lowermost layer is arranged. It is characterized by being supported by the foundation.

上記の構成によれば、複数層からなる建物を平面視したとき、最下層の架構の柱が、一つ置きに基礎に支持されている。つまり、基礎に支持される柱と、基礎に支持されない柱とが交互に並んでいる。このため、基礎に支持されない柱から両側へ張り出す2つの梁に作用する常時荷重に起因する曲げモーメントが、基礎に支持されていない柱付近で下向きに最大となり、それぞれの梁の概ね中間部でゼロとなる。即ち、常時荷重に起因する曲げモーメントがゼロとなる位置を、それぞれの梁の概ね中央部となるように設計することで、梁の中央部では、地震荷重に起因する曲げモーメントのみならず、常時荷重に起因する曲げモーメントも発生しない。このように設計された梁の中央部において、隣接する構造部材の梁部と梁部材とをピン接合することで、応力状態に合致した接合構造を実現できる。   According to said structure, when the building which consists of two or more layers is planarly viewed, the pillar of the lowermost frame is supported by the foundation every other. That is, columns supported by the foundation and columns not supported by the foundation are alternately arranged. For this reason, the bending moment due to the constant load acting on the two beams projecting to the both sides from the column not supported by the foundation is maximized downward near the column not supported by the foundation, and at the middle part of each beam. It becomes zero. In other words, by designing the position where the bending moment caused by the constant load is zero so that it is approximately the center of each beam, not only the bending moment caused by the seismic load is constantly applied at the center of the beam. There is no bending moment due to load. By joining the beam portions of the adjacent structural members and the beam members at the central portion of the beam thus designed, a joint structure that matches the stress state can be realized.

請求項8に記載の発明は、柱上に載置されたプレキャストコンクリート製の梁部材を、柱梁仕口部と前記柱梁仕口部の側方に設けられる梁部とを一体にして形成したプレキャストコンクリート製の構造部材の端面と、前記梁部材の端面とが対向するように隣接して配置する梁部材搬送工程と、前記構造部材搬送工程の後に前記構造部材の梁部と前記梁部材とをピン接合手段により各々の主筋を継がずにピン接合する梁部接合工程と、を有することを特徴とする。 In the invention according to claim 8, the beam member made of precast concrete placed on the column is integrally formed with the column beam joint portion and the beam portion provided on the side of the column beam joint portion. A beam member transporting step disposed adjacent to each other so that an end surface of the structural member made of precast concrete and an end surface of the beam member face each other, and a beam portion of the structural member and the beam member after the structural member transporting step And a beam part joining step of pin joining without connecting each main bar by a pin joining means.

上記の構成によれば、梁部材搬送工程と梁部接合工程とを有する。梁部材搬送工程では、接合する構造部材の梁部の端面と梁部材の端面とが対向するように構造部材を隣接して配置する。梁部接合工程では、梁部材搬送工程の後に、隣接する構造部材の梁部と梁部材をピン接合手段により各々の主筋を継がずにピン接合する。よって、請求項1に記載の発明と同様の効果を得ることができる。 According to said structure, it has a beam member conveyance process and a beam part joining process. In the beam member conveying step, the structural members are arranged adjacent to each other so that the end surfaces of the beam portions of the structural members to be joined face each other. In the beam portion joining step, after the beam member conveying step, the beam portions and the beam members of the adjacent structural members are pin joined by the pin joining means without connecting the main bars . Therefore, the same effect as that of the first aspect of the invention can be obtained.

本発明は、上記の構成としたので、プレキャストコンクリート構造部材の接合構造、プレキャストコンクリート構造部材の接合構造を有する建物、及びプレキャストコンクリート構造部材の接合構造を有する建物の施工方法において、プレキャストコンクリート製の構造部材の梁部とプレキャストコンクリート製の梁部材との接合作業の手間を低減できる。   Since this invention was set as said structure, in the construction method of the building which has the joining structure of the precast concrete structure member, the building which has the joining structure of the precast concrete structure member, and the joint structure of the precast concrete structure member, it is made of precast concrete. It is possible to reduce the labor of joining the beam portion of the structural member and the beam member made of precast concrete.

以下、図面を参照して本発明のプレキャストコンクリート構造部材の接合構造、プレキャストコンクリート構造部材の接合構造を有する建物、及びプレキャストコンクリート構造部材の接合構造を有する建物の施工方法について説明する。   The construction method of a precast concrete structural member joining structure, a building having a precast concrete structural member joining structure, and a building having a precast concrete structural member joining structure according to the present invention will be described below with reference to the drawings.

先ず、本発明の第1の実施形態について説明する。図1は建物10を構成する水平部材12の斜視図であり、図2は建物10を示す概略図である。   First, a first embodiment of the present invention will be described. FIG. 1 is a perspective view of a horizontal member 12 constituting the building 10, and FIG. 2 is a schematic view showing the building 10.

図1に示すように、PCa製の水平部材12は、下柱部材16(図2参照)に支持されるPCa製の柱梁仕口部18と、柱梁仕口部18の側面から張り出すようにして設けられたPCa製の梁部28、34とを一体にして形成されている。柱梁仕口部18は、水平部材12と下柱部材16を接合する接合部であり、水平部材12を下柱部材16に支持・固定するものである。また、柱梁仕口部18には、柱梁仕口部18の上端面及び下端面から突出しないように柱梁仕口部18の上下方向に12本のシース管42が埋設されている。柱梁仕口部18の側面には、シース管42の内部に通じるグラウト排出孔44が形成されている。梁部28の端面には、後述するコッター32を構成する凹部32Aが形成されている。   As shown in FIG. 1, the horizontal member 12 made of PCa protrudes from the column beam joint portion 18 made of PCa supported by the lower column member 16 (see FIG. 2) and the side surface of the column beam joint portion 18. The beam portions 28 and 34 made of PCa provided in this way are integrally formed. The column beam joint 18 is a joint that joins the horizontal member 12 and the lower pillar member 16, and supports and fixes the horizontal member 12 to the lower pillar member 16. Further, twelve sheath tubes 42 are embedded in the column beam joint 18 in the vertical direction of the column beam joint 18 so as not to protrude from the upper end surface and the lower end surface of the column beam joint 18. A grout discharge hole 44 communicating with the inside of the sheath tube 42 is formed on the side surface of the column beam joint portion 18. On the end face of the beam portion 28, a recess 32A constituting a cotter 32 described later is formed.

次に、水平部材12を用いて構築した建物10について説明する。なお、建物10には、梁部28の端面にコッター32を構成する凹部32Aが形成された水平部材12と、梁部材としての梁部28の端面にコッター32を構成する凸部32Bが形成された水平部材12を使用する。   Next, the building 10 constructed using the horizontal member 12 will be described. The building 10 has a horizontal member 12 in which a concave portion 32A constituting the cotter 32 is formed on the end face of the beam portion 28, and a convex portion 32B constituting the cotter 32 on the end face of the beam portion 28 as a beam member. A horizontal member 12 is used.

図2に示すように、基礎部14上に建て込まれた下柱部材16の上端面に水平部材12の柱梁仕口部18が載置され、柱梁仕口部18を介して水平部材12と下柱部材16とが接合され、3つの架構20、22、24が構成されている。また、柱梁仕口部18に埋設されたシース管42には、図5(B)に示す上柱部材26Aの下端面から突出した柱主筋60が挿入され、柱梁仕口部18を介して水平部材12と上柱部材26とが接合されている。   As shown in FIG. 2, the column beam joint 18 of the horizontal member 12 is placed on the upper end surface of the lower column member 16 built on the base portion 14, and the horizontal member is interposed via the column beam joint 18. 12 and the lower column member 16 are joined to form three frames 20, 22, and 24. Further, a column main bar 60 protruding from the lower end surface of the upper column member 26A shown in FIG. 5B is inserted into the sheath tube 42 embedded in the column beam joint 18, and the column beam joint 18 is inserted through the column beam joint 18. The horizontal member 12 and the upper column member 26 are joined together.

基礎部14の略中央に位置する架構22では、隣接する2つの水平部材12の梁部28同士の端面が対向する梁接合部30において、凹部32Aに凸部32Bが挿入され、梁部28同士がコッター32によりピン接合されて架構22の梁22Aが形成されている。また、隣接する2つの水平部材12の梁部28同士は長さが相互に等しく、梁22Aの中央部に梁接合部30が位置し、梁22Aの中央部で梁部28同士がピン接合されている。なお、梁22Aの中央部とは、梁22Aを厳密に2等分した位置に限られず、下柱部材16の建て込み誤差や水平部材12の製作誤差等による位置ずれを含む概念である。   In the frame 22 positioned substantially at the center of the base portion 14, the convex portion 32B is inserted into the concave portion 32A at the beam joint portion 30 where the end faces of the beam portions 28 of the two adjacent horizontal members 12 face each other, and the beam portions 28 Are joined by a cotter 32 to form a beam 22A of the frame 22. Further, the beam portions 28 of the two adjacent horizontal members 12 are equal in length to each other, the beam joint portion 30 is located at the center portion of the beam 22A, and the beam portions 28 are pin-joined at the center portion of the beam 22A. ing. Note that the central portion of the beam 22A is not limited to a position where the beam 22A is strictly divided into two, and is a concept including a positional deviation due to an error in the installation of the lower column member 16, a manufacturing error in the horizontal member 12, or the like.

一方、架構22に隣接する架構20では、隣接する2つの水平部材12の梁部34同士の端面が対向する梁接合部36において、水平部材12の梁主筋38を機械式継手40で接続することにより梁部34同士が剛接合され、架構20の梁20Aが形成されている。架構20と同様に、架構22に隣接する架構24では、隣接する2つの水平部材12の梁部34同士の端面が対向する梁接合部36において、梁主筋38を機械式継手40で接続することにより梁部34同士が剛接合され、架構24の梁24Aが形成されている。   On the other hand, in the frame 20 adjacent to the frame 22, the main beam 38 of the horizontal member 12 is connected by the mechanical joint 40 at the beam joint portion 36 where the end surfaces of the beam portions 34 of the two adjacent horizontal members 12 face each other. As a result, the beam portions 34 are rigidly joined to form the beam 20A of the frame 20. Similar to the frame 20, in the frame 24 adjacent to the frame 22, the main beam 38 is connected by the mechanical joint 40 at the beam joint portion 36 where the end surfaces of the beam portions 34 of the two adjacent horizontal members 12 face each other. As a result, the beam portions 34 are rigidly joined to form the beam 24A of the frame 24.

なお、架構22では、梁部28の長さが等しい2つの水平部材12を隣接させることで、梁部28同士を梁22Aの中央部でピン接合したがこれに限らない。梁部28の長さが異なる水平部材12を隣接させ、柱梁仕口部18を除いた梁22Aの中間部に梁接合部30を位置させ、梁22Aの中間部で梁部28同士をコッター32によりピン接合しても良い。また、架構20、22では、隣接する2つの水平部材12の梁部34同士を剛接合したが、コッター32を用いて梁部34同士をピン接合しても良い。   In the frame 22, the two horizontal members 12 having the same length of the beam portion 28 are adjacent to each other so that the beam portions 28 are pin-joined at the center portion of the beam 22A, but the present invention is not limited thereto. The horizontal members 12 having different lengths of the beam portions 28 are adjacent to each other, the beam joint portion 30 is positioned at an intermediate portion of the beam 22A excluding the column beam joint portion 18, and the beam portions 28 are cottered at the intermediate portion of the beam 22A. Pin bonding may be performed by 32. Further, in the frames 20 and 22, the beam portions 34 of the two adjacent horizontal members 12 are rigidly joined, but the beam portions 34 may be pin-joined using the cotter 32.

ここで、本発明でいうピン接合とは、梁主筋等の鉄筋を継がずに2つのPCa製の構造部材を接合することをいう。即ち、構造部材に生じる曲げモーメントを鉄筋の引張力によって伝達しない構造をいう。一方、剛接合とは、構造部材に生じる曲げモーメントを鉄筋の引張力によって伝達する構造をいう。なお、構造部材をコッターで接合した場合、コッターの嵌合によって支圧が発生し、接合部で若干の曲げモーメントが伝達され得るが、鉄筋を継いで構造部材を接合するものではないため、ピン接合に属するものである。   Here, the term “pin joint” as used in the present invention refers to joining two structural members made of PCa without connecting reinforcing bars such as beam main bars. That is, the structure which does not transmit the bending moment which arises in a structural member with the tensile force of a reinforcing bar. On the other hand, rigid joint refers to a structure that transmits a bending moment generated in a structural member by a tensile force of a reinforcing bar. In addition, when a structural member is joined by a cotter, a bearing pressure is generated by the fitting of the cotter, and a slight bending moment can be transmitted at the joined portion, but the structural member is not joined by joining a reinforcing bar. It belongs to the junction.

次に、梁接合部30の拡大図を図3に示し、ピン接合手段としてのコッター32について説明する。図3(A)に示すようにコッター32は、対向する一方の梁部28の端面に形成された凹部32Aに他方の梁部28の端面に形成された凸部32Bを挿入して梁部28同士をピン接合している。この場合、凹部32Aと凸部32Bとの嵌め合い作用により梁部28同士のせん断力が相互に伝達される。また、コッター32は、図3(B)に示すように、凹部32Aと凸部32Bとの間にグラウト46等の充填材を充填して、施工誤差を吸収しても良い。更に、図3(C)に示すように、対向する梁部28の端面に複数の凹部32Aをそれぞれ形成し、凹部32Aの間にグラウト46等の充填材を充填してピン接合しても良い。なお、凹部32A、凸部32Bの形状、大きさ、梁部28の端面に形成する個数等は上記したものに限られず、接合強度に応じて適宜選択・変更すれば良い。   Next, an enlarged view of the beam joint portion 30 is shown in FIG. 3, and the cotter 32 as the pin joint means will be described. As shown in FIG. 3A, the cotter 32 is formed by inserting a convex portion 32B formed on the end surface of the other beam portion 28 into a concave portion 32A formed on the end surface of the opposite one beam portion 28. They are pinned together. In this case, the shearing force between the beam portions 28 is transmitted to each other by the fitting action of the concave portion 32A and the convex portion 32B. Further, as shown in FIG. 3B, the cotter 32 may absorb a construction error by filling a filler such as a grout 46 between the concave portion 32A and the convex portion 32B. Further, as shown in FIG. 3C, a plurality of recesses 32A may be formed on the end surfaces of the beam portions 28 facing each other, and a filler such as grout 46 may be filled between the recesses 32A to be pin-joined. . In addition, the shape and size of the concave portion 32A and the convex portion 32B, the number formed on the end face of the beam portion 28, and the like are not limited to those described above, and may be appropriately selected and changed according to the bonding strength.

また、コッター32に替えて、図4(A)に示すように対向する梁部28の端面にそれぞれ形成された穴部48に、円柱形をした鋼製のピン部材50を挿入して嵌め合わせることで、梁部28同士をピン接合しても良い。この場合、対向する梁部28の隙間及び穴部48とピン部材50との隙間にグラウト46等の充填材を充填して施工誤差を吸収しても良い。また、図4(B)に示すように、対向する梁部28の側面に溝穴52をそれぞれ形成し、梁部28同士の端面を対向させた後に、梁部28の側方からピン部材50を溝穴52に挿入し、グラウト54等の充填材で溝穴52を埋めて梁部28同士をピン接合しても良い。また、対向する梁部28同士の端面の一方にのみ穴部48を形成し、他方の端面にピン部材50を一体的に設けても良い。なお、ピン部材50の個数、形状、材質等は上記のものに限らず、接合強度に応じて適宜選択・変更すれば良い。   Further, instead of the cotter 32, a cylindrical steel pin member 50 is inserted and fitted into the hole portions 48 formed in the end surfaces of the facing beam portions 28 as shown in FIG. Thus, the beam portions 28 may be pin-joined. In this case, the gap between the beam portions 28 facing each other and the gap between the hole portion 48 and the pin member 50 may be filled with a filler such as the grout 46 to absorb the construction error. Further, as shown in FIG. 4 (B), the slot members 52 are respectively formed on the side surfaces of the opposed beam portions 28 and the end surfaces of the beam portions 28 are opposed to each other, and then the pin member 50 is formed from the side of the beam portions 28. May be inserted into the slot 52, the slot 52 may be filled with a filler such as grout 54, and the beam portions 28 may be pin-joined. Alternatively, the hole 48 may be formed only on one of the end surfaces of the opposing beam portions 28 and the pin member 50 may be integrally provided on the other end surface. Note that the number, shape, material, and the like of the pin member 50 are not limited to those described above, and may be appropriately selected and changed according to the bonding strength.

次に、水平部材12を用いた建物56の施工方法の例について説明する。水平部材12を用いた建物56は、図5及び図6に示す施工方法によって構築される。なお、建物56には、梁部28の端面、梁部34の端面に、凹部32A、凸部32Bが形成された水平部材12を使用する。また、説明の便宜上、基礎部14に設置される下柱部材16を基礎部14の左側から順に下柱部材16A、16Bとし、下柱部材16A、16Bの上端面に載置される水平部材12を水平部材12A、12Bとし、水平部材12A、12Bの上端面に載置される上柱部材26を上柱部材26A、26Bとする。   Next, the example of the construction method of the building 56 using the horizontal member 12 is demonstrated. The building 56 using the horizontal member 12 is constructed by the construction method shown in FIGS. Note that the building 56 uses the horizontal member 12 in which the recesses 32 </ b> A and the protrusions 32 </ b> B are formed on the end face of the beam portion 28 and the end face of the beam portion 34. Further, for convenience of explanation, the lower column member 16 installed on the base portion 14 is referred to as lower column members 16A and 16B in order from the left side of the base portion 14, and the horizontal member 12 placed on the upper end surfaces of the lower column members 16A and 16B. Are the horizontal members 12A and 12B, and the upper column member 26 placed on the upper end surfaces of the horizontal members 12A and 12B is the upper column members 26A and 26B.

先ず、図5(A)、(B)に示すように、基礎部14の左側に建て込まれた下柱部材16Aの上端面に、水平部材12Aの柱梁仕口部18を載置する。下柱部材16Aの上端面には、下柱部材16Aの柱主筋58と後述する上柱部材26Aの柱主筋60とを接続する機械式継手62が埋設されている。また、下柱部材16Aの上端面の四隅には、雌ネジ(不図示)が形成されており、この雌ネジにねじ込んだボルト64のねじ込み量によって、柱梁仕口部18の設置高さを調整する。ボルト64は、水平部材12の柱梁仕口部18の上端面及び上柱部材26の上端面の四隅にも設けられており、これによって水平部材12の柱梁仕口部18及び上柱部材26に載置する部材の設置高さを調整する。なお、上柱部材26の上端面には、下柱部材16と同様に機械式継手62が埋設されている。   First, as shown in FIGS. 5A and 5B, the column beam joint portion 18 of the horizontal member 12 </ b> A is placed on the upper end surface of the lower column member 16 </ b> A built on the left side of the foundation portion 14. A mechanical joint 62 is embedded in the upper end surface of the lower column member 16A to connect a column main bar 58 of the lower column member 16A and a column main bar 60 of the upper column member 26A described later. Also, female screws (not shown) are formed at the four corners of the upper end surface of the lower column member 16A, and the installation height of the column beam joint 18 is determined by the amount of bolt 64 screwed into the female screw. adjust. The bolts 64 are also provided at the four corners of the upper end surface of the column beam joint portion 18 of the horizontal member 12 and the upper end surface of the upper column member 26, and thereby the column beam joint portion 18 and the upper column member of the horizontal member 12. The installation height of the member placed on 26 is adjusted. A mechanical joint 62 is embedded in the upper end surface of the upper column member 26 in the same manner as the lower column member 16.

次に、図5(B)、図6(A)に示すように、水平部材12Aの柱梁仕口部18に設けられたシース管42に上柱部材26Aの下端面から突出する柱主筋60を貫通させ、下柱部材16Aの上端面に埋設された機械式継手62に挿入する。下柱部材16Aの側面には、機械式継手62の内部に通じるグラウト充填孔(不図示)が形成されており、グラウト充填孔からグラウト(不図示)を注入し、機械式継手62及びシース管42の内部にグラウトを充填して柱主筋58と柱主筋60とを定着・接続する。なお、グラウトが充填されたことの確認は、水平部材12の柱梁仕口部18の側面に形成されたグラウト排出孔44(図1参照)にて行う。このように下柱部材16Aの上端面に水平部材12Aを載置した後に下柱部材16Aの柱主筋58と上柱部材26Aの柱主筋60とを接続することで、水平部材12の柱梁仕口部18の上端面に上柱部材26を載置するまで、水平部材12を横方向又は水平方向に移動できる。   Next, as shown in FIGS. 5 (B) and 6 (A), a column main reinforcement 60 protruding from the lower end surface of the upper column member 26A to the sheath tube 42 provided in the column beam joint 18 of the horizontal member 12A. And is inserted into the mechanical joint 62 embedded in the upper end surface of the lower column member 16A. A grout filling hole (not shown) communicating with the inside of the mechanical joint 62 is formed on the side surface of the lower column member 16A. The grout (not shown) is injected from the grout filling hole, and the mechanical joint 62 and the sheath tube are injected. The inside of 42 is filled with grout, and the column main reinforcement 58 and the column main reinforcement 60 are fixed and connected. The confirmation that the grout is filled is performed by a grout discharge hole 44 (see FIG. 1) formed on the side surface of the column beam joint portion 18 of the horizontal member 12. After the horizontal member 12A is placed on the upper end surface of the lower column member 16A in this way, the column main bar 58 of the lower column member 16A and the column main bar 60 of the upper column member 26A are connected, so that the column beam finish of the horizontal member 12 is reached. The horizontal member 12 can be moved in the horizontal direction or the horizontal direction until the upper column member 26 is placed on the upper end surface of the mouth portion 18.

次に、図6(A)、(B)に示すように、基礎部14の略中央に建て込まれた下柱部材16B上に載置される水平部材12Bを水平部材12Aに向って横方向又は水平方向に移動し、水平部材12Aの梁部28の端面と、梁部材としての水平部材12Bの梁部28の端面とを対向させ(梁部材搬送工程)、水平部材12Aの梁部28の端面に形成された凹部32Aに水平部材12Bの梁部28の端面に形成された凸部32Bを挿入する。そして、凹部32Aと凸部32Bとの間に形成された目地部に沿ってスポンジ状の発泡性材等を配置して目地部を密封した後に、目地部にグラウト46等の充填材を充填して、水平部材12Aの梁部28と水平部材12Bの梁部28とをピン接合する(梁部接合工程)。   Next, as shown in FIGS. 6A and 6B, the horizontal member 12B placed on the lower column member 16B built in the approximate center of the base portion 14 is laterally directed toward the horizontal member 12A. Or it moves to a horizontal direction, the end surface of the beam part 28 of the horizontal member 12A and the end surface of the beam part 28 of the horizontal member 12B as a beam member are made to oppose (beam member conveyance process), and the beam part 28 of the horizontal member 12A The convex portion 32B formed on the end surface of the beam portion 28 of the horizontal member 12B is inserted into the concave portion 32A formed on the end surface. Then, after placing a sponge-like foamable material or the like along the joint formed between the concave portion 32A and the convex portion 32B and sealing the joint, the joint is filled with a filler such as grout 46. Then, the beam portion 28 of the horizontal member 12A and the beam portion 28 of the horizontal member 12B are pin-joined (beam portion joining step).

次に、下柱部材16A、水平部材12A及び上柱部材26Aの接合方法と同様の方法で、下柱部材16Bと水平部材12Bの柱梁仕口部18、及び上柱部材26Bを接合する。このように、図6(A)、(B)の作業を繰り返して建物56の一層部分を構築する。更に、上柱部材26の上端面に水平部材12を配置し、図5、図6の作業を繰り返すことで、複数層からなる建物56が構築される。   Next, the lower column member 16B and the column beam joint 18 of the horizontal member 12B and the upper column member 26B are joined by the same method as the joining method of the lower column member 16A, the horizontal member 12A, and the upper column member 26A. Thus, the work of FIG. 6 (A) and (B) is repeated and the one layer part of the building 56 is constructed | assembled. Furthermore, the horizontal member 12 is arranged on the upper end surface of the upper pillar member 26, and the building 56 composed of a plurality of layers is constructed by repeating the operations shown in FIGS.

なお、ピン接合手段の構成によっては、必ずしも水平部材12Bを横方向又は水平方向に移動する必要はない。例えば、図3(C)に示すように対向する梁部28同士の端面に複数の凹部32Aをそれぞれ形成し、対向する凹部32Aの間にグラウト46を充填してピン接合する場合は、水平部材12Bを上方から降ろして下柱部材16Bの上端面に載置して梁部28同士の端面を対向させても良い。また、図4(B)に示すように、ピン部材50を梁部28の側方から挿入して梁部28同士をピン接合する場合も、水平部材12Bを横方向又は水平方向に移動する必要はない。このようなピン接合手段は、水平部材12Bの横方向または水平方向の移動範囲が制限されるような場合に特に有効である。例えば、建物の外周に沿って水平部材12を順に設置していくと、最後に設置される水平部材12の両側には、既に水平部材12が設置された状態となるため、最後の水平部材12を横方向または水平方向へ移動することができない。このような場合、図3(C)、図4(B)に示すピン接合手段であれば、上方から水平部材12を降ろすことで、梁部28同士の端面を対向させることができる。   Depending on the configuration of the pin joining means, it is not always necessary to move the horizontal member 12B in the horizontal direction or the horizontal direction. For example, as shown in FIG. 3C, when a plurality of recesses 32A are respectively formed on the end surfaces of the facing beam portions 28 and the grout 46 is filled between the facing recesses 32A and pin-joined, the horizontal member 12B may be lowered from above and placed on the upper end surface of the lower column member 16B so that the end surfaces of the beam portions 28 face each other. Also, as shown in FIG. 4B, when the pin member 50 is inserted from the side of the beam portion 28 and the beam portions 28 are connected to each other, the horizontal member 12B needs to be moved in the horizontal direction or the horizontal direction. There is no. Such pin joining means is particularly effective when the horizontal or horizontal movement range of the horizontal member 12B is limited. For example, when the horizontal members 12 are sequentially installed along the outer periphery of the building, the horizontal members 12 are already installed on both sides of the horizontal member 12 to be installed last. Cannot be moved horizontally or horizontally. In such a case, if the pin joining means is shown in FIGS. 3C and 4B, the end surfaces of the beam portions 28 can be made to face each other by lowering the horizontal member 12 from above.

また、下柱部材16、水平部材12及び上柱部材26の接合方法は上記したものに限らない。水平部材12と下柱部材16又は上柱部材26とが一体化されていれば良く、ピン接合手段の構成に合わせて(水平部材12の横方向又は水平方向への移動可否)、種々の接合方法を採用することができる。例えば、下柱部材16の上端面から柱主筋58を突出させ、上柱部材26の下端面に機械式継手を埋設する。そして、水平部材12の柱梁仕口部18に埋設されたシース管42に下柱部材16の柱主筋58を貫通させて上柱部材26の機械式継手に挿入し、充填材を充填して柱主筋58、60を定着・接続しても良い。また、下柱部材16の上端面及び上柱部材26の下端面からそれぞれ柱主筋58、60を突出させ、水平部材12の柱梁仕口部18に埋設されたシース管42の両端部から柱主筋58、60を挿入し、シース管42に充填材を充填して柱主筋58、60を定着・接続しても良い。   Moreover, the joining method of the lower pillar member 16, the horizontal member 12, and the upper pillar member 26 is not restricted to what was mentioned above. It is sufficient that the horizontal member 12 and the lower column member 16 or the upper column member 26 are integrated, and according to the configuration of the pin joining means (whether the horizontal member 12 can be moved in the lateral direction or the horizontal direction), various joinings are possible. The method can be adopted. For example, the column main reinforcement 58 is protruded from the upper end surface of the lower column member 16, and a mechanical joint is embedded in the lower end surface of the upper column member 26. Then, the column main reinforcement 58 of the lower column member 16 is passed through the sheath tube 42 embedded in the column beam joint 18 of the horizontal member 12 and inserted into the mechanical joint of the upper column member 26, and the filler is filled. The column main bars 58 and 60 may be fixed and connected. Further, column main bars 58 and 60 are projected from the upper end surface of the lower column member 16 and the lower end surface of the upper column member 26, respectively, and columns are formed from both ends of the sheath tube 42 embedded in the column beam joint portion 18 of the horizontal member 12. The main bars 58 and 60 may be inserted, the sheath pipe 42 may be filled with a filler, and the column main bars 58 and 60 may be fixed and connected.

更に、水平部材12と下柱部材16との接合においては、柱梁仕口部18の下端面から突出する柱主筋を設け、下柱部材16の上端面に埋設された機械式継手62に挿入して接合しても良い。また、柱梁仕口部18の下端面に機械式継手を埋設し、下柱部材16の上端面から突出する柱主筋58を当該機械式継手に挿入して接合しても良い。更に、柱梁仕口部18の下端面及び下柱部材16の上端面からそれぞれ柱主筋を突出させ、柱梁仕口部18と下柱部材16との間にコンクリートを打設して、水平部材12と下柱部材16とを接合しても良い。これらの接合方法は、水平部材12と上柱部材26との接合にも適用可能である。   Further, in joining the horizontal member 12 and the lower column member 16, a column main bar protruding from the lower end surface of the column beam joint 18 is provided and inserted into a mechanical joint 62 embedded in the upper end surface of the lower column member 16. And may be joined. Alternatively, a mechanical joint may be embedded in the lower end surface of the column beam joint 18 and the column main bars 58 protruding from the upper end surface of the lower column member 16 may be inserted into the mechanical joint for joining. Further, the column main reinforcement protrudes from the lower end surface of the column beam joint portion 18 and the upper end surface of the lower column member 16, respectively, and concrete is placed between the column beam joint portion 18 and the lower column member 16 so as to be horizontal. The member 12 and the lower column member 16 may be joined. These joining methods can also be applied to joining the horizontal member 12 and the upper column member 26.

なお、水平部材12、下柱部材16、上柱部材26の上端面に設けられたボルト64をなくして、接合される部材の端面同士が密着するようにしてもよいが、施工上、接合される部材の端面間に20mm程度の隙間を設けるのが好ましい。また、本実施形態では、基礎部14の上に下柱部材16を設置したが、基礎部14に限られない。下柱部材16は、基礎部14等の構造躯体に支持・固定されていれば良く、基礎部14に替えて床スラブや柱部材等の構造躯体の上に設置して一体的に接合しても良い。   In addition, the bolts 64 provided on the upper end surfaces of the horizontal member 12, the lower column member 16, and the upper column member 26 may be eliminated so that the end surfaces of the members to be bonded are in close contact with each other. It is preferable to provide a gap of about 20 mm between the end faces of the members. Moreover, in this embodiment, although the lower pillar member 16 was installed on the base part 14, it is not restricted to the base part 14. FIG. The lower column member 16 only needs to be supported and fixed to the structural housing such as the base portion 14, and instead of the base portion 14, the lower column member 16 is installed on the structural housing such as the floor slab or the column member and integrally joined thereto. Also good.

次に、本発明の第1の実施形態の作用及び効果について説明する。   Next, the operation and effect of the first embodiment of the present invention will be described.

先ず、一般的なラーメン構造を採用した架構66を図7(A)に示す。この架構66は左右の柱68A、68Bと梁70とから構成されている。図7(B)は、梁70に発生する常時荷重に起因する曲げモーメント図の略図であり、図7(C)には、梁70に発生する地震荷重に起因する曲げモーメント図の略図である。なお、各曲げモーメント図は、簡単のため、柱68A、68Bによる曲げ戻し等は考慮していない。   First, FIG. 7A shows a frame 66 that adopts a general ramen structure. The frame 66 includes left and right columns 68A and 68B and a beam 70. FIG. 7B is a schematic diagram of a bending moment diagram due to a constant load generated in the beam 70, and FIG. 7C is a schematic diagram of a bending moment diagram due to an earthquake load generated in the beam 70. . Note that the bending moment diagrams do not consider bending back by the columns 68A and 68B for the sake of simplicity.

図7(B)から分かるように、梁70に発生する常時荷重に起因する曲げモーメントは、梁70と柱68A、68Bとの仕口部で上向きに最大となり、梁70の中央部で下向きに最大となる。一方、図7(C)から分かるように、梁70に発生する地震荷重に起因する曲げモーメントは、梁70と柱68A、68Bとの仕口部で最大となり、梁70の中央部に向うに従って徐々に小さくなる。そして、梁70の中央部で曲げモーメントがゼロ(反曲点)となる。   As can be seen from FIG. 7B, the bending moment due to the constant load generated in the beam 70 is maximum upward at the joint between the beam 70 and the columns 68A and 68B, and downward at the center of the beam 70. Maximum. On the other hand, as can be seen from FIG. 7C, the bending moment caused by the seismic load generated in the beam 70 becomes maximum at the joint between the beam 70 and the columns 68A and 68B, and as it goes toward the center of the beam 70. Gradually get smaller. Then, the bending moment becomes zero (the inflection point) at the center of the beam 70.

本実施形態は、図7(C)に示す梁70の応力状態に則して、水平部材12の梁部28と、これに隣接する水平部材12の梁部28(梁部材)とをコッター32によりピン接合する。即ち、梁22A(図2参照)に発生する曲げモーメントが相対的に小さい位置、即ち、梁部28と柱梁仕口部18とを一体にして水平部材12を形成することで、曲げモーメントが最大となる柱梁仕口部18を除いた梁22Aの中間部で、隣接する水平部材12の梁部28同士をピン接合する。従って、応力的に有利な梁22Aの中間部で梁部28同士をコッター32によりピン接合することができる。特に、梁22Aの中央部では地震荷重に起因する曲げモーメントが発生せず、当該部に配筋された梁鉄筋には応力が生じないため、隣接する水平部材12の梁部28同士の梁主筋38を継ぐ必要がない。従って、梁22Aの中央部で梁部28同士をピン接合することが応力的に最も有利となる。このように、梁70の応力状態に則して、隣接する2つ水平部材12の梁部28同士をピン接合することで、梁部28同士の梁鉄筋を継ぐ作業がなくなり、また、鉄筋継手手段等が不要となるため、施工性の向上、コスト削減を図ることができる。   In the present embodiment, the beam portion 28 of the horizontal member 12 and the beam portion 28 (beam member) of the horizontal member 12 adjacent thereto are cotter 32 in accordance with the stress state of the beam 70 shown in FIG. The pins are joined together. That is, the bending moment generated in the beam 22A (see FIG. 2) is relatively small, that is, by forming the horizontal member 12 by integrating the beam portion 28 and the column beam joint portion 18, the bending moment is reduced. The beam portions 28 of the adjacent horizontal members 12 are pin-joined at an intermediate portion of the beam 22A excluding the largest column beam joint portion 18. Therefore, the beam portions 28 can be pin-joined by the cotter 32 at the intermediate portion of the beam 22A which is advantageous in terms of stress. In particular, the bending moment due to the seismic load is not generated in the central portion of the beam 22A, and no stress is generated in the beam reinforcing bar arranged in the portion. Therefore, the beam main reinforcement between the beam portions 28 of the adjacent horizontal members 12 is not generated. There is no need to succeed 38. Therefore, it is most advantageous in terms of stress to pin-join the beam portions 28 at the center of the beam 22A. In this way, by joining the beam portions 28 of the two adjacent horizontal members 12 in accordance with the stress state of the beam 70, there is no work to join the beam reinforcing bars between the beam portions 28, and the reinforcing bar joint Since no means or the like is required, it is possible to improve workability and reduce costs.

次に、複数の水平部材12を用いて架構72、74、76、78を構成した場合の例を図8〜10に示す。各架構72、74、76、78は、梁72A、74A、76A、78Aの長さが相互に等しい等スパンとされており、また、各梁72A、74A、76A、78Aの中央部で、隣接する水平部材12の梁部同士を接合している。各図8〜10において、(B)は、各梁72A、74A、76A、78Aに発生する常時荷重に起因する曲げモーメント図の略図であり、(C)は、各梁72A、74A、76A、78Aに発生する地震荷重に起因する曲げモーメント図の略図である。なお、図中の黒丸は、梁接合部が剛接合であることを示し、白丸は梁接合部がピン接合であることを示している。また、各曲げモーメント図は、簡単のため、柱による曲げ戻し等は考慮していない。   Next, examples in which the frames 72, 74, 76, and 78 are configured using a plurality of horizontal members 12 are shown in FIGS. Each of the frames 72, 74, 76, 78 has equal spans of the lengths of the beams 72A, 74A, 76A, 78A, and adjacent to each other at the center of each of the beams 72A, 74A, 76A, 78A. The beam portions of the horizontal member 12 are joined together. In each of FIGS. 8 to 10, (B) is a schematic diagram of a bending moment diagram caused by a constant load generated in each beam 72A, 74A, 76A, 78A, and (C) is a diagram of each beam 72A, 74A, 76A, It is the schematic of the bending moment figure resulting from the earthquake load which generate | occur | produces in 78A. In addition, the black circle in a figure has shown that the beam junction part is rigid junction, and the white circle has shown that the beam junction part is pin junction. In addition, each bending moment diagram is simple and does not consider bending back by a column.

図8(C)、図9(C)、図10(C)から分かるように、梁72A、74A、76A、78Aの中央部では、地震荷重に起因する曲げモーメントが発生しない。従って、隣接する架構の梁接合部が剛接合であるかピン接合であるかに関わらず、各梁72A、74A、76A、78Aの中央部が応力的に最も有利となり、隣接する水平部材12の梁部同士をピン接合するのに適している。一方、常時荷重に起因する曲げモーメントは、図8(B)、図9(B)、図10(B)から分かるように、梁接合部がピン接合であるか剛接合であるかによって、梁接合部の両側の柱付近に発生する曲げモーメントの大きさが異なる。従って、このような応力状態に則して、梁端部の設計を行うことが望ましい。   As can be seen from FIG. 8C, FIG. 9C, and FIG. 10C, no bending moment due to the seismic load is generated in the central portion of the beams 72A, 74A, 76A, 78A. Therefore, the central portion of each beam 72A, 74A, 76A, 78A is the most advantageous in terms of stress, regardless of whether the beam joint portion of the adjacent frame is a rigid joint or a pin joint. Suitable for pin-joining beam parts. On the other hand, as can be seen from FIGS. 8B, 9B, and 10B, the bending moment caused by the constant load depends on whether the beam joint is a pin joint or a rigid joint. The magnitude of the bending moment generated near the columns on both sides of the joint is different. Therefore, it is desirable to design the beam end in accordance with such a stress state.

また、本実施形態を、いわゆるメガストラクチャーを採用した建物80に適用しても良い。図11は、複数層からなる建物80の一層分を示した平面図である。建物80の各架構は、後述するように梁部の数や配置が異なる複数の水平部材12(図12参照)を組み合わせて構成されている。各架構は、梁の長さが相互に等しい等スパンとされており、また、各梁の中央部で隣接する水平部材12の梁部同士が接合されている。なお、図中の黒丸は、梁接合部が剛接合であることを示し、白丸は梁接合部がピン接合であることを示している。   Moreover, you may apply this embodiment to the building 80 which employ | adopted what is called a mega structure. FIG. 11 is a plan view showing one layer of a building 80 having a plurality of layers. Each frame of the building 80 is configured by combining a plurality of horizontal members 12 (see FIG. 12) having different numbers and arrangements of beam portions as will be described later. Each frame has an equal span in which the lengths of the beams are equal to each other, and the beam portions of the adjacent horizontal members 12 are joined at the center of each beam. In addition, the black circle in a figure has shown that the beam junction part is rigid junction, and the white circle has shown that the beam junction part is pin junction.

建物80の外側に面する架構82A〜82Hにおける梁接合部は、全て剛接合とされ、これらの架構82A〜82Hよって、建物80の外周を形成する一つの大きな架構82が構成されている。即ち、建物80は、剛性・強度が高い架構82を主架構としたメガストラクチャーによって構成されている。この場合、地震荷重は架構82に集約され、架構82の内側にある架構84A〜84Dは、主に鉛直荷重(常時荷重)を負担するために用いられる。従って、架構84A〜84Dが負担する地震荷重が相対的に小さくなり、架構84A〜84Dでは、隣接する水平部材12の梁部同士の接合にピン接合を採用し易い。   The beam joints in the frames 82A to 82H facing the outside of the building 80 are all rigidly connected, and the frames 82A to 82H constitute one large frame 82 that forms the outer periphery of the building 80. That is, the building 80 is constituted by a mega structure having a main frame as a frame 82 having high rigidity and strength. In this case, the seismic load is concentrated on the frame 82, and the frames 84 </ b> A to 84 </ b> D inside the frame 82 are mainly used to bear a vertical load (normal load). Therefore, the seismic load borne by the frames 84A to 84D becomes relatively small, and the frames 84A to 84D can easily employ pin bonding for bonding the beam portions of the adjacent horizontal members 12.

また、本実施形態では、柱梁仕口部18及びこの柱梁仕口部18の側面から張り出した2つの梁部28、34によって水平部材12を構成した例について説明したが、少なくとも柱梁仕口部18と梁部28とを一体にして形成されていれば良く、柱梁仕口部18と一体化される梁部の数や配置はこれに限らない。例えば、図12(A)〜(E)に示すように、柱梁仕口部18の側面に、梁部86A〜86Dを一体にして構成した種々の形状の水平部材12を採用することができる。この場合、梁部86A〜86Dのうち、少なくとも一つの端面にピン接合手段が形成されていれば良い。   Further, in the present embodiment, the example in which the horizontal member 12 is configured by the column beam joint portion 18 and the two beam portions 28 and 34 projecting from the side surface of the column beam joint portion 18 has been described. It is only necessary that the mouth portion 18 and the beam portion 28 are integrally formed, and the number and arrangement of the beam portions integrated with the column beam joint portion 18 are not limited thereto. For example, as shown in FIGS. 12A to 12E, horizontal members 12 having various shapes in which beam portions 86A to 86D are integrally formed on the side surface of the column beam joint portion 18 can be employed. . In this case, it is only necessary that pin joining means is formed on at least one end face of the beam portions 86A to 86D.

次に、本発明の第2の実施形態について説明する。なお、第1の実施形態と同じ構成のものは、同符号を付すると共に、適宜省略して説明する。   Next, a second embodiment of the present invention will be described. In addition, the thing of the same structure as 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits suitably and demonstrates.

第2の実施形態は、図1に示す水平部材12に替えて、水平部材12の柱梁仕口部18の上方及び下方の少なくとも一方に柱部を設け、柱梁仕口部18と一体にして形成したPCa製の構造部材92を用いる。構造部材92は、図13に示すように、柱梁仕口部94と、柱梁仕口部94の側面から張り出すようにして設けられた梁部96A、96B、96C、96Dと、柱梁仕口部94の上方及び下方に設けられた上柱部98A、下柱部98Bとを一体にして形成されている。梁部96A及び梁部96Cの端面には、コッター32を構成する凹部32Aがそれぞれ形成されている。   In the second embodiment, instead of the horizontal member 12 shown in FIG. 1, a column portion is provided at least above and below the column beam joint portion 18 of the horizontal member 12, and is integrated with the column beam joint portion 18. The structural member 92 made of PCa is used. As shown in FIG. 13, the structural member 92 includes a column beam joint portion 94, beam portions 96A, 96B, 96C, and 96D provided so as to project from the side surface of the column beam joint portion 94, and a column beam. An upper column portion 98A and a lower column portion 98B provided above and below the joint portion 94 are integrally formed. Concave portions 32A constituting the cotter 32 are formed on the end surfaces of the beam portion 96A and the beam portion 96C, respectively.

構造部材92は、柱部材102の上端面に載置され、下柱部98Bの端面と柱部材102の端面とが対向する柱接合部104において、下柱部98Bの下端面から突出する柱主筋100を柱部材102の上端面に埋設された機械式継手106に挿入し、機械式継手106にグラウト等の充填材を充填することで、下柱部98Bと柱部材102とが接合される。上柱部98Aの上端面には、上柱部98Aの上端面に載置される柱部材(不図示)の下端面から突出する梁主筋が挿入される機械式継手108が埋設され、柱部材と接合可能となっている。なお、下柱部98Bと柱部材102との接合方法は、第1に実施形態における柱梁仕口部18と下柱部材16又は上柱部材26との接合方法と同様に種々の接合方法を採用することができる。また、構造部材92の上柱部98Aを柱部材102として使用し、2つの構造部材92を上下方向に隣接させ、柱部材102としての構造部材92の上柱部98Aの上端面に、上方に配置された構造部材92の下柱部98Bと載置して接合しても良い。   The structural member 92 is placed on the upper end surface of the column member 102, and the column main bars projecting from the lower end surface of the lower column portion 98B at the column joint portion 104 where the end surface of the lower column portion 98B and the end surface of the column member 102 face each other. 100 is inserted into a mechanical joint 106 embedded in the upper end surface of the pillar member 102, and the mechanical joint 106 is filled with a filler such as grout, whereby the lower pillar portion 98B and the pillar member 102 are joined. A mechanical joint 108 into which a beam main bar protruding from the lower end surface of a column member (not shown) placed on the upper end surface of the upper column portion 98A is embedded is embedded in the upper end surface of the upper column portion 98A. And can be joined. In addition, the joining method of the lower pillar part 98B and the pillar member 102 is variously joined similarly to the joining method of the column beam joint part 18 and the lower pillar member 16 or the upper pillar member 26 in the first embodiment. Can be adopted. Further, the upper column portion 98A of the structural member 92 is used as the column member 102, the two structural members 92 are adjacent in the vertical direction, and the upper end surface of the upper column portion 98A of the structural member 92 as the column member 102 is positioned upward. It may be placed and joined to the lower column portion 98B of the structural member 92 arranged.

このように構成された2つの構造部材92を隣接して配置し、架構110を構成した場合の例を図14に示す。なお、架構110には、梁部96Aの端面にコッター32を構成する凹部32Aが形成された構造部材92と、梁部96Aの端面にコッター32を構成する凸部32Bが形成された構造部材92を使用する。   FIG. 14 shows an example in which the two structural members 92 configured as described above are arranged adjacent to each other to configure the frame 110. Note that the frame 110 has a structural member 92 in which a concave portion 32A constituting the cotter 32 is formed on the end face of the beam portion 96A and a structural member 92 in which a convex portion 32B constituting the cotter 32 is formed on the end face of the beam portion 96A. Is used.

基礎部14に建て込まれた柱部材102の上端面には、構造部材92の下柱部98Bが載置され、柱接合部104において構造部材92と柱部材102とが一体的に接合され、架構110の柱111が形成されている。また、構造部材92の下柱部98Bと柱部材102とは長さが相互に等しく、柱111の中央部に柱接合部104が位置し、柱111の中央部で下柱部98Bと柱部材102とが接合されている。そして、隣接する構造部材92の梁部96A同士の端面が対向する梁接合部112において、凹部32Aに凸部32Bが挿入され、梁部96A同士がコッター32によりピン接合されて架構110の梁110Aが形成されている。また、隣接する2つの構造部材92の梁部96A同士は長さが相互に等しく、梁110Aの中央部に梁接合部112が位置し、梁110Aの中央部で、隣接する梁部96A同士がピン接合されている。   The lower column portion 98B of the structural member 92 is placed on the upper end surface of the column member 102 built in the foundation portion 14, and the structural member 92 and the column member 102 are integrally bonded at the column joint portion 104, A column 111 of the frame 110 is formed. Further, the lower column portion 98B and the column member 102 of the structural member 92 are equal in length to each other, the column joint portion 104 is located at the center portion of the column 111, and the lower column portion 98B and the column member are formed at the center portion of the column 111. 102 is joined. Then, at the beam joint portion 112 where the end surfaces of the beam portions 96A of the adjacent structural members 92 are opposed to each other, the convex portion 32B is inserted into the concave portion 32A, and the beam portions 96A are pin-joined by the cotter 32 to be beam 110A of the frame 110. Is formed. Further, the beam portions 96A of the two adjacent structural members 92 are equal in length to each other, the beam joint portion 112 is located at the center portion of the beam 110A, and the adjacent beam portions 96A are located at the center portion of the beam 110A. Pin-joined.

次に、本発明の第2の実施形態の変形例について説明する。   Next, a modification of the second embodiment of the present invention will be described.

本変形例では、図13に示す構成に替えて、構造部材92における下柱部98Bの下端面と柱部材102の上端面とが対向する柱接合部104において、下柱部98Bと柱部材102とをピン接合手段としてのピン部材50によりピン接合する。図15に示すように、構造部材92の下柱部98Bの下端面には、図4(A)に示すピン部材50を挿入するための穴部48が形成されている。そして、柱部材102の上端面に形成された穴部48にピン部材50を挿入した後に、柱部材102の上方から構造部材92を降ろして下柱部98Bの下端面に形成された穴部48にピン部材50を挿入し、下柱部98Bと柱部材102とをピン接合する。下柱部98Bと同様に、上柱部98Aの上端面には穴部48が形成され、上柱部98Aの上端面に載置される柱部材(不図示)とピン接合可能とされている。なお、ピン接合手段としては、上記の穴部48及びピン部材50に限らず、図3、図4に示す種々のピン接合手段を採用することができる。   In this modification, in place of the configuration shown in FIG. 13, in the column joint portion 104 where the lower end surface of the lower column portion 98 </ b> B and the upper end surface of the column member 102 face each other in the structural member 92. Are joined by a pin member 50 as a pin joining means. As shown in FIG. 15, a hole 48 for inserting the pin member 50 shown in FIG. 4A is formed in the lower end surface of the lower column portion 98 </ b> B of the structural member 92. Then, after inserting the pin member 50 into the hole 48 formed in the upper end surface of the column member 102, the structural member 92 is lowered from above the column member 102 to form the hole 48 formed in the lower end surface of the lower column portion 98B. The pin member 50 is inserted into the lower column part 98B and the column member 102 are pin-joined. Similar to the lower column portion 98B, a hole 48 is formed in the upper end surface of the upper column portion 98A, and can be pin-joined with a column member (not shown) placed on the upper end surface of the upper column portion 98A. . The pin joining means is not limited to the hole 48 and the pin member 50 described above, and various pin joining means shown in FIGS. 3 and 4 can be employed.

また、本実施形態では、長さが相互に等しい下柱部98Bと柱部材102とを用いることで、架構110の柱111の中央部で下柱部98Bと柱部材102とを接合したがこれに限らない。長さが異なる下柱部98Bと柱部材102を用いて、柱梁仕口部94を除いた柱111の中間部に柱接合部104を位置させ、柱111の中間部で下柱部98Bと柱部材102とを接合しても良い。柱接合部104と同様に、梁部96Aの長さが異なる構造部材92を用いて、柱梁仕口部94を除いた梁110Aの中間部に梁接合部112を位置させ、梁110Aの中間部で梁部96A同士をコッター32によりピン接合しても良い。   Further, in this embodiment, the lower column part 98B and the column member 102 are joined to each other at the center of the column 111 of the frame 110 by using the lower column part 98B and the column member 102 having the same length. Not limited to. Using the lower column portion 98B and the column member 102 having different lengths, the column joint portion 104 is positioned at an intermediate portion of the column 111 excluding the column beam joint portion 94, and at the intermediate portion of the column 111, the lower column portion 98B The column member 102 may be joined. Similar to the column joint portion 104, the beam joint portion 112 is positioned at the middle portion of the beam 110A except for the column beam joint portion 94 using the structural member 92 having a different length of the beam portion 96A. The beam portions 96 </ b> A may be pin-joined by the cotter 32.

次に、本発明の第2の実施形態の作用及び効果について説明する。   Next, the operation and effect of the second embodiment of the present invention will be described.

先ず、一般的なラーメン構造を採用した架構114に生じる地震荷重に起因する曲げモーメント図の略図を図16に示す。架構114は、左右の柱116A、116Bと上下の梁118A、118Bとから構成されている。なお、各曲げモーメント図は、簡単のため、柱116A、116Bによる曲げ戻し等は考慮していない。   First, FIG. 16 shows a schematic diagram of a bending moment diagram resulting from a seismic load generated in a frame 114 employing a general rigid frame structure. The frame 114 includes left and right columns 116A and 116B and upper and lower beams 118A and 118B. Note that each bending moment diagram is simple and does not consider bending back by the columns 116A and 116B.

第1の実施形態で説明したように、梁118A、118Bに発生する地震荷重に起因する曲げモーメントは、各梁118A、118Bの中央部でゼロ(反曲点)となる。一方、柱116A、116Bに発生する地震荷重に起因する曲げモーメントは、図16から分かるように、柱116A、116Bと梁118A、118Bの仕口部で最大となり、柱116A、116Bの中央部に向うに従って徐々に小さくなる。そして、各柱116A、116Bの中央部で曲げモーメントがゼロ(反曲点)となる。   As described in the first embodiment, the bending moment due to the seismic load generated on the beams 118A and 118B is zero (the anti-curvature point) at the center of each beam 118A and 118B. On the other hand, as can be seen from FIG. 16, the bending moment caused by the seismic load generated on the columns 116A and 116B is the largest at the joints of the columns 116A and 116B and the beams 118A and 118B, and is at the center of the columns 116A and 116B. It gets smaller gradually as you go. Then, the bending moment becomes zero (the inflection point) at the center of each column 116A, 116B.

本実施形態では、図16に示す梁118A、118Bの応力状態に則して、隣接する2つの構造部材92の梁部96A同士をコッター32によりピン接合する。即ち、梁110A(図14参照)に発生する曲げモーメントが相対的に小さい位置、即ち、梁部96Aと柱梁仕口部94とを一体にして構造部材92を形成することで、曲げモーメントが最大となる柱梁仕口部94を除いた梁110Aの中間部で、隣接する構造部材92の梁部96A同士をコッター32によりピン接合する。従って、第1の実施形態と同様に、応力的に有利な梁110Aの中間部で梁部96A同士をピン接合するため、梁部96A同士の梁鉄筋を継ぐ作業がなくなり、また、鉄筋継手手段等が不要となるため、施工性の向上、コスト削減を図ることができる。   In the present embodiment, the beam portions 96A of the two adjacent structural members 92 are pin-joined by the cotter 32 in accordance with the stress state of the beams 118A and 118B shown in FIG. That is, the bending moment generated in the beam 110A (see FIG. 14) is relatively small, that is, by forming the structural member 92 by integrating the beam portion 96A and the column beam joint portion 94, the bending moment is reduced. The beam portions 96 </ b> A of the adjacent structural members 92 are pin-connected by the cotter 32 at the intermediate portion of the beam 110 </ b> A excluding the largest column beam joint 94. Therefore, as in the first embodiment, since the beam portions 96A are pin-joined at the intermediate portion of the beam 110A, which is advantageous in terms of stress, there is no work to join the beam reinforcing bars between the beam portions 96A, and the reinforcing bar joint means Therefore, it is possible to improve workability and reduce costs.

また、図15に示す構成では、図16に示す柱116A、116Bの応力状態に則して、構造部材92の下柱部98Bと柱部材102とをピン部材50によりピン接合する。即ち、柱111(図14参照)に発生する曲げモーメントが相対的に小さい位置、即ち、柱梁仕口部94と下柱部98Bを一体にして構造部材92を形成することで、曲げモーメントが最大となる柱梁仕口部94を除いた柱111の中間部で、構造部材92の下柱部98Bと柱部材102とをピン部材50によりピン接合する。従って、応力的に有利な柱111の中間部で下柱部98Bと柱部材102とをピン接合することができる。特に、柱111の中央部では地震荷重に起因する曲げモーメントが発生せず、当該部に配筋された柱鉄筋には応力が生じないため、構造部材92の下柱部98Bと柱部材102の柱鉄筋を継ぐ必要がない。従って、柱111の中央部で下柱部98Bと柱部材102とをピン接合することが応力的に最も有利となる。このように、柱111の応力状態に則してピン接合を採用することで、柱鉄筋を継ぐ作業がなくなり、また、鉄筋継手手段等が不要となるため、施工性の向上、コスト削減を図ることができる。なお、柱の中央部とは、梁の中央部と同様に、柱を厳密に2等分した位置に限られず、構造部材92の製作誤差等による位置ずれを含む概念である。   In the configuration shown in FIG. 15, the lower pillar portion 98 </ b> B of the structural member 92 and the pillar member 102 are pin-joined by the pin member 50 in accordance with the stress state of the pillars 116 </ b> A and 116 </ b> B shown in FIG. 16. That is, the bending moment generated in the column 111 (see FIG. 14) is relatively small, that is, by forming the structural member 92 by integrating the column beam joint portion 94 and the lower column portion 98B, the bending moment is reduced. The lower column portion 98B of the structural member 92 and the column member 102 are pin-connected by the pin member 50 at the intermediate portion of the column 111 excluding the largest column beam joint portion 94. Therefore, the lower column portion 98B and the column member 102 can be pin-bonded at the intermediate portion of the column 111 which is advantageous in terms of stress. In particular, the bending moment due to the seismic load is not generated in the central portion of the column 111, and no stress is generated in the column reinforcing bar arranged in the portion. Therefore, the lower column portion 98B of the structural member 92 and the column member 102 There is no need to connect column reinforcement. Therefore, it is most advantageous in terms of stress to pin-join the lower column portion 98B and the column member 102 at the center portion of the column 111. In this way, by adopting pin bonding in accordance with the stress state of the column 111, there is no work to join the column reinforcing bar, and the reinforcing bar joint means and the like are not required, so that the workability is improved and the cost is reduced. be able to. The central portion of the column is not limited to a position where the column is strictly divided into two equal parts as in the central portion of the beam, and is a concept including a positional shift due to a manufacturing error of the structural member 92 or the like.

加えて、図13、図15に示すように、柱梁仕口部94に上柱部98A及び下柱部98Bを一体的に設けることで、現場における柱梁仕口部94と梁部材との接合箇所が減るため施工性が向上する。また、部材数が減ることによって揚重回数が減るため、工期の短縮化を図ることができる。   In addition, as shown in FIGS. 13 and 15, the upper and lower column portions 98 </ b> A and 98 </ b> B are integrally provided in the column beam joint portion 94, so that the column beam joint portion 94 and the beam member at the site can be connected. Since the number of joints is reduced, workability is improved. Moreover, since the number of lifting operations is reduced by reducing the number of members, the construction period can be shortened.

なお、本実施形態では、柱梁仕口部94と、柱梁仕口部94の側面から張り出した4つの梁部96A〜96Dと、柱梁仕口部94の上方及び下方に設けられた上柱部98A、下柱部98Bとによって構造部材92を構成した場合の例について説明したが、柱梁仕口部94と一体化される梁部や柱部の数や配置は図13、図15に示す構成にこれに限らない。例えば、図17(A)〜(E)に示すように柱梁仕口部94の側面に、梁部96A〜96Dを一体にして形成し、且つ柱梁仕口部94の上方又は下方に上柱部98A、下柱部98Bを一体にして形成した種々の形状の構造部材92を採用することができる。この場合、梁部96A〜96Dの端面のうち、少なくとも一つの端面にピン接合手段が形成されていれば良い。また、複数の構造部材92を一体にして形成してPCa製の構造部材を構成することも可能である。例えば、図18に示すように、2つの構造部材92の梁部96Aと梁部96Bと一体に接合して形成した梁122を有するPCa製の構造部材120を構成しても良い。   In the present embodiment, the column beam joint portion 94, the four beam portions 96A to 96D projecting from the side surface of the column beam joint portion 94, and the upper and lower portions provided above and below the column beam joint portion 94 are provided. The example in the case where the structural member 92 is configured by the column portion 98A and the lower column portion 98B has been described. However, the number and arrangement of the beam portions and the column portions integrated with the column beam joint portion 94 are illustrated in FIGS. However, the configuration is not limited to this. For example, as shown in FIGS. 17A to 17E, the beam portions 96A to 96D are integrally formed on the side surface of the column beam joint portion 94, and the upper portion is located above or below the column beam joint portion 94. Various shapes of the structural member 92 formed by integrating the column portion 98A and the lower column portion 98B can be employed. In this case, pin joining means may be formed on at least one of the end faces of the beam portions 96A to 96D. It is also possible to form a PCa structural member by integrally forming a plurality of structural members 92. For example, as shown in FIG. 18, a structural member 120 made of PCa having a beam 122 formed by integrally joining the beam portion 96A and the beam portion 96B of the two structural members 92 may be configured.

次に、本発明の第3の実施形態について説明する。なお、第1、2の実施形態と同じ構成のものは、同符号を付すると共に、適宜省略して説明する。図19は、複数の構造部材92を上下左右に隣接させて構成した建物124を示す立面図であり、図20は、建物124の最下層の一層分を示した平面図である。   Next, a third embodiment of the present invention will be described. In addition, the thing of the same structure as 1st, 2nd embodiment attaches | subjects the same code | symbol, and abbreviate | omits suitably and demonstrates. FIG. 19 is an elevation view showing a building 124 formed by adjoining a plurality of structural members 92 vertically and horizontally, and FIG. 20 is a plan view showing a layer of the lowermost layer of the building 124.

建物124は、左右に隣接する構造部材92の梁部96A同士又は梁部96B同士をコッターによりピン接合して形成された梁128と、上下に隣接する構造部材92の下柱部98Bと上柱部98Aとをピン部材によってピン接合して形成された柱130とから構成され、各梁128の長さが相互に等しい等スパンとされている。また、左右に隣接する構造部材92の梁部96A同士又は梁部96B同士は、梁128の中央部でピン接合され、上下に隣接する構造部材92の下柱部98Bと上柱部98Aとは、柱130の中央部でピン接合されている。建物124の最下層では、基礎部132に下柱部98Bが支持・固定された構造部材92と基礎部132に下柱部98Bが支持されていない構造部材92とが交互に配設されている。なお、図中の白丸は梁接合部又は柱接合部がピン接合であることを示している。   The building 124 includes a beam 128 formed by pin-joining the beam portions 96A or the beam portions 96B of the structural members 92 adjacent on the left and right with a cotter, and a lower column portion 98B and an upper column of the structural member 92 adjacent vertically. The portion 98A is composed of a pillar 130 formed by pin-joining with a pin member, and the lengths of the beams 128 are equal spans. Further, the beam portions 96A or the beam portions 96B of the structural members 92 adjacent to each other on the left and right are pin-joined at the center portion of the beam 128, and the lower column portion 98B and the upper column portion 98A of the structural members 92 adjacent to each other vertically. The pin 130 is pin-joined at the center. In the lowermost layer of the building 124, the structural members 92 in which the lower pillar portion 98B is supported and fixed on the base portion 132 and the structural members 92 in which the lower pillar portion 98B is not supported on the base portion 132 are alternately arranged. . In addition, the white circle in a figure has shown that a beam junction part or a column junction part is pin junction.

図20に示すように、建物124の最下層を平面視すると、X方向及びY方向において、基礎部132に下柱部98Bが支持される構造部材92と、基礎部132に下柱部98Bが支持されていない構造部材92とが交互に並んでいる。なお、図中の図中の白丸は梁接合部がピン接合であることを示し、白三角は、基礎部132に下柱部98Bが支持された構造部材92を示し、白三角がないものは、基礎部132に下柱部98Bが支持されていない構造部材92を示している。   As shown in FIG. 20, when the lowermost layer of the building 124 is viewed in plan, the structural member 92 in which the lower column part 98 </ b> B is supported by the foundation part 132 and the lower column part 98 </ b> B in the foundation part 132 in the X direction and the Y direction. The structural members 92 that are not supported are alternately arranged. The white circles in the figure indicate that the beam joint is a pin joint, the white triangles indicate the structural member 92 in which the lower column part 98B is supported by the base part 132, and those without the white triangles. The structural member 92 in which the lower column part 98B is not supported by the base part 132 is shown.

次に、本発明の第3の実施形態の作用及び効果について説明する。   Next, operations and effects of the third exemplary embodiment of the present invention will be described.

図21は、複数層からなる一般的な建物134を示す立面図であり、各架構を構成する梁138に発生する地震荷重に起因する曲げモーメントを示している。建物134は、柱136と梁138とから構成され、最下層を構成する架構の柱136が全て基礎部132に支持・固定されている。   FIG. 21 is an elevational view showing a general building 134 composed of a plurality of layers, and shows a bending moment resulting from a seismic load generated on a beam 138 constituting each frame. The building 134 is composed of a pillar 136 and a beam 138, and the frame pillar 136 constituting the lowermost layer is all supported and fixed to the foundation portion 132.

図22は、図21に示す建物134において、最下層を構成する柱136を、基礎部132に支持される柱136Aと基礎部132に支持されていない柱136Bとで交互に配設した場合に、梁138に発生する長期荷重に起因する曲げモーメント図の略図を示し、図23は、梁138に発生する地震荷重に起因する曲げモーメント図の略図を示している。なお、各曲げモーメント図は、簡単のため、柱136、136A、136Bによる曲げ戻し等は考慮していない。   FIG. 22 shows a case where the pillars 136 constituting the lowermost layer are alternately arranged between the pillars 136A supported by the foundation part 132 and the pillars 136B not supported by the foundation part 132 in the building 134 shown in FIG. FIG. 23 shows a schematic diagram of a bending moment diagram resulting from a long-term load generated in the beam 138, and FIG. 23 shows a schematic diagram of a bending moment diagram resulting from an earthquake load generated in the beam 138. Note that the bending moment diagrams do not consider bending back by the columns 136, 136A, and 136B for simplicity.

図21から分かるように、梁138に発生する地震荷重に起因する曲げモーメントは、柱136と梁138との仕口部で上向きに最大となり、梁138の中央部で下向きに最大となる。一方、図22から分かるように、基礎部132に支持されない柱136Bから両側へ張り出す2つの梁138に発生する常時荷重に起因する曲げモーメントは、基礎部132に支持されていない柱136B付近で下向きに最大となり、各梁138の中央部でゼロとなっている。これは、柱136Bから両側へ張り出す2つの梁138が、左右の柱136Aによって支持されるためである。一方、図23から分かるように、梁138及び柱136A、136Bに発生する地震荷重に起因する曲げモーメントは、それぞれ梁138、柱136A、136Bの中央部でゼロ(反曲点)となる。   As can be seen from FIG. 21, the bending moment due to the seismic load generated in the beam 138 is maximized upward at the joint between the column 136 and the beam 138, and is maximized downward at the center of the beam 138. On the other hand, as can be seen from FIG. 22, the bending moment caused by the constant load generated in the two beams 138 projecting from both sides of the column 136B not supported by the base portion 132 is near the column 136B not supported by the base portion 132. It is maximum downward and zero at the center of each beam 138. This is because the two beams 138 projecting from the pillar 136B to both sides are supported by the left and right pillars 136A. On the other hand, as can be seen from FIG. 23, the bending moment caused by the seismic load generated in the beam 138 and the columns 136A, 136B becomes zero (the inflection point) at the center of the beam 138, the columns 136A, 136B, respectively.

本実施形態は、図22及び図23に示す梁138の応力状態に則して、左右に隣接する2つの構造部材92の梁部96A又は梁部96B同士をコッターによりピン接合する。即ち、建物124(図19参照)の最下層において、基礎部132に下柱部98Bが支持された構造部材92と、基礎部132に下柱部98Bが支持されていない構造部材92とを交互に配設することで、梁128の中央部における長期荷重に起因する曲げモーメントをゼロにしている。そのため、各梁128の中央部では、地震荷重に起因する曲げモーメントのみならず長期荷重に起因する曲げモーメントが発生しない。従って、応力的に有利な梁128の中央部で、隣接する構造部材92の梁部96A同士又は梁部96B同士をピン接合できる。一方、図23から分かるように、柱136A、136Bの中央部では、地震荷重に起因する曲げモーメントが発生しない。そのため、応力的に有利な柱130(図19参照)の中央部で、上柱部98A、下柱部98B同士をピン接合することができる。   In the present embodiment, in accordance with the stress state of the beam 138 shown in FIGS. 22 and 23, the beam portions 96A or the beam portions 96B of the two structural members 92 adjacent to the left and right are pin-joined by a cotter. That is, in the lowermost layer of the building 124 (see FIG. 19), the structural member 92 in which the lower pillar portion 98B is supported by the base portion 132 and the structural member 92 in which the lower pillar portion 98B is not supported by the base portion 132 are alternated. The bending moment resulting from the long-term load at the center of the beam 128 is made zero. Therefore, in the central portion of each beam 128, not only a bending moment due to an earthquake load but also a bending moment due to a long-term load does not occur. Accordingly, the beam portions 96A or the beam portions 96B of the adjacent structural members 92 can be pin-joined at the central portion of the beam 128 which is advantageous in terms of stress. On the other hand, as can be seen from FIG. 23, a bending moment due to the seismic load does not occur in the central part of the pillars 136A, 136B. Therefore, the upper column portion 98A and the lower column portion 98B can be pin-bonded at the center portion of the column 130 (see FIG. 19) which is advantageous in terms of stress.

なお、本実施形態では、複数の構造部材92を接合して建物124を構成したが、水平部材12、下柱部材16及び上柱部材26を組み合わせて建物124を構成しても良いし、構造部材92と水平部材12、下柱部材16及び上柱部材26を組み合わせて建物124を構成しても良い。また、本実施形態のように、全ての梁128及び柱130の中央部をピン接合とすると、地震時の変形が増大してしまう可能性がある。そのような場合には、同一の建物124内に、剛接ラーメン、耐震壁、ブレースを有する耐震性能が高い架構を適切に配置するなど、構造設計上の配慮が必要である。   In the present embodiment, the building 124 is configured by joining a plurality of structural members 92. However, the building 124 may be configured by combining the horizontal member 12, the lower column member 16, and the upper column member 26. The building 124 may be configured by combining the member 92, the horizontal member 12, the lower pillar member 16, and the upper pillar member 26. Moreover, if the central part of all the beams 128 and pillars 130 are pin-joined as in this embodiment, there is a possibility that deformation during an earthquake will increase. In such a case, it is necessary to consider structural design such as appropriately laying a frame having high seismic performance having rigid frames, a seismic wall, and braces in the same building 124.

また、第1の実施形態では、図2に示すように、水平部材12の梁部28と、水平部材12の梁部28(梁部材)とを対向させ、梁部28同士をコッター32によってピン接合する場合の例について説明したが、水平部材12の梁部28がピン接合される相手は、水平部材12の梁部28に限らず、架構22を構成する梁部材であれば良い。即ち、水平部材12の梁部28、34や、構造部材92の梁部96A〜96Dでも良いし、柱梁仕口部18を備えない在来のPCa製の梁部材でも良い。また、水平部材12の柱梁仕口部18と接合される下柱部材16及び上柱部材26は、PCa製に限らず、現場打ちコンクリートによって形成された柱部材でも良い。   Further, in the first embodiment, as shown in FIG. 2, the beam portion 28 of the horizontal member 12 and the beam portion 28 (beam member) of the horizontal member 12 are opposed to each other, and the beam portions 28 are pinned by a cotter 32. Although the example in the case of joining was demonstrated, the other party to which the beam part 28 of the horizontal member 12 is pin-joined is not restricted to the beam part 28 of the horizontal member 12, and what is necessary is just the beam member which comprises the frame 22. FIG. That is, the beam portions 28 and 34 of the horizontal member 12, the beam portions 96 </ b> A to 96 </ b> D of the structural member 92, or a conventional beam member made of PCa that does not include the column beam joint 18. Further, the lower column member 16 and the upper column member 26 joined to the column beam joint portion 18 of the horizontal member 12 are not limited to those made of PCa, and may be column members formed of cast-in-place concrete.

更に、第2の実施形態では、図13又は図15に示すように、構造部材92の下柱部98Bと柱部材102とを接合する場合の例について説明したが、構造部材92の下柱部98Bが接合される相手は、柱部材102に限らず、構造部材92を支持可能な柱部材であれば良い。即ち、構造部材92の上柱部98A(下柱部98B)でも良いし、柱梁仕口部94を備えない在来のPCa製の柱部材や、現場打ちコンクリートによって形成された柱部材でも良い。   Furthermore, in the second embodiment, as shown in FIG. 13 or FIG. 15, the example in the case where the lower column portion 98B of the structural member 92 and the column member 102 are joined has been described. The counterpart to which 98B is joined is not limited to the pillar member 102, but may be any pillar member that can support the structural member 92. That is, the upper column portion 98A (lower column portion 98B) of the structural member 92 may be used, or a conventional PCa column member that does not include the column beam joint portion 94, or a column member formed of cast-in-place concrete. .

上記全ての実施形態では、説明の都合上、水平部材12、構造部材92における梁鉄筋、柱鉄筋及びせん断補強筋を適宜省略して説明したが、梁鉄筋、柱鉄筋及びせん断補強筋は、各柱部材に求められる強度に応じて配置、本数、径の大きさ、形状等を決めて適宜設ければよい。   In all the embodiments described above, for convenience of explanation, the beam reinforcement, the column reinforcement, and the shear reinforcement in the horizontal member 12 and the structural member 92 are omitted as appropriate. However, the beam reinforcement, the column reinforcement, and the shear reinforcement are The arrangement, number, diameter, shape, and the like may be determined and provided as appropriate according to the strength required for the column member.

また、水平部材12又は構造部材92は、建物10、56、80、124の一部に用いても良いし、全てに用いても良いし、水平部材12と構造部材92とを組み合わせて建物10、56、80、124を構成しても良い。更に、建物10、56、80、124は、積層ゴム支承、弾性すべり支承、転がり支承等の免震装置を設けた免震構造物として構成しても良い。   Further, the horizontal member 12 or the structural member 92 may be used for a part of the buildings 10, 56, 80, 124, or may be used for all of the buildings 10, or the building 10 may be formed by combining the horizontal member 12 and the structural member 92. , 56, 80, 124 may be configured. Furthermore, the buildings 10, 56, 80, and 124 may be configured as seismic isolation structures provided with seismic isolation devices such as laminated rubber bearings, elastic sliding bearings, and rolling bearings.

更に、水平部材12(梁部材)、下柱部材16、上柱部材26、構造部材92、柱部材102は、鉄筋コンクリート、鉄骨鉄筋コンクリート、及びプレストレストコンクリート等のさまざまなプレキャストコンクリート製とすることが可能である。   Further, the horizontal member 12 (beam member), the lower column member 16, the upper column member 26, the structural member 92, and the column member 102 can be made of various precast concretes such as reinforced concrete, steel reinforced concrete, and prestressed concrete. is there.

以上、本発明の第1〜第3の実施形態について説明したが、本発明はこうした実施形態に限定されるものでなく、第1〜第3の実施形態を組み合わせて用いても良いし、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   The first to third embodiments of the present invention have been described above, but the present invention is not limited to such embodiments, and the first to third embodiments may be used in combination. Of course, various embodiments can be implemented without departing from the scope of the invention.

本発明の第1の実施形態に係る水平部材を示す、斜視図である。It is a perspective view which shows the horizontal member which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る接合構造を示す、平面図である。1 is a plan view showing a joint structure according to a first embodiment of the present invention. 本発明の第1の実施形態に係る梁接合部の拡大図を示す、説明図である。It is explanatory drawing which shows the enlarged view of the beam junction part which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る梁接合部の拡大図を示す、説明図である。It is explanatory drawing which shows the enlarged view of the beam junction part which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る建物の施工方法を示す、説明図である。It is explanatory drawing which shows the construction method of the building which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る建物の施工方法を示す、説明図である。It is explanatory drawing which shows the construction method of the building which concerns on the 1st Embodiment of this invention. 一般的な架構における梁に発生する常時荷重及び地震荷重に起因する曲げモーメント図の略図である。It is the schematic of the bending moment figure resulting from the normal load and seismic load which generate | occur | produce in the beam in a general frame. 本発明の第1の実施形態に係る接合構造により構成された架構における梁に発生する曲げモーメント図の略図である。It is the schematic of the bending moment figure which generate | occur | produces in the beam in the frame comprised by the joining structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る接合構造により構成された架構における梁に発生する曲げモーメント図の略図である。It is the schematic of the bending moment figure which generate | occur | produces in the beam in the frame comprised by the joining structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る接合構造により構成された架構における梁に発生する曲げモーメント図の略図である。It is the schematic of the bending moment figure which generate | occur | produces in the beam in the frame comprised by the joining structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る建物を示す、平面図である。It is a top view which shows the building which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る水平部材の変形例を示す、斜視図である。It is a perspective view which shows the modification of the horizontal member which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る構造部材を示す、斜視図である。It is a perspective view which shows the structural member which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る接合構造を示す、斜視図である。It is a perspective view which shows the joining structure which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る構造部材の変形例を示す、斜視図である。It is a perspective view which shows the modification of the structural member which concerns on the 2nd Embodiment of this invention. 一般的な架構における梁及び柱に発生する地震荷重に起因する曲げモーメント図の略図である。It is the schematic of the bending moment figure resulting from the seismic load which generate | occur | produces the beam and column in a general frame. 本発明の第2の実施形態に係る構造部材の変形例を示す、斜視図である。It is a perspective view which shows the modification of the structural member which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る構造部材の変形例を示す、斜視図である。It is a perspective view which shows the modification of the structural member which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る建物を示す、立面図である。It is an elevational view showing a building according to a third embodiment of the present invention. 本発明の第3の実施形態に係る建物を示す、平面図である。It is a top view which shows the building which concerns on the 3rd Embodiment of this invention. 一般的な建物を示す立面図であり、架構を構成する梁に発生する常時荷重に起因する曲げモーメント図の略図である。It is an elevation view showing a general building, and is a schematic diagram of a bending moment diagram caused by a constant load generated in a beam constituting a frame. 本発明の第3の実施形態に係る建物を示す立面図であり、架構を構成する梁に発生する常時荷重に起因する曲げモーメント図の略図である。It is an elevation view which shows the building which concerns on the 3rd Embodiment of this invention, and is a schematic diagram of the bending moment figure resulting from the constant load which generate | occur | produces in the beam which comprises a frame. 本発明の第3の実施形態に係る建物を示す立面図であり、架構を構成する梁に発生する地震荷重に起因する曲げモーメント図の略図である。It is an elevation view which shows the building which concerns on the 3rd Embodiment of this invention, and is a schematic diagram of the bending moment figure resulting from the seismic load which generate | occur | produces in the beam which comprises a frame. 従来の柱梁接合構造体を示す正面図である。It is a front view which shows the conventional column beam junction structure.

符号の説明Explanation of symbols

10 建物
12 水平部材(構造部材)
18 柱梁仕口部
22A 梁
28 梁部(梁部材)
32 コッター(ピン接合手段)
34 梁部(梁部材)
48 穴部(ピン接合手段)
50 ピン部材(ピン接合手段)
52 溝穴(ピン接合手段)
56 建物
80 建物
92 構造部材
94 柱梁仕口部
96A 梁部(梁部材)
96B 梁部(梁部材)
96C 梁部(梁部材)
96D 梁部(梁部材)
98A 上柱部(柱部、柱部材)
98B 下柱部(柱部、柱部材)
102 柱部材
110A 梁
111 柱
120 構造部材
124 建物
128 梁
130 柱
10 Building 12 Horizontal member (Structural member)
18 Column beam joint 22A Beam 28 Beam (beam member)
32 cotters (pin joining means)
34 Beam (beam member)
48 holes (pin joining means)
50 pin member (pin joining means)
52 Slot (pin joining means)
56 Building 80 Building 92 Structural member 94 Column beam joint 96A Beam (beam member)
96B Beam (beam member)
96C Beam (beam member)
96D Beam (beam member)
98A Upper pillar part (pillar part, pillar member)
98B Lower pillar part (pillar part, pillar member)
102 Column member 110A Beam 111 Column 120 Structural member 124 Building 128 Beam 130 Column

Claims (8)

柱梁仕口部と前記柱梁仕口部の側方に設けられる梁部とを一体にして形成したプレキャストコンクリート製の構造部材と、
柱に支持されるプレキャストコンクリート製の梁部材と、
を有し、
前記構造部材の前記梁部と前記梁部材とを各々の主筋を継がずにピン接合するピン接合手段と、
を有することを特徴とするプレキャストコンクリート構造部材の接合構造。
A structural member made of precast concrete formed integrally with a column beam joint and a beam provided on the side of the column beam joint;
Beam members made of precast concrete supported by columns;
Have
Pin joining means for pin joining the beam portion of the structural member and the beam member without joining the respective main bars ;
A joint structure of precast concrete structural members characterized by comprising:
前記構造部材が、前記柱梁仕口部の上方及び下方の少なくとも一方に設けられ前記柱梁仕口部と一体とされる柱部、を有することを特徴とする請求項1に記載のプレキャストコンクリート構造部材の接合構造。   2. The precast concrete according to claim 1, wherein the structural member includes a column portion provided at least one of the upper and lower sides of the column beam joint portion and integrated with the column beam joint portion. Bonding structure of structural members. 前記ピン接合手段が、対向する前記構造部材の前記梁部の端面及び前記梁部材の端面の少なくとも一方に形成されたコッターであることを特徴とする請求項1又は2に記載のプレキャストコンクリート構造部材の接合構造。   3. The precast concrete structural member according to claim 1, wherein the pin joining means is a cotter formed on at least one of an end surface of the beam portion and an end surface of the beam member of the structural member facing each other. Bonding structure. 前記ピン接合手段が、対向する前記構造部材の前記梁部の端面及び前記梁部材の端面に形成された穴部と、前記穴部へ挿入されるピン部材と、から構成されることを特徴とする請求項1又は2に記載のプレキャストコンクリート構造部材の接合構造。   The pin joining means is composed of an end surface of the beam portion of the structural member that opposes, a hole portion formed in the end surface of the beam member, and a pin member that is inserted into the hole portion. The joint structure of precast concrete structural members according to claim 1 or 2. 請求項1〜4の何れか1項に記載のプレキャストコンクリート構造部材の接合構造から構成される架構を有する建物であって、
前記架構は、前記構造部材の前記梁部と前記梁部材とを接合して形成される梁を有し、
前記梁部と前記梁部材とが、前記梁の中央部で前記ピン接合手段によりピン接合されたことを特徴とする建物。
A building having a frame composed of a joint structure of precast concrete structural members according to any one of claims 1 to 4,
The frame has a beam formed by joining the beam portion of the structural member and the beam member;
The building in which the beam portion and the beam member are pin-joined by the pin-joining means at a central portion of the beam.
柱梁仕口部と前記柱梁仕口部の側方に設けられる梁部と前記柱梁仕口部の上方及び下方の少なくとも一方に設けられた柱部とを一体にして形成したプレキャストコンクリート製の構造部材と、柱に支持されるプレキャストコンクリート製の梁部材と、柱部材と、から構成される架構を有する建物であって、
前記架構は、前記構造部材の前記梁部と前記梁部材とを接合して形成される梁と、前記構造部材の前記柱部と前記柱部材とを接合して形成される柱と、を有し、
前記梁部と前記梁部材又は前記柱部と前記柱部材が、前記梁の中央部又は前記柱の中央部でピン接合手段により各々の主筋を継がずにピン接合されたことを特徴とする建物。
A precast concrete made by integrally forming a column beam joint portion, a beam portion provided on the side of the column beam joint portion, and a column portion provided at least above and below the column beam joint portion. A building having a frame composed of a structural member, a beam member made of precast concrete supported by a column, and a column member,
The frame has a beam formed by joining the beam portion of the structural member and the beam member, and a column formed by joining the column portion of the structural member and the column member. And
The building in which the beam portion and the beam member or the column portion and the column member are pin-joined at the center portion of the beam or the center portion of the column by the pin joining means without connecting the main bars. .
前記架構から構成された複数層の前記建物を平面視したとき、最下層の前記架構の柱が、一つ置きに基礎に支持されていることを特徴とする請求項5又は6に記載の建物。   7. The building according to claim 5, wherein, when the building having a plurality of layers composed of the frame is viewed in plan, the columns of the frame in the lowermost layer are supported by the foundation every other. . 柱上に載置されたプレキャストコンクリート製の梁部材を、柱梁仕口部と前記柱梁仕口部の側方に設けられる梁部とを一体にして形成したプレキャストコンクリート製の構造部材の端面と、前記梁部材の端面とが対向するように隣接して配置する梁部材搬送工程と、
前記構造部材搬送工程の後に前記構造部材の梁部と前記梁部材とをピン接合手段により各々の主筋を継がずにピン接合する梁部接合工程と、
を有することを特徴とする建物の施工方法。
An end face of a precast concrete structural member formed by integrating a beam member made of precast concrete placed on a column and a beam portion provided on the side of the column beam joint portion. And a beam member transporting step disposed adjacent to each other so that an end face of the beam member is opposed to
A beam part joining step in which the beam part of the structural member and the beam member are pin-joined without connecting each main bar by a pin joining means after the structural member conveying step;
A construction method for a building, characterized by comprising:
JP2008023249A 2008-02-01 2008-02-01 Precast concrete structural member joint structure, building, and construction method of building Active JP5154962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023249A JP5154962B2 (en) 2008-02-01 2008-02-01 Precast concrete structural member joint structure, building, and construction method of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008023249A JP5154962B2 (en) 2008-02-01 2008-02-01 Precast concrete structural member joint structure, building, and construction method of building

Publications (2)

Publication Number Publication Date
JP2009185447A JP2009185447A (en) 2009-08-20
JP5154962B2 true JP5154962B2 (en) 2013-02-27

Family

ID=41068956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023249A Active JP5154962B2 (en) 2008-02-01 2008-02-01 Precast concrete structural member joint structure, building, and construction method of building

Country Status (1)

Country Link
JP (1) JP5154962B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2966232A1 (en) 2014-07-07 2016-01-13 Fundacíon Tecnalia Research & Innovation Dry joint joining device between columns and beams of precast reinforced concrete
EP2966236A1 (en) 2014-07-07 2016-01-13 Fundacíon Tecnalia Research & Innovation Joining device for precast reinforced concrete columns with a dry joint

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5602455B2 (en) * 2009-12-24 2014-10-08 大成建設株式会社 Beam members and building structures
JP5656077B2 (en) * 2011-03-02 2015-01-21 清水建設株式会社 PCa beam joining structure and joining method
JP6347366B2 (en) * 2014-07-31 2018-06-27 株式会社ライト建築事務所 T-shaped molecular structural Lego frame
CN105863047A (en) * 2016-05-10 2016-08-17 上海理工大学 Prefabricated concrete beam column joint and construction method
JP6853056B2 (en) * 2017-01-31 2021-03-31 三井住友建設株式会社 Concrete pillar
JP6978894B2 (en) * 2017-10-27 2021-12-08 三井住友建設株式会社 How to build a beam-column joint structure
CN110439116A (en) * 2019-08-09 2019-11-12 昌大建筑科技有限公司 Concrete assembles dry construction linked system entirely
JP7430343B2 (en) * 2020-08-29 2024-02-13 大成建設株式会社 Structures and their construction methods
JP7438065B2 (en) * 2020-08-29 2024-02-26 大成建設株式会社 pillar structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014208U (en) * 1973-05-30 1975-02-14
JPH083462Y2 (en) * 1991-04-17 1996-01-31 仁 森 PC foundation beam member joint pin
JP3357352B2 (en) * 2001-02-01 2002-12-16 三井建設株式会社 Seismic building structure
JP5236152B2 (en) * 2005-09-28 2013-07-17 株式会社竹中工務店 Method of joining precast concrete column beams
JP4866641B2 (en) * 2006-03-30 2012-02-01 前田建設工業株式会社 Precast pillar manufacturing method, precast pillar construction method
JP3138522U (en) * 2007-10-24 2008-01-10 株式会社トップコン Joint structure of precast beam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2966232A1 (en) 2014-07-07 2016-01-13 Fundacíon Tecnalia Research & Innovation Dry joint joining device between columns and beams of precast reinforced concrete
EP2966236A1 (en) 2014-07-07 2016-01-13 Fundacíon Tecnalia Research & Innovation Joining device for precast reinforced concrete columns with a dry joint
WO2016005631A1 (en) 2014-07-07 2016-01-14 Fundación Tecnalia Research & Innovation Joining device for reinforced concrete prefabricated pillars with a dry joint
WO2016005632A2 (en) 2014-07-07 2016-01-14 Fundación Tecnalia Research & Innovation Device for connecting pillars and beams prefabricated from reinforced concrete with dry joints

Also Published As

Publication number Publication date
JP2009185447A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP5154962B2 (en) Precast concrete structural member joint structure, building, and construction method of building
JP5860576B2 (en) Precast column beam connection structure
JP6446593B1 (en) Non-brace steel building, its construction method and column base unit
JP2006226054A (en) Aseismic reinforcing method for existing reinforced concrete building with rigid frame structure
JP5061804B2 (en) Joint structure of a pair of full PC members
JP2014055517A (en) Precast beam-column joint structure
JP2021071026A (en) Column-beam joint structure
JPH0518003A (en) Joining method of steel pipe concrete column and half-precast reinforced concrete column
JP2009161907A (en) Composite hollow structure of column head part or girder end part of bridge
JP7411749B2 (en) How to construct a concrete building
JP2009046829A (en) Aseismatic reinforcing wall
JP5144182B2 (en) Seismic reinforcement structure and seismic reinforcement method for existing buildings
JP6590571B2 (en) Precast concrete beam end joint structure and precast concrete beam column frame
JP2009108500A (en) Precast beam construction method, precast beam, precast beam joint structure, and building
JP6978894B2 (en) How to build a beam-column joint structure
JP3911676B2 (en) SPC structural frame
JP4759301B2 (en) Seismic reinforcement method for buildings
JP6263090B2 (en) RC precast member and RC precast method using the same
JP6312130B2 (en) Column beam structure and beam end members
KR102235422B1 (en) Modul unit joint structure and modul unit method thereby
JP7210237B2 (en) Concrete member connection structure and precast concrete member connection method
JP2017040122A (en) Reinforced concrete column-beam joint precast member
JP7138542B2 (en) Concrete beam structure
KR102556802B1 (en) Connection structure and construction method between precast shear wall and foundation
JP6460810B2 (en) Joint structure of steel column and reinforced concrete beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5154962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150