JP5130731B2 - OPTICAL MODULE, OPTICAL TRANSMISSION DEVICE, AND OPTICAL MODULE MANUFACTURING METHOD - Google Patents

OPTICAL MODULE, OPTICAL TRANSMISSION DEVICE, AND OPTICAL MODULE MANUFACTURING METHOD Download PDF

Info

Publication number
JP5130731B2
JP5130731B2 JP2007025750A JP2007025750A JP5130731B2 JP 5130731 B2 JP5130731 B2 JP 5130731B2 JP 2007025750 A JP2007025750 A JP 2007025750A JP 2007025750 A JP2007025750 A JP 2007025750A JP 5130731 B2 JP5130731 B2 JP 5130731B2
Authority
JP
Japan
Prior art keywords
optical
adhesive
optical waveguide
temporary fixing
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007025750A
Other languages
Japanese (ja)
Other versions
JP2008191397A (en
Inventor
智樹 梅澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2007025750A priority Critical patent/JP5130731B2/en
Publication of JP2008191397A publication Critical patent/JP2008191397A/en
Application granted granted Critical
Publication of JP5130731B2 publication Critical patent/JP5130731B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

本発明は、光モジュール、光伝送装置、および光モジュールの製造方法に関する。   The present invention relates to an optical module, an optical transmission apparatus, and an optical module manufacturing method.

近年、電子機器の更なる高性能化に伴い、従来の電気配線ではデータ転送速度やEMI(Electro Magnetic Interference)ノイズ低減への対応が困難になったため、一部の電気配線を光配線に置き換えて伝送する技術が採用されてきている。   In recent years, with the further improvement in performance of electronic equipment, it has become difficult to cope with data transfer speed and EMI (Electro Magnetic Interference) noise reduction with conventional electrical wiring, so some electrical wiring has been replaced with optical wiring. Transmission techniques have been adopted.

光モジュールについては様々な形態が提案されているが、その中に光路変換面を有する光導波路を用いた光モジュールがある(例えば、特許文献1参照。)。   Various types of optical modules have been proposed. Among them, there is an optical module using an optical waveguide having an optical path conversion surface (for example, see Patent Document 1).

この光モジュールは、基板と、基板上に実装された面発光レーザによる光デバイスと、端面に45度の角度のミラー面を有するフッ素化ポリイミド光導波路フィルムとを備え、光導波路フィルムのミラー面に対向する位置に設けられた光結合面を、例えば、Au/Snからなるバンプにより光デバイス上に位置決めして固定した後、紫外線硬化型接着剤を光デバイスの周辺から光導波路フィルムと光デバイスとの間の空隙(例えば40μm)に充填した後、紫外線を照射して硬化させ、光導波路フィルムと光デバイスとを固定したものである。この構成によれば、熱膨張差による光導波路フィルムと光デバイスとの位置ずれを防止することができる。
特開2000−214351号公報
This optical module includes a substrate, an optical device using a surface emitting laser mounted on the substrate, and a fluorinated polyimide optical waveguide film having a mirror surface at an angle of 45 degrees on the end surface, and the mirror surface of the optical waveguide film After the optical coupling surface provided at the opposing position is positioned and fixed on the optical device by, for example, a bump made of Au / Sn, an ultraviolet curable adhesive is applied from the periphery of the optical device to the optical waveguide film and the optical device. After filling the gap (for example, 40 μm), the film is irradiated with ultraviolet rays and cured to fix the optical waveguide film and the optical device. According to this configuration, it is possible to prevent the positional deviation between the optical waveguide film and the optical device due to the difference in thermal expansion.
JP 2000-214351 A

本発明の目的は、光素子に対して光導波路を位置決めし、接着する工程の円滑化が図れ、生産性を高めることができる光モジュール、光伝送装置、および光モジュールの製造方法を提供することにある。   An object of the present invention is to provide an optical module, an optical transmission device, and an optical module manufacturing method capable of facilitating the process of positioning and adhering an optical waveguide to an optical element and improving productivity. It is in.

本発明の一態様は、上記目的を達成するため、以下の光モジュール、光伝送装置、および光モジュールの製造方法を提供する。   In order to achieve the above object, an embodiment of the present invention provides the following optical module, optical transmission device, and optical module manufacturing method.

[1]発光または受光する光学面を実装面と反対側に有する面型の光素子と、前記光素子の前記光学面と光結合する光結合面、および前記光結合面に対向する位置に設けられた光路変換面を有する光導波路と、前記発光素子の前記実装面が取り付けられる面を有する基板であって、前記面は前記光導波路側に突出した面である基板と、前記光素子の前記光学面と前記光導波路の前記光結合面とを所定の硬化速度で接着する、前記光素子の前記光学面と前記光導波路の前記光結合面との間の結合部分から所定の位置に塗布された第1の接着部、および前記第1の接着部から毛管力により前記結合部分に供給されて前記光学面と前記光結合面とを接着する第2の接着部を有する光学用接着剤と、前記光導波路の前記光結合面以外の部分と前記基板とを前記所定の硬化速度よりも速い硬化速度で接着する、前記突出した面と前記光導波路の前記光結合面以外の部分とを接着する仮固定用接着剤とを備えたことを特徴とする光モジュール。 [1] A surface-type optical element having an optical surface that emits or receives light on the opposite side of the mounting surface, an optical coupling surface that optically couples with the optical surface of the optical element, and a position that faces the optical coupling surface an optical waveguide having an optical path changing surface that is, a substrate having the surface on which the mounting surface is mounted in the light emitting element, a substrate wherein the surface is a surface that projects the optical waveguide side, before Symbol optical element The optical surface and the optical coupling surface of the optical waveguide are bonded to each other at a predetermined curing rate, and applied at a predetermined position from a coupling portion between the optical surface of the optical element and the optical coupling surface of the optical waveguide. And an optical adhesive having a second adhesive portion that is supplied to the coupling portion by capillary force from the first adhesive portion and bonds the optical surface and the optical coupling surface. , Portions of the optical waveguide other than the optical coupling surface and the substrate And a temporary fixing adhesive for bonding the protruding surface and a portion other than the optical coupling surface of the optical waveguide, which is bonded at a curing rate faster than the predetermined curing rate. module.

]前記仮固定用接着剤は、シアノアクリレート系接着剤である前記[1]に記載の光モジュール。 [ 2 ] The optical module according to [1], wherein the temporary fixing adhesive is a cyanoacrylate adhesive.

]前記光学用接着剤および前記仮固定用接着剤は、加熱又はエネルギー線を受けて硬化する硬化型接着剤である前記[1]に記載の光モジュール。 [ 3 ] The optical module according to [1], wherein the optical adhesive and the temporary fixing adhesive are curable adhesives that are cured by heating or energy rays.

[4]発光面を実装面と反対側に有する面型の発光素子と、前記発光素子の前記発光面と光結合する光結合面、および前記光結合面に対向する位置に設けられた光路変換面を有する光導波路と、前記発光素子の前記実装面が取り付けられる面を有する基板であって、前記面は前記光導波路側に突出した面である基板と、前記発光素子の前記発光面と前記光導波路の前記光結合面とを所定の硬化速度で接着する、前記光素子の前記発光面と前記光導波路の前記光結合面との間の結合部分から所定の位置に塗布された第1の接着部、および前記第1の接着部から毛管力により前記結合部分に供給されて前記発光面と前記光結合面とを接着する第2の接着部を有する光学用接着剤と、前記光導波路の前記光結合面以外の部分と前記基板とを前記所定の硬化速度よりも速い硬化速度で接着する、前記突出した面と前記光導波路の前記光結合面以外の部分とを接着する仮固定用接着剤とを備えた第1の光モジュールと、受光面を実装面と反対側に有する面型の受光素子と、前記受光素子の前記受光面と光結合する光結合面、および前記光結合面に対向する位置に設けられた光路変換面を有する光導波路と、前記発光素子の前記実装面が取り付けられる面を有する基板であって、前記面は前記光導波路側に突出した面である基板と、前記受光素子の前記受光面と前記光導波路の前記光結合面とを所定の硬化速度で接着する、前記光素子の前記受光面と前記光導波路の前記光結合面との間の結合部分から所定の位置に塗布された第1の接着部、および前記第1の接着部から毛管力により前記結合部分に供給されて前記受光面と前記光結合面とを接着する第2の接着部を有する光学用接着剤と、前記光導波路の前記光結合面以外の部分と前記基板とを前記所定の硬化速度よりも速い硬化速度で接着する、前記突出した面と前記光導波路の前記光結合面以外の部分とを接着する仮固定用接着剤とを備えた第2の光モジュールと、前記第1の光モジュールの前記光導波路と前記第2の光モジュールの前記光導波路とを接続する光ファイバとを備えたことを特徴とする光伝送装置。 [4] A planar light emitting device having a light emitting surface opposite to the mounting surface, an optical coupling surface optically coupled to the light emitting surface of the light emitting device, and an optical path conversion provided at a position facing the optical coupling surface an optical waveguide having a surface, a substrate having the surface on which the mounting surface is mounted in the light emitting device, and the substrate is the surface a surface which projects the optical waveguide side, and the light emitting surface before Symbol emitting element adhering the said optical coupling surface of the optical waveguide at a predetermined curing rate, first it is applied to a predetermined position from the coupling portion between the light - emitting said light emitting surface and the optical coupling surface of the optical waveguide element An optical adhesive having a first adhesive portion, and a second adhesive portion that is supplied from the first adhesive portion to the coupling portion by capillary force to adhere the light emitting surface and the optical coupling surface; The portion other than the optical coupling surface of the waveguide and the substrate are A first optical module comprising a temporary fixing adhesive for adhering the protruding surface and a portion other than the optical coupling surface of the optical waveguide, which adheres at a curing rate higher than the curing rate of the optical waveguide; An optical waveguide having a planar light receiving element on the opposite side of the mounting surface, an optical coupling surface optically coupled to the light receiving surface of the light receiving element, and an optical path conversion surface provided at a position facing the optical coupling surface When, a substrate having the surface on which the mounting surface is mounted in the light emitting element, the surface and the substrate is a surface which projects the optical waveguide side, front Symbol the of the optical waveguide and the light receiving surface of the light receiving element bonding the optical coupling surface at a given cure rate, the first adhesive portion which is applied to a predetermined position from the coupling portion between said light receiving surface and the optical coupling surface of the optical waveguide of the light receiving element, And from the first adhesive portion by capillary force. An optical adhesive having a second adhesion portion for adhering the light receiving surface is supplied to a portion between said optical coupling surface, the predetermined curing the optical coupling surface other than the portion of the optical waveguide and said substrate A second optical module comprising a temporary fixing adhesive for adhering the protruding surface and a portion other than the optical coupling surface of the optical waveguide, which adheres at a curing speed faster than a speed; An optical transmission device comprising: an optical fiber that connects the optical waveguide of the optical module and the optical waveguide of the second optical module.

[5]発光または受光する光学面を実装面と反対側に有する面型の光素子と、前記光素子の前記実装面が取り付けられる基板と、前記光素子の前記光学面と光結合する光結合面、および前記光結合面に対向する位置に設けられた光路変換面を有する光導波路とを準備する準備工程と、前記光素子の前記実装面を前記基板に取り付ける取付工程と、
前記光素子の前記光学面と前記光導波路の前記光結合面とを所定の硬化速度で硬化する光学用接着剤により接着する本固定工程と、前記光導波路の前記光結合面以外の部分と前記基板とを、前記所定の硬化速度よりも速い硬化速度で硬化する仮固定用接着剤であって、前記仮固定用接着剤を前記光素子よりも高く塗布し、前記光導波路を前記光素子上に位置決めしたとき、前記仮固定用接着剤の高さが塗布時よりも低くなる前記仮固定用接着剤により接着する仮固定工程と、前記仮固定工程及び前記本固定工程に先立って、前記基板上の所定の位置に前記仮固定用接着剤を塗布するとともに、前記基板上の所定の位置に前記光学用接着剤を塗布する接着剤塗布工程とを含み、前記仮固定用接着剤による前記仮固定工程の後に、前記光学用接着剤による本固定工程を行い、かつ
前記本固定工程は、前記光素子の前記光学面と前記光導波路の前記光結合面との間の空隙から所定の位置に未硬化状態の光学用接着剤を塗布することにより前記空隙に発生した毛管力により前記未硬化状態の光学用接着剤を前記空隙に供給し、前記未硬化状態の光学用接着剤を硬化させて前記光学面と前記光結合面とを接着することを特徴とする光モジュールの製造方法。
[5] A surface-type optical element having an optical surface that emits or receives light on the side opposite to the mounting surface, a substrate to which the mounting surface of the optical element is attached, and optical coupling that optically couples with the optical surface of the optical element A preparation step of preparing a surface and an optical waveguide having an optical path conversion surface provided at a position facing the optical coupling surface, and an attachment step of attaching the mounting surface of the optical element to the substrate;
And the fixing step of bonding the optical adhesive which is cured by the optical surface and the optical coupling surface and the Jo Tokoro cure rate of the optical waveguide of the optical element, and portions other than the optical coupling surface of the optical waveguide and said substrate, before Symbol a temporary fixing adhesive which cures at a faster curing rate than a predetermined curing rate, the temporary fixing adhesive high coating than the optical element, the said optical waveguide light when positioned on the device, the temporary fixation step height of the temporary fixing adhesive is adhered by the temporary fixing adhesive becomes lower than the time of application, prior to said temporary fixing step and the permanent fixing process, Applying the temporary fixing adhesive at a predetermined position on the substrate, and applying an adhesive for applying the optical adhesive at a predetermined position on the substrate, and using the temporary fixing adhesive After the temporary fixing step, the optical bonding The main fixing step is performed by applying an uncured optical adhesive at a predetermined position from a gap between the optical surface of the optical element and the optical coupling surface of the optical waveguide. The uncured optical adhesive is supplied to the void by the capillary force generated in the void, and the uncured optical adhesive is cured to form the optical surface and the optical coupling surface. A method of manufacturing an optical module, comprising bonding.

]前記仮固定用接着剤は、シアノアクリレート系接着剤である前記[]に記載の光モジュールの製造方法。 [ 6 ] The method for manufacturing an optical module according to [ 5 ], wherein the temporary fixing adhesive is a cyanoacrylate adhesive.

]前記光学用接着剤および前記仮固定用接着剤は、加熱又はエネルギー線を受けて硬化する硬化型接着剤である前記[]に記載の光モジュールの製造方法。 [ 7 ] The method for manufacturing an optical module according to [ 5 ], wherein the optical adhesive and the temporary fixing adhesive are curable adhesives that are cured by receiving heat or energy rays.

請求項1に記載の光モジュールによれば、光素子に対して光導波路を位置決めし、接着する工程の円滑化が図れ、生産性を高めることができる。また、基板に突出した面を設けない場合と比較して仮固定用接着剤の硬化時間を短縮することができる。さらに、接着剤塗布量の精密な管理を不要にすることが可能になる。 According to the optical module of the first aspect, the process of positioning and bonding the optical waveguide with respect to the optical element can be facilitated, and the productivity can be improved. In addition, the curing time of the temporary fixing adhesive can be shortened as compared with the case where no protruding surface is provided on the substrate. Furthermore, it becomes possible to eliminate the need for precise management of the adhesive application amount.

請求項に記載の光モジュールによれば、他の接着剤と比較して仮固定用接着剤の硬化時間を短縮することができる。 According to the optical module of the second aspect , it is possible to shorten the curing time of the temporary fixing adhesive as compared with other adhesives.

請求項に記載の光モジュールによれば、接着剤の硬化時間の調整が容易になる。 According to the optical module of the third aspect, it is easy to adjust the curing time of the adhesive.

請求項に記載の光伝送装置によれば、光素子に対して光導波路を位置決めし、接着する工程の円滑化が図れ、生産性を高めることができる。 According to the optical transmission device of the fourth aspect , the process of positioning and bonding the optical waveguide with respect to the optical element can be facilitated, and the productivity can be improved.

請求項に記載の光モジュールの製造方法によれば、光素子に対して光導波路を位置決めし、接着する工程の円滑化が図れ、生産性を高めることができる。 According to the optical module manufacturing method of the fifth aspect , the process of positioning and bonding the optical waveguide with respect to the optical element can be facilitated, and the productivity can be increased.

請求項に記載の光モジュールの製造方法によれば、他の接着剤と比較して仮固定用接着剤の硬化時間を短縮することができる。 According to the method for manufacturing an optical module according to claim 6 , the curing time of the temporary fixing adhesive can be shortened as compared with other adhesives.

請求項に記載の光モジュールの製造方法によれば、接着剤の硬化時間の調整が容易
になる。
According to the optical module manufacturing method of the seventh aspect, it is easy to adjust the curing time of the adhesive.

[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る光伝送装置の概略の構成を示す斜視図、図2(a)は、光伝送路の一方の側に設けられた光モジュールの平面図、図2(b)は、図2(a)のA−A線断面図、図3(a)は、光伝送路の他方の側に設けられた光モジュールの平面図、図3(b)は、図3(a)のB−B線断面図である。
[First Embodiment]
1 is a perspective view showing a schematic configuration of an optical transmission apparatus according to a first embodiment of the present invention, and FIG. 2A is a plan view of an optical module provided on one side of an optical transmission line. 2B is a cross-sectional view taken along line AA in FIG. 2A, FIG. 3A is a plan view of the optical module provided on the other side of the optical transmission line, and FIG. These are the BB sectional drawing of Fig.3 (a).

この光伝送装置100は、光伝送路の一方の側(送信側)に設けられた光モジュール1Aと、光伝送路の他方の側(受信側)に設けられた光モジュール1Bと、両光モジュール1A,1B間を接続する複数の光ファイバ101とを有して構成されている。   The optical transmission device 100 includes an optical module 1A provided on one side (transmission side) of the optical transmission path, an optical module 1B provided on the other side (reception side) of the optical transmission path, and both optical modules. A plurality of optical fibers 101 connecting between 1A and 1B are provided.

光ファイバ101は、光を多くのモード(経路)で伝送するマルチモード光ファイバや、光を単一のモードで伝送するシングルモード光ファイバを用いることができる。本実施の形態では、例えば、コア径が50μmのマルチモード光ファイバを用いる。   The optical fiber 101 can be a multimode optical fiber that transmits light in many modes (paths) or a single mode optical fiber that transmits light in a single mode. In the present embodiment, for example, a multimode optical fiber having a core diameter of 50 μm is used.

送信側に設けられた光モジュール1Aは、図1、図2に示すように、支持基板2Aと、支持基板2A上に実装された発光素子アレイ3と、発光素子アレイ3に光学的に結合された光導波路4と、発光素子アレイ3と光導波路4との間の結合部分に毛管力により供給されて発光素子アレイ3の発光面(光学面)3aと光導波路4の光結合面4aとを接着する接着剤5と、光導波路4の光結合面4a以外の部分と支持基板2とを接着する仮固定用接着剤9と、光導波路4の一方の端部に装着された光コネクタ6Aとを備える。   As shown in FIGS. 1 and 2, the optical module 1A provided on the transmission side is optically coupled to the support substrate 2A, the light-emitting element array 3 mounted on the support substrate 2A, and the light-emitting element array 3. The light-emitting surface (optical surface) 3a of the light-emitting element array 3 and the light-coupling surface 4a of the light-guide element 4 are supplied to the optical waveguide 4 and the coupling portion between the light-emitting element array 3 and the optical waveguide 4 by capillary force. An adhesive 5 to be bonded; an adhesive 9 for temporarily fixing the support substrate 2 to a portion other than the optical coupling surface 4a of the optical waveguide 4; and an optical connector 6A attached to one end of the optical waveguide 4; Is provided.

受信側に設けられた光モジュール1Bは、図1、図3に示すように、支持基板2Bと、支持基板2B上に実装された受光素子アレイ7と、受光素子アレイ7に光学的に結合された光導波路4と、受光素子アレイ7と光導波路4との間の結合部分に毛管力により供給されて受光素子アレイ7の受光面(光学面)7aと光導波路4の光結合面4aとを接着する光学用接着剤5と、光導波路4の一方の端部に装着された光コネクタ6Bとを備える。   As shown in FIGS. 1 and 3, the optical module 1B provided on the receiving side is optically coupled to the support substrate 2B, the light receiving element array 7 mounted on the support substrate 2B, and the light receiving element array 7. The light receiving surface (optical surface) 7a of the light receiving element array 7 and the optical coupling surface 4a of the light guide 4 are supplied to the optical waveguide 4 and the coupling portion between the light receiving element array 7 and the optical waveguide 4 by capillary force. An optical adhesive 5 to be bonded and an optical connector 6B attached to one end of the optical waveguide 4 are provided.

光ファイバ101の両端部には、それぞれ光コネクタ102A,102Bが固定されており、光コネクタ102A,102Bには、一対のピン103が突設されている。光コネクタ6A,6Bには、一対のピン穴60が形成されている。そして、光コネクタ102A,102Bのピン103を光コネクタ6A,6Bのピン穴60に嵌入することにより、光コネクタ6Aと光コネクタ102A、光コネクタ6Bと光コネクタ102Bが位置決めされて光学的に結合される。   Optical connectors 102A and 102B are fixed to both ends of the optical fiber 101, respectively, and a pair of pins 103 project from the optical connectors 102A and 102B. A pair of pin holes 60 are formed in the optical connectors 6A and 6B. By inserting the pins 103 of the optical connectors 102A and 102B into the pin holes 60 of the optical connectors 6A and 6B, the optical connector 6A and the optical connector 102A, and the optical connector 6B and the optical connector 102B are positioned and optically coupled. The

(光導波路)
光導波路4は、コア40と、コア40の周囲に形成されたクラッド41とから構成され、発光素子アレイ3および受光素子アレイ7側の端部に45度に傾斜した光路変換面としての反射面4bが形成され、光コネクタ6A,6B側の端部に垂直な端面4cが形成されている。光導波路4は、例えば、コア40が50μm×50μmの断面矩形状を有し、全体厚さが150〜200μmである。
(Optical waveguide)
The optical waveguide 4 is composed of a core 40 and a clad 41 formed around the core 40, and is a reflection surface as an optical path conversion surface inclined at 45 degrees at the ends of the light emitting element array 3 and the light receiving element array 7 side. 4b is formed, and an end face 4c perpendicular to the end of the optical connectors 6A and 6B is formed. In the optical waveguide 4, for example, the core 40 has a rectangular cross section of 50 μm × 50 μm, and the overall thickness is 150 to 200 μm.

光導波路4は、例えば、一般によく用いられるフォトリソグラフィやRIE(反応性イオンエッチング)を利用した方法で作製可能である。特に、本出願人が既に提案した特開2004−29507号公報等に記載されている鋳型を用いた作製工程により効率的に製造することができる。以下に、その作製工程を説明する。   The optical waveguide 4 can be manufactured, for example, by a method using photolithography or RIE (reactive ion etching) that is generally used. In particular, it can be efficiently produced by a production process using a mold described in Japanese Patent Application Laid-Open No. 2004-29507 already proposed by the present applicant. The manufacturing process will be described below.

まず、コアに対応する凸部が形成された原盤を、例えば、フォトリソグラフィー法を用いて作製する。次に、原盤の凸部が形成された面に、例えば、500〜7000mPa・s程度の粘度で、紫外領域や可視領域において光透過性を有する硬化性樹脂、例えば、分子中にメチルシロキサン基、エチルシロキサン基、フェニルシロキサン基を含む硬化性オルガノポリシロキサンの層を塗布等により設け、その後、硬化させて硬化層を構成する。次に、硬化層を原盤から剥離し、凸部に対応する凹部を有した鋳型を作製する。   First, a master having a convex portion corresponding to the core is produced using, for example, a photolithography method. Next, a curable resin having a viscosity of, for example, about 500 to 7000 mPa · s and having light transmittance in the ultraviolet region and the visible region, for example, a methylsiloxane group in the molecule, A layer of a curable organopolysiloxane containing an ethylsiloxane group and a phenylsiloxane group is provided by coating or the like, and then cured to form a cured layer. Next, the hardened layer is peeled off from the master and a mold having a concave portion corresponding to the convex portion is produced.

次に、鋳型に、この鋳型との密着性に優れる樹脂、例えば、脂環式アクリル樹脂フィルム、脂環式オレフィン樹脂フィルム、三酢酸セルロースフィルム、フッ素樹脂フィルム等からなるクラッド用フィルム基材を密着させる。次に、鋳型の凹部に、例えば、紫外線硬化性又は熱硬化性のモノマー、オリゴマー若しくはモノマーとオリゴマーの混合物、エポキシ系、ポリイミド系、アクリル系の紫外線硬化性樹脂等からなる硬化性樹脂を充填する。次に、凹部内の硬化性樹脂を硬化させてコア40とした後、鋳型を剥離する。これにより、クラッド用フィルム基材上にコア40が残される。   Next, a clad film substrate made of a resin excellent in adhesion to the mold, for example, an alicyclic acrylic resin film, an alicyclic olefin resin film, a cellulose triacetate film, a fluororesin film, or the like is adhered to the mold. Let Next, the concave portion of the mold is filled with, for example, an ultraviolet curable or thermosetting monomer, an oligomer or a mixture of a monomer and an oligomer, an epoxy type, a polyimide type, an acrylic type ultraviolet curable resin, or the like. . Next, after hardening the curable resin in the recess to form the core 40, the mold is peeled off. This leaves the core 40 on the cladding film substrate.

次に、クラッド用フィルム基材のコア40が形成された面側にコア40を覆うようにクラッド層を設ける。クラッド層として、例えば、フィルム、クラッド用硬化性樹脂を塗布して硬化させた層、高分子材料の溶剤溶液を塗布し乾燥してなる高分子膜等が挙げられる。最後に、光導波路のコア40が露出する面をダイサーによって所定の角度に切削して反射面4bおよび端面4cを形成する。更にコア40に平行にダイサーで切り出すことにより、クラッド用フィルム基材及びクラッド層をクラッド41とした光導波路4が完成する。   Next, a clad layer is provided so as to cover the core 40 on the surface side of the clad film substrate on which the core 40 is formed. Examples of the clad layer include a film, a layer cured by applying a curable resin for clad, and a polymer film formed by applying a solvent solution of a polymer material and drying. Finally, the surface where the core 40 of the optical waveguide is exposed is cut at a predetermined angle by a dicer to form the reflection surface 4b and the end surface 4c. Further, by cutting out with a dicer parallel to the core 40, the optical waveguide 4 having the clad film base material and the clad layer as the clad 41 is completed.

(発光素子アレイ)
発光素子アレイ3は、面型発光ダイオードや面型レーザ等の複数の発光素子(面型光素子)をアレイ状に配列したものを用いることができる。本実施の形態では、発光素子アレイ3として、VCSEL(面発光レーザ)アレイを用いる。この面発光レーザアレイは、例えば、n型GaAs基板上に、n型下部反射鏡層、活性層30、電流狭窄層、p型上部反射鏡層、p型コンタクト層、p側電極31を形成し、n型GaAs基板の裏面にn側電極32を形成したものであり、活性層30、電流狭窄層、p型上部反射鏡層、p型コンタクト層、およびp側電極31は、発光素子毎に形成されている。また、p側電極31は、活性層30の発光領域の直上に開口31aを有する。発光素子アレイ3は、例えば、幅0.3mm、高さ0.2mm、アレイ方向の長さ1mmの大きさを有し、4つの開口31aが発光面3aに長手方向にピッチ250μmで配列されている。
(Light emitting element array)
The light emitting element array 3 may be an array of a plurality of light emitting elements (surface optical elements) such as a surface light emitting diode or a surface laser. In the present embodiment, a VCSEL (surface emitting laser) array is used as the light emitting element array 3. In the surface emitting laser array, for example, an n-type lower reflector layer, an active layer 30, a current confinement layer, a p-type upper reflector layer, a p-type contact layer, and a p-side electrode 31 are formed on an n-type GaAs substrate. The n-side electrode 32 is formed on the back surface of the n-type GaAs substrate. The active layer 30, the current confinement layer, the p-type upper reflector layer, the p-type contact layer, and the p-side electrode 31 are provided for each light emitting element. Is formed. The p-side electrode 31 has an opening 31 a immediately above the light emitting region of the active layer 30. The light emitting element array 3 has, for example, a width of 0.3 mm, a height of 0.2 mm, and a length of 1 mm in the array direction, and four openings 31a are arranged on the light emitting surface 3a with a pitch of 250 μm in the longitudinal direction. Yes.

(受光素子アレイ)
受光素子アレイ7は、例えば、面型のフォトダイオード等の面型光素子を用いることができる。本実施の形態では、受光素子として、高速応答性に優れたGaAs系のPINフォトダイオードを用いる。この受光素子アレイ7は、例えば、GaAs基板上に、PIN接合されたP層、I層およびN層と、P層に接続されたp側電極71と、N層に形成されたn側電極72とを備え、P層、I層、N層、p側電極71およびn側電極72は、受光素子毎に形成されている。p側電極71は、開口71aを有し、開口71aの内側がレーザ光を受光する受光部70となっている。受光素子アレイ7は、例えば、幅0.3mm、高さ0.2mm、アレイ方向の長さ1mmの大きさを有し、4つの受光部70が受光面7aに長手方向にピッチ250μmで配列されている。
(Light receiving element array)
For the light receiving element array 7, for example, a planar optical element such as a planar photodiode can be used. In this embodiment, a GaAs PIN photodiode excellent in high-speed response is used as the light receiving element. The light receiving element array 7 includes, for example, a P-layer, a I-layer and an N-layer which are PIN-bonded on a GaAs substrate, a p-side electrode 71 connected to the P layer, and an n-side electrode 72 formed on the N layer. The P layer, the I layer, the N layer, the p-side electrode 71 and the n-side electrode 72 are formed for each light receiving element. The p-side electrode 71 has an opening 71a, and the inside of the opening 71a serves as a light receiving unit 70 that receives laser light. The light receiving element array 7 has, for example, a width of 0.3 mm, a height of 0.2 mm, and a length of 1 mm in the array direction, and four light receiving portions 70 are arranged on the light receiving surface 7a with a pitch of 250 μm in the longitudinal direction. ing.

(支持基板)
送信側の支持基板2Aは、ガラスエポキシ樹脂等の絶縁性材料から形成された基材20と、基材20の上面に銅等の導電性材料から形成されたグランド21およびパッド22とを有する。発光素子アレイ3のn側電極32とグランド21とは、図示しない導電性接着剤により接着され、p側電極31とパッド22とは、金等からなるボンディングワイヤ8により接続される。
(Support substrate)
The transmission-side support substrate 2 </ b> A includes a base material 20 formed of an insulating material such as glass epoxy resin, and a ground 21 and a pad 22 formed of a conductive material such as copper on the upper surface of the base material 20. The n-side electrode 32 and the ground 21 of the light emitting element array 3 are bonded by a conductive adhesive (not shown), and the p-side electrode 31 and the pad 22 are connected by a bonding wire 8 made of gold or the like.

受信側の支持基板2Bは、ガラスエポキシ樹脂等の絶縁性材料から形成された基材20と、基材20の上面に銅等の導電性材料から形成されたp側パッド23およびn側パッド24とを有する。p側電極71とp側パッド23、およびn側電極72とn側パッド24は、それぞれ金等からなるボンディングワイヤ8により接続される。   The support substrate 2B on the receiving side includes a base material 20 formed of an insulating material such as glass epoxy resin, and a p-side pad 23 and an n-side pad 24 formed on the upper surface of the base material 20 from a conductive material such as copper. And have. The p-side electrode 71 and the p-side pad 23 and the n-side electrode 72 and the n-side pad 24 are connected to each other by bonding wires 8 made of gold or the like.

なお、支持基板2A,2Bは、他の回路基板上に実装できるように構成されていてもよい。例えば、支持基板2A,2Bの表面に形成されたグランド21、およびパッド22、23、24からスルーホールを介して支持基板2A,2Bの裏面に設けられたBGA(ボールグリッドアレイ)に接続し、支持基板2A,2BをBGAを介して回路基板に実装してもよい。   The support substrates 2A and 2B may be configured so that they can be mounted on other circuit boards. For example, the ground 21 formed on the surfaces of the support substrates 2A and 2B and the pads 22, 23 and 24 are connected to the BGA (ball grid array) provided on the back surfaces of the support substrates 2A and 2B through the through holes. The support substrates 2A and 2B may be mounted on the circuit board via the BGA.

(光学用接着剤)
光学用接着剤5は、未硬化状態の光学用接着剤5が最初に塗布される第1の接着部5aと、第1の接着部5aから毛管力により発光素子アレイ3の発光面3a、または受光素子アレイ7の受光面7aと光導波路4の光結合面4aとの間の空隙(結合部分)Gに供給された第2の接着部5bとからなる。第1の接着部5aの位置は、支持基板2A,2B上であって、未硬化状態の光学用接着剤5を毛管力により発光面3aと光結合面4aとの間の空隙Gに供給し得る距離にある。
(Optical adhesive)
The optical adhesive 5 includes a first adhesive part 5a to which the uncured optical adhesive 5 is first applied, and the light emitting surface 3a of the light emitting element array 3 by capillary force from the first adhesive part 5a, or It consists of a second adhesive portion 5 b supplied to a gap (coupling portion) G between the light receiving surface 7 a of the light receiving element array 7 and the optical coupling surface 4 a of the optical waveguide 4. The position of the first bonding portion 5a is on the support substrates 2A and 2B, and the uncured optical adhesive 5 is supplied to the gap G between the light emitting surface 3a and the optical coupling surface 4a by capillary force. Is at a distance to get.

この光学用接着剤5は、発光素子アレイ3の発光波長を透過する特性を有し、かつ、加熱により硬化する熱硬化型接着剤や、可視光線、紫外線、電子線、放射線等のエネルギー線を照射して硬化するエネルギー線硬化型接着剤を用いることができる。本実施の形態では、紫外線の照射により例えば10分〜60分で硬化する紫外線硬化型接着剤を用いる。   The optical adhesive 5 has a property of transmitting the light emission wavelength of the light emitting element array 3 and is capable of receiving a thermosetting adhesive that is cured by heating, energy rays such as visible light, ultraviolet light, electron beam, and radiation. An energy ray curable adhesive that is cured by irradiation can be used. In the present embodiment, an ultraviolet curable adhesive that is cured, for example, in 10 minutes to 60 minutes by irradiation with ultraviolet rays is used.

(仮固定用接着剤)
仮固定用接着剤9は、光学用接着剤5のように発光素子アレイ3の発光波長を透過する特性を有する必要がないが、高精度な位置決めを可能とするため、光学用接着剤5よりも硬化時間が短い方が好ましい。仮固定用接着剤9は、加熱により硬化する熱硬化型接着剤や、可視光線、紫外線、電子線、放射線等のエネルギー線を照射して硬化するエネルギー線硬化型接着剤、またはシアノアクリレート系接着剤(瞬間接着剤)を用いることができる。本実施の形態では、紫外線の照射により1分以下で硬化する紫外線硬化型接着剤を用いる。
(Adhesive for temporary fixing)
The temporary fixing adhesive 9 does not need to have the characteristic of transmitting the light emission wavelength of the light emitting element array 3 unlike the optical adhesive 5, but the optical adhesive 5 is more suitable for positioning with high accuracy. It is preferable that the curing time is short. The temporary fixing adhesive 9 is a thermosetting adhesive that cures by heating, an energy ray curable adhesive that cures by irradiating energy rays such as visible light, ultraviolet rays, electron beams, and radiation, or a cyanoacrylate adhesive. An agent (instant adhesive) can be used. In this embodiment, an ultraviolet curable adhesive that is cured in 1 minute or less by irradiation with ultraviolet rays is used.

(光モジュールの組立方法)
次に、光モジュール1A,1Bの組立方法の一例を図4A、図4Bを参照して説明する。図4A、図4Bは、光モジュール1Aの組立工程の一例を示す。
(Assembly method of optical module)
Next, an example of an assembly method of the optical modules 1A and 1B will be described with reference to FIGS. 4A and 4B. 4A and 4B show an example of an assembly process of the optical module 1A.

(1)取付工程
図4(a)に示すように、発光素子アレイ3のn側電極32と支持基板2Aのグランド21とを導電性接着剤を用いて接着する。次に、発光素子アレイ3の4つのp側電極31と支持基板2A上の4つのパッド22とをボンディングワイヤ8により接続し、支持基板2A上に発光素子アレイ3を実装する。
(1) As shown in the attachment process drawing 4 A (a), bonding the n-side electrode 32 of the light emitting element array 3 and the ground 21 of the supporting substrate 2A using a conductive adhesive. Next, the four p-side electrodes 31 of the light emitting element array 3 and the four pads 22 on the support substrate 2A are connected by the bonding wires 8, and the light emitting element array 3 is mounted on the support substrate 2A.

受光素子アレイ7の下面を支持基板2B上の所定の位置に接着剤等により固定し、受光素子アレイ7のp側電極71と支持基板2Bのp側パッド23、受光素子アレイ7のn側電極72と支持基板2Bのn側パッド24をそれぞれボンディングワイヤ8により接続し、支持基板2B上に受光素子アレイ7を実装する。   The lower surface of the light receiving element array 7 is fixed to a predetermined position on the support substrate 2B with an adhesive or the like, and the p side electrode 71 of the light receiving element array 7, the p side pad 23 of the support substrate 2B, and the n side electrode of the light receiving element array 7 72 and the n-side pad 24 of the support substrate 2B are respectively connected by the bonding wires 8, and the light receiving element array 7 is mounted on the support substrate 2B.

(2)接着剤塗布工程
次に、図4(b)に示すように、第1のディスペンサニードル201Aから支持基板2A上の所定の位置に仮固定用接着剤9を塗布する。この塗布高さHは、発光素子アレイ3の高さより高くする。続いて、第2のディスペンサニードル201Bから支持基板2A上の所定の位置に光学用接着剤5を塗布する。この塗布高さHは、発光素子アレイ3の高さより高くする。この塗布された光学用接着剤5の部分は、第1の接着部5aである。
(2) the adhesive coating step Then, as shown in FIG. 4 A (b), applying a temporary fixing adhesive 9 in a predetermined position on the supporting substrate 2A from the first dispenser needle 201A. The coating height H 1 is set higher than the height of the light emitting element array 3. Subsequently, the optical adhesive 5 is applied to a predetermined position on the support substrate 2A from the second dispenser needle 201B. The coating height H 2 is set higher than the height of the light emitting element array 3. The portion of the applied optical adhesive 5 is a first adhesive portion 5a.

(3)仮固定工程
次に、図4(c)に示すように、光導波路4を吸着ツール202により吸着して光導波路4をカメラ204により観察しながら所望の位置に位置決めし、吸着ツール202を降下させ、発光面3aと光結合面4aとの間の空隙Gを所定の値(例えば30〜60μm)にする。このとき、図4(d)、(e)に示すように、空隙Gに発生する毛管力により未硬化状態の光学用接着剤5が第1の接着部5aから空隙Gに供給される。空隙Gに供給された光学用接着剤5の部分は、第2の接着部5bとなる。また、仮固定用接着剤9も押しつぶされる。
(3) temporary fixing step Next, as shown in FIG. 4 A (c), and positioned at a desired position while the optical waveguide 4 was observed by camera 204 of the light guide 4 is adsorbed by the suction tool 202, the suction tool 202 is lowered to set the gap G between the light emitting surface 3a and the optical coupling surface 4a to a predetermined value (for example, 30 to 60 μm). At this time, as shown in FIG. 4 A (d), (e ), optical adhesive 5 uncured state by capillary force generated in the air gap G is supplied to the gap G from the first adhesive portion 5a. The portion of the optical adhesive 5 supplied to the gap G becomes the second adhesive portion 5b. Further, the temporary fixing adhesive 9 is also crushed.

次に、図4(f)に示すように、吸着ツール202で光導波路4を吸着保持したまま紫外線光源203から紫外線を仮固定用接着剤9に照射する。これにより、仮固定用接着剤9が硬化して光導波路4が支持基板2Aに接着(仮固定)される。すなわち、光導波路4を位置決めしながら硬化時間の短い仮固定用接着剤9で光導波路4を支持基板2に固定する。 Next, as shown in FIG. 4 A (f), irradiated with ultraviolet rays from the left ultraviolet light source 203, an optical waveguide 4 sucked and held by the suction tool 202 to the temporary fixing adhesive 9. Thereby, the temporarily fixing adhesive 9 is cured and the optical waveguide 4 is bonded (temporarily fixed) to the support substrate 2A. That is, the optical waveguide 4 is fixed to the support substrate 2 with the temporary fixing adhesive 9 having a short curing time while positioning the optical waveguide 4.

(4)本固定工程
次に、図4(g)に示すように、紫外線光源203から紫外線を光学用接着剤5に照射する。これにより、光学用接着剤5が硬化して光導波路4が発光素子アレイ3および支持基板2Aに接着(本固定)される。
(4) The fixing step Next, as shown in FIG. 4 A (g), is irradiated from the ultraviolet light source 203 with ultraviolet optical adhesive 5. Thereby, the optical adhesive 5 is cured and the optical waveguide 4 is bonded (mainly fixed) to the light emitting element array 3 and the support substrate 2A.

受信側の光モジュール1B側も、上述した送信側の光モジュール1Aと同様に光学用接着剤5および仮固定用接着剤9の塗布、硬化を行い、光導波路4を受光素子アレイ7および支持基板2Bに接着する。その後、光コネクタ6A,6Bを光モジュール1A,1Bの光導波路4の端面4c側に装着する。光モジュール1A,1Bを取り扱う際に、光導波路4の端面4c側に張力や圧縮力が加わっても張力や圧縮力が仮固定用接着剤9に吸収され、光学用接着剤5への負荷が軽減される。   The optical module 1B on the reception side is coated and cured with the optical adhesive 5 and the temporary fixing adhesive 9 in the same manner as the optical module 1A on the transmission side, and the optical waveguide 4 is replaced with the light receiving element array 7 and the support substrate. Adhere to 2B. Thereafter, the optical connectors 6A and 6B are attached to the end face 4c side of the optical waveguide 4 of the optical modules 1A and 1B. When handling the optical modules 1 </ b> A and 1 </ b> B, even if tension or compression force is applied to the end face 4 c side of the optical waveguide 4, the tension or compression force is absorbed by the temporary fixing adhesive 9 and the load on the optical adhesive 5 is increased. It is reduced.

(5)光導波路が反っている場合の仮固定
図5は、光導波路4が反っている場合の仮固定を示す。仮固定の際、図5(a)に示すように、光導波路4の反射面4b側が上方に反っている場合でも、図5(b)に示すように、その反り量が仮固定用接着剤9に吸収され、光導波路4の光結合面4aが発光素子アレイ3の発光面3aとの間の空隙Gを上記所定の値にすることができる。
(5) Temporary fixing when the optical waveguide is warped FIG. 5 shows temporary fixing when the optical waveguide 4 is warped. When temporarily fixing, as shown in FIG. 5 (a), even when the reflection surface 4b side of the optical waveguide 4 is warped upward, as shown in FIG. 5 (b), the warping amount is temporarily fixed adhesive. 9, the gap G between the optical coupling surface 4a of the optical waveguide 4 and the light emitting surface 3a of the light emitting element array 3 can be set to the predetermined value.

(光伝送装置の動作)
図6は、光の伝送経路を説明するための図である。光モジュール1Aの発光素子アレイ3のp側電極31とn側電極32間に電圧を印加すると、発光層30の発光領域で例えば波長850nmのレーザ光を発光し、そのレーザ光は、p側電極31の開口31aを通り、第2の接着部5aを介して光導波路4の反射面4aで反射した後、光導波路4のコア40内を伝播し、端面4cから出射される。光導波路4の端面4cから出射されたレーザ光は、光ファイバ101のコア101aに入射してコア101a内を伝播して他方の端面から出射される。光ファイバ101から出射されたレーザ光は、光モジュール1Bの光導波路4の端面4cに入射し、コア40内を伝播し、反射面4bで反射した後、第2の接着部5bを介して受光素子アレイ7の受光部70に入射する。受光部70に入射した光量に応じた電流がp側電極71とn側電極72間に流れる。
(Operation of optical transmission equipment)
FIG. 6 is a diagram for explaining an optical transmission path. When a voltage is applied between the p-side electrode 31 and the n-side electrode 32 of the light emitting element array 3 of the optical module 1A, a laser beam having a wavelength of 850 nm, for example, is emitted in the light emitting region of the light emitting layer 30. After passing through the opening 31a of 31 and being reflected by the reflecting surface 4a of the optical waveguide 4 via the second adhesive portion 5a, it propagates through the core 40 of the optical waveguide 4 and is emitted from the end surface 4c. The laser light emitted from the end face 4c of the optical waveguide 4 enters the core 101a of the optical fiber 101, propagates through the core 101a, and is emitted from the other end face. The laser light emitted from the optical fiber 101 enters the end face 4c of the optical waveguide 4 of the optical module 1B, propagates through the core 40, is reflected by the reflecting surface 4b, and then received through the second bonding portion 5b. The light enters the light receiving portion 70 of the element array 7. A current corresponding to the amount of light incident on the light receiving unit 70 flows between the p-side electrode 71 and the n-side electrode 72.

[第2の実施の形態]
図7は、本発明の第2の実施の形態に係る光伝送装置の概略の構成を示す斜視図である。第1の実施の形態では、光学用接着剤5を支持基板2A,2B上に塗布したが、本実施の形態は、光学用接着剤5をボンディングワイヤ8の封止を兼ねてボンディングワイヤ8に塗布したものであり、他は第1の実施の形態と同様に構成されている。第1の実施の形態と同様の構成については、その説明を省略する。
[Second Embodiment]
FIG. 7 is a perspective view showing a schematic configuration of an optical transmission apparatus according to the second embodiment of the present invention. In the first embodiment, the optical adhesive 5 is applied on the support substrates 2A and 2B. However, in the present embodiment, the optical adhesive 5 is used as the bonding wire 8 for sealing the bonding wire 8. The other components are the same as those in the first embodiment. The description of the same configuration as that of the first embodiment is omitted.

光学用接着剤5は、未硬化状態の光学用接着剤5が最初に塗布される第1の接着部5aと、第1の接着部5aから発光素子アレイ3の発光面3aまたは受光素子アレイ7の受光面7aと光導波路4の光結合面4aとの間の空隙(結合部分)Gに毛管力により供給される第2の接着部5bとからなる。第1の接着部5aの位置は、ボンディングワイヤ8上であって、未硬化状態の接着剤5を毛管力により発光面3aと光結合面4aとの間の空隙Gに供給し得る距離にある。   The optical adhesive 5 includes a first adhesive part 5a to which the uncured optical adhesive 5 is first applied, and the light emitting surface 3a of the light emitting element array 3 or the light receiving element array 7 from the first adhesive part 5a. The second bonding portion 5b is supplied to the gap (coupling portion) G between the light receiving surface 7a and the optical coupling surface 4a of the optical waveguide 4 by capillary force. The position of the 1st adhesion part 5a exists on the bonding wire 8, Comprising: It exists in the distance which can supply the adhesive agent 5 of a non-hardened state to the space | gap G between the light emission surface 3a and the optical coupling surface 4a by capillary force. .

(光モジュールの組立方法)
次に、光モジュール1A,1Bの組立方法の一例を図8A、図8B、図8Cを参照して説明する。図8A、図8B、図8Cは、光モジュール1Aの組立工程の一例を示す。
(Assembly method of optical module)
Next, an example of a method for assembling the optical modules 1A and 1B will be described with reference to FIGS. 8A, 8B, and 8C. 8A, 8B, and 8C show an example of an assembly process of the optical module 1A.

(1)取付工程
第1の実施の形態と同様に、支持基板2A上に発光素子アレイ3を実装し、支持基板2B上に受光素子アレイ7を実装する。
(1) Mounting Step As in the first embodiment, the light emitting element array 3 is mounted on the support substrate 2A, and the light receiving element array 7 is mounted on the support substrate 2B.

(2)仮固定工程
次に、図8(a)に示すように、第1のディスペンサニードル201Aから仮固定用接着剤9を塗布する。この塗布高さHは、発光素子アレイ3の高さより高くする。
(2) Temporary fixing step Next, as shown in FIG. 8A, the temporary fixing adhesive 9 is applied from the first dispenser needle 201A. The coating height H 1 is set higher than the height of the light emitting element array 3.

次に、図8(b)に示すように、光導波路4を吸着ツール202により吸着して光導波路4をカメラ204により観察しながら所望の位置に位置決めする。続いて、図8(c)に示すように、吸着ツール202を降下させ、発光面3aと光結合面4aとの間の空隙Gを所定の値(例えば30〜60μm)とする。   Next, as shown in FIG. 8B, the optical waveguide 4 is adsorbed by the adsorption tool 202 and the optical waveguide 4 is positioned at a desired position while being observed by the camera 204. Subsequently, as shown in FIG. 8C, the suction tool 202 is lowered, and the gap G between the light emitting surface 3a and the optical coupling surface 4a is set to a predetermined value (for example, 30 to 60 μm).

次に、図8(d)に示すように、吸着ツール202で光導波路4を吸着保持したまま紫外線光源203から紫外線を仮固定用接着剤9に照射する。これにより、仮固定用接着剤9が硬化して光導波路4が支持基板2Aに接着(仮固定)される。   Next, as illustrated in FIG. 8D, the temporary fixing adhesive 9 is irradiated with ultraviolet rays from the ultraviolet light source 203 while the optical waveguide 4 is held by suction with the suction tool 202. Thereby, the temporarily fixing adhesive 9 is cured and the optical waveguide 4 is bonded (temporarily fixed) to the support substrate 2A.

(3)本固定工程
次に、図8(e)に示すように、第2のディスペンサニードル201Bから光学用接着剤5を塗布しボンディングワイヤ8を封止する。この封止した位置が第1の接着部5aとなる。次に、図8(f)、(g)に示すように、空隙Gに発生する毛管力により未硬化状態の光学用接着剤5が第1の接着部5aから空隙Gに供給される。空隙Gに供給された光学用接着剤5が第2の接着部5bとなる。
(3) Main Fixing Step Next, as shown in FIG. 8E, the optical adhesive 5 is applied from the second dispenser needle 201B, and the bonding wire 8 is sealed. This sealed position becomes the first adhesive portion 5a. Next, as shown in FIGS. 8F and 8G, the uncured optical adhesive 5 is supplied to the gap G from the first bonding portion 5a by the capillary force generated in the gap G. The optical adhesive 5 supplied to the gap G becomes the second adhesive portion 5b.

次に、図8(h)に示すように、吸着ツール202で光導波路4を吸着保持したまま紫外線光源203から紫外線を光学用接着剤5に照射する。これにより、図8(i)に示すように、光学用接着剤5が硬化して光導波路4が発光素子アレイ3および支持基板2Aに接着(本固定)される。   Next, as shown in FIG. 8H, the optical adhesive 5 is irradiated with ultraviolet rays from the ultraviolet light source 203 while the optical waveguide 4 is held by suction with the suction tool 202. As a result, as shown in FIG. 8I, the optical adhesive 5 is cured and the optical waveguide 4 is bonded (fixed) to the light emitting element array 3 and the support substrate 2A.

受信側の光モジュール1B側も、上述した送信側の光モジュール1Aと同様に光学用接着剤5および仮固定用接着剤9の塗布、硬化を行い、光導波路4を受光素子アレイ7および支持基板2Bに接着する。その後、光コネクタ6A,6Bを光モジュール1A,1Bの光導波路4の端面4c側に装着する。   The optical module 1B on the reception side is coated and cured with the optical adhesive 5 and the temporary fixing adhesive 9 in the same manner as the optical module 1A on the transmission side, and the optical waveguide 4 is replaced with the light receiving element array 7 and the support substrate. Adhere to 2B. Thereafter, the optical connectors 6A and 6B are attached to the end face 4c side of the optical waveguide 4 of the optical modules 1A and 1B.

[第3の実施の形態]
図9は、本発明の第3の実施の形態に係る光伝送装置の概略の構成を示す斜視図、図10(a)は、光伝送路の一方の側に設けられた光モジュールの平面図、図10(b)は、図10(a)のA−A線断面図、図11(a)は、光伝送路の他方の側に設けられた光モジュールの平面図、図11(b)は、図11(a)のB−B線断面図である。
[Third Embodiment]
FIG. 9 is a perspective view showing a schematic configuration of an optical transmission apparatus according to the third embodiment of the present invention, and FIG. 10A is a plan view of an optical module provided on one side of the optical transmission line. 10 (b) is a cross-sectional view taken along line AA of FIG. 10 (a), FIG. 11 (a) is a plan view of the optical module provided on the other side of the optical transmission line, and FIG. 11 (b). FIG. 12 is a cross-sectional view taken along line BB in FIG.

第1の実施の形態では、仮固定用接着剤9を平坦な支持基板2A,2B上に塗布したが、本実施の形態は、支持基板2A,2B上に台座25を設け、台座25上に塗布して仮固定用接着剤9の塗布量を少なくすることにより、硬化時間を短縮したものであり、他は第1の実施の形態と同様に構成されている。第1の実施の形態と同様の構成については、その説明を省略する。   In the first embodiment, the temporary fixing adhesive 9 is applied to the flat support substrates 2A and 2B. However, in the present embodiment, a pedestal 25 is provided on the support substrates 2A and 2B, and the pedestal 25 is provided on the pedestal 25. By applying and reducing the application amount of the temporary fixing adhesive 9, the curing time is shortened, and the others are configured in the same manner as in the first embodiment. The description of the same configuration as that of the first embodiment is omitted.

台座25は、例えば、ガラスエポキシ樹脂等の樹脂からなり、接着剤による接着や融着等によって基材20に接合される。台座25の厚さは、仮固定用接着剤9の塗布量、光導波路4の反りの程度に応じて、例えば、発光素子アレイ3および受光素子アレイ7の高さの1/5〜1/2の範囲内で選択する。   The pedestal 25 is made of, for example, a resin such as glass epoxy resin, and is joined to the base material 20 by adhesion or fusion with an adhesive. The thickness of the pedestal 25 is, for example, 1/5 to 1/2 of the height of the light emitting element array 3 and the light receiving element array 7 depending on the amount of the temporary fixing adhesive 9 applied and the degree of warping of the optical waveguide 4. Select within the range.

[他の実施の形態]
なお、本発明は、上記実施の形態に限定されず、その発明の趣旨を逸脱しない範囲内で種々変形実施が可能である。また、本発明の趣旨を逸脱しない範囲内で各実施の形態の構成要素を任意に組み合わせることは可能である。
[Other embodiments]
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the invention. In addition, it is possible to arbitrarily combine the constituent elements of each embodiment without departing from the spirit of the present invention.

例えば、光導波路の反射面の角度は45度に限定されない。また、光導波路の反射面の表面にアルミニウム、金、銀、チタン等の金属膜や、波長選択性を有する誘電体多層膜を形成してもよい。   For example, the angle of the reflection surface of the optical waveguide is not limited to 45 degrees. Further, a metal film such as aluminum, gold, silver, and titanium, or a dielectric multilayer film having wavelength selectivity may be formed on the surface of the reflection surface of the optical waveguide.

また、上記各実施の形態では、一方の光モジュール1Aに発光素子アレイ3を用い、他方の光モジュール1Bに受光素子アレイ7を用いて一方向通信を行う構成としたが、双方の光モジュール1A,1Bにそれぞれ発光素子と受光素子を配置して双方向通信を行う構成としてもよい。また、光モジュールは、単一の光素子を用いてもよい。   In each of the above embodiments, the light emitting element array 3 is used for one optical module 1A and the light receiving element array 7 is used for the other optical module 1B. , 1B, a light emitting element and a light receiving element may be arranged to perform bidirectional communication. The optical module may use a single optical element.

図1は、本発明の第1の実施の形態に係る光伝送装置の概略の構成を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration of the optical transmission apparatus according to the first embodiment of the present invention. 図2(a)は、光伝送路の一方の側に設けられた光モジュールの平面図、図2(b)は、図2(a)のA−A線断面図である。FIG. 2A is a plan view of the optical module provided on one side of the optical transmission line, and FIG. 2B is a cross-sectional view taken along line AA in FIG. 図3(a)は、光伝送路の他方の側に設けられた光モジュールの平面図、図3(b)は、図3(a)のB−B線断面図である。FIG. 3A is a plan view of the optical module provided on the other side of the optical transmission line, and FIG. 3B is a cross-sectional view taken along line BB in FIG. 図4A(a)〜(c)は、光モジュールの組立工程の一例を示す断面図である。4A to 4C are cross-sectional views illustrating an example of the assembly process of the optical module. 図4B(d)〜(g)は、光モジュールの組立工程の一例を示す断面図である。4B to 4G are cross-sectional views illustrating an example of an assembly process of the optical module. 図5(a)、(b)は、光導波路が反っている場合の仮固定工程を示す断面図である。FIGS. 5A and 5B are cross-sectional views showing a temporary fixing process when the optical waveguide is warped. 図6は、光の伝送経路を説明するための図である。FIG. 6 is a diagram for explaining an optical transmission path. 図7は、本発明の第2の実施の形態に係る光伝送装置の概略の構成を示す斜視図である。FIG. 7 is a perspective view showing a schematic configuration of an optical transmission apparatus according to the second embodiment of the present invention. 図8A(a)〜(c)は、光モジュールの組立工程の一例を示す断面図である。8A (a) to 8 (c) are cross-sectional views showing an example of the assembly process of the optical module. 図8B(d)〜(f)は、光モジュールの組立工程の一例を示す断面図でる。8B (d) to 8 (f) are cross-sectional views showing an example of the assembly process of the optical module. 図8C(g)〜(i)は、光モジュールの組立工程の一例を示す断面図でる。8C (g) to 8 (i) are cross-sectional views illustrating an example of the assembly process of the optical module. 図9は、本発明の第3の実施の形態に係る光伝送装置の概略の構成を示す斜視図である。FIG. 9 is a perspective view showing a schematic configuration of an optical transmission apparatus according to the third embodiment of the present invention. 図10(a)は、光伝送路の一方の側に設けられた光モジュールの平面図、図10(b)は、図10(a)のA−A線断面図である。FIG. 10A is a plan view of an optical module provided on one side of the optical transmission line, and FIG. 10B is a cross-sectional view taken along line AA in FIG. 図11(a)は、光伝送路の他方の側に設けられた光モジュールの平面図、図11(b)は、図11(a)のB−B線断面図である。FIG. 11A is a plan view of an optical module provided on the other side of the optical transmission line, and FIG. 11B is a cross-sectional view taken along line BB of FIG. 11A.

符号の説明Explanation of symbols

1A,1B 光モジュール
2A,2B 支持基板
3 発光素子アレイ
3a 発光面
4 光導波路
4a 光結合面
4b 反射面
4c 端面
5 光学用接着剤
5b 第1の接着部
5a 第2の接着部
6A,6B 光コネクタ
7 受光素子アレイ
7a 受光面
8 ボンディングワイヤ
9 仮固定用接着剤
20 基材
21 グランド
22 パッド
23 p側パッド
24 n側パッド
25 台座
30 活性層
31 p側電極
31a 開口
32 n側電極
40 コア
41 クラッド
60 ピン穴
70 受光部
71 p側電極
71a 開口
72 n側電極
100 光伝送装置
101 光ファイバ
102A,102B 光コネクタ
103 ピン
201A 第1のディスペンサニードル
201B 第2のディスペンサニードル
202 吸着ツール
203 紫外線光源
G 空隙
1A, 1B Optical modules 2A, 2B Support substrate 3 Light emitting element array 3a Light emitting surface 4 Optical waveguide 4a Optical coupling surface 4b Reflecting surface 4c End surface 5 Optical adhesive 5b First adhesive portion 5a Second adhesive portion 6A, 6B Light Connector 7 Light-receiving element array 7a Light-receiving surface 8 Bonding wire 9 Temporary fixing adhesive 20 Base material 21 Ground 22 Pad 23 p-side pad 24 n-side pad 25 Base 30 Active layer 31 p-side electrode 31a Opening 32 n-side electrode 40 Core 41 Cladding 60 Pin hole 70 Light receiving part 71 P side electrode 71a Opening 72 N side electrode 100 Optical transmission device 101 Optical fibers 102A and 102B Optical connector 103 Pin 201A First dispenser needle 201B Second dispenser needle 202 Adsorption tool 203 Ultraviolet light source G Gap

Claims (7)

発光または受光する光学面を実装面と反対側に有する面型の光素子と、
前記光素子の前記光学面と光結合する光結合面、および前記光結合面に対向する位置に設けられた光路変換面を有する光導波路と、
前記発光素子の前記実装面が取り付けられる面を有する基板であって、前記面は前記光導波路側に突出した面である基板と
記光素子の前記光学面と前記光導波路の前記光結合面とを所定の硬化速度で接着する、前記光素子の前記光学面と前記光導波路の前記光結合面との間の結合部分から所定の位置に塗布された第1の接着部、および前記第1の接着部から毛管力により前記結合部分に供給されて前記光学面と前記光結合面とを接着する第2の接着部を有する光学用接着剤と、
前記光導波路の前記光結合面以外の部分と前記基板とを前記所定の硬化速度よりも速い硬化速度で接着する、前記突出した面と前記光導波路の前記光結合面以外の部分とを接着する仮固定用接着剤とを備えたことを特徴とする光モジュール。
A surface-type optical element having an optical surface for emitting or receiving light on the side opposite to the mounting surface;
An optical waveguide having an optical coupling surface optically coupled with the optical surface of the optical element, and an optical path conversion surface provided at a position facing the optical coupling surface;
A substrate having a surface to which the mounting surface of the light emitting element is attached , wherein the surface is a surface protruding to the optical waveguide side ; and
From coupling portion between the bonding the optical surface and the optical coupling surface of the optical waveguide at a predetermined curing rate, the optical surface and the optical coupling surface of the optical waveguide of the optical element before Symbol optical element A first adhesive portion applied at a predetermined position; and a second adhesive portion that is supplied from the first adhesive portion to the coupling portion by capillary force to adhere the optical surface and the optical coupling surface. An optical adhesive;
The portion other than the optical coupling surface of the optical waveguide and the substrate are bonded at a curing rate faster than the predetermined curing rate, and the protruding surface and the portion other than the optical coupling surface of the optical waveguide are bonded. An optical module comprising a temporary fixing adhesive.
前記仮固定用接着剤は、シアノアクリレート系接着剤である請求項1に記載の光モジュール。   The optical module according to claim 1, wherein the temporary fixing adhesive is a cyanoacrylate adhesive. 前記光学用接着剤および前記仮固定用接着剤は、加熱又はエネルギー線を受けて硬化する硬化型接着剤である請求項1に記載の光モジュール。   The optical module according to claim 1, wherein the optical adhesive and the temporary fixing adhesive are curable adhesives that are cured by receiving heat or energy rays. 発光面を実装面と反対側に有する面型の発光素子と、前記発光素子の前記発光面と光結合する光結合面、および前記光結合面に対向する位置に設けられた光路変換面を有する光導波路と、前記発光素子の前記実装面が取り付けられる面を有する基板であって、前記面は前記光導波路側に突出した面である基板と、前記発光素子の前記発光面と前記光導波路の前記光結合面とを所定の硬化速度で接着する、前記光素子の前記発光面と前記光導波路の前記光結合面との間の結合部分から所定の位置に塗布された第1の接着部、および前記第1の接着部から毛管力により前記結合部分に供給されて前記発光面と前記光結合面とを接着する第2の接着部を有する光学用接着剤と、前記光導波路の前記光結合面以外の部分と前記基板とを前記所定の硬化速度よりも速い硬化速度で接着する、前記突出した面と前記光導波路の前記光結合面以外の部分とを接着する仮固定用接着剤とを備えた第1の光モジュールと、
受光面を実装面と反対側に有する面型の受光素子と、前記受光素子の前記受光面と光結合する光結合面、および前記光結合面に対向する位置に設けられた光路変換面を有する光導波路と、前記発光素子の前記実装面が取り付けられる面を有する基板であって、前記面は前記光導波路側に突出した面である基板と、前記受光素子の前記受光面と前記光導波路の前記光結合面とを所定の硬化速度で接着する、前記光素子の前記受光面と前記光導波路の前記光結合面との間の結合部分から所定の位置に塗布された第1の接着部、および前記第1の接着部から毛管力により前記結合部分に供給されて前記受光面と前記光結合面とを接着する第2の接着部を有する光学用接着剤と、前記光導波路の前記光結合面以外の部分と前記基板とを前記所定の硬化速度よりも速い硬化速度で接着する、前記突出した面と前記光導波路の前記光結合面以外の部分とを接着する仮固定用接着剤とを備えた第2の光モジュールと、
前記第1の光モジュールの前記光導波路と前記第2の光モジュールの前記光導波路とを接続する光ファイバとを備えたことを特徴とする光伝送装置。
A planar light emitting device having a light emitting surface opposite to the mounting surface; an optical coupling surface optically coupled to the light emitting surface of the light emitting device; and an optical path conversion surface provided at a position facing the optical coupling surface. and an optical waveguide, a substrate having the surface on which the mounting surface is mounted in the light emitting element, a substrate wherein the surface is a surface that projects the optical waveguide side, the optical waveguide and the light emitting surface before Symbol emitting element adhesion of adhering the said optical coupling surface at a predetermined curing rate, first applied to a predetermined position from the coupling portion between the light emitting surface and the optical coupling surface of the optical waveguide of the light - emitting element And an optical adhesive having a second adhesive portion that is supplied from the first adhesive portion to the coupling portion by capillary force and adheres the light emitting surface and the optical coupling surface, and the optical waveguide A portion other than the optical coupling surface and the substrate are connected to the predetermined hardness. Bonding at a high curing rate than a first optical module that includes a temporary fixing adhesive for bonding the said projecting surface with portions other than the optical coupling surface of the optical waveguide,
A planar light-receiving element having a light-receiving surface opposite to the mounting surface; an optical coupling surface optically coupled to the light-receiving surface of the light-receiving element; and an optical path conversion surface provided at a position facing the optical coupling surface and an optical waveguide, a substrate having the surface on which the mounting surface is mounted in the light emitting element, a substrate wherein the surface is a surface that projects the optical waveguide side, the optical waveguide and the light-receiving surface before Symbol receiving element bonding of the said optical coupling surface adhered at a predetermined curing rate, first applied to a predetermined position from the coupling portion between said light receiving surface and the optical coupling surface of the optical waveguide of the light receiving element And an optical adhesive having a second adhesive portion that is supplied to the coupling portion by capillary force from the first adhesive portion and bonds the light receiving surface and the optical coupling surface, and the optical waveguide A portion other than the optical coupling surface and the substrate are connected to the predetermined hardness. Bonding at a high curing rate than a second optical module including a temporary fixing adhesive for bonding the said projecting surface with portions other than the optical coupling surface of the optical waveguide,
An optical transmission device comprising: an optical fiber connecting the optical waveguide of the first optical module and the optical waveguide of the second optical module.
発光または受光する光学面を実装面と反対側に有する面型の光素子と、前記光素子の前記実装面が取り付けられる基板と、前記光素子の前記光学面と光結合する光結合面、および前記光結合面に対向する位置に設けられた光路変換面を有する光導波路とを準備する準備工程と、
前記光素子の前記実装面を前記基板に取り付ける取付工程と、
前記光素子の前記光学面と前記光導波路の前記光結合面とを所定の硬化速度で硬化する光学用接着剤により接着する本固定工程と、
前記光導波路の前記光結合面以外の部分と前記基板とを、前記所定の硬化速度よりも速い硬化速度で硬化する仮固定用接着剤であって、前記仮固定用接着剤を前記光素子よりも高く塗布し、前記光導波路を前記光素子上に位置決めしたとき、前記仮固定用接着剤の高さが塗布時よりも低くなる前記仮固定用接着剤により接着する仮固定工程と、
前記仮固定工程及び前記本固定工程に先立って、前記基板上の所定の位置に前記仮固定用接着剤を塗布するとともに、前記基板上の所定の位置に前記光学用接着剤を塗布する接着剤塗布工程とを含み、
前記仮固定用接着剤による前記仮固定工程の後に、前記光学用接着剤による本固定工程を行い、かつ
前記本固定工程は、前記光素子の前記光学面と前記光導波路の前記光結合面との間の空隙から所定の位置に未硬化状態の光学用接着剤を塗布することにより前記空隙に発生した毛管力により前記未硬化状態の光学用接着剤を前記空隙に供給し、前記未硬化状態の光学用接着剤を硬化させて前記光学面と前記光結合面とを接着することを特徴とする光モジュールの製造方法。
A surface-type optical element having an optical surface for emitting or receiving light on the side opposite to the mounting surface, a substrate to which the mounting surface of the optical element is attached, an optical coupling surface optically coupled to the optical surface of the optical element, and A preparation step of preparing an optical waveguide having an optical path conversion surface provided at a position facing the optical coupling surface;
An attachment step of attaching the mounting surface of the optical element to the substrate;
A main fixing step of adhering the optical surface of the optical element and the optical coupling surface of the optical waveguide with an optical adhesive that cures at a predetermined curing rate;
A temporary fixing adhesive for curing the portion other than the optical coupling surface of the optical waveguide and the substrate at a curing rate faster than the predetermined curing rate, wherein the temporary fixing adhesive is more than the optical element. A temporary fixing step in which the height of the temporary fixing adhesive is lower than that during application when the optical waveguide is positioned on the optical element.
Prior to the temporary fixing step and the main fixing step, the temporary fixing adhesive is applied to a predetermined position on the substrate, and the optical adhesive is applied to the predetermined position on the substrate. Application process,
After the temporary fixing step with the temporary fixing adhesive, a main fixing step with the optical adhesive is performed, and the main fixing step includes the optical surface of the optical element and the optical coupling surface of the optical waveguide. The uncured optical adhesive is supplied to the gap by the capillary force generated in the gap by applying an uncured optical adhesive to the predetermined position from the gap between the gap, and the uncured state A method for producing an optical module, comprising: curing the optical adhesive and bonding the optical surface and the optical coupling surface.
前記仮固定用接着剤は、シアノアクリレート系接着剤である請求項5に記載の光モジュールの製造方法。   The method for manufacturing an optical module according to claim 5, wherein the temporary fixing adhesive is a cyanoacrylate adhesive. 前記光学用接着剤および前記仮固定用接着剤は、加熱又はエネルギー線を受けて硬化する硬化型接着剤である請求項5に記載の光モジュールの製造方法。   The method for manufacturing an optical module according to claim 5, wherein the optical adhesive and the temporary fixing adhesive are curable adhesives that are cured by receiving heat or energy rays.
JP2007025750A 2007-02-05 2007-02-05 OPTICAL MODULE, OPTICAL TRANSMISSION DEVICE, AND OPTICAL MODULE MANUFACTURING METHOD Expired - Fee Related JP5130731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025750A JP5130731B2 (en) 2007-02-05 2007-02-05 OPTICAL MODULE, OPTICAL TRANSMISSION DEVICE, AND OPTICAL MODULE MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025750A JP5130731B2 (en) 2007-02-05 2007-02-05 OPTICAL MODULE, OPTICAL TRANSMISSION DEVICE, AND OPTICAL MODULE MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2008191397A JP2008191397A (en) 2008-08-21
JP5130731B2 true JP5130731B2 (en) 2013-01-30

Family

ID=39751561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025750A Expired - Fee Related JP5130731B2 (en) 2007-02-05 2007-02-05 OPTICAL MODULE, OPTICAL TRANSMISSION DEVICE, AND OPTICAL MODULE MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP5130731B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160011385A1 (en) * 2013-03-27 2016-01-14 Ccs Technology, Inc. Optoelectronic device and method for assembling an optoelectronic device
US9862448B2 (en) * 2015-09-30 2018-01-09 Yamaha Hatsudoki Kabushiki Kaisha Vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157964B2 (en) * 2009-02-27 2013-03-06 オムロン株式会社 Optical transmission module, electronic device, and manufacturing method of optical transmission module
JP2011258741A (en) * 2010-06-09 2011-12-22 Fuji Xerox Co Ltd Optical transmission device
JP6293832B2 (en) * 2016-08-29 2018-03-14 日本航空電子工業株式会社 Optical connector assembly
JP2020067616A (en) * 2018-10-26 2020-04-30 住友ベークライト株式会社 Substrate with optical waveguide and electronic apparatus
DE102020126376A1 (en) * 2020-10-08 2022-04-14 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung ELECTRICAL CONTACT ASSEMBLY, METHOD OF MANUFACTURE THEREOF AND OPTOELECTRONIC COMPONENT COMPRISING THESE

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3285539B2 (en) * 1998-06-05 2002-05-27 日本電信電話株式会社 Optical module mounting structure
JP3257776B2 (en) * 1999-01-21 2002-02-18 日本電信電話株式会社 Optical module mounting structure
JP2001201670A (en) * 2000-01-18 2001-07-27 Sony Corp Optical module
JP4219677B2 (en) * 2002-12-26 2009-02-04 株式会社リコー Manufacturing method of optical device
JP2005062645A (en) * 2003-08-19 2005-03-10 Toppan Printing Co Ltd Optical connection structure body and its manufacturing method
JP4166149B2 (en) * 2003-12-24 2008-10-15 ヒロセ電機株式会社 Optical path conversion optical waveguide connector
JP4779361B2 (en) * 2005-01-05 2011-09-28 住友電気工業株式会社 Optical module and method of manufacturing optical module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160011385A1 (en) * 2013-03-27 2016-01-14 Ccs Technology, Inc. Optoelectronic device and method for assembling an optoelectronic device
US9651746B2 (en) * 2013-03-27 2017-05-16 Ccs Technology, Inc. Optoelectronic device and method for assembling an optoelectronic device
US9862448B2 (en) * 2015-09-30 2018-01-09 Yamaha Hatsudoki Kabushiki Kaisha Vehicle

Also Published As

Publication number Publication date
JP2008191397A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP5130731B2 (en) OPTICAL MODULE, OPTICAL TRANSMISSION DEVICE, AND OPTICAL MODULE MANUFACTURING METHOD
JP4043477B2 (en) Optical transmission module and manufacturing method thereof
JP4704126B2 (en) Optical module
JP5919573B2 (en) Optical module
JP2003207694A (en) Optical module
US9046668B2 (en) Optical module
JP2010237642A (en) Optical coupling structure and optical transmission and reception module
US7577323B2 (en) Photoelectric circuit board
JP4674596B2 (en) Method for manufacturing optoelectronic circuit board
JP2001356249A (en) Device constituted of photodiode and optical fiber
JP4893333B2 (en) Manufacturing method of optical module
JP2004319555A (en) Photoelectric conversion element package, its manufacturing method, and optical connector
JP2007101571A (en) Optical cable and transceiver subassembly
JP5256082B2 (en) Optical coupling structure and optical transceiver module
JP2008250007A (en) Optoelectronic circuit board
WO2007091733A2 (en) Photoelectric converting device, manufacturing method of the same, and external waveguide
JP4720374B2 (en) Optical module
JP4915303B2 (en) Optical waveguide manufacturing method and optical module manufacturing method
KR101246137B1 (en) Light emitting device and optical coupling module
JP5898916B2 (en) OPTICAL MODULE, ITS MOUNTING STRUCTURE AND OPTICAL MODULE MANUFACTURING METHOD
JP4337918B2 (en) Optoelectronic circuit board
JP2010152075A (en) Optical transmission apparatus
JP2010122308A (en) Optical transmission apparatus and optical waveguide
JP2002311260A (en) Plastic optical fiber, production method therefor, optical package using the same and optical wiring device
JP2005338696A (en) Optical component and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5130731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees