JP5140895B2 - Solid-state imaging device - Google Patents

Solid-state imaging device Download PDF

Info

Publication number
JP5140895B2
JP5140895B2 JP2000356917A JP2000356917A JP5140895B2 JP 5140895 B2 JP5140895 B2 JP 5140895B2 JP 2000356917 A JP2000356917 A JP 2000356917A JP 2000356917 A JP2000356917 A JP 2000356917A JP 5140895 B2 JP5140895 B2 JP 5140895B2
Authority
JP
Japan
Prior art keywords
solid
region
state imaging
imaging device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000356917A
Other languages
Japanese (ja)
Other versions
JP2001274370A (en
Inventor
直紀 大河内
知久 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2000356917A priority Critical patent/JP5140895B2/en
Publication of JP2001274370A publication Critical patent/JP2001274370A/en
Application granted granted Critical
Publication of JP5140895B2 publication Critical patent/JP5140895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は受光素子用パッケージ及び固体撮像装置に関し、より詳細には(受光領域に入射する入射光以外の)ノイズ成分となる散乱光や漏光(これを総称して迷光と称す)の発生を防止し、又は、迷光が受光素子に入射することを防止する固体撮像装置に関する。
【0002】
【従来の技術】
半導体受光素子は、光を受けて電気信号を出力する素子であり、光センサ、固体撮像素子などとして近年広い分野で使用されている。
【0003】
ところで、このような受光素子は、一般に、受光素子用のパッケージに収納されて使用される。図10は、従来の受光素子用のパッケージであり、(a)は平面図、(b)は(a)のA−A'部における断面図である。なお、(a)において
は透明ガラスカバーを省略して描いている。
【0004】
図から理解されるように、受光素子用のパッケージ100は大きく分けて、受光素子130を収納する収納容器110と、これを封止するための透明ガラスカバー120から成る。
【0005】
収納容器110の中央には凹部が設けられている。これは、受光素子130を収納し固定するためであり、キャビティ部111と称されている。キャビティ部111の外周には内部端子112が配置される。これは、端子113と電気的に接続されている。
【0006】
受光素子130には、入射光を光電変換して信号電荷を生成する受光領域132と、信号電荷に対応する電気信号を出力するための接続電極131が配置されている。
【0007】
受光素子130は、キャビティ部111内の所定位置に接着される。そして、受光素子130の接続電極131と、収納容器110の内部端子112とが、金属細線140によって電気的に接続される。このため、受光素子130から出力された電気信号は、接続電極131、金属細線140、内部端子112の順に通って端子113に導かれる。
【0008】
金属細線140で接続された後、収納容器110は、光を透過する透明ガラスカバー120で封止される。これは、受光素子130を機械的な衝撃や酸素等による劣化から保護するためである。接続電極131を含む受光素子130の周辺部と金属細線140及び内部端子112の上部に相当する透明ガラスカバー120の外周部には、黒色顔料や金黒などによる光吸収層121が形成されている。この光吸収層121は遮光膜として働き、パッケージ100の外部から受光素子130の周辺部や端部に光が直接入射するのを防止したり、入射光が金属細線140に照射し散乱光が発生するのを防止する。また、光を吸収する性質があるので、入射光が受光素子130の表面で反射してこの反射光が漏光となって再度透明ガラスカバー120の内側表面で反射し受光素子130の周辺部や端部に入射するのを防止する。これらの直接入射光、散乱光、反射光は、受光素子130が生成する電気信号に対してノイズとして作用する。従って、光吸収層121は、ノイズを低減するために形成されていると言える。
【0009】
光吸収層121の代わりに薄い金属板で形成された遮光板を透明ガラスカバー120と受光素子130の間に配置させることも周知である。ここでは、ノイズとして作用する光を遮るために配置される膜や金属板を遮光部材と称する。なお、ノイズとして作用する光をここでは迷光と称する。
【0010】
このように、受光素子用パッケージ100は、収納容器110に受光素子130を収納させ透明ガラスカバー120にて封止することにより、外部酸素の侵入防止とそれによる受光素子耐久性向上、及び、不必要な光の侵入防止とそれによるノイズの低減という目的を合わせ持つ。
【0011】
なお、ここでは、一般的な受光素子を搭載するパッケージにて説明した。しかし、受光素子を固体撮像素子に置き換えて、これをパッケージに搭載し封止すれば固体撮像装置となる。この場合、上記の受光領域は、有効画素が配列される部位に相当する。また、固体撮像装置において、このような目的で配置された遮光部材は、フレア防止板、フレア防止用のシールド材と称せられており、特開昭63-12046号公報や実開平5-38916号公報などで開示されている。
【0012】
【発明が解決しようとする課題】
しかしながら、従来の受光素子用パッケージは不必要な光を遮光しているにも係わらず、これに搭載した受光素子は、本来生じ得ないはずの光信号(以下偽信号と称す)を出力するという問題点があった。特に固体撮像素子を搭載した固体撮像装置においては、フレアが発生することがあるという問題点があった。
【0013】
本発明は、このような問題点に鑑みてなされたものであり、フレアが低減された固体撮像装置を提供する。
【0014】
【課題を解決するための手段】
本発明者は、上記の偽信号の原因が斜め入射光による散乱光にあることを突き止め本発明を成すに至った。ここで、図面を参照しながら偽信号の原因を説明する。図11は、従来の受光素子用パッケージの部分断面図である。本図に示すように受光素子130と収納容器110とは、ある高さhを有する金属細線140で接続される。この金属細線140は機械的な衝撃に弱い。このため透明ガラスカバー120は、金属細線140に接触せぬように配置する。従って、光吸収層121を有する透明ガラスカバー120と受光素子130との間隔Hは、金属細線140の高さh以下にはならず(H>h)、必ず有限の値を有することになる。
【0015】
ところで、光吸収層121は、図11の符号150の矢印で示した方向から光が侵入せぬように設計されている。前述の通り、迷光には直接入射光、散乱光、反射光があるが、このうち最も強く、最もノイズとして大きく作用するのは、直接入射光である。このため、従来の光吸収膜121は、150の矢印の方向からの光を遮断することを考慮して設計されている。
【0016】
しかし、実際には斜め方向から入射する光があった。図11では理解を促すために、斜め入射光151の極端な例を示している。そして、上記のように透明ガラスカバー120と受光素子130との間に間隔Hがあれば、斜入射光の一部が受光素子表面で反射されて金属細線140を照射して散乱光S1が発生するのである。
【0017】
また、上記のように受光素子表面で反射された反射光の一部が、収納容器110の内部を照射して散乱光S2が発生したり、あるいは金属細線140での散乱光S1が更に収納容器110の内部で散乱して散乱光S3が発生することもある。
【0018】
そのような散乱光S1〜S3は、受光素子130の端部や周辺部に入射し、受光素子内部に光生成電荷を発生させる。そして、これらの光生成電荷が受光素子内部を拡散し、受光素子130の受光領域132に達することにより、偽信号になっていたのである。また、受光素子130が固体撮像素子であるなら、S1はダイレクトに固体撮像素子の受光領域132に達し、これによりフレアが発生していたのである。
【0033】
従って、請求項1に記載の発明は、入射光に応じた信号電荷を生成する複数の画素を有する画素領域と前記信号電荷に対応する電気信号を出力するための接続電極が配置される周辺回路と前記画素領域と前記周辺回路との間に配置されるガードリング領域またはオプチカルブラック領域とを有する固体撮像素子と、前記接続電極と電気的に接続するための内部端子を有し前記固体撮像素子を収納して前記接続電極と前記内部端子とを金属細線によって電気的に接続して前記電気信号を外部に出力する収納容器と、前記収納容器を封止し光学的に透明なカバーと、前記固体撮像素子と前記カバーとの間に配置され入射光を前記画素領域に導くとともに入射光を反射させて前記ガードリング領域または前記オプチカルブラック領域に導く端部を有する開口部と少なくとも前記金属細線の上部を覆う第1領域と前記固体撮像素子の近傍であって前記第1領域とは異なる平面上に配置され且つ内側が前記開口部に隣接する第2領域とを有し前記第1領域及び前記第2領域が一体化された遮光部材と、を備え前記入射光の固体撮像素子表面に対する入射角をθとし、前記固体撮像素子の表面から前記第2領域の上部表面までの距離をtとし、前記複数の画素が配置された画素領域から前記開口部の端部までの距離をdとした場合、「tanθ<d/t」の式を満たすことを特徴とする。
【0034】
第1領域は、金属細線上部を覆うので入射光が金属細線に入射してフレアを発生することを防止する。また、第2領域は、固体撮像素子表面の近傍に配置されるので、図11に示したような固体撮像素子表面からの反射光が収納容器内部に入射することを低減する。
【0035】
また、請求項12の発明は、請求項10又は請求項11のいずれかに記載の固体撮像装置において、前記第2領域は、幅が0.5mm以上であることを特徴とする。本発明の遮光部材を金属のプレス加工で形成すれば、開口部と第1,2領域を一度の処理で形成できるのでより好ましい。この場合、第2領域の幅が0.5mm以上あると、開口部の形状が安定する。
【0036】
また、請求項13の発明は、請求項10又は請求項11のいずれかに記載の固体撮像装置において、前記入射光の固体撮像素子表面に対する入射角をθとし、前記固体撮像素子の表面から前記第2領域の上部表面までの距離をtとし、前記複数の画素が配置された画素領域から前記開口部の端部までの距離をdとした場合、tanθ<d/tの式を満たすことを特徴とする。
【0037】
遮光部材がテーパー部を有するか、または、遮光部材の一部が固体撮像素子表面の近傍まで配置される構成ならば、迷光のほぼ全量を遮断することが可能となる。しかし、近年の固体撮像装置は、更なるノイズ低減を要求されている。このため、開口部の端部から反射される極めて僅かな迷光さえも低減するのが好ましい。
【0038】
請求項の構成により、入射光は遮光部材の開口部端部で反射しても画素領域には達することができない。従って、入射光が遮光部材の開口端面で反射して画素領域に入射することを確実に防止することが可能となる。
【0039】
また、前記遮光部材の第1領域と第2領域との間にテーパー部を設ける場合、前記入射光の固体撮像素子表面に対する入射角をθとし、前記テーパー部表面と前記固体撮像素子の法線との成す角度をθ’とし、前記第1領域の上面から前記第2領域の上面までの距離をaとし、前記第2領域の幅をbとすると、「tan(2θ’+θ)<(b/a)+tanθ’」の式を満たすことを特徴とする。
【0040】
第1領域と第2領域とを一体的に接続するテーパー部に入射した入射光は反射する。しかし、上記の構成により、反射した光は、画素領域に達することができない。従って、入射光がテーパー部で反射して画素領域に入射することを確実に防止することが可能となる。
【0041】
また、前記遮光部材は、熱膨張率が17.3×10-6/K以下特性を有するステンレス材料により形成されていることを特徴とする。
【0042】
遮光部材は、画素に迷光が入射するのを防止するために配置される。よって、遮光部材の開口部は、固体撮像素子の画素領域と位置を合わせて固定される。しかしながら、パッケージに組み立てられた後に遮光部材が環境温度によって、膨張・収縮してしまうと信頼性が損なわれてしまう恐れがある。熱膨張率が17.3×10-6/K以下であるステンレスならば、上記の懸念が低減される。
【0043】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施形態を説明する。
[実施形態1]
図1は、本発明の実施形態1に係る受光素子用パッケージ1の断面図であり、(a)は平面図、(b)はそのB−B'部における断面図である。
【0044】
本受光素子用パッケージ1は、受光素子30を収納する収納容器10と、テーパー部51を有する遮光部材50と、これらを封止するための透明ガラスカバー20を有している。なお、図1(a)においては、透明ガラスカバー20と遮光部材50の図示を省略している。
【0045】
収納容器10の中央には受光素子30を収納し固定するためのキャビティ部11が設けられている。キャビティ部11の周囲には端子13と電気的に接続されている内部端子12が配置される。さらにその周囲には遮光部材50を固定するための棚部14が設けられる。
【0046】
受光素子30には入射光を光電変換して信号電荷を生成する受光領域32と、信号電荷に対応する電気信号を出力するための接続電極31が配置されている。そして、接続電極31と内部端子12は、金属細線40にて電気的に接続される。
【0047】
図2(a)は、遮光部材50の斜視図である。遮光部材50は、受光素子30の受光領域32に入射光を導く開口部52と、テーパー部51を有し、透明ガラスカバー20と受光素子30の間に配置される。
【0048】
開口部52は、受光領域32と同等かやや大きめに開けられる。テーパー部51は、緩やかな斜面をなしており受光素子30近傍のキャビティ部11まで延在する。一方、遮光部材50の周囲の平坦部は、収納容器10の棚部14に載せられて固定される。このため、遮光部材50は、金属細線40、内部端子12、受光素子30周辺部の上部を覆うような形状になっている。
【0049】
次に、本実施形態のパッケージ1に受光素子30を実装する手順を説明する。まず受光素子30を収納容器10内のキャビティ部11に接着固定する。次に、受光素子30の接続電極31と収納容器10の内部端子12とを金属細線40で電気的に接続する。更に遮光部材50を収納容器10の棚部14に固定することにより、受光素子30近傍のキャビティ部11までテーパー部51を配置する。このとき、開口部52は、受光素子30の受光領域32上に設けられるように遮光部材50を固定する。最後に光を透過する透明ガラスカバー20で封止する。内部は、真空にしても、或いは窒素などの不活性ガスで充填してもよい。
【0050】
このような、本実施形態の受光素子用パッケージ1は、遮光部材50を受光素子30と透明ガラスカバー20の間に配置することにより、斜め入射光が受光素子30表面から金属細線40や収納容器10内部へ反射されるのを防止することができる。つまり、受光素子30表面からの反射光は、テーパー部51を有する遮光部材50によって遮られて、金属細線40や収納容器10の内部に達しない。このため、従来通りの遮光効果の他、斜め入射光が原因である迷光の発生やそれによる偽信号も防止することが可能となる。
【0051】
また、遮光部材50に黒色塗料や金黒などの光吸収層を配置させれば、受光素子30表面からの反射光が遮光部材50に照射されても、それすら吸収してしまうので、さらに好ましい。
【0052】
このような光吸収層を設けるなら、テーパー部は、緩やかな斜面に限定されず、図2(b)に示すようにテーパー部51’をほぼ垂直な角度にして開口部を形成してもよい。テーパー部51’をこのようにすれば、遮光部材の加工が容易となる。但し、緩やかな斜面にしたテーパー部51よりもテーパー部に反射光が照射される光量が増大する。しかし、光吸収層が設けられているため、それによる散乱光は生じ得ない。
【0053】
また、受光素子30を固体撮像素子に置き換えて、本実施形態のパッケージ1に搭載し封止すれば固体撮像装置となるが、この固体撮像装置は、フレアが発生しない。
[実施形態2]
図3は、本発明の実施形態2に係る固体撮像装置2の断面図である。遮光部材61の形状は、実施形態1(図2(a)参照)と同じであるが、本実施形態では透明ガラスカバー60と遮光部材61が一体化されている。また、受光素子30に代えて固体撮像素子33を組み込んで固体撮像装置2を成している。
【0054】
本実施形態の固体撮像装置2を実装する場合には、まず固体撮像素子33を収納容器10内のキャビティ11に接着固定する。次に、金属細線40で接続電極31と内部端子12とを電気的に接続する。最後に、遮光部材61が一体化された透明ガラスカバー60を封止する。このように、本実施形態の固体撮像装置2は、透明ガラスカバー60に遮光部材61が一体化されているので、組立工程が簡略化され、製造が容易になる。
【0055】
また、本実施形態の遮光部材61は、カーボンファイバーのような弾性体にて造られている。このため、実装時に固体撮像素子表面に損傷を加えることなく確実に開口部端部を固体撮像素子表面に接触させることが可能となる。素子表面に接触させて遮光部材を配置させれば、迷光を確実に遮光することが可能となるので、より好ましい。
【0056】
なお、本実施形態においても実施形態1のパッケージ1と同様に、テーパー部62を固体撮像素子33表面に対して垂直に配置させても、遮光部材61に光吸収層を配置させても良い。
[実施形態3]
図4は本発明の実施形態3に係る固体撮像装置3であり、(a)はその部分断面図、(b)は遮光部材71と金属バンプ73が一体化された透明ガラスカバー斜視図である。
【0057】
遮光部材71が透明ガラスカバー70と一体化されている点は、実施形態2の固体撮像装置2と同様である。しかし、本実施形態の固体撮像装置3は、さらに、接続電極31と内部端子12とを電気的に接続するための金属バンプ73が透明ガラスカバー70に一体化されている。
【0058】
この金属バンプ73は、インジウムのような柔らかい導電部材からなる。従って、一つの金属バンプ73を接続電極31と内部端子12とアライメントして圧着させれば、接続電極31と内部端子12とは電気的に接続させることが可能となる。
【0059】
本実施形態の固体撮像装置3を実装するには、固体撮像素子34を収納容器10内のキャビティ11の所定位置に接着固定した後に遮光部材71と金属バンプ73が一体化された透明ガラスカバー70を封止すればよい。このようにすれば、金属細線による接続が不要となり、少ない工数で実装可能となる。
【0060】
このように本実施形態では少ない工数で実装が可能となるが、固体撮像装置3においては特に固体撮像素子表面上のゴミが不良原因となる。従って、実装時の工数が少なくなればそれだけゴミの発生確率も下がり歩留まりが向上し、その結果コストも下がるという効果がある。
【0061】
また、金属細線を使用する実装方法と比較すると、固体撮像素子34表面から透明カバーガラスまでの間隔を小さくすることが可能になり、固体撮像装置3の薄型化・小型化が図れるという効果もある。
【0062】
本実施形態においても、遮光部材71の開口部端部は固体撮像素子34の表面に接触しているため、斜め入射光の一部が固体撮像素子表面から収納容器内部へ反射されるのを防止することができ、偽信号やフレアが発生しない。
【0063】
また、本実施形態においても、テーパー部72を固体撮像素子34表面に対して垂直に配置させても、或いは遮光部材71に光吸収層を配置させても良い。
[実施形態4]
図5は本発明の実施形態4に係る固体撮像装置4であり、(a)は断面図、(b)はそのC部の拡大断面図である。
【0064】
本固体撮像装置4は、固体撮像素子35を収納する収納容器10と、テーパー部82を有する遮光部材80と、これらを封止するための透明ガラスカバー90を有している。なお、図5(b)においては、透明ガラスカバー90と収納容器10の図示を省略している。
【0065】
収納容器10の中央には固体撮像素子35が収納され固定される。収納容器10の内部には内部端子12が配置される。さらにその周囲には遮光部材80を固定するための棚部14が設けられる。
【0066】
固体撮像素子35は、その概略中央部に入射光を光電変換して信号電荷を生成する複数の画素を有する画素領域84(有効画素領域)、その周囲に信号電荷を走査するための周辺回路86、画素領域84と周辺回路86の間にはガードリング部(画素領域の外部に迷光が入射することによって生ずる電荷が、画素領域に流れることを防止する)やオプチカルブラックを配置する領域85、周辺部には信号電荷に対応する電気信号を出力するための接続電極31が配置されている。そして、接続電極31と内部端子12は、金属細線40にて電気的に接続される。
【0067】
遮光部材80は、第1領域81、テーパー部82、第2領域83を有し、固体撮像素子35と透明ガラスカバー90との間に固体撮像素子35とは非接触で配置される。第2領域の内側は隣接して開口部が配置されており、入射光は開口部を通って固体撮像素子35の画素領域84に導かれる。
【0068】
本実施形態において遮光部材80は、熱膨張率が17.3×10-6/K以下であるステンレスをプレス加工されて、第1領域、テーパー部82及び第2領域を一体形成した。熱膨張率が17.3×10-6/K以下であれば、環境温度が変化しても膨張・収縮が僅かであり、遮光部材80と固体撮像素子35の位置関係は、環境温度によって変化しない。このため、信頼性が向上する。なお、第2領域の幅は、0.5mm以上有ると加工が容易であり、且つ、開口部の形状が安定するのでより好ましい。
【0069】
第1領域81は、固体撮像素子35の表面と概略平行な平面部であり、一方の端(即ち外周部)が収納容器10の棚部14に固定される。第1領域の他方の端は、テーパー部82を介して第2領域83と連続的に繋がっている。テーパー部82は、なだらかな斜面となっている。第2領域83は、固体撮像素子35の表面と概略平行な平面である。このため、第2領域83は、第1領域とは異なる平面上に配置されることになる。
【0070】
ここでは、第1領域81の外周部を収納容器10の棚部14に固定した。しかし、これに限らず、第1領域を透明ガラスカバー90に固定してもよい。
第1領域81は、図5に示したように遮光部材80の金属細線40を覆うように配置される。このため、入射した光や各部からの反射光が金属細線40に達することを防止する。
【0071】
また、第2領域は、固体撮像素子35の表面に接近配置される。このため、斜め入射光が原因である迷光はより低減されるばかりでなく、テーパー部82で反射された光が画素領域84に入射することも防止される。図6は、斜め入射光がテーパー部82にて反射された光路を示す概念図である。第2領域を配置させることにより、テーパー部82で反射された光は、固体撮像素子表面には照射されにくくなる。なお、遮光部材80に黒色塗料や金黒などの光吸収層を配置させれば、さらに好ましいことは言うまでも無い。
【0072】
さらに、ここでは、遮光部材80の第1領域81の上面から第2領域の上面までの距離a、第2領域の幅b(図6参照)、固体撮像素子表面に対する入射角度θ、テーパー部82の表面と固体撮像素子35の法線との成す角度θ’の関係は、tan(2θ’+θ)<(b/a)+tanθ’の条件を満足させるものとした。これにより、テーパー部82からの反射光は、画素領域84には達しない。以下、図6の概念図を用いてこれを説明する。
【0073】
テーパー部82に入射した光は、反射して画素領域84に向かって進む。ここで角度αは、θ+θ’である。従って、a×tan(2θ’+θ)の値がb+cより小さいなら、テーパー部82で反射した光は画素領域84に達することは無い。cは、a×tanθ’であるから、上記の関係を式に表すと、a×tan(2θ’+θ)<b+a×tanθ’となる。従って、tan(2θ’+θ)<(b/a)+tanθ’の条件を満足する構成とすれば、テーパー部で反射した光が画素領域に入射することを確実に防止することが可能となる。
【0074】
また、ここでは、固体撮像素子35の表面から第2領域83の上部表面までの距離tと、画素領域(有効画素領域)84の端から遮光部材80の開口部端部までの距離d、及び入射光の入射角度θの関係は、tanθ<d/tの条件を満足させるものとした。これにより、開口部端部87からの反射光は、画素領域84には達しない。以下、図を用いてこれを説明する。
【0075】
図7は、遮光部材80の開口部端部87に斜め入射光が入射する状態を示した図であり、図5のC部拡大断面図である。なお、開口部端部87は、固体撮像素子35の表面に対してほぼ垂直であり、固体撮像素子35表面における法線の方向とほぼ一致する。
【0076】
反射部材80の開口部端部87に入射する光88は、開口部端部87にて反射されて固体撮像素子表面に向かって進む。開口部端部87から最も遠くまで反射される光は、第2領域83の上面に近い開口部端部87に入射する光である。その光が、開口部端部87から固体撮像素子35の表面に到達する距離Xは、X=t×tanθである。ここで、X<dならば、図7より明らかなように、開口部端部の反射光は、有効画素領域84まで到達することは出来ない。従って、上記の条件を満たす本実施形態の固体撮像装置ぱ、開口部端部の反射光が有効画素領域84にまで達することはない。
【0077】
ところで、図7には比較のため、固体撮像素子35の表面から離れて配置された場合の遮光部材88を示した。このように、遮光部材は、高い位置に配置されるほど周辺回路86に入射する光や、開口部端部にて反射されて有効画素部84に入射する光が多くなり、好ましくないことが理解される。本実施形態の遮光部材は、このような迷光を確実に遮光することが可能となる。
【0078】
なお、入射角θは、次のようにすれば容易に求められる。図8は、カメラレンズ、固体撮像装置の撮像面及び入射光を示す概念図である。ここで、rは射出瞳径、lは射出瞳距離、sは有効画素の中心部から遮光部材の開口部端部までの距離である。
【0079】
撮像面上の点Aに入射する光(図8の92、93、94)のうち、入射角度が一番大きい入射光は3である。その入射角をθ、カメラレンズのF値をFとすると、射出瞳径rとF値の関係は、F=l/rとなる。よって、θは、この関係式と図8より次式から求められる。
【0080】
tanθ=(r/2+s)×(1/l)=1/2F+s/l
従って、θは、F値、射出瞳距離、有効画素の中心部から遮光部材の開口部端部までの距離を実測することによって、容易に算出することができる。
【0081】
ところで、テーパー部は緩やかな斜面に限定されない。図9は、実施形態4に係る固体撮像装置の変形例を示す部分断面図である。本発明は、このように、テーパー部82が第1領域81、第2領域83に対して垂直になる場合も含まれる。
【0082】
本発明の実施形態1乃至4において、透明ガラスカバーは収納容器を封止することが主な目的であるが、単なるガラス基板の他に、光学的フィルタ、例えば赤外線カットフィルタや光学的ローパスフィルタ、あるいはそれらを組み合わせた機能を有する基板も含まれる。
【0083】
【発明の効果】
以上のように本発明固体撮像装置によれば、テーパー部のついた遮光部材により固体撮像素子の受光領域を除くすべての領域を遮光することができるため、斜め入射光があっても固体撮像素子表面から金属細線や収納容器内部へ反射されるのを防止することができ、偽信号やフレアが発生しないという効果がある。
【図面の簡単な説明】
【図1】本発明の実施形態1に係る受光素子用パッケージ1の断面図であり、(a)は平面図、(b)はそのB−B'部における断面図である。
【図2】本発明の受光素子用パッケージにおける遮光部材の斜視図である。
【図3】本発明の実施形態2に係る固体撮像装置の断面図である。
【図4】本発明の実施形態3に係る固体撮像装置であり、(a)はその部分断面図、(b)は遮光部材と金属バンプが一体化された透明ガラスカバー斜視図である。
【図5】本発明の実施形態4に係る固体撮像装置4であり、(a)は断面図、(b)はそのC部の拡大断面図である。
【図6】斜め入射光がテーパー部82にて反射された光路を示す概念図である。
【図7】遮光部材80の開口部端部87に斜め入射光が入射する状態を示した図であり、図5のC部拡大断面図である。
【図8】カメラレンズ、固体撮像装置の撮像面及び入射光を示す概念図である。
【図9】実施形態4に係る固体撮像装置の変形例を示す部分断面図である。
【図10】従来の受光素子用のパッケージであり、(a)は平面図、(b)は(a)のA−A'部における断面図である。
【図11】従来の受光素子用パッケージの部分断面図である。
【符号の説明】
1、100---パッケージ
2、3---固体撮像装置
10、110---収納容器
11、111---キャビティ
12、112---内部端子
13、113---端子
14---棚部
20、60、70、120---透明ガラスカバー
30、130---受光素子
31、131---接続電極
32、132---受光領域
33、34---固体撮像素子
40、140---金属細線
50、50’、61、71---遮光部材
51、51’、62、72---テーパー部
52、52’---開口部
73---金属バンプ
80---遮光部材
81---第1領域
82---テーパー部
83---第2領域
84---有効画素領域
85---オプチカルブラック
86---周辺回路
87---開口部端部
90---透明ガラスカバー
91、92、93、94、150、151---入射光
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a package for a light receiving element and a solid-state imaging device, and more specifically, prevents the generation of scattered light and leakage light (collectively referred to as stray light) as noise components (other than incident light incident on a light receiving region). Or prevent stray light from entering the light receiving element. Ru The present invention relates to a body imaging device.
[0002]
[Prior art]
A semiconductor light receiving element is an element that receives light and outputs an electrical signal, and has recently been used in a wide range of fields as an optical sensor, a solid-state imaging element, and the like.
[0003]
By the way, such a light receiving element is generally used by being housed in a package for the light receiving element. 10A and 10B show a conventional package for a light receiving element, in which FIG. 10A is a plan view and FIG. 10B is a cross-sectional view taken along line AA ′ of FIG. In (a)
Is drawn with the transparent glass cover omitted.
[0004]
As understood from the drawing, the light receiving element package 100 is roughly divided into a storage container 110 for storing the light receiving element 130 and a transparent glass cover 120 for sealing the same.
[0005]
A recess is provided in the center of the storage container 110. This is for housing and fixing the light receiving element 130 and is referred to as a cavity portion 111. An internal terminal 112 is disposed on the outer periphery of the cavity portion 111. This is electrically connected to the terminal 113.
[0006]
The light receiving element 130 is provided with a light receiving region 132 for photoelectrically converting incident light to generate a signal charge, and a connection electrode 131 for outputting an electric signal corresponding to the signal charge.
[0007]
The light receiving element 130 is bonded to a predetermined position in the cavity portion 111. Then, the connection electrode 131 of the light receiving element 130 and the internal terminal 112 of the storage container 110 are electrically connected by the thin metal wire 140. For this reason, the electrical signal output from the light receiving element 130 is guided to the terminal 113 through the connection electrode 131, the thin metal wire 140, and the internal terminal 112 in this order.
[0008]
After being connected by the thin metal wire 140, the storage container 110 is sealed with a transparent glass cover 120 that transmits light. This is to protect the light receiving element 130 from mechanical shock, deterioration due to oxygen, and the like. A light absorption layer 121 made of black pigment, gold black, or the like is formed on the periphery of the light receiving element 130 including the connection electrode 131 and the outer peripheral portion of the transparent glass cover 120 corresponding to the upper portion of the thin metal wires 140 and the internal terminals 112. . The light absorption layer 121 functions as a light shielding film, preventing light from directly entering the periphery and end of the light receiving element 130 from the outside of the package 100, or irradiating the incident light on the metal thin wire 140 to generate scattered light. To prevent it. Further, since it has a property of absorbing light, incident light is reflected on the surface of the light receiving element 130, and this reflected light becomes light leakage and is reflected again on the inner surface of the transparent glass cover 120, so To prevent the incident on the part. These direct incident light, scattered light, and reflected light act as noise on the electrical signal generated by the light receiving element 130. Therefore, it can be said that the light absorption layer 121 is formed in order to reduce noise.
[0009]
It is also well known that a light shielding plate formed of a thin metal plate is disposed between the transparent glass cover 120 and the light receiving element 130 instead of the light absorbing layer 121. Here, the film | membrane and metal plate which are arrange | positioned in order to block the light which acts as noise are called a light shielding member. Note that light acting as noise is referred to as stray light here.
[0010]
As described above, the light receiving element package 100 stores the light receiving element 130 in the storage container 110 and seals it with the transparent glass cover 120, thereby preventing intrusion of external oxygen and improving the durability of the light receiving element. It has the purpose of preventing necessary light intrusion and reducing noise.
[0011]
Here, the description has been made with reference to a package on which a general light receiving element is mounted. However, a solid-state imaging device can be obtained by replacing the light-receiving element with a solid-state imaging element and mounting and sealing it in a package. In this case, the light receiving area corresponds to a portion where effective pixels are arranged. Further, in the solid-state imaging device, the light shielding member arranged for such a purpose is called a flare prevention plate or a shield material for preventing flare, and Japanese Patent Laid-Open No. 63-12046 and Japanese Utility Model Laid-Open No. 5-38916. It is disclosed in a gazette.
[0012]
[Problems to be solved by the invention]
However, although the conventional light receiving element package blocks unnecessary light, the light receiving element mounted thereon outputs an optical signal (hereinafter referred to as a false signal) that should not be generated. There was a problem. In particular, a solid-state imaging device equipped with a solid-state imaging device has a problem that flare may occur.
[0013]
The present invention has been made in view of such problems. The A solid-state imaging device with reduced rare is provided.
[0014]
[Means for Solving the Problems]
The present inventor has found that the cause of the false signal is the scattered light by the obliquely incident light, and has come to make the present invention. Here, the cause of the false signal will be described with reference to the drawings. FIG. 11 is a partial cross-sectional view of a conventional light receiving element package. As shown in the figure, the light receiving element 130 and the storage container 110 are connected by a thin metal wire 140 having a certain height h. This fine metal wire 140 is vulnerable to mechanical shock. For this reason, the transparent glass cover 120 is disposed so as not to contact the fine metal wires 140. Accordingly, the distance H between the transparent glass cover 120 having the light absorption layer 121 and the light receiving element 130 does not become equal to or less than the height h of the thin metal wire 140 (H> h) and always has a finite value.
[0015]
By the way, the light absorption layer 121 is designed so that light does not enter from the direction indicated by the arrow 150 in FIG. As described above, stray light includes direct incident light, scattered light, and reflected light. Of these, direct incident light has the strongest and most significant effect as noise. For this reason, the conventional light absorption film 121 is designed in consideration of blocking light from the direction of 150 arrows.
[0016]
However, there was actually light incident from an oblique direction. FIG. 11 shows an extreme example of the oblique incident light 151 in order to facilitate understanding. If there is a gap H between the transparent glass cover 120 and the light receiving element 130 as described above, a part of the oblique incident light is reflected on the surface of the light receiving element and irradiates the metal thin wire 140 to generate the scattered light S1. To do.
[0017]
Further, as described above, a part of the reflected light reflected from the surface of the light receiving element irradiates the inside of the storage container 110 to generate scattered light S2, or the scattered light S1 from the metal thin wire 140 is further stored in the storage container. Scattered light S <b> 3 may be generated by being scattered inside 110.
[0018]
Such scattered light S <b> 1 to S <b> 3 is incident on the end portion or the peripheral portion of the light receiving element 130, and generates photogenerated charges inside the light receiving element. Then, these photogenerated charges diffuse inside the light receiving element and reach the light receiving region 132 of the light receiving element 130, resulting in a false signal. If the light receiving element 130 is a solid-state image sensor, S1 directly reaches the light-receiving area 132 of the solid-state image sensor, and flare has occurred.
[0033]
Therefore, the invention according to claim 1 is a peripheral circuit in which a pixel region having a plurality of pixels that generate signal charges according to incident light and a connection electrode for outputting an electrical signal corresponding to the signal charges are arranged. A solid-state imaging device having a guard ring region or an optical black region disposed between the pixel region and the peripheral circuit, and an internal terminal for electrical connection with the connection electrode. A storage container that electrically connects the connection electrode and the internal terminal by a thin metal wire and outputs the electrical signal to the outside, a cover that seals the storage container and is optically transparent, and An end portion is disposed between the solid-state imaging device and the cover to guide incident light to the pixel area and reflect the incident light to the guard ring area or the optical black area. Open A first area covering the mouth, at least the upper part of the thin metal wire, and the solid-state imaging device are disposed on a different plane from the first area. And the inside is adjacent to the opening. A light-shielding member having the second region and the first region and the second region integrated, and an incident angle of the incident light with respect to the surface of the solid-state image sensor is θ, and from the surface of the solid-state image sensor When the distance to the upper surface of the second region is t and the distance from the pixel region where the plurality of pixels are arranged to the end of the opening is d, the expression “tan θ <d / t” is satisfied. It is characterized by that.
[0034]
Since the first region covers the upper part of the thin metal wire, the incident light is prevented from entering the fine metal wire and generating flare. In addition, since the second region is disposed in the vicinity of the surface of the solid-state imaging device, the reflected light from the surface of the solid-state imaging device as shown in FIG.
[0035]
According to a twelfth aspect of the present invention, in the solid-state imaging device according to the tenth or eleventh aspect, the second region has a width of 0.5 mm or more. If the light shielding member of the present invention is formed by metal pressing, it is more preferable because the opening and the first and second regions can be formed by a single treatment. In this case, when the width of the second region is 0.5 mm or more, the shape of the opening is stabilized.
[0036]
The invention according to claim 13 is the solid-state imaging device according to claim 10 or 11, wherein the incident angle of the incident light with respect to the surface of the solid-state imaging device is θ, and the surface of the solid-state imaging device When the distance to the upper surface of the second region is t and the distance from the pixel region where the plurality of pixels are arranged to the end of the opening is d, the equation of tan θ <d / t is satisfied. Features.
[0037]
If the light shielding member has a tapered portion, or if a part of the light shielding member is arranged up to the vicinity of the surface of the solid-state imaging device, it is possible to block almost all of the stray light. However, recent solid-state imaging devices are required to further reduce noise. For this reason, it is preferable to reduce even very slight stray light reflected from the end of the opening.
[0038]
Claim 1 With this configuration, incident light cannot reach the pixel region even if it is reflected at the end of the opening of the light shielding member. Therefore, it is possible to reliably prevent incident light from being reflected by the opening end face of the light shielding member and entering the pixel region.
[0039]
Also In the case where a tapered portion is provided between the first region and the second region of the light shielding member, The incident angle of the incident light with respect to the surface of the solid-state image sensor is θ, the angle between the tapered portion surface and the normal line of the solid-state image sensor is θ ′, and the upper surface of the first region to the upper surface of the second region And the width of the second region is b Then, " tan (2θ ′ + θ) <(b / a) + tan θ ′ Is satisfied It is characterized by that.
[0040]
Incident light that has entered the tapered portion that integrally connects the first region and the second region is reflected. However, with the above configuration, the reflected light cannot reach the pixel region. Therefore, it is possible to reliably prevent incident light from being reflected by the tapered portion and entering the pixel region.
[0041]
Also, The light shielding member has a thermal expansion coefficient of 17.3 × 10. -6 / K Less than of Have characteristics stainless Depending on the material Formed ing It is characterized by that.
[0042]
The light shielding member is arranged to prevent stray light from entering the pixel. Therefore, the opening of the light shielding member is fixed in alignment with the pixel region of the solid-state image sensor. However, if the light shielding member expands and contracts due to the environmental temperature after being assembled into a package, the reliability may be impaired. The coefficient of thermal expansion is 17.3 × 10 -6 If the stainless steel is less than / K, the above concerns are reduced.
[0043]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Embodiment 1]
1A and 1B are cross-sectional views of a light-receiving element package 1 according to Embodiment 1 of the present invention, in which FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along line BB ′.
[0044]
The light receiving element package 1 includes a storage container 10 that houses the light receiving element 30, a light shielding member 50 having a tapered portion 51, and a transparent glass cover 20 for sealing them. In addition, illustration of the transparent glass cover 20 and the light shielding member 50 is abbreviate | omitted in Fig.1 (a).
[0045]
In the center of the storage container 10, a cavity portion 11 for storing and fixing the light receiving element 30 is provided. An internal terminal 12 that is electrically connected to the terminal 13 is disposed around the cavity portion 11. Further, a shelf 14 for fixing the light shielding member 50 is provided around the periphery.
[0046]
The light receiving element 30 is provided with a light receiving region 32 for photoelectrically converting incident light to generate a signal charge, and a connection electrode 31 for outputting an electric signal corresponding to the signal charge. The connection electrode 31 and the internal terminal 12 are electrically connected by a thin metal wire 40.
[0047]
FIG. 2A is a perspective view of the light shielding member 50. The light shielding member 50 includes an opening 52 that guides incident light to the light receiving region 32 of the light receiving element 30 and a tapered portion 51, and is disposed between the transparent glass cover 20 and the light receiving element 30.
[0048]
The opening 52 is opened to be equal to or slightly larger than the light receiving region 32. The taper part 51 has a gentle slope and extends to the cavity part 11 in the vicinity of the light receiving element 30. On the other hand, the flat part around the light shielding member 50 is placed and fixed on the shelf part 14 of the storage container 10. For this reason, the light shielding member 50 is shaped to cover the metal thin wires 40, the internal terminals 12, and the upper part of the periphery of the light receiving element 30.
[0049]
Next, a procedure for mounting the light receiving element 30 on the package 1 of the present embodiment will be described. First, the light receiving element 30 is bonded and fixed to the cavity portion 11 in the storage container 10. Next, the connection electrode 31 of the light receiving element 30 and the internal terminal 12 of the storage container 10 are electrically connected by the thin metal wire 40. Further, by fixing the light shielding member 50 to the shelf portion 14 of the storage container 10, the tapered portion 51 is disposed up to the cavity portion 11 near the light receiving element 30. At this time, the light blocking member 50 is fixed so that the opening 52 is provided on the light receiving region 32 of the light receiving element 30. Finally, it is sealed with a transparent glass cover 20 that transmits light. The interior may be evacuated or filled with an inert gas such as nitrogen.
[0050]
In the light receiving element package 1 according to this embodiment, the light shielding member 50 is disposed between the light receiving element 30 and the transparent glass cover 20 so that oblique incident light is transmitted from the surface of the light receiving element 30 to the metal thin wire 40 or the storage container. 10 can be prevented from being reflected inside. That is, the reflected light from the surface of the light receiving element 30 is blocked by the light blocking member 50 having the tapered portion 51 and does not reach the inside of the metal thin wire 40 or the storage container 10. For this reason, in addition to the conventional light shielding effect, it is possible to prevent the generation of stray light caused by obliquely incident light and the false signal caused thereby.
[0051]
Further, if a light absorbing layer such as a black paint or gold black is arranged on the light shielding member 50, even if the light reflected from the surface of the light receiving element 30 is irradiated to the light shielding member 50, it is even more preferable. .
[0052]
If such a light absorption layer is provided, the tapered portion is not limited to a gentle slope, and the opening may be formed with the tapered portion 51 ′ at a substantially vertical angle as shown in FIG. . If the taper portion 51 ′ is formed in this way, the processing of the light shielding member is facilitated. However, the amount of light irradiated with the reflected light on the tapered portion increases more than the tapered portion 51 having a gentle slope. However, since the light absorption layer is provided, the scattered light cannot be generated.
[0053]
Further, if the light receiving element 30 is replaced with a solid-state image pickup device and mounted and sealed in the package 1 of the present embodiment, a solid-state image pickup device is obtained, but this solid-state image pickup device does not generate flare.
[Embodiment 2]
FIG. 3 is a cross-sectional view of the solid-state imaging device 2 according to Embodiment 2 of the present invention. The shape of the light shielding member 61 is the same as that of the first embodiment (see FIG. 2A), but in this embodiment, the transparent glass cover 60 and the light shielding member 61 are integrated. Further, the solid-state imaging device 2 is configured by incorporating a solid-state imaging element 33 instead of the light receiving element 30.
[0054]
When mounting the solid-state imaging device 2 of the present embodiment, first, the solid-state imaging element 33 is bonded and fixed to the cavity 11 in the storage container 10. Next, the connection electrode 31 and the internal terminal 12 are electrically connected by the thin metal wire 40. Finally, the transparent glass cover 60 in which the light shielding member 61 is integrated is sealed. Thus, since the light shielding member 61 is integrated with the transparent glass cover 60, the solid-state imaging device 2 of this embodiment can simplify an assembly process and manufacture easily.
[0055]
The light shielding member 61 of the present embodiment is made of an elastic body such as carbon fiber. For this reason, it becomes possible to make an opening part edge part contact a solid-state image sensor surface reliably, without damaging the solid-state image sensor surface at the time of mounting. It is more preferable to place the light shielding member in contact with the element surface because stray light can be reliably shielded.
[0056]
In the present embodiment, similarly to the package 1 of the first embodiment, the tapered portion 62 may be disposed perpendicular to the surface of the solid-state imaging device 33 or a light absorbing layer may be disposed on the light shielding member 61.
[Embodiment 3]
4A and 4B show a solid-state imaging device 3 according to Embodiment 3 of the present invention, in which FIG. 4A is a partial sectional view thereof, and FIG. 4B is a perspective view of a transparent glass cover in which a light shielding member 71 and a metal bump 73 are integrated. .
[0057]
The point that the light shielding member 71 is integrated with the transparent glass cover 70 is the same as that of the solid-state imaging device 2 of the second embodiment. However, in the solid-state imaging device 3 of the present embodiment, metal bumps 73 for electrically connecting the connection electrodes 31 and the internal terminals 12 are further integrated with the transparent glass cover 70.
[0058]
The metal bump 73 is made of a soft conductive member such as indium. Therefore, if one metal bump 73 is aligned and crimped with the connection electrode 31 and the internal terminal 12, the connection electrode 31 and the internal terminal 12 can be electrically connected.
[0059]
In order to mount the solid-state imaging device 3 of this embodiment, the solid-state imaging element 34 is bonded and fixed to a predetermined position of the cavity 11 in the storage container 10, and then the transparent glass cover 70 in which the light shielding member 71 and the metal bump 73 are integrated. May be sealed. In this way, connection with a thin metal wire becomes unnecessary, and mounting can be performed with a small number of man-hours.
[0060]
As described above, in the present embodiment, the mounting can be performed with a small number of man-hours. However, in the solid-state imaging device 3, dust on the surface of the solid-state imaging element causes a defect. Therefore, if the number of man-hours at the time of mounting is reduced, the probability that dust will be generated is reduced, and the yield is improved. As a result, the cost is reduced.
[0061]
Further, as compared with a mounting method using a thin metal wire, the distance from the surface of the solid-state imaging device 34 to the transparent cover glass can be reduced, and the solid-state imaging device 3 can be reduced in thickness and size. .
[0062]
Also in the present embodiment, since the end of the opening of the light shielding member 71 is in contact with the surface of the solid-state imaging device 34, a part of the oblique incident light is prevented from being reflected from the surface of the solid-state imaging device to the inside of the storage container. And no false signals or flares.
[0063]
Also in the present embodiment, the tapered portion 72 may be disposed perpendicular to the surface of the solid-state imaging device 34 or a light absorption layer may be disposed on the light shielding member 71.
[Embodiment 4]
5A and 5B show a solid-state imaging device 4 according to Embodiment 4 of the present invention. FIG. 5A is a cross-sectional view, and FIG. 5B is an enlarged cross-sectional view of a C portion thereof.
[0064]
The solid-state imaging device 4 includes a storage container 10 that stores the solid-state imaging element 35, a light shielding member 80 having a tapered portion 82, and a transparent glass cover 90 for sealing them. In addition, illustration of the transparent glass cover 90 and the storage container 10 is abbreviate | omitted in FIG.5 (b).
[0065]
A solid-state image sensor 35 is stored and fixed in the center of the storage container 10. An internal terminal 12 is disposed inside the storage container 10. Further, a shelf 14 for fixing the light shielding member 80 is provided around the periphery.
[0066]
The solid-state imaging device 35 has a pixel area 84 (effective pixel area) having a plurality of pixels that photoelectrically convert incident light to generate signal charges at a substantially central portion thereof, and a peripheral circuit 86 for scanning the signal charges around the pixel area 84. Between the pixel region 84 and the peripheral circuit 86, there is a guard ring part (prevents stray light from entering the pixel region from flowing into the pixel region), an optical black region 85, and a peripheral region. A connection electrode 31 for outputting an electric signal corresponding to the signal charge is disposed in the part. The connection electrode 31 and the internal terminal 12 are electrically connected by a thin metal wire 40.
[0067]
The light shielding member 80 includes a first region 81, a tapered portion 82, and a second region 83, and is disposed between the solid-state image sensor 35 and the transparent glass cover 90 in a non-contact manner. An opening is disposed adjacent to the inside of the second region, and incident light is guided to the pixel region 84 of the solid-state imaging device 35 through the opening.
[0068]
In the present embodiment, the light shielding member 80 has a coefficient of thermal expansion of 17.3 × 10. -6 The first region, the tapered portion 82, and the second region were integrally formed by pressing stainless steel that is less than / K. The coefficient of thermal expansion is 17.3 × 10 -6 If it is less than / K, the expansion / contraction is slight even if the environmental temperature changes, and the positional relationship between the light shielding member 80 and the solid-state imaging device 35 does not change depending on the environmental temperature. For this reason, reliability is improved. In addition, it is more preferable that the width of the second region is 0.5 mm or more because processing is easy and the shape of the opening is stable.
[0069]
The first region 81 is a flat portion that is substantially parallel to the surface of the solid-state imaging device 35, and one end (that is, the outer peripheral portion) is fixed to the shelf portion 14 of the storage container 10. The other end of the first region is continuously connected to the second region 83 via the tapered portion 82. The taper part 82 has a gentle slope. The second region 83 is a plane that is substantially parallel to the surface of the solid-state image sensor 35. For this reason, the 2nd field 83 is arranged on a different plane from the 1st field.
[0070]
Here, the outer periphery of the first region 81 is fixed to the shelf 14 of the storage container 10. However, the present invention is not limited to this, and the first region may be fixed to the transparent glass cover 90.
The first region 81 is disposed so as to cover the fine metal wires 40 of the light shielding member 80 as shown in FIG. For this reason, it prevents that the incident light and the reflected light from each part reach the metal fine wire 40.
[0071]
Further, the second region is disposed close to the surface of the solid-state image sensor 35. For this reason, stray light caused by obliquely incident light is not only further reduced, but light reflected by the tapered portion 82 is also prevented from entering the pixel region 84. FIG. 6 is a conceptual diagram showing an optical path in which obliquely incident light is reflected by the tapered portion 82. By arranging the second region, the light reflected by the tapered portion 82 is less likely to be irradiated on the surface of the solid-state imaging device. Needless to say, it is more preferable to dispose a light absorbing layer such as black paint or gold black on the light shielding member 80.
[0072]
Furthermore, here, the distance a from the upper surface of the first region 81 to the upper surface of the second region of the light shielding member 80, the width b of the second region (see FIG. 6), the incident angle θ with respect to the surface of the solid-state imaging device, and the tapered portion 82. The angle θ ′ formed between the surface and the normal line of the solid-state imaging device 35 satisfies the condition of tan (2θ ′ + θ) <(b / a) + tan θ ′. Thereby, the reflected light from the tapered portion 82 does not reach the pixel region 84. This will be described below with reference to the conceptual diagram of FIG.
[0073]
The light incident on the tapered portion 82 is reflected and travels toward the pixel region 84. Here, the angle α is θ + θ ′. Therefore, if the value of a × tan (2θ ′ + θ) is smaller than b + c, the light reflected by the tapered portion 82 does not reach the pixel region 84. Since c is a × tan θ ′, when the above relationship is expressed in an equation, a × tan (2θ ′ + θ) <b + a × tan θ ′. Therefore, if the configuration satisfying the condition of tan (2θ ′ + θ) <(b / a) + tan θ ′, it is possible to reliably prevent the light reflected by the tapered portion from entering the pixel region.
[0074]
Further, here, the distance t from the surface of the solid-state imaging device 35 to the upper surface of the second region 83, the distance d from the end of the pixel region (effective pixel region) 84 to the end of the opening of the light shielding member 80, and The relationship of the incident angle θ of the incident light satisfies the condition of tan θ <d / t. Thereby, the reflected light from the opening end portion 87 does not reach the pixel region 84. Hereinafter, this will be described with reference to the drawings.
[0075]
FIG. 7 is a view showing a state where obliquely incident light is incident on the opening end portion 87 of the light shielding member 80, and is an enlarged cross-sectional view of a C portion in FIG. The opening end 87 is substantially perpendicular to the surface of the solid-state image sensor 35 and substantially coincides with the normal direction on the surface of the solid-state image sensor 35.
[0076]
The light 88 incident on the opening end 87 of the reflecting member 80 is reflected by the opening end 87 and travels toward the surface of the solid-state imaging device. The light reflected farthest from the opening end 87 is light incident on the opening end 87 near the upper surface of the second region 83. The distance X that the light reaches the surface of the solid-state imaging device 35 from the opening end portion 87 is X = t × tan θ. Here, if X <d, as apparent from FIG. 7, the reflected light at the end of the opening cannot reach the effective pixel region 84. Therefore, in the solid-state imaging device according to the present embodiment that satisfies the above conditions, the reflected light at the end of the opening does not reach the effective pixel region 84.
[0077]
Incidentally, for comparison, FIG. 7 shows a light shielding member 88 in a case where the light shielding member 88 is arranged away from the surface of the solid-state imaging device 35. As described above, it is understood that the higher the position of the light shielding member, the more light that enters the peripheral circuit 86 and more light that is reflected by the end of the opening and incident on the effective pixel portion 84 is undesirable. Is done. The light shielding member of this embodiment can reliably shield such stray light.
[0078]
Incidentally, the incident angle θ can be easily obtained as follows. FIG. 8 is a conceptual diagram illustrating a camera lens, an imaging surface of a solid-state imaging device, and incident light. Here, r is the exit pupil diameter, l is the exit pupil distance, and s is the distance from the center of the effective pixel to the opening end of the light shielding member.
[0079]
Of the light incident on the point A on the imaging surface (92, 93, 94 in FIG. 8), the incident light having the largest incident angle is three. When the incident angle is θ and the F value of the camera lens is F, the relationship between the exit pupil diameter r and the F value is F = 1 / r. Therefore, θ is obtained from this relational expression and FIG.
[0080]
tan θ = (r / 2 + s) × (1 / l) = 1 / 2F + s / l
Therefore, θ can be easily calculated by actually measuring the F value, exit pupil distance, and distance from the center of the effective pixel to the end of the opening of the light shielding member.
[0081]
By the way, a taper part is not limited to a gentle slope. FIG. 9 is a partial cross-sectional view illustrating a modification of the solid-state imaging device according to the fourth embodiment. The present invention includes a case where the tapered portion 82 is perpendicular to the first region 81 and the second region 83 as described above.
[0082]
In Embodiments 1 to 4 of the present invention, the transparent glass cover is mainly intended to seal the storage container, but besides a simple glass substrate, an optical filter such as an infrared cut filter or an optical low-pass filter, Or the board | substrate which has the function which combined them is also contained.
[0083]
【Effect of the invention】
As described above, the present invention of Solid-state imaging device According to All areas except the light receiving area of the solid-state image sensor can be shielded by the light-shielding member with a taper, so that even if there is oblique incident light, it is reflected from the surface of the solid-state image sensor to the metal thin wire or inside the storage container. This is effective in preventing false signals and flares.
[Brief description of the drawings]
1A and 1B are cross-sectional views of a light-receiving element package 1 according to Embodiment 1 of the present invention, in which FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along the line BB ′.
FIG. 2 is a perspective view of a light shielding member in the light receiving element package of the present invention.
FIG. 3 is a cross-sectional view of a solid-state imaging device according to Embodiment 2 of the present invention.
4A is a partial cross-sectional view of a solid-state imaging device according to Embodiment 3 of the present invention, and FIG. 4B is a perspective view of a transparent glass cover in which a light shielding member and a metal bump are integrated.
5A and 5B show a solid-state imaging device 4 according to Embodiment 4 of the present invention, in which FIG. 5A is a cross-sectional view, and FIG.
6 is a conceptual diagram showing an optical path in which obliquely incident light is reflected by a tapered portion 82. FIG.
7 is a view showing a state in which obliquely incident light is incident on an opening end portion 87 of the light shielding member 80, and is an enlarged cross-sectional view of a portion C in FIG.
FIG. 8 is a conceptual diagram illustrating a camera lens, an imaging surface of a solid-state imaging device, and incident light.
FIG. 9 is a partial cross-sectional view showing a modification of the solid-state imaging device according to the fourth embodiment.
10A and 10B show a conventional package for a light receiving element, in which FIG. 10A is a plan view and FIG. 10B is a cross-sectional view taken along the line AA ′ in FIG.
FIG. 11 is a partial cross-sectional view of a conventional light receiving element package.
[Explanation of symbols]
1, 100 --- Package
2, 3 --- Solid-state imaging device
10, 110 --- Container
11, 111 --- cavity
12, 112 --- Internal terminal
13, 113 --- terminal
14 --- Shelves
20, 60, 70, 120 --- transparent glass cover
30, 130--light receiving element
31, 131 --- Connecting electrode
32, 132 --- light receiving area
33, 34 --- Solid-state imaging device
40, 140 --- Metal fine wire
50, 50 ', 61, 71 --- Shading member
51, 51 ', 62, 72 --- Tapered part
52, 52 '--- Opening
73 --- Metal bump
80 --- Shading member
81 --- first area
82 --- Tapered part
83 --- second area
84 --- effective pixel area
85 --- Optical Black
86 --- Peripheral circuit
87 --- Open end
90 --- Transparent glass cover
91, 92, 93, 94, 150, 151 --- incident light

Claims (4)

入射光に応じた信号電荷を生成する複数の画素を有する画素領域と、前記信号電荷に対応する電気信号を出力するための接続電極が配置される周辺回路と、前記画素領域と前記周辺回路との間に配置されるガードリング領域またはオプチカルブラック領域と、を有する固体撮像素子と、
前記接続電極と電気的に接続するための内部端子を有し、前記固体撮像素子を収納して前記接続電極と前記内部端子とを金属細線によって電気的に接続して前記電気信号を外部に出力する収納容器と、
前記収納容器を封止し光学的に透明なカバーと、
前記固体撮像素子と前記カバーとの間に配置され、入射光を前記画素領域に導くとともに、入射光を反射させて前記ガードリング領域または前記オプチカルブラック領域に導く端部を有する開口部と、少なくとも前記金属細線の上部を覆う第1領域と、前記固体撮像素子の近傍であって前記第1領域とは異なる平面上に配置され且つ内側が前記開口部に隣接する第2領域とを有し、前記第1領域及び前記第2領域が一体化された遮光部材と、
を備え、以下の[数1]に記載の式を満たすことを特徴とする固体撮像装置。
[数1]
tanθ<d/t
但し、「θ」は前記入射光の固体撮像素子表面に対する入射角、「t」は前記固体撮像素子の表面から前記第2領域の上部表面までの距離、「d」は前記複数の画素が配置された画素領域から前記開口部の端部までの距離を表す。
A pixel region having a plurality of pixels that generate a signal charge corresponding to incident light; a peripheral circuit in which a connection electrode for outputting an electric signal corresponding to the signal charge is disposed; the pixel region and the peripheral circuit; A solid-state imaging device having a guard ring region or an optical black region disposed between
An internal terminal for electrical connection with the connection electrode; housing the solid-state imaging device; electrically connecting the connection electrode and the internal terminal with a thin metal wire; and outputting the electrical signal to the outside A storage container
An optically transparent cover for sealing the storage container;
The solid is arranged between the imaging element and the cover, with guides incident light to the pixel region, that having a end portion for guiding by reflecting incident light to the guard ring region or the optical black region open mouth A first region that covers at least the upper part of the thin metal wire, and a second region that is disposed on a plane different from the first region and that is adjacent to the opening and that is adjacent to the solid-state imaging device. A light shielding member in which the first region and the second region are integrated;
A solid-state imaging device characterized by satisfying the equation described in [Equation 1] below.
[Equation 1]
tan θ <d / t
However, “θ” is the incident angle of the incident light with respect to the surface of the solid-state imaging device, “t” is the distance from the surface of the solid-state imaging device to the upper surface of the second region, and “d” is the arrangement of the plurality of pixels. It represents the distance from the pixel region to the end of the opening.
請求項1に記載の固体撮像装置において、
前記遮光部材は、前記第1領域と前記第2領域との間にテーパー部を備えていることを特徴とする固体撮像装置。
The solid-state imaging device according to claim 1,
The solid-state imaging device, wherein the light shielding member includes a tapered portion between the first region and the second region.
請求項2に記載の固体撮像装置において、
前記[数1]に記載の式に代えて、以下の[数2]に記載の式を満たすことを特徴とする固体撮像装置。
[数2]
tan(2θ’+θ)<(b/a)+tanθ’
但し、「θ」は前記入射光の固体撮像素子表面に対する入射角、「θ’」は前記テーパー部表面と前記固体撮像素子の法線との成す角度、「a」は前記第1領域の上面から前記第2領域の上面までの距離、「b」は前記第2領域の幅を表す。
The solid-state imaging device according to claim 2,
A solid-state imaging device satisfying the following equation [Equation 2] instead of the equation [Equation 1].
[Equation 2]
tan (2θ ′ + θ) <(b / a) + tan θ ′
However, “θ” is an incident angle of the incident light with respect to the surface of the solid-state imaging device, “θ ′” is an angle formed by the surface of the tapered portion and the normal line of the solid-state imaging device, and “a” is an upper surface of the first region. The distance from the top surface of the second region to “b” represents the width of the second region.
請求項1から3のいずれか1項に記載の固体撮像装置において、
前記遮光部材は、熱膨張率が17.3×10-6/K以下の特性を有するステンレス材料により形成されていることを特徴とする固体撮像装置。
The solid-state imaging device according to any one of claims 1 to 3,
The solid-state imaging device, wherein the light shielding member is made of a stainless material having a thermal expansion coefficient of 17.3 × 10 −6 / K or less.
JP2000356917A 2000-01-21 2000-11-24 Solid-state imaging device Expired - Lifetime JP5140895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000356917A JP5140895B2 (en) 2000-01-21 2000-11-24 Solid-state imaging device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-12396 2000-01-21
JP2000012396 2000-01-21
JP2000012396 2000-01-21
JP2000356917A JP5140895B2 (en) 2000-01-21 2000-11-24 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2001274370A JP2001274370A (en) 2001-10-05
JP5140895B2 true JP5140895B2 (en) 2013-02-13

Family

ID=26583892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000356917A Expired - Lifetime JP5140895B2 (en) 2000-01-21 2000-11-24 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP5140895B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003198897A (en) * 2001-12-27 2003-07-11 Seiko Epson Corp Optical module, circuit board, and electronic device
JP4496918B2 (en) * 2004-10-26 2010-07-07 株式会社デンソー Semiconductor device
JP2007266380A (en) * 2006-03-29 2007-10-11 Matsushita Electric Ind Co Ltd Semiconductor image pickup device and its manufacturing method
JP2008166632A (en) 2006-12-29 2008-07-17 Manabu Bonshihara Solid-state imaging apparatus, its manufacturing method and camera module
JP5742272B2 (en) * 2011-02-14 2015-07-01 株式会社リコー Compound eye imaging device
JP5930263B2 (en) * 2011-02-18 2016-06-08 ソニー株式会社 Solid-state imaging device
US20130175650A1 (en) * 2012-01-05 2013-07-11 Apple Inc Cover for image sensor assembly with light absorbing layer
JP6098333B2 (en) * 2013-04-30 2017-03-22 株式会社ニコン Imaging unit and imaging apparatus
WO2023190837A1 (en) * 2022-03-31 2023-10-05 株式会社カネカ Solid-state imaging device and method for manufacturing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63296271A (en) * 1987-05-27 1988-12-02 Nec Corp Solid-state image pickup device
JP2666299B2 (en) * 1987-10-08 1997-10-22 ソニー株式会社 Solid-state imaging device
JP2776538B2 (en) * 1989-03-06 1998-07-16 日本電気株式会社 Solid-state imaging device
JPH036057A (en) * 1989-06-01 1991-01-11 Mitsubishi Electric Corp Solid-state image sensing device
JPH0330472A (en) * 1989-06-28 1991-02-08 Toppan Printing Co Ltd Solid-state image sensing device and manufacture thereof
JPH03171666A (en) * 1989-11-30 1991-07-25 Toshiba Corp Solid-state image sensing device
JPH04106974A (en) * 1990-08-27 1992-04-08 Olympus Optical Co Ltd Solid state image sensor
JPH0677448A (en) * 1992-08-25 1994-03-18 Sony Corp Solid-state image pickup device

Also Published As

Publication number Publication date
JP2001274370A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
US8279336B2 (en) Solid-state image pickup device
KR101970360B1 (en) Solid-state imaging unit, method of manufacturing solid-state imaging unit, and electronic apparatus
CN100490507C (en) Small-sized image pickup module
TWI425597B (en) Image sensor package structure with black transmittance encapsulation
CN110416252B (en) Image pickup apparatus and electronic apparatus
JPS63308375A (en) Solid-state image sensing device
US7391002B2 (en) Solid state imaging device having electromagnetic wave absorber attached to a mounting board
JP2987455B2 (en) Solid-state imaging device
JP5140895B2 (en) Solid-state imaging device
US20060245050A1 (en) Image device
US20070138493A1 (en) Light-receiving module
JP2006222249A (en) Solid-state image sensor package
US20080095528A1 (en) Portable electronic device having optimized aperture
JP2009222740A (en) Lens module and camera module
US20200124945A1 (en) Camera module and optical device
JP3758311B2 (en) Imaging device
JP2002261260A (en) Solid-state imaging device
US5150180A (en) Packaged semiconductor device with high energy radiation absorbent glass
JP2004061623A (en) Image sensor module and its manufacture method
CN219416452U (en) Uncooled infrared focal plane detector
JP4373020B2 (en) Image sensor module
JPH05267629A (en) Solid-state image sensing device
JPH1065132A (en) Semiconductor image pickup device
CN220858263U (en) Shading type photosensitive assembly and camera module
JPH05275668A (en) Solid-state image sensing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110905

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5140895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term