JP5136768B2 - Copper foil for circuit boards - Google Patents

Copper foil for circuit boards Download PDF

Info

Publication number
JP5136768B2
JP5136768B2 JP2008010058A JP2008010058A JP5136768B2 JP 5136768 B2 JP5136768 B2 JP 5136768B2 JP 2008010058 A JP2008010058 A JP 2008010058A JP 2008010058 A JP2008010058 A JP 2008010058A JP 5136768 B2 JP5136768 B2 JP 5136768B2
Authority
JP
Japan
Prior art keywords
copper
copper foil
thin film
circuit boards
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008010058A
Other languages
Japanese (ja)
Other versions
JP2009170829A (en
Inventor
恒次 額賀
元 佐々木
雄行 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008010058A priority Critical patent/JP5136768B2/en
Publication of JP2009170829A publication Critical patent/JP2009170829A/en
Application granted granted Critical
Publication of JP5136768B2 publication Critical patent/JP5136768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

本発明は、例えばプリント配線板用銅箔のような回路基板、特にフレキシブルプリント配線板やテープキャリア等のような柔軟性・耐屈曲特性を要求される回路基板用の、配線回路として好適な回路基板用銅箔に関する。   The present invention is a circuit suitable as a wiring circuit, for example, for a circuit board such as a copper foil for a printed wiring board, particularly for a circuit board that requires flexibility and bending resistance such as a flexible printed wiring board and a tape carrier. The present invention relates to a copper foil for a substrate.

FPC(Flexible Printed Circuit board;フレキシブルプリント配線板、以下、FPCとも呼ぶ)やテープキャリアに用いられるプリント配線板用銅張基板は、ポリイミド樹脂からなる絶縁性フィルム基板上に、いわゆる回路基板用銅箔を貼り合せて形成される(銅張積層板(Copper Clad Laminate:CCL、以下、CCLとも呼ぶ))。   A copper-clad board for a printed wiring board used for FPC (Flexible Printed Circuit Board; hereinafter also referred to as FPC) and a tape carrier is a copper foil for a circuit board on an insulating film substrate made of polyimide resin. (Copper Clad Laminate: CCL, hereinafter also referred to as CCL)).

CCLは、エポキシ系接着剤などを使用して銅箔と絶縁性樹脂フィルムと貼り合せるという方法や、直接熱圧着する方法(ラミネート法)、あるいは銅箔にポリイミドワニスを塗布して接着する方法(キャスト法)などによって作製される。こうして作製されたCCLの銅部分をフォトエッチング法などによって微細回路に加工することで、配線材料として使用される。   CCL is a method of bonding the copper foil and the insulating resin film using an epoxy adhesive, a method of directly thermocompression bonding (laminating method), or a method of applying and bonding a polyimide varnish to the copper foil ( Cast method). The copper part of the CCL produced in this way is processed into a fine circuit by a photoetching method or the like and used as a wiring material.

FPCは主にプリンターヘッドなどの可動部や携帯電話のヒンジ部などに使用されるため、繰り返し屈曲に対する耐久性(以下、これを耐屈曲特性とも呼ぶ)に優れたものであることが要求される。この点から、FPC用銅箔としては、電解銅箔よりも耐屈曲特性に優れる圧延銅箔が主に用いられている。   Since the FPC is mainly used for a movable part such as a printer head or a hinge part of a mobile phone, it is required to have excellent durability against repeated bending (hereinafter also referred to as bending resistance). . From this point, as the copper foil for FPC, a rolled copper foil that is superior in bending resistance than the electrolytic copper foil is mainly used.

圧延銅箔の耐屈曲特性は一般に、圧延上がりの硬質材よりも、再結晶材のほうが優れている。しかし、CCL作製工程では、銅箔が硬質材であるほうが、ハンドリング性に優れているので好都合である。従って、回路基板用銅箔として用いられる圧延銅箔は、CCL最終工程の熱処理で銅箔が再結晶するように設計されており、このことからFPC用には120℃〜250℃で軟化するようにタフピッチ銅や無酸素銅などの純銅系の圧延銅箔が使用されている。   In general, the recrystallized material is superior in bending resistance of the rolled copper foil to the hard material after rolling. However, in the CCL manufacturing process, it is more convenient that the copper foil is a hard material because the handling property is excellent. Therefore, the rolled copper foil used as the copper foil for circuit boards is designed so that the copper foil is recrystallized by the heat treatment in the CCL final process, so that it is softened at 120 to 250 ° C. for FPC. In addition, pure copper rolled copper foil such as tough pitch copper and oxygen-free copper is used.

また、再結晶材は、その材料に形成される立方体集合組織が発達しているほど優れた耐屈曲特性を示すことが知られている(特許文献1)。
従って、圧延銅箔の製造工程においては、最終焼鈍後の冷間圧延加工度をできるだけ高くする工夫がなされており、通常、90%以上の加工度で冷間圧延が行われている。ここに、圧延加工度とは、圧延前の板厚をt0圧延後の板厚をtとすると、(t0−t)/t0
×100で表される数字である。
In addition, it is known that the recrystallized material exhibits superior bending resistance as the cubic texture formed in the material develops (Patent Document 1).
Therefore, in the manufacturing process of rolled copper foil, the device which makes the cold rolling work degree after the last annealing as high as possible is made, and cold rolling is usually performed with the working degree of 90% or more. Here, the degree of rolling process is (t 0 −t) / t 0 where the thickness before rolling is t 0 and the thickness after rolling is t.
It is a number represented by x100.

近年、電子機器の小型化・高機能化などにより、FPCの耐屈曲特性のさらなる向上に対する要求はますます厳しいものとなってきており、それに伴って、回路基板用銅箔にも耐屈曲特性の向上が望まれている。このため、前述のように銅箔の最終焼鈍後の冷間圧延加工度を上げていく傾向にある。   In recent years, the demand for further improvement in the bending resistance of FPC has become increasingly severe due to the downsizing and higher functionality of electronic devices, and accordingly, the copper foil for circuit boards also has a bending resistance. Improvement is desired. For this reason, it exists in the tendency which raises the cold rolling work degree after the final annealing of copper foil as mentioned above.

ところが、冷間圧延加工度を上げていくと、加工対象の銅箔に蓄積される塑性歪みも増大し、再結晶温度が低下する現象を引き起こす。そして遂には、圧延中の加工熱で再結晶が進行してしまったり、室温付近であっても製品の保管などで極めて長時間経過した場合に再結晶が進行してしまうことがあった。このような再結晶が進行すると、例えばCCL製造工程における銅箔のハンドリング時に、銅箔が変形してしまう等の著しい不都合を引き起こす。
このような再結晶の進行を防止するため、銅箔の最終冷間圧延加工度を90%以下とするという対策が提唱されていた(特許文献2)。
However, as the degree of cold rolling is increased, the plastic strain accumulated in the copper foil to be processed also increases, causing a phenomenon that the recrystallization temperature is lowered. Finally, recrystallization may have progressed due to the processing heat during rolling, or recrystallization may have occurred even if it is near room temperature when a very long period of time elapses during product storage. When such recrystallization proceeds, for example, when the copper foil is handled in the CCL manufacturing process, a significant inconvenience such as deformation of the copper foil is caused.
In order to prevent the progress of such recrystallization, a countermeasure has been proposed in which the final cold rolling degree of copper foil is 90% or less (Patent Document 2).

また、塑性歪みが蓄積されても、再結晶温度の著しい低下を引き起こさないようにするために、あらかじめ素材に銀(Ag)などを添加して再結晶温度を上昇させる方法が提案されている(特許文献3)。   Further, a method has been proposed in which silver (Ag) or the like is added to the material in advance to increase the recrystallization temperature in order not to cause a significant decrease in the recrystallization temperature even if plastic strain is accumulated ( Patent Document 3).

また、いわゆる表面処理銅箔と呼ばれるFPC用の回路基板用銅箔は、例えばポリイミドフィルムからなる絶縁性基板との強固な接着強度が必要とされるので、絶縁性基板へのアンカー(投錨)効果を得るために、その絶縁性基板との接着面を、エッチングまたは粗化めっき等による粗面化処理によって、敢えて所定の粗さに荒らして、粗化面と成すようにしている。このように表面を荒らして粗化面を形成することで、回路基板用銅箔の表面には微細なコブ状の凹凸が形成されて、絶縁性基板との接着強度が向上する。   In addition, the FPC circuit board copper foil, called a so-called surface-treated copper foil, requires a strong adhesive strength with an insulating substrate made of, for example, a polyimide film, so that it has an anchoring effect on the insulating substrate. In order to achieve this, the adhesive surface with the insulating substrate is intentionally roughened to a predetermined roughness by a roughening process such as etching or roughening plating to form a roughened surface. By roughening the surface in this way to form a roughened surface, fine bump-shaped irregularities are formed on the surface of the copper foil for circuit boards, and the adhesive strength with the insulating substrate is improved.

特開2001−323354号公報JP 2001-323354 A 特開平10−230303号公報Japanese Patent Laid-Open No. 10-230303 特許第3856582号公報Japanese Patent No. 3856582

しかしながら、特許文献1、2にて提案された対策では、耐屈曲特性を犠牲にすることは避け難いので、近年のFPC用の銅箔における耐屈曲特性の向上という強い要請に応えることは不可能である。
また、特許文献3にて提案された対策では、銅箔用の材料を溶解・鋳造する際に、Agなどの元素を添加することは、コスト上昇に繋がる上に、たとえこれによって冷間圧延加工度の低下は回避できたとしても、耐屈曲特性のさらなる向上の要求を満たすものではない。
また、上記のように粗面化処理が施された回路基板用銅箔を絶縁性基板に張り合わせて作製されたFPCを屈曲させると、その屈曲に起因した曲げ応力が、粗化面のコブとコブとの間に集中することとなり、延いてはその応力が集中した部分で、銅箔の破断が発生し、耐屈曲特性が低下してしまう虞がある。
本発明は、このような問題に鑑みて成されたもので、その目的は、圧延銅箔の場合に最終冷間圧延加工度を例えば90%以下とした場合でも、粗化めっきによる粗面化処理等の表面処理後にも十分な耐屈曲特性を有すること、また再結晶温度をコントロールして圧延加工度を上げていった場合でも、さらなる耐屈曲特性の向上を達成することを可能とした回路基板用銅箔を提供することにある。
However, with the measures proposed in Patent Documents 1 and 2, it is unavoidable to sacrifice the bending resistance, so it is impossible to meet the recent strong demand for improving the bending resistance of copper foil for FPC. It is.
In addition, in the countermeasure proposed in Patent Document 3, addition of an element such as Ag when melting and casting a material for copper foil leads to an increase in cost and even cold rolling due to this. Even if the decrease in the degree can be avoided, it does not satisfy the demand for further improvement in the bending resistance.
Further, when the FPC manufactured by bonding the roughened copper foil for circuit board to the insulating substrate as described above is bent, the bending stress resulting from the bending is caused by the bump on the roughened surface. There is a possibility that the copper foil is broken at the portion where the stress is concentrated, and the bending resistance is deteriorated.
The present invention has been made in view of such problems, and its purpose is to roughen the surface by roughening plating even when the final cold rolling degree is 90% or less in the case of a rolled copper foil. A circuit that has sufficient bending resistance even after surface treatment such as processing, and can achieve further improvement in bending resistance even when the recrystallization temperature is controlled to increase the degree of rolling. The object is to provide a copper foil for a substrate.

上記目的を達成するため、本発明の回路基板用銅箔は、銅箔からなる基材の片面または両面に、純銅または銅を主体とする銅合金からなる銅系薄膜と、ニッケルまたはコバルトもしくはそれらの合金からなる最小で略20nmから上限を略300nmの膜厚とする非銅系金属薄膜とを、この順で交互に少なくとも2層ずつ以上積層し、その結果として最上層が前記非銅系金属薄膜である積層構造を備えたことを特徴としている。
また、上記目的を達成するため、本発明の回路基板用銅箔は、銅箔からなる基材の片面または両面に、純銅または銅を主体とする銅合金からなる銅系薄膜と、ニッケルまたはコバルトもしくはそれらの合金からなる最小で略20nmから上限を略300nmの膜厚とする非銅系金属薄膜とを、この順で交互に少なくとも1層ずつ以上積層し、その結果として最上層が前記非銅系金属薄膜である積層構造を備え、前記銅箔からなる基材の最終冷間圧延加工度が90%以下であることを特徴としている。
また、上記目的を達成するため、本発明の回路基板用銅箔は、銅箔からなる基材の片面または両面に、純銅または銅を主体とする銅合金からなる銅系薄膜と、ニッケルまたはコバルトもしくはそれらの合金からなる最小で略20nmから上限を略300nmの膜厚とする非銅系金属薄膜とを、この順で交互に少なくとも1層ずつ以上積層し、その結果として最上層が前記非銅系金属薄膜である積層構造を備え、前記積層構造の合計膜厚が略4μmであることを特徴としている。
In order to achieve the above object, a copper foil for a circuit board according to the present invention comprises a copper-based thin film made of pure copper or a copper alloy mainly composed of copper, nickel or cobalt, or one of them on one or both sides of a base made of copper foil. non-copper system and a metal thin film, in this order stacked on more than one by at least two layers alternately in the top layer is the non-copper as a result of a minimum consisting of an alloy with a thickness of approximately 300nm limit from approximately 20nm It is characterized by having a laminated structure which is a metal thin film.
In order to achieve the above object, a copper foil for a circuit board according to the present invention comprises a copper-based thin film made of pure copper or a copper alloy mainly composed of copper, nickel or cobalt on one side or both sides of a base made of copper foil. Alternatively, at least one non-copper metal thin film made of an alloy thereof and having a minimum thickness of about 20 nm to an upper limit of about 300 nm is alternately laminated in this order, and as a result, the uppermost layer is the non-copper. It is characterized by having a laminated structure which is a metallic thin metal film, and having a final cold rolling degree of the base material made of the copper foil of 90% or less.
In order to achieve the above object, a copper foil for a circuit board according to the present invention comprises a copper-based thin film made of pure copper or a copper alloy mainly composed of copper, nickel or cobalt on one side or both sides of a base made of copper foil. Alternatively, at least one non-copper metal thin film made of an alloy thereof and having a minimum thickness of about 20 nm to an upper limit of about 300 nm is alternately laminated in this order, and as a result, the uppermost layer is the non-copper. And a total thickness of the multilayer structure is approximately 4 μm.

本発明によれば、圧延銅箔の場合に最終冷間圧延加工度を例えば90%以下とした場合でも表面処理後に十分な耐屈曲特性を有することが可能となり、また再結晶温度をコントロールして圧延加工度を上げていった場合でもさらなる耐屈曲特性の向上を達成することが可能となる。   According to the present invention, in the case of a rolled copper foil, even when the final cold rolling degree is, for example, 90% or less, it is possible to have sufficient bending resistance after the surface treatment, and the recrystallization temperature is controlled. Even when the degree of rolling process is increased, it is possible to achieve further improvement in bending resistance.

以下、本実施の形態に係る回路基板用銅箔について、図面を参照して説明する。図1は
、本実施の形態に係る回路基板用銅箔の主要部の層構成を示す図である。
Hereinafter, the copper foil for circuit boards which concerns on this Embodiment is demonstrated with reference to drawings. FIG. 1 is a diagram showing the layer configuration of the main part of the copper foil for circuit board according to the present embodiment.

この回路基板用銅箔は、銅箔からなる基材1の表裏両面のうち少なくともいずれか一方の表面に(図1の一例では、粗化面側の表面1a上に形成された粗化めっき層2の上に)、銅系薄膜3として純銅の薄膜と、ニッケルまたはコバルトもしくはそれらの合金からなる非銅系金属薄膜4とを、この順で1層ずつあるいはそれ以上の多層に亘って交互に、積層してなる積層構造を備えている。従って、この積層構造では、非銅系金属薄膜4が、銅系薄膜3よりも必ず上層に設けられている。   This copper foil for circuit boards is formed on at least one surface of the front and back surfaces of the base material 1 made of copper foil (in the example of FIG. 1, a roughened plating layer formed on the surface 1a on the roughened surface side). 2), a pure copper thin film as the copper thin film 3, and a non-copper metal thin film 4 made of nickel, cobalt, or an alloy thereof in this order alternately in one or more layers. And a laminated structure formed by laminating. Therefore, in this laminated structure, the non-copper metal thin film 4 is always provided in an upper layer than the copper thin film 3.

基材1は、少なくともその片側の表面1aに、例えば粗化銅めっき処理により粗化めっき層2が形成された、いわゆる粗面化処理を施してなる圧延銅箔であることが望ましい。あるいは、その粗面化処理は、基材1の表面1aを直截的にエッチング法によって粗面化するものであってもよい。
また、銅系薄膜3と非銅系金属薄膜4との積層構造よりも上層に、亜鉛めっき層(図示省略)を設けるようにしてもよい。
また、さらには、亜鉛めっき層よりも上層に、クロメート皮膜(図示省略)を設けるようにしてもよい。
The base material 1 is desirably a rolled copper foil obtained by subjecting at least one surface 1a to a so-called roughening treatment in which a roughening plating layer 2 is formed by, for example, a roughening copper plating treatment. Or the roughening process may roughen the surface 1a of the base material 1 directly by an etching method.
Further, a galvanized layer (not shown) may be provided above the laminated structure of the copper-based thin film 3 and the non-copper-based metal thin film 4.
Furthermore, a chromate film (not shown) may be provided above the galvanized layer.

そして、この回路基板用銅箔の表裏両面のうち、上記のクロメート皮膜が形成されており、かつ外部の例えば絶縁性樹脂フィルムのような絶縁性基板5の粗化面側の表面5aに対して張り合わされるように設定された方の表面1a上における、上記のクロメート皮膜の上層に、シランカップリング処理によって形成されたシランカップリング処理層(図示省略)を設けるようにしてもよい。   And among said front and back both surfaces of this copper foil for circuit boards, said chromate film | membrane is formed, and with respect to the surface 5a by the side of the roughening surface of the insulating board | substrate 5 like an external insulating resin film, for example You may make it provide the silane coupling process layer (illustration omitted) formed by the silane coupling process in the upper layer of said chromate film | membrane on the surface 1a of the side set so that it may adhere.

本実施の形態に係る回路基板用銅箔では、粗化銅めっき処理のような粗面化処理が施された後の屈曲特性向上を達成するために、例えば粗化銅めっき処理によって形成された粗化めっき層2の上に、純銅または銅を主体とする銅合金からなる銅系薄膜3と、ニッケルまたはコバルトもしくはそれらの合金からなる非銅系金属薄膜4とを、この順で交互に積層する構造となっている。   The copper foil for circuit boards according to the present embodiment is formed by, for example, a roughened copper plating process in order to achieve an improvement in bending characteristics after a roughening process such as a roughened copper plating process is performed. On the rough plating layer 2, a copper thin film 3 made of pure copper or a copper alloy mainly composed of copper and a non-copper metal thin film 4 made of nickel, cobalt or an alloy thereof are alternately laminated in this order. It has a structure to do.

すなわち、このように基材1に、銅系薄膜3と非銅系金属薄膜4とを1層ずつ、あるいはそれ以上の多層に亘って積層して積層構造を形成すると、この回路基板用銅箔の表面層を極微細な結晶粒としたこととなり、特に繰り返し曲げに対するこの回路基板用銅箔全体の疲労強度が飛躍的に向上し、耐屈曲特性が向上するということを、発明者らは新たな知見として得た。そして、この新知見に基づいて本発明を成すに至ったのであった。   That is, when the laminated structure is formed by laminating the copper-based thin film 3 and the non-copper-based metal thin film 4 on the base material 1 by one or more layers as described above, the copper foil for circuit board is formed. Inventors have newly found that the fatigue strength of the entire copper foil for circuit boards against repetitive bending is greatly improved and the bending resistance is improved. Obtained as a new finding. And based on this new knowledge, it came to make this invention.

上記の非銅系金属薄膜4としては、加熱操作を行っても銅との間に合金層の出来にくい銅系以外の金属が望ましい。そのような非銅系金属としては、ニッケル(Ni)、コバルト(Co)、またはこれらの合金が適している。ここでフォトエッチング法によるFPC配線回路形成をも考慮すると、NiCoの合金層が最適である。但し、これのみには限定されず、その他にも、モリブデン(Mo)、タングステン(W)、ニオブ(Nb)、チタン(Ti)、クロム(Cr)、シリカ(Si)、鉄(Fe)、あるいはこれらの合金等を用いることも可能である。   The non-copper metal thin film 4 is preferably a metal other than a copper-based metal that is difficult to form an alloy layer with copper even when a heating operation is performed. As such a non-copper metal, nickel (Ni), cobalt (Co), or an alloy thereof is suitable. Here, considering the formation of the FPC wiring circuit by the photoetching method, the NiCo alloy layer is optimal. However, the present invention is not limited to this. Besides, molybdenum (Mo), tungsten (W), niobium (Nb), titanium (Ti), chromium (Cr), silica (Si), iron (Fe), or These alloys can also be used.

銅系薄膜3、非銅系金属薄膜4の、1層ごとの膜厚については、余りにも厚過ぎると、上記のような銅系薄膜3および非銅系金属薄膜4による微細な結晶粒的な効果を十分に発揮させることが困難になるので好ましくない。
また、特に非銅系金属薄膜4の膜厚は、厚過ぎると配線回路を形成するためのエッチングを行う際に、そのパターン再現性における障害となるため、300nm程度が上限となる。あるいは逆に、薄過ぎると、絶縁性基板5と張り合わされる際の加熱に起因して合金
化しやすくなるため、非銅系金属薄膜4の材料として用いられる金属または合金の種類にもよるが、最小20nm程度までが限界である。
また、銅系薄膜3と非銅系金属薄膜4とを積層してなる積層構造の合計層数については、銅系薄膜3と非銅系金属薄膜4とをこの順で1層ずつ(合計2層)形成するだけでも、明らかな耐屈曲特性向上の効果を得ることができる。むしろ、この合計層数が多過ぎる(多層であり過ぎる)と、耐屈曲特性の向上には有利であるものの、同時に製造コストの増大や製造プロセスの煩雑化を招く虞が高くなる。従って、製造コスト等を考慮しなければ、例えば基材1は省略して、この回路基板用銅箔の全板厚に亘って積層構造とすることなども可能である。
If the film thickness of each layer of the copper-based thin film 3 and the non-copper-based metal thin film 4 is too thick, the above-described copper-based thin film 3 and the non-copper-based metal thin film 4 form fine crystal grains. This is not preferable because it is difficult to sufficiently exert the effect.
In particular, if the film thickness of the non-copper metal thin film 4 is too thick, it becomes an obstacle to the pattern reproducibility when performing etching for forming a wiring circuit, and therefore the upper limit is about 300 nm. Or, conversely, if it is too thin, it tends to be alloyed due to heating when it is bonded to the insulating substrate 5, so depending on the type of metal or alloy used as the material of the non-copper metal thin film 4, The minimum is about 20 nm.
Moreover, about the total number of layers of the laminated structure formed by laminating the copper-based thin film 3 and the non-copper-based metal thin film 4, one layer each of the copper-based thin film 3 and the non-copper-based metal thin film 4 in this order (2 in total) Even when the layer is formed, it is possible to obtain a clear effect of improving the bending resistance. Rather, if the total number of layers is too large (too many layers), it is advantageous for improving the bending resistance, but at the same time, there is a high risk of increasing the manufacturing cost and complicating the manufacturing process. Therefore, if the manufacturing cost or the like is not taken into consideration, for example, the base material 1 can be omitted and a laminated structure can be formed over the entire thickness of the copper foil for circuit boards.

ここで、一般にFPC用の回路基板用銅箔は、絶縁性樹脂フィルムとの接着強度を保持するために、片面に粗化銅めっき処理などを施してなる粗化面が形成されている。図1に示した一例では、基材1の表面1a上に形成された粗化めっき層2の粒状(あるいはコブ状)の表面が、その粗化面に該当する。このような粗化面が形成されているFPC用の回路基板用銅箔に、上記の銅系薄膜3と非銅系金属薄膜4との積層構造を、粗化面が形成されている方の表面1a側のみに設けるようにしてもよく、あるいはそれとは反対側の、いわゆる光沢面側である表面1b側のみに設けるようにしてもよく、もしくはその両面に設けるようにしてもよいが、粗化面が形成されている方の表面1a側に上記の銅系薄膜3と非銅系金属薄膜4との積層構造を設ける場合には、粗化面を形成した後に、その粗化面の表面上に設けるようにすることが望ましい。図1の一例に則して言えば、基材1の表面1a上に粗化銅めっき処理によって粗化めっき層2を形成した後、その粗化めっき層2の表面上に、銅系薄膜3と非銅系金属薄膜4との積層構造を設けるようにすることが望ましい。   Here, in general, a copper foil for a circuit board for FPC has a roughened surface formed by subjecting one surface to a roughened copper plating process in order to maintain the adhesive strength with an insulating resin film. In the example shown in FIG. 1, the granular (or bumpy) surface of the roughened plating layer 2 formed on the surface 1 a of the substrate 1 corresponds to the roughened surface. A laminated structure of the copper thin film 3 and the non-copper metal thin film 4 is formed on the FPC circuit board copper foil having such a roughened surface. It may be provided only on the surface 1a side, or may be provided only on the surface 1b side opposite to the surface, that is, the so-called glossy surface side, or may be provided on both surfaces thereof. When the laminated structure of the copper-based thin film 3 and the non-copper-based metal thin film 4 is provided on the surface 1a side where the roughened surface is formed, the surface of the roughened surface is formed after the roughened surface is formed. It is desirable to provide it above. Referring to the example of FIG. 1, after the rough plating layer 2 is formed on the surface 1 a of the substrate 1 by the rough copper plating process, the copper-based thin film 3 is formed on the surface of the rough plating layer 2. It is desirable to provide a laminated structure of the non-copper metal thin film 4.

このようにすることにより、粗化めっき層2の粗化面を主に構成している粒状析出物を銅系薄膜3と非銅系金属薄膜4との積層構造で覆って、その粒状析出物における粒と粒との間に集中しようとする屈曲応力を低減させ、またその銅系薄膜3と非銅系金属薄膜4とで、屈曲応力に起因した割れ(クラック)が時間差を有して生じることとなり、その結果、基材1の表面1aにまで到達するような致命的なクラックの発生を防いで、耐屈曲特性の顕著な向上が達成される。   By doing in this way, the granular deposit which mainly comprises the roughening surface of the roughening plating layer 2 is covered with the laminated structure of the copper thin film 3 and the non-copper metal thin film 4, and the granular deposit In the copper thin film 3 and the non-copper metal thin film 4, cracks caused by bending stress occur with a time difference. As a result, the occurrence of a fatal crack that reaches the surface 1a of the substrate 1 is prevented, and a remarkable improvement in the bending resistance is achieved.

また、従来の技術では、高い耐屈曲特性を得ようとする場合、最終圧延加工度を90%超のように高く設定しなければならなかったので、その際の塑性歪みの蓄積が大きくなり過ぎて、製品保管中に再結晶が進み、延いてはハンドリング時における銅箔の変形の要因となっていたが、本実施の形態に係る回路基板用銅箔によれば、従来の技術に係る銅箔と同程度の耐屈曲特性を得ようとする場合、圧延銅箔の製造工程において最終圧延加工度を例えば90%以下のように低い値に抑えることが可能となる。   Further, in the conventional technique, when it is intended to obtain a high bending resistance, the final rolling work has to be set as high as over 90%, so that the plastic strain accumulation at that time becomes too large. Thus, recrystallization progressed during product storage, and as a result, the copper foil was deformed during handling, but according to the copper foil for circuit boards according to the present embodiment, the copper according to the prior art When trying to obtain the same bending resistance as that of the foil, it is possible to suppress the final rolling degree to a low value such as 90% or less in the manufacturing process of the rolled copper foil.

なお、銅箔表面には防錆や樹脂フィルムとの接着性を考慮して防錆めっきやクロメート処理、シランカップリング処理などの、いわゆる後処理被膜が形成される場合が多いが、上記の銅系薄膜3と非銅系金属薄膜4との積層構造を、これらの後処理被膜として兼用することも可能である。   In many cases, so-called post-treatment films such as rust prevention plating, chromate treatment, and silane coupling treatment are formed on the surface of copper foil in consideration of rust prevention and adhesion to resin films. It is also possible to use a laminated structure of the base thin film 3 and the non-copper metal thin film 4 as these post-treatment films.

また、本実施の形態に係る回路基板用銅箔における上記の銅系薄膜3と非銅系金属薄膜4との積層構造を形成する方法としては、めっき浴に浸漬〜電解めっきを行うプロセスを主体として用いる湿式めっき法や、基材1の表面上に積層させたい所望の金属の析出電位の違いを利用するパルス電解法、あるいは蒸着やスパッタリングなどの物理的方法などが適用可能である。   Moreover, as a method of forming the laminated structure of the copper-based thin film 3 and the non-copper-based metal thin film 4 in the circuit board copper foil according to the present embodiment, a process of immersion to electrolytic plating in a plating bath is mainly used. It is possible to apply a wet plating method used as the above, a pulse electrolysis method using a difference in deposition potential of a desired metal desired to be laminated on the surface of the substrate 1, or a physical method such as vapor deposition or sputtering.

また、本実施の形態に係る回路基板用銅箔では、FPCに用いられるものであると仮定
すると、この場合、特にNiCo合金めっきが適しているので、めっき浴を複数用意し、交互に被めっき材を変更しつつ電解めっきにより上記の銅系薄膜3と非銅系金属薄膜4とを積層して行くという、「湿式めっき法」を好適に用いることができる。その個々の多層めっき法それ自体については既知のものであり、耐摩耗性や磁気抵抗効果などへの応用が提案されている(例えば、名工研技術情報No.641(2004.6、名古屋市工業研
究所))。
Further, assuming that the copper foil for circuit board according to the present embodiment is used for FPC, in this case, NiCo alloy plating is particularly suitable. Therefore, a plurality of plating baths are prepared and alternately plated. A “wet plating method” in which the copper thin film 3 and the non-copper metal thin film 4 are laminated by electrolytic plating while changing the material can be suitably used. The individual multi-layer plating method itself is known, and its application to wear resistance, magnetoresistive effect, etc. has been proposed (for example, Meikoken Technical Information No. 641 (2004.4, Nagoya City Industry). Institute)).

上記の実施の形態で説明したような回路基板用銅箔を、実施例として試験的に作製した。また、それとの比較のために、銅系薄膜3と非銅系金属薄膜4との積層構造を有さない、従来の構成の一般的な回路基板用銅箔を、実施例1〜6と同様の板厚で作製し、比較例とした。そして、それらを用いて屈曲寿命についての実験を行い、その屈曲寿命をパラメータとして用いて実施例1〜6と比較例1、2とでの耐屈曲特性を比較・検討した。   A copper foil for a circuit board as described in the above embodiment was experimentally produced as an example. In addition, for comparison, a general circuit board copper foil having a conventional configuration, which does not have a laminated structure of the copper-based thin film 3 and the non-copper-based metal thin film 4, is the same as in Examples 1-6. The thickness was made as a comparative example. Then, an experiment on the bending life was performed using them, and the bending resistance characteristics in Examples 1 to 6 and Comparative Examples 1 and 2 were compared and examined using the bending life as a parameter.

図2は、各めっき処理で用いた、めっき液の組成、電流密度、めっき回数を纏めて示す図、図3は、実施例および比較例の各回路基板用銅箔の主な仕様を纏めて示す図、図4は、実施例および比較例の各回路基板用銅箔の屈曲寿命についての実験結果を纏めて示す図である。   FIG. 2 collectively shows the composition of the plating solution, the current density, and the number of times of plating used in each plating process, and FIG. 3 summarizes the main specifications of the copper foils for circuit boards of Examples and Comparative Examples. FIG. 4 and FIG. 4 are diagrams collectively showing the experimental results on the bending life of the copper foils for circuit boards of Examples and Comparative Examples.

まず、基材1の銅箔として、タフピッチ銅のインゴットを溶製した後、熱間圧延により、厚さ12mmの銅素材を得た。
続いて、この銅素材に対して冷間圧延と焼鈍とを繰り返して、最終圧延前の生地材とした。この生地材に最終の焼鈍と圧延を施して、所定の板厚の銅箔とした。比較例1、2の銅箔については、最終圧延上がりの板厚を0.016mmとした。実施例1〜6の銅箔については、銅系薄膜3、非銅系金属4が合計約4μmの積層構造として形成されるので、総板厚を比較例の板厚と合せるために、その最終圧延上がりの板厚を0.012mmとした。これは、屈曲特性の比較評価を行うに際して、実験方法を同一条件に設定しても、板厚が異なっていると、付与される歪が異なり、正しい比較対照ができなくなるので、そのような実験上の齟齬を避けるためである。
First, as a copper foil of the substrate 1, a tough pitch copper ingot was melted, and then a copper material having a thickness of 12 mm was obtained by hot rolling.
Subsequently, cold rolling and annealing were repeated on this copper material to obtain a dough material before final rolling. This dough material was subjected to final annealing and rolling to obtain a copper foil having a predetermined thickness. About the copper foil of the comparative examples 1 and 2, the plate | board thickness after final rolling was 0.016 mm. About the copper foil of Examples 1-6, since the copper-type thin film 3 and the non-copper-type metal 4 are formed as a laminated structure of about 4 micrometers in total, in order to match | combine total board thickness with the board thickness of a comparative example, the last The sheet thickness after rolling was set to 0.012 mm. This is because, when performing the comparative evaluation of the bending characteristics, even if the experimental method is set to the same condition, if the plate thickness is different, the applied strain will be different and correct comparison will not be possible. This is to avoid the above trap.

その後、図3に示したような各仕様で、実施例1〜6の銅箔には片面上に銅系薄膜3、非銅系金属薄膜4をそれぞれ積層形成した。この銅系薄膜3、非銅系金属薄膜4の形成は、Cu、NiCo、Ni、Coと異なった金属ごとでそれぞれ別のめっき浴により行った。このときのめっき処理は、図2に纏めて示したような設定とした。このめっき処理工程の前処理としては、一般的な電解脱脂処理を施し、また各めっき処理工程の後処理として十分な水洗を行ってから、次のめっき処理に移るようにした。
比較例1、2の銅箔については、圧延銅箔である基材1の片面上に粗化銅めっき層2を形成したのみとした。
これら実施例1〜6および比較例1、2の供試材には、防錆処理として両面に亜鉛めっき、クロメート処理の順に作業を行い、粗化面にシランカップリング処理を全てにおいて施した。
図3の表中の「圧延加工度」は、式;(t0−t)/t0×100より求めた。ここに、t0は圧延前の板厚、tは圧延後の板厚である。
Thereafter, the copper thin film 3 and the non-copper metal thin film 4 were laminated on one side of each of the copper foils of Examples 1 to 6 according to the specifications shown in FIG. The copper-based thin film 3 and the non-copper-based metal thin film 4 were formed using different plating baths for each metal different from Cu, NiCo, Ni, and Co. The plating process at this time was set as shown in FIG. As a pretreatment for this plating treatment step, a general electrolytic degreasing treatment was performed, and after sufficient washing as a post treatment for each plating treatment step, the next plating treatment was started.
About the copper foil of the comparative examples 1 and 2, only the roughening copper plating layer 2 was formed on the single side | surface of the base material 1 which is a rolled copper foil.
The test materials of Examples 1 to 6 and Comparative Examples 1 and 2 were subjected to galvanization and chromate treatment in this order as antirust treatment, and silane coupling treatment was performed on all roughened surfaces.
The “rolling degree” in the table of FIG. 3 was obtained from the formula: (t 0 -t) / t 0 × 100. Here, t 0 is the plate thickness before rolling, and t is the plate thickness after rolling.

このようにして作製した実施例1〜6および比較例1、2の各供試材について、屈曲寿命試験を行い、その耐屈曲特性について確認・比較・評価した。
各供試材を180℃および300℃で60分間加熱した後、それぞれ幅が12mmおよび長さが200mmのサンプルを採取し、その各々について耐屈曲特性試験を行って、それぞれの屈曲寿命を計測し、それに基づいて各供試材の耐屈曲特性を確認・比較・評価した。このときの屈曲寿命の計測は、JISC5016に規定されているFPCの耐屈曲特
性試験と同様の方法によって実施し、供試材のめっき処理面(粗化銅めっき層2、銅系薄膜3、非銅系金属薄膜4が形成された面)を外側にして、曲率半径を2.5mm、ストロークを10mm、屈曲速度を1500回/分に設定したときの、サンプル破断に至るまでの屈曲回数を屈曲寿命として表示した。
The specimens of Examples 1 to 6 and Comparative Examples 1 and 2 thus produced were subjected to a bending life test, and their bending resistance characteristics were confirmed / compared / evaluated.
After heating each sample material at 180 ° C. and 300 ° C. for 60 minutes, samples each having a width of 12 mm and a length of 200 mm are taken, and a bending resistance test is performed on each sample to measure each bending life. Based on this, the bending resistance of each specimen was confirmed, compared, and evaluated. The bending life at this time is measured by the same method as the FPC bending resistance test specified in JIS C5016, and the plated surface of the test material (roughened copper plating layer 2, copper thin film 3, The number of bends until the sample breaks when the radius of curvature is set to 2.5 mm, the stroke is set to 10 mm, and the bending speed is set to 1500 times / min. Displayed as life.

その結果、各サンプルの屈曲寿命は、図4に示したようなものとなった。
実施例1〜4および比較例1の結果から、最終圧延加工度が90%以上の場合では、実
施例のサンプルは比較例のそれの約3倍の屈曲寿命を示していることが確認された。
また、実施例5および比較例2の結果から、最終圧延加工度が90%以下の場合についても、実施例のサンプルは比較例のそれの約2倍の屈曲寿命を示すことが確認された。
As a result, the bending life of each sample was as shown in FIG.
From the results of Examples 1 to 4 and Comparative Example 1, it was confirmed that when the final rolling degree was 90% or more, the sample of the example showed a bending life approximately three times that of the comparative example. .
In addition, from the results of Example 5 and Comparative Example 2, it was confirmed that the sample of the Example exhibited a bending life about twice that of the Comparative Example even when the final rolling work degree was 90% or less.

また、比較例1、2のサンプルでは、180℃の加熱を行った場合に対して300℃の加熱を行った場合の方が、寿命の低下が大きいが、実施例のサンプルでは、この低下がほとんどないのが極めて特徴的である。むしろ実施例1、3、4では寿命が増加している。これは、高温の加熱の際に銅系薄膜3と非銅系金属薄膜4との積層構造の一部が拡散して合金化することにより、寿命が延びたものと推定される。   Further, in the samples of Comparative Examples 1 and 2, when the heating at 300 ° C. is performed with respect to the heating at 180 ° C., the lifetime is greatly decreased. It is very characteristic that there is almost no. Rather, in Examples 1, 3, and 4, the lifetime is increased. This is presumed that the lifetime was extended by part of the laminated structure of the copper-based thin film 3 and the non-copper-based metal thin film 4 being diffused and alloyed during high-temperature heating.

銅系薄膜3と非銅系金属薄膜4との積層構造の層数の影響については、実施例1、2、6の結果から、Cu+NiCoめっきを5回繰り返したものと10回繰り返したものとでは(実施例1、2)、大きな差は認められないが、1回のものでは(実施例6)、寿命低下回避の効果は低減するものの、その低下率は極めて僅かであり、またCu+NiCoめっきを全く施していない比較例1の結果と比べて、顕著に優れた屈曲寿命を示していることが確認された。
また、非銅系金属薄膜4を構成する金属の種類の違いによる影響については、実施例1、3、4の結果から、屈曲寿命(耐屈曲特性)の差は、ほとんど無いことが確認された。
Regarding the influence of the number of layers of the laminated structure of the copper-based thin film 3 and the non-copper-based metal thin film 4, from the results of Examples 1, 2, and 6, the Cu + NiCo plating was repeated 5 times and 10 times. (Examples 1 and 2), a large difference is not recognized, but in the case of one time (Example 6), although the effect of avoiding the decrease in life is reduced, the rate of decrease is very slight, and Cu + NiCo plating is performed. Compared with the result of Comparative Example 1 which was not applied at all, it was confirmed that the bending life was remarkably excellent.
Moreover, about the influence by the difference in the kind of metal which comprises the non-copper-type metal thin film 4, it was confirmed from the result of Examples 1, 3, and 4 that there is almost no difference in a bending life (bending-proof characteristic). .

なお、本実施例および上記実施の形態では、圧延銅箔の粗化面側に銅系薄膜3と非銅系金属薄膜4との積層構造を形成する場合を主体として説明したが、FPC用の銅箔としては電解銅箔が用いられる場合もあり、そのような電解銅箔を基材1として用いる場合にも、本発明を適用可能である。この場合には、電解銅箔の耐屈曲特性を大幅に向上させることができる。
また、基材1の片面だけでなく両面に、上記のような銅系薄膜3と非銅系金属薄膜4との積層構造を形成することにより、さらに優れた耐屈曲特性を達成することが可能となる。
In addition, although the present Example and the said embodiment demonstrated mainly the case where the laminated structure of the copper-type thin film 3 and the non-copper-type metal thin film 4 was formed in the roughening surface side of a rolled copper foil, An electrolytic copper foil may be used as the copper foil, and the present invention can also be applied when such an electrolytic copper foil is used as the substrate 1. In this case, the bending resistance of the electrolytic copper foil can be greatly improved.
Further, by forming a laminated structure of the copper-based thin film 3 and the non-copper-based metal thin film 4 on both sides as well as one side of the base material 1, it is possible to achieve further excellent bending resistance characteristics. It becomes.

本発明の実施の形態に係る回路基板用銅箔の主要部の構成を示す図である。It is a figure which shows the structure of the principal part of the copper foil for circuit boards which concerns on embodiment of this invention. 実施例および比較例のサンプル作製における、各めっき処理で用いた、めっき液の組成、電流密度、めつき回数を纏めて示す図である。It is a figure which shows collectively the composition of a plating solution, the current density, and the frequency | count of staking used by each plating process in the sample preparation of an Example and a comparative example. 実施例および比較例の各回路基板用銅箔の主な仕様を纏めて示す図である。It is a figure which shows collectively the main specifications of the copper foil for circuit boards of an Example and a comparative example. 実施例および比較例の各回路基板用銅箔の屈曲寿命についての実験結果を纏めて示す図である。It is a figure which shows collectively the experimental result about the bending life of the copper foil for circuit boards of an Example and a comparative example.

符号の説明Explanation of symbols

1 基材
2 粗化めっき層
3 銅系薄膜
4 非銅系金属薄膜
5 絶縁性基板
DESCRIPTION OF SYMBOLS 1 Base material 2 Roughening plating layer 3 Copper-type thin film 4 Non-copper-type metal thin film 5 Insulating substrate

Claims (8)

銅箔からなる基材の片面または両面に、純銅または銅を主体とする銅合金からなる銅系薄膜と、ニッケルまたはコバルトもしくはそれらの合金からなる最小で略20nmから上限を略300nmの膜厚とする非銅系金属薄膜とを、この順で交互に少なくとも2層ずつ以上積層し、その結果として最上層が前記非銅系金属薄膜である積層構造を備えた
ことを特徴とする回路基板用銅箔。
A copper-based thin film made of pure copper or a copper alloy mainly composed of copper on one side or both sides of a substrate made of copper foil, and a film thickness of about 20 nm minimum to about 300 nm at the upper limit made of nickel or cobalt or an alloy thereof. non-copper system and a metal thin film, laminated on more than one by at least two layers alternately in this order, a circuit board as a result the top layer is characterized by having a layered structure which is the non-copper metal thin film Copper foil.
請求項1記載の回路基板用銅箔において、
前記銅箔からなる基材の最終冷間圧延加工度が90%以下である
ことを特徴とする回路基板用銅箔。
In the copper foil for circuit boards according to claim 1,
A copper foil for circuit boards, wherein the base material made of the copper foil has a final cold rolling degree of 90% or less.
銅箔からなる基材の片面または両面に、純銅または銅を主体とする銅合金からなる銅系薄膜と、ニッケルまたはコバルトもしくはそれらの合金からなる最小で略20nmから上限を略300nmの膜厚とする非銅系金属薄膜とを、この順で交互に少なくとも1層ずつ以上積層し、その結果として最上層が前記非銅系金属薄膜である積層構造を備え、A copper-based thin film made of pure copper or a copper alloy mainly composed of copper on one side or both sides of a substrate made of copper foil, and a film thickness of about 20 nm minimum to about 300 nm at the upper limit made of nickel or cobalt or an alloy thereof. And a non-copper-based metal thin film alternately laminated at least one layer in this order, and as a result, the uppermost layer comprises a non-copper-based metal thin film,
前記銅箔からなる基材の最終冷間圧延加工度が90%以下であるThe final cold rolling degree of the base material made of the copper foil is 90% or less.
ことを特徴とする回路基板用銅箔。The copper foil for circuit boards characterized by the above-mentioned.
請求項1ないし3のうちいずれか1つの項に記載の回路基板用銅箔において、
前記積層構造の合計膜厚が略4μmである
ことを特徴とする回路基板用銅箔。
In the copper foil for circuit boards as described in any one of Claims 1 thru | or 3 ,
A copper foil for circuit boards, wherein the total thickness of the laminated structure is about 4 μm.
銅箔からなる基材の片面または両面に、純銅または銅を主体とする銅合金からなる銅系薄膜と、ニッケルまたはコバルトもしくはそれらの合金からなる最小で略20nmから上限を略300nmの膜厚とする非銅系金属薄膜とを、この順で交互に少なくとも1層ずつ以上積層し、その結果として最上層が前記非銅系金属薄膜である積層構造を備え、A copper-based thin film made of pure copper or a copper alloy mainly composed of copper on one side or both sides of a substrate made of copper foil, and a film thickness of about 20 nm minimum to about 300 nm at the upper limit made of nickel or cobalt or an alloy thereof. And a non-copper-based metal thin film alternately laminated at least one layer in this order, and as a result, the uppermost layer comprises a non-copper-based metal thin film,
前記積層構造の合計膜厚が略4μmであるThe total film thickness of the laminated structure is approximately 4 μm.
ことを特徴とする回路基板用銅箔。The copper foil for circuit boards characterized by the above-mentioned.
請求項1ないしのうちいずれか1つの項に記載の回路基板用銅箔において、
前記基材が、片面または両面に粗面化処理を施してなる粗化面を有する圧延銅箔である
ことを特徴とする回路基板用銅箔。
In the copper foil for circuit boards according to any one of claims 1 to 5 ,
A copper foil for circuit boards, wherein the base material is a rolled copper foil having a roughened surface obtained by subjecting one surface or both surfaces to a roughening treatment.
請求項1ないしのうちいずれか1つの項に記載の回路基板用銅箔において、
前記積層構造よりも上層に、少なくとも亜鉛めっき層若しくはクロメート皮膜がこの順で設けられている
ことを特徴とする回路基板用銅箔。
In the copper foil for circuit boards according to any one of claims 1 to 6 ,
A copper foil for circuit boards, wherein at least a zinc plating layer or a chromate film is provided in this order on the upper layer than the laminated structure.
請求項記載の回路基板用銅箔において、
当該回路基板用銅箔の表裏両面のうち、前記クロメート皮膜が形成されており、かつ外部の絶縁性樹脂フィルムのような絶縁性基板と接着されるように設定された側の表面における、前記クロメート皮膜の上層に、シランカップリング処理が形成されている
ことを特徴とする回路基板用銅。
In the copper foil for circuit boards according to claim 7 ,
Among the front and back surfaces of the copper foil for circuit board, the chromate film is formed on the surface on the side where the chromate film is formed and set to be adhered to an insulating substrate such as an external insulating resin film. A copper for circuit boards, wherein a silane coupling treatment is formed on an upper layer of the film.
JP2008010058A 2008-01-21 2008-01-21 Copper foil for circuit boards Active JP5136768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008010058A JP5136768B2 (en) 2008-01-21 2008-01-21 Copper foil for circuit boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008010058A JP5136768B2 (en) 2008-01-21 2008-01-21 Copper foil for circuit boards

Publications (2)

Publication Number Publication Date
JP2009170829A JP2009170829A (en) 2009-07-30
JP5136768B2 true JP5136768B2 (en) 2013-02-06

Family

ID=40971650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008010058A Active JP5136768B2 (en) 2008-01-21 2008-01-21 Copper foil for circuit boards

Country Status (1)

Country Link
JP (1) JP5136768B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100983682B1 (en) * 2008-03-31 2010-09-24 엘에스엠트론 주식회사 Surface treatment method of copper foil for printed circuit, copper foil and electroplater thereof
JP5506368B2 (en) * 2009-12-17 2014-05-28 Jx日鉱日石金属株式会社 Copper foil for environmentally friendly printed wiring boards
KR101317184B1 (en) * 2012-03-20 2013-10-15 안강모 Board for using PCB using aluminium foil and method for manufacturing thereof
JP5940010B2 (en) * 2012-03-28 2016-06-29 古河電気工業株式会社 Surface roughening copper foil, method for producing the same, and circuit board

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202367A (en) * 1993-12-28 1995-08-04 Japan Energy Corp Surface treatment method of copper foil for printed circuit
JPH0851281A (en) * 1994-08-08 1996-02-20 Nikko Gould Foil Kk Method for manufacture high-temperature large-expansion copper foil for printed circuit
JP3067672B2 (en) * 1997-02-13 2000-07-17 日本電解株式会社 Copper foil for printed wiring board and method for producing the same
JP2001177204A (en) * 1999-12-15 2001-06-29 Mitsui Mining & Smelting Co Ltd Surface-treated copper foil and method of manufacturing the same
JP4379854B2 (en) * 2001-10-30 2009-12-09 日鉱金属株式会社 Surface treated copper foil
JP4172704B2 (en) * 2003-07-31 2008-10-29 日鉱金属株式会社 Surface-treated copper foil and substrate using the same
JP4626390B2 (en) * 2005-05-16 2011-02-09 日立電線株式会社 Copper foil for printed wiring boards in consideration of environmental protection

Also Published As

Publication number Publication date
JP2009170829A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
KR101528995B1 (en) Metal foil composite, flexible printed circuit, formed product, and method of producing the same
EP1531656A2 (en) Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier
JP5255229B2 (en) Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, copper-clad laminate using the surface-treated copper foil, and method for producing the electrolytic copper foil
JP5638952B2 (en) Surface treated copper foil and copper clad laminate
KR102220896B1 (en) Rolled copper foil with copper plating layer
JP5136768B2 (en) Copper foil for circuit boards
TW201734219A (en) Copper foil for flexible printed circuit board, cooper-clad laminate using same, flexible printed circuit board, and electronic machine whose copper foil contains 0.001~0.05 mass% of Ag and contains total 0.003~0.825 mass% of addition elements selected from more than one of the group of P, Ti, Sn, Ni, Be, Zn, In, and Mg
JP2014100903A (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board and method producing printed wiring board
TW201734220A (en) Copper foil for flexible printed circuit board, cooper-clad laminate using same, flexible printed circuit board, and electronic machine which is constituted by 99 mass% or above of Cu and the remainder of inevitable impurities
JP2014139347A (en) Method of treating surface of copper foil for printed circuit, copper foil produced by the same and plating apparatus for the same
JP2009138245A (en) Electrolytic copper foil, and wiring board
KR101626691B1 (en) Copper-foil composite, formed body, and manufacturing method therefor
JP7161620B2 (en) METAL FOIL WITH CARRIER AND METHOD FOR MANUFACTURING SAME
JP6663712B2 (en) Rolled copper foil, copper-clad laminate using the same, flexible printed circuit board, and electronic device
US20030108766A1 (en) Copper alloy foil
JP2014152344A (en) Composite copper foil and production method thereof
JP5753115B2 (en) Rolled copper foil for printed wiring boards
JP2012041574A (en) Copper foil for flexible printed wiring board and method for manufacturing the same
JP5940010B2 (en) Surface roughening copper foil, method for producing the same, and circuit board
KR102285062B1 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment
JP2009110990A (en) Copper foil for printed wiring board
JP6805217B2 (en) Conductive materials, molded products and electronic components
KR101539839B1 (en) Copper foil, copper-clad laminate, flexible printed circuits and three-dimensional molded article
JP2009194163A (en) Copper foil for circuit board
JP2013065661A (en) Copper foil for flexible printed wiring board, manufacturing method of the same, and flexible printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Ref document number: 5136768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250