JP5131204B2 - Power module substrate manufacturing method - Google Patents

Power module substrate manufacturing method Download PDF

Info

Publication number
JP5131204B2
JP5131204B2 JP2009004494A JP2009004494A JP5131204B2 JP 5131204 B2 JP5131204 B2 JP 5131204B2 JP 2009004494 A JP2009004494 A JP 2009004494A JP 2009004494 A JP2009004494 A JP 2009004494A JP 5131204 B2 JP5131204 B2 JP 5131204B2
Authority
JP
Japan
Prior art keywords
ceramic substrate
metal plate
brazing material
power module
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009004494A
Other languages
Japanese (ja)
Other versions
JP2010165719A (en
Inventor
雅博 柳田
敏之 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009004494A priority Critical patent/JP5131204B2/en
Publication of JP2010165719A publication Critical patent/JP2010165719A/en
Application granted granted Critical
Publication of JP5131204B2 publication Critical patent/JP5131204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Ceramic Products (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、大電流、高電圧を制御する半導体装置に用いられるパワーモジュール用基板の製造方法に関する。   The present invention relates to a method for manufacturing a power module substrate used in a semiconductor device that controls a large current and a high voltage.

一般に、半導体素子の中でも電力供給のためのパワーモジュールは発熱量が比較的高いため、このパワーモジュール用基板としては、例えば特許文献1に示されるように、AlN、Al、Si、SiC等からなるセラミックス基板上にアルミニウム板等の金属板をAl−Si系等のろう材を介して接合させたものが用いられている。この金属板は、後工程のエッチング処理によって所望パターンの回路が形成されて回路層となる。そして、エッチング後は、この回路層の表面にはんだ材を介して電子部品(半導体チップ等のパワー素子)が搭載され、パワーモジュールとなる。 In general, a power module for supplying power among semiconductor elements has a relatively high calorific value. As this power module substrate, for example, as shown in Patent Document 1, AlN, Al 2 O 3 , Si 3 N 4. A metal plate such as an aluminum plate joined to a ceramic substrate made of SiC or the like via a brazing material such as an Al-Si type is used. This metal plate becomes a circuit layer by forming a circuit having a desired pattern by an etching process in a later step. After etching, an electronic component (power element such as a semiconductor chip) is mounted on the surface of the circuit layer via a solder material to form a power module.

また、この金属板は、例えば特許文献2に示されるように、箔状のろう材をセラミックス基板と金属板との間に介在させて高温状態で積層方向に加圧することにより、溶融したろう材によってセラミックス基板に接合される。   In addition, as shown in Patent Document 2, for example, this metal plate is a molten brazing material by interposing a foil-like brazing material between the ceramic substrate and the metal plate and pressing in the stacking direction in a high temperature state. To be bonded to the ceramic substrate.

特開2004−356502号公報JP 2004-356502 A 特開2007−53349号公報JP 2007-53349 A

上述のようにセラミックス基板と金属板とを接合した場合、ろう材の量が不足すると、金属板とセラミックス基板との間でろう材が不足する箇所が生じたり、セラミックス基板の反りによって接合部分が剥離したりして、後工程で形成した回路層がはがれる等の問題が生じるおそれがある。また、金属板全面にろう材が付着せず、セラミックス基板に対して金属板を確実に接合できないおそれがある。さらに、接合が十分でない場合、温度変化を繰り返す温度サイクル条件下において剥離が生じてしまう場合もある。
一方、十分な量のろう材を用いると、特許文献2に示されるように、溶融したろう材の余剰分がセラミックス基板および金属板の側面を経由して金属板の表面に付着し、この表面を変質させ、その後に固着される電子部品のボンディングワイヤの接着性が損なわれるという問題がある。また、余剰のろう材を除去する際にセラミックス基板が破損するおそれがある。
When the ceramic substrate and the metal plate are bonded as described above, if the amount of the brazing material is insufficient, a portion where the brazing material is insufficient between the metal plate and the ceramic substrate is generated, or the bonded portion is caused by warping of the ceramic substrate. There is a possibility that problems such as peeling off and peeling off of a circuit layer formed in a subsequent process may occur. Further, the brazing material does not adhere to the entire surface of the metal plate, and there is a possibility that the metal plate cannot be reliably bonded to the ceramic substrate. Furthermore, if bonding is not sufficient, peeling may occur under temperature cycle conditions that repeat temperature changes.
On the other hand, when a sufficient amount of brazing material is used, as shown in Patent Document 2, surplus of the molten brazing material adheres to the surface of the metal plate via the ceramic substrate and the side surface of the metal plate, and this surface There is a problem that the adhesion of the bonding wire of the electronic component to be fixed thereafter is impaired. In addition, the ceramic substrate may be damaged when the excess brazing material is removed.

本発明は、このような事情に鑑みてなされたもので、金属板とセラミックス基板とを確実に接合でき、回路面へのろう材の付着を防止しながら、セラミックス基板を破損せずに余剰のろう材の除去が可能であるパワーモジュール用基板の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances. The metal plate and the ceramic substrate can be reliably bonded to each other, and adhesion of the brazing material to the circuit surface is prevented. It aims at providing the manufacturing method of the board | substrate for power modules which can remove a brazing material.

本発明は、セラミックス基板の表面に、このセラミックス基板よりも小面積の金属板を接合する接合工程を有するパワーモジュール用基板の製造方法であって、前記接合工程は、ろう材を介在させて前記セラミックス基板と前記金属板とを積層した積層体を、前記セラミックス基板よりも大面積であってこのセラミックス基板および前記金属板全面を覆う2枚の加圧板間で加熱しながら厚さ方向に加圧する工程であり、前記接合工程において、前記セラミックス基板の辺部に対して前記金属板の角部の先端部がほぼ一致するように、これらセラミックス基板および金属板が配置される。   The present invention is a method for manufacturing a power module substrate having a bonding step of bonding a metal plate having a smaller area than the ceramic substrate to the surface of the ceramic substrate, the bonding step including the brazing material A laminate in which a ceramic substrate and the metal plate are laminated is pressed in the thickness direction while being heated between two pressure plates having a larger area than the ceramic substrate and covering the entire surface of the ceramic substrate and the metal plate. In the joining step, the ceramic substrate and the metal plate are arranged so that the end portions of the corners of the metal plate substantially coincide with the sides of the ceramic substrate.

この製造方法によれば、積層体を構成するセラミックス基板の辺部と金属板の角部の先端部とがほぼ一致している部分に、各加圧板の各表面に挟まれた空間が形成される。この空間には金属板の角部が配置されており、接合工程において加熱溶融されて、加圧されたセラミックス基板と金属板との間から押し出されたろう材が流れ込みやすいので、この空間を接合工程におけるろう溜まりとすることができる。なお、セラミックス基板の辺部は直線状、曲線状等とすることができる。   According to this manufacturing method, a space sandwiched between each surface of each pressure plate is formed in a portion where the side of the ceramic substrate constituting the laminate and the tip of the corner of the metal plate substantially coincide. The The corners of the metal plate are arranged in this space, and the brazing material that is heated and melted in the joining process and pushed out between the pressed ceramic substrate and the metal plate easily flows into the space. Can be a wax pool. Note that the sides of the ceramic substrate can be linear, curved, or the like.

また、本発明は、セラミックス基板の表面に、このセラミックス基板よりも小面積の金属板を接合する接合工程を有するパワーモジュール用基板の製造方法であって、前記金属板は略矩形状を有し、前記セラミックス基板は、一つの角部が切除されてなる切欠部と、この切欠部に対向する対角部とを有する略矩形状を有し、前記接合工程は、ろう材を介在させて前記セラミックス基板と前記金属板とを積層した積層体を、前記セラミックス基板よりも大面積であってこのセラミックス基板および前記金属板全面を覆う2枚の加圧板間で加熱しながら厚さ方向に加圧する工程であり、この接合工程において、前記金属板の一つの角部と前記セラミックス基板の前記対角部とを重ね合わせることにより前記金属板と前記セラミックス基板とを位置決めしておき、前記セラミックス基板の前記切欠部の辺部に対して前記金属板の他の角部をほぼ一致させる。   Further, the present invention is a method for manufacturing a power module substrate, comprising a bonding step of bonding a metal plate having a smaller area than the ceramic substrate to the surface of the ceramic substrate, wherein the metal plate has a substantially rectangular shape. The ceramic substrate has a substantially rectangular shape having a notch formed by cutting off one corner and a diagonal opposite to the notch, and the joining step is performed with a brazing material interposed therebetween. A laminate in which a ceramic substrate and the metal plate are laminated is pressed in the thickness direction while being heated between two pressure plates having a larger area than the ceramic substrate and covering the entire surface of the ceramic substrate and the metal plate. In this joining step, the metal plate and the ceramic substrate are positioned by overlapping one corner of the metal plate and the diagonal portion of the ceramic substrate. Rice advance, substantially match other corners of the metal plate to the side portion of the notch portion of the ceramic substrate.

すなわち、略矩形状の金属板とセラミックス基板とを接合する場合、接合工程において1つの角部でこれら金属板とセラミックス基板とを位置決めするとともに、その対角部において金属板の角部がセラミックス基板の切欠部の辺部にほぼ一致させる。溶融したろう材の余剰分は金属板の角部から漏出しやすく、またこの角部および切欠部近傍の加圧板間においてセラミックス基板および金属板の厚さの合計に等しい厚さを有するろう溜まりが形成されるので、余剰ろう材をこのろう溜まりに集中して流れ込ませることができる。また、接合工程において、セラミックス基板に対して切欠部に対向する角部で位置決めされた状態で金属板が加熱され熱膨張するので、加熱されていない状態では角部を切欠部から突出させず、加熱状態では角部を切欠部に対してほぼ一致あるいは突出させることができる。   That is, when joining a substantially rectangular metal plate and a ceramic substrate, the metal plate and the ceramic substrate are positioned at one corner in the joining process, and the corner of the metal plate is a ceramic substrate at the diagonal portion. It almost matches the side of the notch. Excess molten brazing material is likely to leak from the corners of the metal plate, and a brazing pool having a thickness equal to the total thickness of the ceramic substrate and the metal plate is present between the pressure plates near the corner and the notch. Since it is formed, surplus brazing material can be concentrated and flow into the brazing pool. Further, in the bonding process, the metal plate is heated and thermally expanded in a state where the ceramic substrate is positioned at the corner facing the notch, so that the corner does not protrude from the notch in the unheated state, In the heated state, the corner portion can be substantially coincident with or protruded from the notch portion.

本発明のパワーモジュール用基板の製造方法によれば、金属板とセラミックス基板とを接合する際に、溶融して金属板とセラミックス基板との間から流れ出た余剰分のろう材を、セラミックス基板の切欠部近傍に形成されたろう溜まりに集めることができる。このろう溜まりに余剰のろう材を集中させることができるので、他の部分からのろう材の流出を減少させることができ、余剰ろう材の除去作業を削減できる。   According to the method for manufacturing a power module substrate of the present invention, when joining the metal plate and the ceramic substrate, the surplus brazing material that has melted and flowed out between the metal plate and the ceramic substrate is removed from the ceramic substrate. It can be collected in a wax reservoir formed in the vicinity of the notch. Since the surplus brazing material can be concentrated in the brazing pool, the outflow of the brazing material from other parts can be reduced, and the surplus brazing material removal operation can be reduced.

また、このろう溜まりは金属板全面に当接する加圧板間に形成されているので、金属板の表面に対するろう材の付着を抑制できる。さらに、ろう溜まりに集められた余剰ろう材は、加圧板によって挟まれているため、積層体の厚さからはみ出すことがない。つまり、ろう溜まりに余剰ろう材が固化してもその厚さが積層体の厚さよりも小さいため、平面上に載置された積層体が傾くことがなく、後工程における作業性や加工精度の低下を防止することができる。   Further, since the brazing pool is formed between the pressure plates that are in contact with the entire surface of the metal plate, adhesion of the brazing material to the surface of the metal plate can be suppressed. Furthermore, since the surplus brazing material collected in the brazing pool is sandwiched between the pressure plates, it does not protrude from the thickness of the laminate. In other words, even if the surplus brazing material solidifies in the brazing pool, the thickness is smaller than the thickness of the laminate, so that the laminate placed on the plane does not tilt, and the workability and processing accuracy in the subsequent process are improved. A decrease can be prevented.

したがって、十分な量のろう材を使用して金属板をセラミックス基板に対して確実に接合しつつ、作業性や加工精度の低下を招くろうこぶの発生を防止することにより、余剰ろう材の除去作業におけるセラミックス基板の破損を防止できるパワーモジュール用基板を得ることができる。   Therefore, by using a sufficient amount of brazing material, the metal plate can be securely bonded to the ceramic substrate, and the removal of excess brazing material can be prevented by preventing the occurrence of galling that can reduce workability and processing accuracy. It is possible to obtain a power module substrate that can prevent the ceramic substrate from being damaged during work.

本発明に係る製造方法を用いて製作されるパワーモジュールの全体構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of whole structure of the power module manufactured using the manufacturing method which concerns on this invention. パワーモジュール用基板となる積層体の一例を示す平面図である。It is a top view which shows an example of the laminated body used as the board | substrate for power modules. 図2のIII−III線に沿う断面図である。It is sectional drawing which follows the III-III line of FIG. パワーモジュール用基板となる積層体の他の例を示す断面図である。It is sectional drawing which shows the other example of the laminated body used as the board | substrate for power modules.

以下、本発明の一実施形態について、図面を参照しながら説明する。
図1に、本発明に係るパワーモジュール用基板が用いられるパワーモジュール10を示す。パワーモジュール10は、表面に回路パターンが形成されたパワーモジュール用基板20と、このパワーモジュール用基板20の表面に搭載された半導体チップ等の電子部品30と、パワーモジュール用基板20の裏面に接合される冷却器33とから構成される。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a power module 10 in which a power module substrate according to the present invention is used. The power module 10 is bonded to the power module substrate 20 having a circuit pattern formed on the surface thereof, an electronic component 30 such as a semiconductor chip mounted on the surface of the power module substrate 20, and the back surface of the power module substrate 20. The cooler 33 is configured.

電子部品30は、Sn−Ag−Cu系、Zn−Al系若しくはPb−Sn系等のはんだ材31によってパワーモジュール用基板20の回路パターン上に接合され、回路端子部に対してはアルミニウムからなるボンディングワイヤ(図示略)により接続される。なお、回路パターンの表面には、ニッケルめっき等のめっき被膜32が形成される。   The electronic component 30 is bonded onto the circuit pattern of the power module substrate 20 by a solder material 31 such as Sn—Ag—Cu, Zn—Al, or Pb—Sn, and the circuit terminal portion is made of aluminum. They are connected by bonding wires (not shown). A plating film 32 such as nickel plating is formed on the surface of the circuit pattern.

冷却器33は、アルミニウム合金の押し出し成形によって形成され、その長さ方向に沿って冷却水を流通させるための多数の流路33aが形成されている。この冷却器33とパワーモジュール用基板20との間は、ろう付け、はんだ付け、ボルト等によって接合される。   The cooler 33 is formed by extrusion molding of an aluminum alloy, and a large number of flow paths 33a are formed along the length direction for circulating cooling water. The cooler 33 and the power module substrate 20 are joined by brazing, soldering, bolts or the like.

パワーモジュール用基板20は、セラミックス基板41の両面にろう材42によって金属板43,44が接合されてなる積層体40を加工することにより形成される。すなわち、積層体40に所定の回路パターンを形成し、必要に応じて個片に分割する等の加工を行うことにより、パワーモジュール用基板20が形成される。   The power module substrate 20 is formed by processing a laminated body 40 in which metal plates 43 and 44 are joined to both surfaces of a ceramic substrate 41 by a brazing material 42. That is, the power module substrate 20 is formed by forming a predetermined circuit pattern in the laminate 40 and performing processing such as dividing into pieces as needed.

セラミックス基板41は、例えばAlN(窒化アルミニウム)、Si(窒化珪素)等の窒化物系セラミックス、若しくはAl(アルミナ)等の酸化物系セラミックスを母材として形成されている。
セラミックス基板41の表面に接合される金属板43は、エッチング処理によって回路パターンとなる回路層用金属板であり、純アルミニウム若しくはアルミニウム合金により形成されている。
セラミックス基板41の裏面に接合される金属板44は、冷却器33が接合される放熱層用金属板であり、純度99.0wt%以上の純アルミニウムにより形成されている。
ろう材42は、Al−Si系、Al−Ge系、Al−Cu系、Al−Mg系またはAl−Mn系等により形成されている。
The ceramic substrate 41 is formed using, for example, a nitride ceramic such as AlN (aluminum nitride) or Si 3 N 4 (silicon nitride) or an oxide ceramic such as Al 2 O 3 (alumina) as a base material.
The metal plate 43 bonded to the surface of the ceramic substrate 41 is a circuit layer metal plate that becomes a circuit pattern by an etching process, and is formed of pure aluminum or an aluminum alloy.
The metal plate 44 bonded to the back surface of the ceramic substrate 41 is a metal plate for heat dissipation layer to which the cooler 33 is bonded, and is formed of pure aluminum having a purity of 99.0 wt% or more.
The brazing material 42 is made of Al—Si, Al—Ge, Al—Cu, Al—Mg, Al—Mn, or the like.

パワーモジュール10の回路パターンは、回路層用の金属板43をエッチングすることにより形成される。また、放熱層用の金属板44も、エッチングによって必要な大きさ、形状に形成される。回路を形成した後に、回路パターン表面にはめっき被膜32が形成される。
さらに、回路パターンが形成されたパワーモジュール用基板20に対して、冷却器33の接合、電子部品30のはんだ付け、ワイヤボンディング等を行うことにより、パワーモジュール10が製造される。
The circuit pattern of the power module 10 is formed by etching the metal plate 43 for the circuit layer. Further, the metal plate 44 for the heat dissipation layer is also formed in a required size and shape by etching. After the circuit is formed, a plating film 32 is formed on the surface of the circuit pattern.
Further, the power module 10 is manufactured by joining the cooler 33, soldering the electronic component 30, wire bonding, and the like to the power module substrate 20 on which the circuit pattern is formed.

ここで、セラミックス基板41の表裏面に金属板43,44を加圧板45間で接合する接合工程について説明する。接合工程においては、図2に示すように、金属板43,44をセラミックス基板41の両面にろう材42を介在させて積層してなる積層体40を、セラミックス基板41および金属板43,44の全面を覆う2枚の加圧板45間で加熱しながら厚さ方向に加圧する。   Here, the joining process which joins the metal plates 43 and 44 between the pressure plates 45 on the front and back surfaces of the ceramic substrate 41 will be described. In the joining step, as shown in FIG. 2, a laminated body 40 in which metal plates 43 and 44 are laminated with a brazing material 42 interposed on both surfaces of the ceramic substrate 41 is used to connect the ceramic substrate 41 and the metal plates 43 and 44. The pressure is applied in the thickness direction while heating between the two pressure plates 45 covering the entire surface.

金属板43,44は、厚さ250μm、縦138mm、横107mmの矩形状板である。セラミックス基板41は、金属板43,44よりも大きく、厚さ635μm、縦140mm、横108mmの略矩形状板であって、一つの角部が縦3mm、横3mmに切除されてなる切欠部41aと、この切欠部41aに対向する対角部41bとを有する。加圧板45は、セラミックス基板41および金属板43,44よりも大きい平面を有する板部材であって、接合工程においてはセラミックス基板41および金属板43,44の全面を覆うように配置される。また、図2の鎖線で示すように、加熱前の金属板43,44の角部43b,44bは、セラミックス基板41の切欠部41aの辺部から距離s(最大で0.1mm)だけ内側に入ったセラミックス基板41上に配置される。そして、金属板43,44が加熱されて熱膨張することにより、角部43b,44bは、セラミックス基板41の切欠部41aの辺部に対してほぼ一致またはわずかに突出する。   The metal plates 43 and 44 are rectangular plates having a thickness of 250 μm, a length of 138 mm, and a width of 107 mm. The ceramic substrate 41 is larger than the metal plates 43 and 44, and is a substantially rectangular plate having a thickness of 635 μm, a length of 140 mm, and a width of 108 mm, and a corner portion is cut into a length of 3 mm and a width of 3 mm. And a diagonal portion 41b opposite to the cutout portion 41a. The pressure plate 45 is a plate member having a larger plane than the ceramic substrate 41 and the metal plates 43 and 44, and is arranged so as to cover the entire surface of the ceramic substrate 41 and the metal plates 43 and 44 in the bonding step. Further, as shown by the chain line in FIG. 2, the corners 43b, 44b of the metal plates 43, 44 before heating are inward from the side of the notch 41a of the ceramic substrate 41 by a distance s (maximum 0.1 mm). It arrange | positions on the ceramic substrate 41 which entered. Then, when the metal plates 43 and 44 are heated and thermally expanded, the corner portions 43b and 44b substantially coincide with or slightly protrude from the side portion of the cutout portion 41a of the ceramic substrate 41.

図3に、図2のIII−III線に沿う部分断面図を示す。これらの図に示すように、接合工程において、金属板43,44およびセラミックス基板41は、セラミックス基板41の辺部に対して金属板43,44の角部の先端部がほぼ一致するように配置されている。   FIG. 3 is a partial cross-sectional view taken along line III-III in FIG. As shown in these drawings, in the joining process, the metal plates 43 and 44 and the ceramic substrate 41 are arranged so that the end portions of the corners of the metal plates 43 and 44 substantially coincide with the sides of the ceramic substrate 41. Has been.

より具体的には、金属板43,44の一つの角部43a,44aとセラミックス基板41の対角部41bとを重ね合わせることにより、金属板43,44とセラミックス基板41とを位置決めしておく。切欠部41aは、この状態において金属板43,44の角部43a,44aに対向する角部43b,44bの先端がセラミックス基板41の切欠部41aの辺部にほぼ一致するように設けられている。これにより、各加圧板45の各表面45aと、セラミックス基板41の切欠部41aの端面41cとに囲まれた空間(ろう溜まり46)が形成される。   More specifically, the metal plates 43 and 44 and the ceramic substrate 41 are positioned by overlapping one corner 43a and 44a of the metal plates 43 and 44 with the diagonal portion 41b of the ceramic substrate 41. . In this state, the notch 41 a is provided so that the tips of the corners 43 b and 44 b facing the corners 43 a and 44 a of the metal plates 43 and 44 substantially coincide with the sides of the notch 41 a of the ceramic substrate 41. . Thereby, a space (wax pool 46) surrounded by each surface 45a of each pressure plate 45 and the end surface 41c of the cutout portion 41a of the ceramic substrate 41 is formed.

なお、角部43b,44bが切欠部41aに近接していることにより、角部43b,44bから漏出するろう材42はろう溜まり46に流れ込みやすくなる。したがって、ろう付け時の金属板43,44の各角部43b,44bの先端は、切欠部41aの端面にほぼ一致していることが好ましいが、切欠部41aからわずかに突出してもよい。   Since the corners 43b and 44b are close to the notch 41a, the brazing material 42 leaking from the corners 43b and 44b can easily flow into the brazing reservoir 46. Therefore, it is preferable that the tips of the corners 43b and 44b of the metal plates 43 and 44 at the time of brazing substantially coincide with the end surface of the notch 41a, but they may slightly protrude from the notch 41a.

このようにセラミックス基板41および金属板43,44を積層した積層体40を加圧板45間に配置して、不活性ガス雰囲気、還元ガス雰囲気または真空雰囲気に保持された熱処理炉内において厚さ方向に加圧した状態で加熱し、ろう材42を溶融させることによって、両金属板43,44をセラミックス基板41にろう付けする。   Thus, the laminated body 40 which laminated | stacked the ceramic substrate 41 and the metal plates 43 and 44 is arrange | positioned between the pressurization plates 45, and it is thickness direction in the heat processing furnace hold | maintained in inert gas atmosphere, reducing gas atmosphere, or vacuum atmosphere. The metal plates 43 and 44 are brazed to the ceramic substrate 41 by heating in a state of being pressurized to melt the brazing material 42.

この接合工程において、ろう材42は接合に十分な量であるので、セラミックス基板41と各金属板43,44とは確実に接合されるが、圧縮されたセラミックス基板41と各金属板43,44との間から余剰ろう材42aが漏出する。このとき、余剰ろう材42aは、各金属板43,44の端面43c,44c全体に漏出可能であるが、各金属板43,44が矩形状であることから角部から漏出しやすい。したがって、余剰ろう材42aを主に角部43a,44aからろう溜まり46に集中して漏出させ、その他の部分での漏出を減少させることができる。   In this joining process, since the brazing material 42 is a sufficient amount for joining, the ceramic substrate 41 and the metal plates 43 and 44 are securely joined, but the compressed ceramic substrate 41 and the metal plates 43 and 44 are joined together. Excess brazing material 42a leaks out from between the two. At this time, the surplus brazing material 42a can be leaked to the entire end faces 43c, 44c of the metal plates 43, 44. However, since the metal plates 43, 44 are rectangular, they are likely to leak from the corners. Therefore, the excess brazing material 42a can be leaked mainly from the corner portions 43a and 44a to the brazing pool 46, and leakage at other portions can be reduced.

ろう溜まり46に漏出したろう材42(余剰ろう材42a)は、図2に示すように切欠部41aの外側において加圧板45間に保持される。このため、図3に示すように、ろう溜まり46における余剰ろう材42aの厚さは各加圧板45によって規制されるのでこぶ状にならず、積層体40は余剰ろう材42aまで含めて平板状に形成される。平板状の積層体40は平面上に安定して載置することができるので、この積層体40に対しては余剰ろう材42aを除去せずに後工程(たとえば回路パターンを形成するエッチングや印刷等)を行うことができる。   The brazing material 42 (excess brazing material 42a) leaked into the brazing pool 46 is held between the pressure plates 45 outside the notch 41a as shown in FIG. Therefore, as shown in FIG. 3, the thickness of the surplus brazing material 42a in the brazing pool 46 is regulated by each pressure plate 45, so that it does not have a hump shape, and the laminated body 40 includes the surplus brazing material 42a. Formed. Since the flat laminated body 40 can be stably placed on a flat surface, a subsequent process (for example, etching or printing for forming a circuit pattern) is performed on the laminated body 40 without removing the excess brazing material 42a. Etc.).

漏出し固化したろう材42が金属板43,44の外表面に付着してしまうと、このろう材42を除去する際に金属板43,44に曲げ応力が生じ、セラミックス基板41にクラック等の破損を生じさせるおそれがあるが、本実施形態の積層工程では金属板43,44が加圧板45間に保持されているため、余剰ろう材42aは金属板43,44の外表面には付着しない。したがって、金属板43,44に対して強い負荷を与えず、セラミックス基板41の破損を抑制しながら、余剰ろう材42aを容易に取り除くことができる。   If the leaked and solidified brazing material 42 adheres to the outer surfaces of the metal plates 43 and 44, when the brazing material 42 is removed, bending stress is generated in the metal plates 43 and 44, and the ceramic substrate 41 is cracked. Although there is a possibility of causing damage, since the metal plates 43 and 44 are held between the pressure plates 45 in the laminating process of the present embodiment, the surplus brazing material 42 a does not adhere to the outer surfaces of the metal plates 43 and 44. . Therefore, it is possible to easily remove the surplus brazing material 42a without applying a strong load to the metal plates 43 and 44 and suppressing the breakage of the ceramic substrate 41.

以上説明したように、本発明のパワーモジュール用基板の製造方法によれば、余剰ろう材をろう溜まりに集めることができるので、他の部分でのろう材の漏出を低減し、余剰ろう材の除去作業を容易にできるとともに、厚さの大きいろうこぶの生成を抑制し、余剰ろう材除去時のセラミックス基板の破損を防止できる。   As described above, according to the method for manufacturing a power module substrate of the present invention, surplus brazing material can be collected in the brazing pool, so that leakage of brazing material in other parts can be reduced, and surplus brazing material The removal work can be facilitated, and the generation of a thick bump is suppressed, and the ceramic substrate can be prevented from being damaged when the excess brazing material is removed.

なお、本発明は前記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。たとえば、前記実施形態ではセラミックス基板41の両面に金属板43,44を接合したが、図4に示すようにセラミックス基板41の片面に金属板43を接合するのみの構成であってもよい。
また、セラミックス基板の切欠部は、その辺部に対して金属板の角部がほぼ一致するように構成できればよいので、たとえば曲線状、屈曲線状等に形成されていてもよく、前記実施形態のように直線状に限定されない。
In addition, this invention is not limited to the thing of the structure of the said embodiment, In a detailed structure, it is possible to add a various change in the range which does not deviate from the meaning of this invention. For example, in the above-described embodiment, the metal plates 43 and 44 are bonded to both surfaces of the ceramic substrate 41. However, the metal plate 43 may be bonded only to one surface of the ceramic substrate 41 as shown in FIG.
Further, since the cutout portion of the ceramic substrate only needs to be configured so that the corner portion of the metal plate substantially coincides with the side portion thereof, it may be formed in, for example, a curved shape, a bent line shape, etc. It is not limited to linear form like.

10 パワーモジュール
20 パワーモジュール用基板
30 電子部品
31 はんだ材
32 めっき被膜
33冷却器
33a 流路
40 積層体
41 セラミックス基板
41a 切欠部
41b 対角部
41c 端面
42 ろう材
42a 余剰ろう材
43,44 金属板
43a,44a 角部
43b,44b 角部
43c,44c 端面
45 加圧板
45a 表面
46 ろう溜まり
DESCRIPTION OF SYMBOLS 10 Power module 20 Power module board | substrate 30 Electronic component 31 Solder material 32 Plating film 33 Cooler 33a Flow path 40 Laminate body 41 Ceramic substrate 41a Notch part 41b Diagonal part 41c End surface 42 Brazing material 42a Excess brazing material 43, 44 Metal plate 43a, 44a Corners 43b, 44b Corners 43c, 44c End face 45 Pressure plate 45a Surface 46 Brazing pool

Claims (2)

セラミックス基板の表面に、このセラミックス基板よりも小面積の金属板を接合する接合工程を有するパワーモジュール用基板の製造方法であって、
前記接合工程は、ろう材を介在させて前記セラミックス基板と前記金属板とを積層した積層体を、前記セラミックス基板よりも大面積であってこのセラミックス基板および前記金属板全面を覆う2枚の加圧板間で加熱しながら厚さ方向に加圧する工程であり、
前記接合工程において、前記セラミックス基板の辺部に対して前記金属板の角部の先端部がほぼ一致するように、これらセラミックス基板および金属板が配置されることを特徴とするパワーモジュール用基板の製造方法。
A method for manufacturing a power module substrate, comprising a bonding step of bonding a metal plate having a smaller area than the ceramic substrate to the surface of the ceramic substrate,
In the joining step, a laminate obtained by laminating the ceramic substrate and the metal plate with a brazing material interposed between them is added two sheets of a larger area than the ceramic substrate and covering the entire surface of the ceramic substrate and the metal plate. It is a process of pressurizing in the thickness direction while heating between pressure plates,
In the bonding step, the ceramic substrate and the metal plate are arranged so that the end portions of the corners of the metal plate substantially coincide with the side portions of the ceramic substrate. Production method.
セラミックス基板の表面に、このセラミックス基板よりも小面積の金属板を接合する接合工程を有するパワーモジュール用基板の製造方法であって、
前記金属板は略矩形状を有し、
前記セラミックス基板は、一つの角部が切除されてなる切欠部と、この切欠部に対向する対角部とを有する略矩形状を有し、
前記接合工程は、ろう材を介在させて前記セラミックス基板と前記金属板とを積層した積層体を、前記セラミックス基板よりも大面積であってこのセラミックス基板および前記金属板全面を覆う2枚の加圧板間で加熱しながら厚さ方向に加圧する工程であり、
前記接合工程において、前記金属板の一つの角部と前記セラミックス基板の前記対角部とを重ね合わせることにより前記金属板と前記セラミックス基板とを位置決めしておき、前記セラミックス基板の前記切欠部の辺部に対して前記金属板の他の角部をほぼ一致させることを特徴とするパワーモジュール用基板の製造方法。
A method for manufacturing a power module substrate, comprising a bonding step of bonding a metal plate having a smaller area than the ceramic substrate to the surface of the ceramic substrate,
The metal plate has a substantially rectangular shape;
The ceramic substrate has a substantially rectangular shape having a notch formed by cutting off one corner and a diagonal facing the notch,
In the joining step, a laminate obtained by laminating the ceramic substrate and the metal plate with a brazing material interposed between them is added two sheets of a larger area than the ceramic substrate and covering the entire surface of the ceramic substrate and the metal plate. It is a process of pressurizing in the thickness direction while heating between pressure plates,
In the joining step, the metal plate and the ceramic substrate are positioned by overlapping one corner portion of the metal plate and the diagonal portion of the ceramic substrate, and the notch portion of the ceramic substrate is positioned. A method for manufacturing a power module substrate, characterized in that the other corners of the metal plate substantially coincide with the sides.
JP2009004494A 2009-01-13 2009-01-13 Power module substrate manufacturing method Active JP5131204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009004494A JP5131204B2 (en) 2009-01-13 2009-01-13 Power module substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009004494A JP5131204B2 (en) 2009-01-13 2009-01-13 Power module substrate manufacturing method

Publications (2)

Publication Number Publication Date
JP2010165719A JP2010165719A (en) 2010-07-29
JP5131204B2 true JP5131204B2 (en) 2013-01-30

Family

ID=42581701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009004494A Active JP5131204B2 (en) 2009-01-13 2009-01-13 Power module substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP5131204B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5245989B2 (en) * 2009-03-31 2013-07-24 三菱マテリアル株式会社 Method for manufacturing power module substrate and method for manufacturing power module substrate with heat sink
JP2016012578A (en) * 2012-11-06 2016-01-21 三菱電機株式会社 Base plate fixing structure of radiation fin

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3152344B2 (en) * 1996-08-22 2001-04-03 三菱マテリアル株式会社 Ceramic circuit board
JP2005116843A (en) * 2003-10-09 2005-04-28 Hitachi Metals Ltd Metallic plate circuit and ceramic circuit board
JP4765889B2 (en) * 2006-10-13 2011-09-07 三菱マテリアル株式会社 Power module substrate manufacturing method and power module substrate manufacturing apparatus
JP5125241B2 (en) * 2007-06-12 2013-01-23 三菱マテリアル株式会社 Power module substrate manufacturing method

Also Published As

Publication number Publication date
JP2010165719A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP4524716B2 (en) Power module substrate with heat sink and method for manufacturing the same, power module with heat sink, and substrate for power module
JP5077102B2 (en) Power module substrate and manufacturing method thereof
TWI601465B (en) A method of manufacturing a power module substrate
JP5515947B2 (en) Cooling system
JP5125241B2 (en) Power module substrate manufacturing method
JP6201827B2 (en) Manufacturing method of power module substrate with heat sink
JP5151080B2 (en) Insulating substrate, method for manufacturing insulating substrate, power module substrate and power module
JP5884291B2 (en) Power module board unit with heat sink
JP5251772B2 (en) Power module substrate manufacturing method and manufacturing intermediate
JP5914968B2 (en) Power module substrate with heat sink and manufacturing method thereof
JP5493762B2 (en) Manufacturing method of power module substrate with heat sink
JP5131204B2 (en) Power module substrate manufacturing method
JP6330951B2 (en) Joints for manufacturing power module substrates
JP6149654B2 (en) Power module substrate manufacturing method
JP5146296B2 (en) Power module substrate manufacturing method
JP5552803B2 (en) Power module substrate manufacturing method
JP6020256B2 (en) Manufacturing method of power module substrate with heat sink
JP5131205B2 (en) Power module substrate manufacturing method
JP5056811B2 (en) Power module substrate manufacturing method, manufacturing apparatus, and manufacturing intermediate
JP5045613B2 (en) Power module substrate and manufacturing method thereof
JP4951932B2 (en) Power module substrate manufacturing method
JP5532601B2 (en) Power module substrate and manufacturing method thereof
KR101774586B1 (en) Manufacturing method of substrate for power module equiptted with heat sink, substrate for power module equiptted with heat sink, and power module
JP5887939B2 (en) Manufacturing method and manufacturing apparatus for power module substrate with heat sink
JP5887907B2 (en) Power module substrate manufacturing method and manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5131204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150