JP4674596B2 - Method for manufacturing optoelectronic circuit board - Google Patents

Method for manufacturing optoelectronic circuit board Download PDF

Info

Publication number
JP4674596B2
JP4674596B2 JP2007148530A JP2007148530A JP4674596B2 JP 4674596 B2 JP4674596 B2 JP 4674596B2 JP 2007148530 A JP2007148530 A JP 2007148530A JP 2007148530 A JP2007148530 A JP 2007148530A JP 4674596 B2 JP4674596 B2 JP 4674596B2
Authority
JP
Japan
Prior art keywords
optical
circuit board
resin
substrate
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007148530A
Other languages
Japanese (ja)
Other versions
JP2008299287A (en
Inventor
吉久 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2007148530A priority Critical patent/JP4674596B2/en
Publication of JP2008299287A publication Critical patent/JP2008299287A/en
Application granted granted Critical
Publication of JP4674596B2 publication Critical patent/JP4674596B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、光電子回路基板およびその製造方法に関する。   The present invention relates to an optoelectronic circuit board and a method for manufacturing the same.

光回路と電子回路を高密実装した光通信用デバイスが提案されている(特許文献1参照)。   An optical communication device in which an optical circuit and an electronic circuit are densely mounted has been proposed (see Patent Document 1).

この光通信用デバイスは、発光素子、受光素子およびICチップが実装されたICチップ実装用基板と、端部に光路変換ミラーを有する光導波路を含む多層プリント配線板とを封止樹脂層を介して接合している。発光素子および受光素子の周囲は、樹脂により封止され、光導波路の光路変換ミラーは、光路用樹脂層で封止されている。これにより、光学素子と光導波路との間に、空気中を浮遊しているゴミや異物が入り込むことがなく、ゴミや異物等により光信号の伝送が阻害されることがない。
特開2004−4428号公報
This optical communication device includes an IC chip mounting substrate on which a light emitting element, a light receiving element, and an IC chip are mounted, and a multilayer printed wiring board including an optical waveguide having an optical path conversion mirror at an end portion through a sealing resin layer. Are joined. The periphery of the light emitting element and the light receiving element is sealed with resin, and the optical path conversion mirror of the optical waveguide is sealed with an optical path resin layer. Thereby, dust and foreign matters floating in the air do not enter between the optical element and the optical waveguide, and transmission of the optical signal is not hindered by dust and foreign matters.
Japanese Patent Laid-Open No. 2004-4428

本発明の目的は、光伝送損失の低下を抑制することができ、生産性の高い光電子回路基板およびその製造方法を提供することにある。   An object of the present invention is to provide a highly productive optoelectronic circuit board and a method for manufacturing the same that can suppress a reduction in optical transmission loss.

本発明は、上記目的を達成するため、以下の光電子回路基板およびその製造方法を提供する。   In order to achieve the above object, the present invention provides the following optoelectronic circuit board and manufacturing method thereof.

[1]光信号を送信または受信する光学面と反対側に実装面を有する面型光素子と、対向する第1および第2の面を貫通する貫通穴を有し、前記貫通穴に位置する光路変換面を有する光導波路が埋め込まれたプリント基板と、前記面型光素子の前記実装面が取り付けられた取付面を有し、前記光素子が前記光路変換面と光結合するように前記取付面が前記プリント基板の前記第1の面に電気的に接続された中継基板と、前記面型光素子の前記光学面と前記光路変換面との間の空隙を埋めるように設けられ、前記光信号の波長を透過する特性を有し、前記プリント基板の前記第2の面側から前記貫通穴を介してエネルギー線が照射されることにより硬化する光学樹脂とを備えた光電子回路基板。 [1] A planar optical element having a mounting surface on the side opposite to an optical surface that transmits or receives an optical signal, and a through hole that penetrates the first and second surfaces facing each other, and is located in the through hole A printed circuit board in which an optical waveguide having an optical path conversion surface is embedded; and an attachment surface to which the mounting surface of the planar optical element is attached, and the attachment so that the optical element is optically coupled to the optical path conversion surface. A relay board electrically connected to the first surface of the printed circuit board and a gap between the optical surface and the optical path conversion surface of the surface optical element, and the light An optoelectronic circuit board comprising: an optical resin having a characteristic of transmitting a signal wavelength and being cured when irradiated with energy rays from the second surface side of the printed board through the through hole.

[2]前記光導波路の前記光路変換面は、前記貫通穴の前記第2の面側から前記光導波路のコアの屈折率よりも小さい屈折率を有する樹脂により被覆された前記[1]に記載の光電子回路基板。 [2] The optical path conversion surface of the optical waveguide is coated with a resin having a refractive index smaller than that of the core of the optical waveguide from the second surface side of the through hole. Optoelectronic circuit board.

[3]前記光導波路の前記光路変換面は、前記貫通穴の前記第2の面側から前記光導波路のクラッドの屈折率と同じ屈折率を有する樹脂により被覆された前記[1]に記載の光電子回路基板。 [3] The optical path conversion surface of the optical waveguide is coated with a resin having the same refractive index as that of the cladding of the optical waveguide from the second surface side of the through hole. Optoelectronic circuit board.

[4]前記光路変換面を被覆する前記樹脂は、エネルギー線が照射されることにより硬化する硬化型樹脂である前記[2]又は[3]に記載の光電子回路基板。 [4] The optoelectronic circuit board according to [2] or [3], wherein the resin that covers the optical path conversion surface is a curable resin that cures when irradiated with energy rays.

[5]対向する第1および第2の面を貫通する貫通穴を有し、前記貫通穴に位置する光路変換面を有する光導波路が埋め込まれたプリント基板と、光信号を送信または受信する光学面と反対側に実装面を有する面型光素子の前記実装面が取り付けられる取付面を有する中継基板とを準備する第1の工程と、記プリント基板の前記第1の面側の前記貫通穴を含む領域に、前記光信号の波長を透過する特性を有し、エネルギー線が照射されることにより硬化する光学樹脂を充填する第2の工程と、前記光素子が前記光路変換面と光結合するように前記面型光素子が実装された前記中継基板の前記取付面を前記プリント基板の前記第1の面に電気的に接続する第3の工程と、前記エネルギー線を前記プリント基板の前記第2の面側から前記貫通穴を介して照射して前記第1の面側の前記光学樹脂を硬化させる第4の工程と、前記プリント基板の前記第2の面側の前記貫通穴に、前記光学樹脂、又は透光性を有する透明樹脂を充填する第5の工程と、前記第2の面側の前記光学樹脂を硬化させる、又は前記透明樹脂を硬化させる第6の工程とを含む光電子回路基板の製造方法。
[5] A printed circuit board having a through hole penetrating the opposing first and second surfaces and having an optical waveguide having an optical path conversion surface located in the through hole, and an optical for transmitting or receiving an optical signal a first step of preparing a relay substrate having a mounting surface on which the mounting surface of the surface optical device having a mounting surface on a surface opposite to the side attached, the penetration of the previous SL PCB first surface A second step of filling a region including a hole with an optical resin that has a property of transmitting the wavelength of the optical signal and is cured when irradiated with an energy ray; and the optical element includes the optical path conversion surface and the light. A third step of electrically connecting the mounting surface of the relay substrate on which the planar optical element is mounted so as to be coupled to the first surface of the printed circuit board; and The through hole from the second surface side A fourth step of curing the optical resin of the irradiated first surface through to the through hole of the second surface of the printed circuit board, the optical resin, or translucent to An optoelectronic circuit board manufacturing method comprising: a fifth step of filling a transparent resin; and a sixth step of curing the optical resin on the second surface side or curing the transparent resin .

請求項1に係る光電子回路基板によると、光伝送損失の低下を抑制することができ、生産性が高くなる。   According to the optoelectronic circuit board according to the first aspect, it is possible to suppress a decrease in optical transmission loss and to increase productivity.

請求項2に係る光電子回路基板によると、光路変換面へのゴミ、異物等の付着により、光伝送損失が低下するのを抑制することができる。   According to the optoelectronic circuit board according to the second aspect, it is possible to suppress a decrease in optical transmission loss due to adhesion of dust, foreign matter, and the like to the optical path conversion surface.

請求項3に係る光電子回路基板によると、光路変換面へのゴミ、異物等の付着により、光伝送損失が低下するのを抑制することができる。   According to the optoelectronic circuit board according to the third aspect, it is possible to suppress a decrease in optical transmission loss due to adhesion of dust, foreign matter, and the like to the optical path conversion surface.

請求項4に係る光電子回路基板によると、光素子側と光路変換面側を共通の樹脂を用いることで、生産性がより一層高くなる。   According to the optoelectronic circuit board according to the fourth aspect, the productivity is further increased by using a common resin for the optical element side and the optical path conversion surface side.

請求項5に係る光電子回路基板の製造方法によると、光伝送損失の低下を抑制することができ、生産性が高くなる。   According to the method for manufacturing an optoelectronic circuit board according to the fifth aspect, it is possible to suppress a decrease in optical transmission loss and increase productivity.

[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る光電子回路基板の概略の構成を示し、(a)は、斜視図、(b)は、(a)のA―A線断面図、(c)は、(a)のB―B線断面図である。
[First Embodiment]
1A and 1B show a schematic configuration of an optoelectronic circuit board according to a first embodiment of the present invention, in which FIG. 1A is a perspective view, FIG. 1B is a cross-sectional view along line AA in FIG. c) is a sectional view taken along line BB in FIG.

この光電子回路基板1は、光回路と電子回路を融合させたものであり、プリント基板100に光導波路13(図1(b)、(c)参照)を埋め込んで構成されている。   The optoelectronic circuit board 1 is obtained by integrating an optical circuit and an electronic circuit, and is configured by embedding an optical waveguide 13 (see FIGS. 1B and 1C) in a printed circuit board 100.

プリント基板100は、光導波路13を介して配置された第1および第2の基板10,11から構成され、第1の基板10の上面(第1の面)に第1および第2の光モジュール12A,12Bが実装され、これらの光モジュール12A,12Bは、光導波路13に光学的に接続されている。なお、プリント基板100における配線を有する層数は、2つに限られず、3つ以上でもよい。   The printed circuit board 100 includes first and second substrates 10 and 11 disposed via an optical waveguide 13, and the first and second optical modules are formed on the upper surface (first surface) of the first substrate 10. 12A and 12B are mounted, and these optical modules 12A and 12B are optically connected to the optical waveguide 13. Note that the number of layers having wiring in the printed circuit board 100 is not limited to two, and may be three or more.

また、光電子回路基板1は、光導波路13をエポキシ樹脂等の封止部材200により第1および第2の基板10,11の周辺で封止している。なお、封止部材200を設けずに、第1および第2の基板10,11間に基板10,11と同じ大きさの光導波路13を配置してもよい。   In the optoelectronic circuit board 1, the optical waveguide 13 is sealed around the first and second substrates 10 and 11 by a sealing member 200 such as an epoxy resin. The optical waveguide 13 having the same size as the substrates 10 and 11 may be disposed between the first and second substrates 10 and 11 without providing the sealing member 200.

(光モジュール)
第1の光モジュール12Aは、複数の発光素子(面型光素子)120aが一例に配列された発光素子アレイ120と、発光素子120aを駆動する駆動回路等を有する。第2の光モジュール12Bは、複数の受光素子(面型受光素子)121aが一列に配列された受光素子アレイ121と、受光素子121aからの出力信号を増幅する処理回路等を有する。第1及び第2の光モジュール12A、12Bは、それぞれパッケージ化されており、それらの詳細な構成は後述する。
(Optical module)
The first optical module 12A includes a light emitting element array 120 in which a plurality of light emitting elements (planar optical elements) 120a are arranged as an example, a drive circuit that drives the light emitting elements 120a, and the like. The second optical module 12B includes a light receiving element array 121 in which a plurality of light receiving elements (surface light receiving elements) 121a are arranged in a line, a processing circuit for amplifying an output signal from the light receiving element 121a, and the like. The first and second optical modules 12A and 12B are packaged, and their detailed configurations will be described later.

(第1の基板)
第1の基板10は、例えば、厚みが0.5mmのガラスエポキシ樹脂等の絶縁性材料から形成された基材と、この基材の上面に形成され、各種の電子部品や電源回路部品等が電気的に接続された導電性パターンとを有する。
(First substrate)
For example, the first substrate 10 is formed on a base material made of an insulating material such as a glass epoxy resin having a thickness of 0.5 mm, and an upper surface of the base material, and various electronic components, power circuit components, etc. An electrically connected conductive pattern.

また、第1の基板10は、4つの発光素子120aに対向した位置に後述する共通の発光側開口が形成され、4つの受光素子121aに対向した位置に後述する共通の受光側開口が形成されている。なお、共通する発光側開口と受光側開口は、それぞれ4つの発光側開口と4つの受光側開口でもよい。   The first substrate 10 has a common light-emitting side opening described later at a position facing the four light-emitting elements 120a, and a common light-receiving side opening described later at a position facing the four light-receiving elements 121a. ing. The common light emitting side opening and light receiving side opening may be four light emitting side openings and four light receiving side openings, respectively.

(第2の基板)
第2の基板11は、例えば、厚みが1mmのガラスエポキシ樹脂等の絶縁性材料から形成された基材と、この基材の下面(第2の面)に形成され、各種の電子部品や電源回路部品等が電気的に接続された導電性パターンとを有する。
(Second substrate)
The second substrate 11 is formed on, for example, a base material made of an insulating material such as a glass epoxy resin having a thickness of 1 mm, and a lower surface (second surface) of the base material. A circuit pattern or the like and a conductive pattern electrically connected thereto.

また、第2の基板11は、第1の基板10の発光側開口および受光側開口に対応した位置に発光側開口および受光側開口が形成されている。なお、発光側開口と受光側開口は、4つの発光側開口と4つの受光側開口としてもよい。   The second substrate 11 has a light emitting side opening and a light receiving side opening at positions corresponding to the light emitting side opening and the light receiving side opening of the first substrate 10. The light emitting side opening and the light receiving side opening may be four light emitting side openings and four light receiving side openings.

(光導波路)
光導波路13は、図1(b)、(c)に示すように、例えば、全体の厚みが0.2mmであり、50×50μmの断面矩形状を有する4本のコア131と、これらのコア131の周囲に形成されてコア131より屈折率が小さいクラッド132とで構成される。
(Optical waveguide)
As shown in FIGS. 1B and 1C, the optical waveguide 13 has, for example, four cores 131 having an overall thickness of 0.2 mm and a rectangular cross section of 50 × 50 μm, and these cores. The clad 132 is formed around the core 131 and has a refractive index smaller than that of the core 131.

(光導波路の製造法)
次に、光導波路13の製造方法の一例について説明する。光導波路13は、例えば、一般によく用いられるフォトリソグラフィ法やRIE(反応性イオンエッチング)を利用した方法で作製可能である。特に、本出願人が既に提案した特開2004−29507号公報等に記載されている鋳型を用いた作製工程により効率的に製造することができる。以下に、その作製工程を説明する。
(Optical waveguide manufacturing method)
Next, an example of a method for manufacturing the optical waveguide 13 will be described. The optical waveguide 13 can be produced by, for example, a commonly used photolithography method or a method using RIE (reactive ion etching). In particular, it can be efficiently produced by a production process using a mold described in Japanese Patent Application Laid-Open No. 2004-29507 already proposed by the present applicant. The manufacturing process will be described below.

まず、4本のコア131に対応する凸部が形成された原盤を、例えば、フォトリソグラフィ法を用いて作製する。次に、原盤の凸部が形成された面に、例えば、500〜7000mPa・s程度の粘度で、紫外領域や可視領域において光透過性を有する硬化性樹脂、例えば、分子中にメチルシロキサン基、エチルシロキサン基、フェニルシロキサン基を含む硬化性オルガノポリシロキサンの層を塗布等により設け、その後、硬化させて硬化層を構成する。次に、硬化層を原盤から剥離し、凸部に対応する凹部を有した鋳型を作製する。   First, a master on which convex portions corresponding to the four cores 131 are formed is produced using, for example, a photolithography method. Next, a curable resin having a viscosity of, for example, about 500 to 7000 mPa · s and having light transmittance in the ultraviolet region and the visible region, for example, a methylsiloxane group in the molecule, A layer of a curable organopolysiloxane containing an ethylsiloxane group and a phenylsiloxane group is provided by coating or the like, and then cured to form a cured layer. Next, the hardened layer is peeled off from the master and a mold having a concave portion corresponding to the convex portion is produced.

次に、鋳型に、この鋳型との密着性に優れる樹脂、例えば、脂環式アクリル樹脂フィルム、脂環式オレフィン樹脂フィルム、三酢酸セルロースフィルム、フッ素樹脂フィルム等からなるクラッド用フィルム基材を密着させる。次に、鋳型の凹部に、例えば、紫外線硬化性又は熱硬化性のモノマー、オリゴマー若しくはモノマーとオリゴマーの混合物、エポキシ系、ポリイミド系、アクリル系の紫外線硬化性樹脂等からなる硬化性樹脂を充填する。次に、凹部内の硬化性樹脂を硬化させてコア131とした後、鋳型を剥離する。これにより、クラッド用フィルム基材上に4本のコア131が残される。   Next, a clad film substrate made of a resin excellent in adhesion to the mold, for example, an alicyclic acrylic resin film, an alicyclic olefin resin film, a cellulose triacetate film, a fluororesin film, or the like is adhered to the mold. Let Next, the concave portion of the mold is filled with, for example, an ultraviolet curable or thermosetting monomer, an oligomer or a mixture of a monomer and an oligomer, an epoxy type, a polyimide type, an acrylic type ultraviolet curable resin, or the like. . Next, the curable resin in the recess is cured to form the core 131, and then the mold is peeled off. As a result, the four cores 131 are left on the clad film substrate.

次に、クラッド用フィルム基材のコア131が形成された面側にコア131を覆うようにクラッド132を設ける。クラッド132として、例えば、フィルム、クラッド用硬化性樹脂を塗布して硬化させた層、高分子材料の溶剤溶液を塗布し乾燥してなる高分子膜等が挙げられる。   Next, the clad 132 is provided so as to cover the core 131 on the surface side of the clad film substrate on which the core 131 is formed. Examples of the clad 132 include a film, a layer obtained by applying and curing a clad curable resin, and a polymer film obtained by applying and drying a solvent solution of a polymer material.

最後に、光導波路のコア131が露出する面をダイサーによって所定の角度に切削して光路変換面を形成する。更にコア131に平行にダイサーで切り出すことにより、クラッド用フィルム基材及びクラッド層をクラッド132とした光導波路13が完成する。   Finally, the surface where the core 131 of the optical waveguide is exposed is cut at a predetermined angle by a dicer to form an optical path conversion surface. Further, by cutting with a dicer parallel to the core 131, the optical waveguide 13 having the clad film base material and the clad layer as the clad 132 is completed.

図2は、図1(a)のC−C線断面図である。   FIG. 2 is a cross-sectional view taken along the line CC of FIG.

(第1の光モジュール)
第1の光モジュール12Aは、中継基板129と、中継基板129の下面に実装された上述の発光素子アレイ120と、中継基板129の上面に実装された制御部127Aとを備える。
(First optical module)
The first optical module 12A includes a relay board 129, the above-described light emitting element array 120 mounted on the lower surface of the relay board 129, and a control unit 127A mounted on the upper surface of the relay board 129.

中継基板129は、絶縁性材料からなる基材を有し、基材の下面である取付面129aには、端子124が形成されている。端子124は、BGA(Ball Grid Array)等の半田ボール(導電性ボール)125によって第1の基板10の端子110に電気的に接続される。また、制御部127Aがワイヤ126によって端子124に接続される。   The relay substrate 129 has a base material made of an insulating material, and terminals 124 are formed on an attachment surface 129a that is the lower surface of the base material. The terminal 124 is electrically connected to the terminal 110 of the first substrate 10 by a solder ball (conductive ball) 125 such as a BGA (Ball Grid Array). Further, the control unit 127 </ b> A is connected to the terminal 124 by the wire 126.

制御部127Aは、発光素子を駆動する駆動回路を内蔵し、導電性を有した接着剤等によって中継基板129に接合される。   The control unit 127A includes a drive circuit that drives the light emitting element, and is bonded to the relay substrate 129 with a conductive adhesive or the like.

発光素子アレイ120の発光素子120aは、光信号を出力する光出力面(光学面)120bと反対側に実装面を有する面型発光素子を用いる。面型発光素子として、例えば、面型発光ダイオードや面発光レーザ等を用いることができるが、本実施の形態では、面発光レーザを用いる。この面発光レーザを用いた面発光レーザアレイは、例えば、n型GaAs基板上に、n型下部反射鏡層、活性層、電流狭窄層、p型上部反射鏡層、p型コンタクト層、p側電極を形成し、n型GaAs基板の裏面にn側電極を形成したものであり、活性層、電流狭窄層、p型上部反射鏡層、p型コンタクト層、およびp側電極は、発光素子120a毎に形成されている。   The light emitting element 120a of the light emitting element array 120 uses a surface light emitting element having a mounting surface on the side opposite to the light output surface (optical surface) 120b for outputting an optical signal. As the surface light emitting element, for example, a surface light emitting diode, a surface emitting laser, or the like can be used. In the present embodiment, a surface emitting laser is used. A surface emitting laser array using this surface emitting laser has, for example, an n-type lower reflector layer, an active layer, a current confinement layer, a p-type upper reflector layer, a p-type contact layer, and a p-side on an n-type GaAs substrate. An electrode is formed, and an n-side electrode is formed on the back surface of the n-type GaAs substrate. The active layer, the current confinement layer, the p-type upper reflector layer, the p-type contact layer, and the p-side electrode are formed of the light emitting element 120a. It is formed every time.

第1の基板10の発光側開口10aと第2の基板11の発光側開口11aは、光路変換面133Aが露出するように貫通穴を構成しており、発光素子アレイ120と光導波路13との間、および光路変換面133Aから第2の基板11の発光側開口11aに渡り、光学樹脂14によって充填されている。光学樹脂14は、例えば、光信号2の波長を透過する特性と光導波路13のコア131の屈折率よりも小さい、望ましくは光導波路13のクラッド132と同じ屈折率とを有し、かつ、可視光線、紫外線、電子線、放射線等のエネルギー線を照射して硬化するエネルギー線硬化型樹脂を用いることができる。本実施の形態では、紫外線の照射によって硬化する紫外線硬化型樹脂を用いる。   The light emitting side opening 10a of the first substrate 10 and the light emitting side opening 11a of the second substrate 11 form a through hole so that the optical path conversion surface 133A is exposed, and the light emitting element array 120 and the optical waveguide 13 are connected to each other. In between and between the optical path conversion surface 133A and the light emitting side opening 11a of the second substrate 11, it is filled with the optical resin 14. The optical resin 14 has, for example, a property of transmitting the wavelength of the optical signal 2 and a refractive index smaller than the refractive index of the core 131 of the optical waveguide 13, desirably the same refractive index as that of the cladding 132 of the optical waveguide 13, and visible. An energy ray curable resin that is cured by irradiation with energy rays such as light rays, ultraviolet rays, electron beams, and radiations can be used. In this embodiment, an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is used.

(第2の光モジュール)
第2の光モジュール12Bは、第1の光モジュール12Aと同様の中継基板129と、中継基板129の下面に実装された上述の受光素子アレイ121と、中継基板129の上面に実装された制御部127Bとを備える。
(Second optical module)
The second optical module 12B includes a relay substrate 129 similar to the first optical module 12A, the above-described light receiving element array 121 mounted on the lower surface of the relay substrate 129, and a control unit mounted on the upper surface of the relay substrate 129. 127B.

制御部127Bは、4つの受光素子121aが出力する電気信号を増幅する増幅回路と、増幅回路の出力信号を画像信号等に変換する信号処理回路とを内蔵し、導電性を有した接着剤等によって中継基板129に接合される。   The control unit 127B includes an amplifier circuit that amplifies the electric signals output from the four light receiving elements 121a and a signal processing circuit that converts the output signal of the amplifier circuit into an image signal or the like, and has a conductive adhesive or the like. To the relay substrate 129.

受光素子アレイ121の受光素子121aは、光信号を入力する光入力面(光学面)121bと反対側に実装面を有する面型受光素子を用いる。面型受光素子として、例えば、面型のフォトダイオード等を用いることができる。本実施の形態では、高速応答性に優れたGaAs系のPINフォトダイオードを用いる。このPINフォトダイオードを用いた受光素子アレイ121は、例えば、GaAs基板上に、PIN接合されたP層、I層およびN層と、P層に接続されたp側電極と、N層に形成されたn側電極とを備え、P層、I層、N層、p側電極およびn側電極は、受光素子121a毎に形成されている。   The light receiving element 121a of the light receiving element array 121 uses a surface light receiving element having a mounting surface on the opposite side to the light input surface (optical surface) 121b for inputting an optical signal. As the surface light receiving element, for example, a surface photodiode can be used. In this embodiment, a GaAs PIN photodiode having excellent high-speed response is used. The light receiving element array 121 using the PIN photodiode is formed, for example, on a GaAs substrate on a P-layer, I-layer, and N-layer that are PIN-bonded, a p-side electrode connected to the P-layer, and an N-layer. The P layer, the I layer, the N layer, the p side electrode, and the n side electrode are formed for each light receiving element 121a.

第1の基板10の受光側開口10bと第2の基板11の発光側開口11bは、光路変換面133Bが露出するように貫通穴を構成しており、受光素子アレイ121と光導波路13との間、および光路変換面133Bから第2の基板11の受光側開口11bに渡り、第1の光モジュール12Aと同様の光学樹脂14によって充填されている。   The light-receiving side opening 10b of the first substrate 10 and the light-emitting side opening 11b of the second substrate 11 form a through hole so that the optical path conversion surface 133B is exposed, and the light receiving element array 121 and the optical waveguide 13 Between the optical path conversion surface 133B and the light receiving side opening 11b of the second substrate 11, it is filled with the optical resin 14 similar to that of the first optical module 12A.

(光モジュールの実装方法)
図3A、図3B、図3Cは、第1の光モジュールの第1の基板への実装方法を示し、図3A(a)、図3B(b)、(c)、図3C(d)〜(f)は、要部断面図、図3A(a)は、図3A(a)に対応する平面図である。
(Optical module mounting method)
3A, 3B, and 3C show a method of mounting the first optical module on the first substrate, and FIG. 3A (a 1 ), FIG. 3B (b), (c), and FIG. 3C (d) to FIG. (f) is a fragmentary sectional view, FIG. 3A (a 2) is a plan view corresponding to FIG. 3A (a 1).

まず、図3A(a)、(a)に示すように、発光側開口10a、受光側開口10b等が形成された第1の基板10と、発光側開口11a、受光側開口11b等が形成された第2の基板11との間に光導波路13を配置したプリント基板100を用意する。 First, as shown in FIGS. 3A (a 1 ) and (a 2 ), the first substrate 10 on which the light emitting side opening 10a, the light receiving side opening 10b and the like are formed, the light emitting side opening 11a, the light receiving side opening 11b and the like are provided. A printed circuit board 100 in which the optical waveguide 13 is disposed between the formed second substrate 11 is prepared.

第1の基板10の発光側開口10aと第2の基板11の発光側開口11aは、図3A(a)に示すように、光導波路13の幅よりも若干大きく形成されている。 The light emitting side opening 10a of the first substrate 10 and the light emitting side opening 11a of the second substrate 11 are formed slightly larger than the width of the optical waveguide 13 as shown in FIG. 3A (a 2 ).

次に、図3B(b)に示すように、ディスペンサニードル50から未硬化状態の光学樹脂14を第1の基板10の発光側開口10aを含む領域に塗布する。   Next, as shown in FIG. 3B (b), the uncured optical resin 14 is applied from the dispenser needle 50 to a region including the light emitting side opening 10 a of the first substrate 10.

次に、図3B(c)に示すように、第1のモジュール12Aを実装し、図3C(d)に示すように、ハンダボール125によって第1のモジュール12Aを第1の基板10に電気的に接続し、紫外線光源51から出射した紫外線を、第2の基板11の下面(第2の面)側から発光側開口11aを通して光学樹脂14に照射し、光学樹脂14を硬化させる。   Next, as shown in FIG. 3B (c), the first module 12A is mounted, and as shown in FIG. 3C (d), the first module 12A is electrically connected to the first substrate 10 by the solder balls 125. The optical resin 14 is irradiated with ultraviolet rays emitted from the ultraviolet light source 51 from the lower surface (second surface) side of the second substrate 11 through the light emitting side opening 11a, and the optical resin 14 is cured.

光学樹脂14が硬化した後、図3C(e)に示すように、ディスペンサニードル50から未硬化状態の光学樹脂14を第2の基板11の発光側開口11aに塗布する。続いて図3C(f)に示すように、紫外線光源51から第2の基板11の発光側開口11aを通して光学樹脂14に紫外線を照射し、第2の基板11側の光学樹脂14を硬化させる。   After the optical resin 14 is cured, the uncured optical resin 14 is applied from the dispenser needle 50 to the light emission side opening 11a of the second substrate 11 as shown in FIG. 3C (e). Subsequently, as shown in FIG. 3C (f), the optical resin 14 is irradiated with ultraviolet rays from the ultraviolet light source 51 through the light emitting side opening 11a of the second substrate 11 to cure the optical resin 14 on the second substrate 11 side.

なお、以上の説明では、第1の光モジュール12Aについて説明したが、第2の光モジュール12Bの第1の基板10への実装も同様に行われる。   In the above description, the first optical module 12A has been described. However, the second optical module 12B is mounted on the first substrate 10 in the same manner.

(第1の実施の形態の動作)
以下に、本発明の第1の実施の形態に関する光電子回路基板の動作について図1および図2を参照して説明する。
(Operation of the first embodiment)
The operation of the optoelectronic circuit board according to the first embodiment of the present invention will be described below with reference to FIGS.

ここでは、一例として、画像信号を第1の光モジュール12Aから第2の光モジュール12Bに送信する場合について説明する。第1の光モジュール12Aの制御部127Aの駆動回路は、画像信号に基づいて駆動信号を発光素子アレイ120の発光素子120aに送信する。発光素子120aは、駆動信号に基づいて光信号2を発光側開口10aを介して光導波路3の光路変換面133Aに向けて送信する。このとき、発光素子120aのp型電極とn型電極間に駆動信号の電圧が印加され、発光層の発光領域から例えば、波長850nmのレーザ光を光信号2として出力する。   Here, as an example, a case where an image signal is transmitted from the first optical module 12A to the second optical module 12B will be described. The drive circuit of the control unit 127A of the first optical module 12A transmits a drive signal to the light emitting element 120a of the light emitting element array 120 based on the image signal. The light emitting element 120a transmits the optical signal 2 toward the optical path conversion surface 133A of the optical waveguide 3 through the light emission side opening 10a based on the drive signal. At this time, the voltage of the drive signal is applied between the p-type electrode and the n-type electrode of the light emitting element 120a, and for example, laser light having a wavelength of 850 nm is output as the optical signal 2 from the light emitting region of the light emitting layer.

光路変換面133Aは、発光素子120aから送信された光信号2の光路を変換し、光導波路13のコア131に光信号2を伝播させる。コア131に伝播した光信号2は、光路変換面133Bによって光路が変換され、受光側開口10bを通過して第2の光モジュール12Bの受光素子アレイ121によって受光される。受光素子121aは、受光した光信号2を電気信号に変換して制御部127Bに出力する。   The optical path conversion surface 133A converts the optical path of the optical signal 2 transmitted from the light emitting element 120a, and propagates the optical signal 2 to the core 131 of the optical waveguide 13. The optical signal 2 propagated to the core 131 has its optical path converted by the optical path conversion surface 133B, passes through the light receiving side opening 10b, and is received by the light receiving element array 121 of the second optical module 12B. The light receiving element 121a converts the received optical signal 2 into an electrical signal and outputs it to the control unit 127B.

制御部127Bの増幅器は、変換された電気信号を増幅し、信号処理回路は、増幅器からの信号を処理して画像信号を生成し、第1又は第2の基板10、11上の所定の電子部品に出力する。   The amplifier of the control unit 127B amplifies the converted electric signal, and the signal processing circuit processes the signal from the amplifier to generate an image signal, and performs predetermined electrons on the first or second substrate 10 or 11. Output to parts.

[第2の実施の形態]
図4Aおよび図4Bは、本発明の第2の実施の形態に係る第1の光モジュールの第1の基板への実装方法を示す要部断面図である。
[Second Embodiment]
4A and 4B are cross-sectional views illustrating the main part of the method for mounting the first optical module on the first substrate according to the second embodiment of the present invention.

第1の実施の形態では、アレイ120,121側および光路変換面133A,133B側を同一の光学樹脂14によって封止したが、本実施の形態では、アレイ120,121側を光学樹脂14によって封止し、光路変換面133A,133B側に透光性を有する透明樹脂15を配置したものであり、他は第1の実施の形態と同様に構成されている。   In the first embodiment, the arrays 120 and 121 and the optical path conversion surfaces 133A and 133B are sealed with the same optical resin 14. However, in this embodiment, the arrays 120 and 121 are sealed with the optical resin 14. The transparent resin 15 having translucency is arranged on the optical path conversion surfaces 133A and 133B side, and the others are configured in the same manner as in the first embodiment.

透明樹脂15は、第1の基板10側の光学樹脂14を硬化させるためのエネルギー線を透過する特性と光導波路13のコア131の屈折率よりも小さい、望ましくは光導波路13のクラッド132と同じ屈折率とを有する樹脂ならば、例えば、安価な熱硬化性樹脂等を用いることができる。   The transparent resin 15 has a characteristic that transmits energy rays for curing the optical resin 14 on the first substrate 10 side and a refractive index of the core 131 of the optical waveguide 13, preferably the same as the cladding 132 of the optical waveguide 13. For example, an inexpensive thermosetting resin can be used as long as the resin has a refractive index.

このように構成された第2の実施の形態において、第1の光モジュール12Aを第1の基板10Aに実装するには、まず、発光側開口10a、受光側開口10b等が形成された第1の基板10と、発光側開口11a、受光側開口11b等が形成された第2の基板11との間に光導波路13を配置したプリント基板100を用意する。   In the second embodiment configured as described above, in order to mount the first optical module 12A on the first substrate 10A, first, the first light emitting side opening 10a, the light receiving side opening 10b and the like are formed. A printed circuit board 100 in which an optical waveguide 13 is disposed between the substrate 10 and the second substrate 11 on which the light emitting side opening 11a, the light receiving side opening 11b and the like are formed is prepared.

次に、図4A(a)に示すように、透明樹脂15として、例えば、熱硬化性樹脂を第2の基板11の発光側開口11aに充填して光路変換面133Aを封止し、熱硬化性樹脂を加熱して硬化させる。   Next, as shown in FIG. 4A (a), as the transparent resin 15, for example, a thermosetting resin is filled in the light emitting side opening 11a of the second substrate 11 to seal the optical path conversion surface 133A, and thermosetting is performed. The curing resin is heated to be cured.

次に、図4A(b)に示すように、ディスペンサニードル50から未硬化状態の光学樹脂14を第1の基板10の発光側開口10aを含む領域に塗布する。   Next, as shown in FIG. 4A (b), the uncured optical resin 14 is applied from the dispenser needle 50 to the region including the light emitting side opening 10 a of the first substrate 10.

次に、図4A(c)に示すように、第1のモジュール12Aを実装し、図4B(d)に示すように、ハンダボール125によって第1のモジュール12Aを第1の基板10に電気的に接続し、紫外線光源51から第2の基板11の発光側開口11aに配置した透明樹脂15を通して第1の基板10側の光学樹脂14に紫外線を照射し、光学樹脂14を硬化させる。   Next, as shown in FIG. 4A (c), the first module 12A is mounted, and as shown in FIG. 4B (d), the first module 12A is electrically connected to the first substrate 10 by the solder balls 125. The optical resin 14 on the first substrate 10 side is irradiated with ultraviolet rays from the ultraviolet light source 51 through the transparent resin 15 disposed in the light emitting side opening 11 a of the second substrate 11 to cure the optical resin 14.

なお、以上の説明では、第1の光モジュール12Aについて説明したが、第2の光モジュール12Bの第1の基板10への実装も同様に行われる。   In the above description, the first optical module 12A has been described. However, the second optical module 12B is mounted on the first substrate 10 in the same manner.

[第3の実施の形態]
図5は、本発明の第3の実施の形態に係る第1の光モジュールの第1の基板への実装方法を示す要部断面図である。
[Third Embodiment]
FIG. 5 is a cross-sectional view of a main part showing a method for mounting the first optical module on the first substrate according to the third embodiment of the present invention.

本実施の形態は、第1の実施の形態と同様の構成を有するが、光学樹脂14の充填方法が以下に説明するように第1の実施の形態とは異なる。   This embodiment has the same configuration as that of the first embodiment, but the filling method of the optical resin 14 is different from that of the first embodiment as described below.

第1の実施の形態と同様に、発光側開口10a、受光側開口10b等が形成された第1の基板10と、発光側開口11a、受光側開口11b等が形成された第2の基板11との間に光導波路13を配置したプリント基板100を用意する。   Similar to the first embodiment, the first substrate 10 on which the light emitting side opening 10a, the light receiving side opening 10b, etc. are formed, and the second substrate 11 on which the light emitting side opening 11a, the light receiving side opening 11b, etc. are formed. A printed circuit board 100 in which the optical waveguide 13 is disposed between the two is prepared.

次に、図5(a)に示すように、ディスペンサニードル50から未硬化状態の光学樹脂14を第2の基板11の発光側開口11aを介して第1の基板10の発光側開口10aに供給する。このとき、未硬化状態の光学樹脂14は、光路変換面133A近傍の光導波路13の側面と発光側開口10a,11aとの間に設けられた僅かに隙間(図3A(a)参照)を通して第1の基板10の発光側開口10a側に供給される。 Next, as shown in FIG. 5A, the uncured optical resin 14 is supplied from the dispenser needle 50 to the light emitting side opening 10 a of the first substrate 10 through the light emitting side opening 11 a of the second substrate 11. To do. At this time, the uncured optical resin 14 passes through a slight gap (see FIG. 3A (a 2 )) provided between the side surface of the optical waveguide 13 near the optical path conversion surface 133A and the light emission side openings 10a and 11a. The light is supplied to the light emitting side opening 10a side of the first substrate 10.

次に、図5(b)に示すように、第1のモジュール12Aを実装し、図5(c)に示すように、ハンダボール125によって第1のモジュール12Aを第1の基板10に電気的に接続し、紫外線光源51から第2の基板11の発光側開口11aを通して光学樹脂14に紫外線を照射し、光学樹脂14を硬化させる。   Next, as shown in FIG. 5B, the first module 12A is mounted, and as shown in FIG. 5C, the first module 12A is electrically connected to the first substrate 10 by the solder balls 125. The optical resin 14 is irradiated with ultraviolet rays from the ultraviolet light source 51 through the light emitting side opening 11a of the second substrate 11 to cure the optical resin 14.

なお、以上の説明では、第1の光モジュール12Aについて説明したが、第2の光モジュール12Bの第1の基板10への実装も同様に行われる。   In the above description, the first optical module 12A has been described. However, the second optical module 12B is mounted on the first substrate 10 in the same manner.

なお、本発明は、上記した実施の形態に限定されず、本発明の趣旨を逸脱しない範囲内で種々の変形が可能である。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

図1は、本発明の第1の実施の形態に係る光電子回路基板の概略の構成を示し、(a)は、斜視図、(b)は、(a)のA―A線断面図、(c)は、(a)のB―B線断面図である。1A and 1B show a schematic configuration of an optoelectronic circuit board according to a first embodiment of the present invention, in which FIG. 1A is a perspective view, FIG. 1B is a cross-sectional view along line AA in FIG. c) is a sectional view taken along line BB in FIG. 図2は、図1(a)のC−C線断面図である。FIG. 2 is a cross-sectional view taken along the line CC of FIG. 図3Aは、本発明の第1の実施の形態に係る第1の光モジュールの第1の基板への実装方法を示し、(a)は、要部断面図、(a)は、(a)に対応する平面図である。FIG. 3A shows a method of mounting the first optical module according to the first embodiment of the present invention on the first substrate, (a 1 ) is a cross-sectional view of the main part, and (a 2 ) is ( it is a plan view corresponding to a 1). 図3B(b)、(c)は、本発明の第1の実施の形態に係る第1の光モジュールの第1の基板への実装方法を示す要部断面図である。FIGS. 3B (b) and 3 (c) are cross-sectional views showing the main part of the method for mounting the first optical module on the first substrate according to the first embodiment of the present invention. 図3C(d)〜(f)は、本発明の第1の実施の形態に係る第1の光モジュールの第1の基板への実装方法を示す要部断面図である。3C (d) to 3 (f) are cross-sectional views illustrating the main part of the method for mounting the first optical module on the first substrate according to the first embodiment of the present invention. 図4A(a)〜(c)は、本発明の第2の実施の形態に係る第1の光モジュールの第1の基板への実装方法を示す要部断面図である。4A (a) to 4 (c) are cross-sectional views illustrating the main part of the mounting method of the first optical module according to the second embodiment of the present invention on the first substrate. 図4B(d)は、本発明の第2の実施の形態に係る第1の光モジュールの第1の基板への実装方法を示す要部断面図である。FIG. 4B (d) is a cross-sectional view illustrating the main part of the mounting method of the first optical module according to the second embodiment of the present invention on the first substrate. 図5(a)〜(c)は、本発明の第3の実施の形態に係る第1の光モジュールの第1の基板への実装方法を示す要部断面図である。FIGS. 5A to 5C are cross-sectional views illustrating the main part of the method for mounting the first optical module according to the third embodiment of the present invention on the first substrate.

符号の説明Explanation of symbols

1…光電子回路基板、2…光信号、10…第1の基板、10a…発光側開口、10b…受光側開口、11…第2の基板、11a…発光側開口、11b…受光側開口、12A…第1の光モジュール、12B…第2の光モジュール、13…光導波路、14…光学樹脂、15…透明樹脂、100…プリント基板、110…端子、120…発光素子アレイ、120a…発光素子、120b…光出力面、121…受光素子アレイ、121a…受光素子、121b…光入力面、122…ワイヤ、123…パッド、124…端子、125…ハンダボール、126…ワイヤ、127A…制御部、127B…制御部、129…中継基板、129a…取付面、131…コア、132…クラッド、133A…光路変換面、133B…光路変換面、200…封止部材 DESCRIPTION OF SYMBOLS 1 ... Optoelectronic circuit board, 2 ... Optical signal, 10 ... 1st board | substrate, 10a ... Light emission side opening, 10b ... Light reception side opening, 11 ... 2nd board | substrate, 11a ... Light emission side opening, 11b ... Light reception side opening, 12A DESCRIPTION OF SYMBOLS 1st optical module, 12B ... 2nd optical module, 13 ... Optical waveguide, 14 ... Optical resin, 15 ... Transparent resin, 100 ... Printed circuit board, 110 ... Terminal, 120 ... Light emitting element array, 120a ... Light emitting element, 120b ... light output surface, 121 ... light receiving element array, 121a ... light receiving element, 121b ... light input surface, 122 ... wire, 123 ... pad, 124 ... terminal, 125 ... solder ball, 126 ... wire, 127A ... control unit, 127B ... Control part, 129 ... Relay substrate, 129a ... Mounting surface, 131 ... Core, 132 ... Cladding, 133A ... Optical path conversion surface, 133B ... Optical path conversion surface, 200 ... Sealing member

Claims (5)

対向する第1および第2の面を貫通する貫通穴を有し、前記貫通穴に位置する光路変換面を有する光導波路が埋め込まれたプリント基板と、光信号を送信または受信する光学面と反対側に実装面を有する面型光素子の前記実装面が取り付けられる取付面を有する中継基板とを準備する第1の工程と、
記プリント基板の前記第1の面側の前記貫通穴を含む領域に、前記光信号の波長を透過する特性を有し、エネルギー線が照射されることにより硬化する光学樹脂を充填する第2の工程と、
前記光素子が前記光路変換面と光結合するように前記面型光素子が実装された前記中継基板の前記取付面を前記プリント基板の前記第1の面に電気的に接続する第3の工程と、
前記エネルギー線を前記プリント基板の前記第2の面側から前記貫通穴を介して照射して前記第1の面側の前記光学樹脂を硬化させる第4の工程と
前記プリント基板の前記第2の面側の前記貫通穴に、前記光学樹脂、又は透光性を有する透明樹脂を充填する第5の工程と、
前記第2の面側の前記光学樹脂を硬化させる、又は前記透明樹脂を硬化させる第6の工程とを含む光電子回路基板の製造方法。
A printed circuit board having a through hole penetrating the opposing first and second surfaces and having an optical waveguide having an optical path conversion surface located in the through hole, and opposite to an optical surface for transmitting or receiving an optical signal A first step of preparing a relay substrate having a mounting surface to which the mounting surface of the surface optical element having a mounting surface on the side is attached;
The area including the through hole of the first surface side of the front Symbol PCB has a characteristic of transmitting the wavelength of the optical signal, a second for filling the optical resin energy ray is cured by being irradiated And the process of
A third step of electrically connecting the mounting surface of the relay substrate on which the surface optical element is mounted to the first surface of the printed circuit board so that the optical element is optically coupled to the optical path conversion surface. When,
A fourth step of curing the optical resin on the first surface side by irradiating the energy beam from the second surface side of the printed circuit board through the through hole ;
A fifth step of filling the through hole on the second surface side of the printed circuit board with the optical resin or a transparent resin having translucency;
And a sixth step of curing the optical resin on the second surface side or curing the transparent resin .
前記第2の工程、前記第3の工程、前記第4の工程、前記第5の工程、前記第6の工程の順に行なわれることを特徴とする請求項1に記載の光電子回路基板の製造方法。2. The method of manufacturing an optoelectronic circuit board according to claim 1, wherein the second process, the third process, the fourth process, the fifth process, and the sixth process are performed in this order. . 前記第5の工程、前記第6の工程、前記第2の工程、前記第3の工程、前記第4の工程の順に行なわれ、前記第5の工程では、前記第2の面側の前記貫通穴に、前記エネルギー線を透過する特性を有する前記透明樹脂を充填することを特徴とする請求項1に記載の光電子回路基板の製造方法。The fifth step, the sixth step, the second step, the third step, and the fourth step are performed in this order, and in the fifth step, the penetration on the second surface side is performed. 2. The method of manufacturing an optoelectronic circuit board according to claim 1, wherein the hole is filled with the transparent resin having a characteristic of transmitting the energy rays. 前記第2及び第5の工程、前記第3の工程、前記第4及び第6の工程の順に行なわれ、前記第5の工程では、前記第2の面側の前記貫通穴に、前記光学樹脂を充填することを特徴とする請求項1に記載の光電子回路基板の製造方法。The second and fifth steps, the third step, the fourth and sixth steps are performed in this order. In the fifth step, the optical resin is formed in the through hole on the second surface side. The method for manufacturing an optoelectronic circuit board according to claim 1, wherein: 前記第2の工程における充填は前記第1の面側から行なわれ、前記第5の工程における充填は前記第2の面側から行なわれることを特徴とする請求項2又は請求項3に記載の光電子回路基板の製造方法。The filling in the second step is performed from the first surface side, and the filling in the fifth step is performed from the second surface side. A method of manufacturing an optoelectronic circuit board.
JP2007148530A 2007-06-04 2007-06-04 Method for manufacturing optoelectronic circuit board Expired - Fee Related JP4674596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007148530A JP4674596B2 (en) 2007-06-04 2007-06-04 Method for manufacturing optoelectronic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007148530A JP4674596B2 (en) 2007-06-04 2007-06-04 Method for manufacturing optoelectronic circuit board

Publications (2)

Publication Number Publication Date
JP2008299287A JP2008299287A (en) 2008-12-11
JP4674596B2 true JP4674596B2 (en) 2011-04-20

Family

ID=40172827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007148530A Expired - Fee Related JP4674596B2 (en) 2007-06-04 2007-06-04 Method for manufacturing optoelectronic circuit board

Country Status (1)

Country Link
JP (1) JP4674596B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5313849B2 (en) 2009-11-30 2013-10-09 新光電気工業株式会社 Optical waveguide device and manufacturing method thereof
JP2012074453A (en) * 2010-09-28 2012-04-12 Sumitomo Bakelite Co Ltd Optical element mounted substrate
JP5696538B2 (en) * 2011-03-15 2015-04-08 住友ベークライト株式会社 Manufacturing method of opto-electric hybrid board
JP2013142826A (en) * 2012-01-11 2013-07-22 Hitachi Chemical Co Ltd Method for manufacturing optical waveguide
JP6048241B2 (en) * 2013-03-18 2016-12-21 富士通株式会社 Manufacturing method and manufacturing apparatus of optical transmission device, and optical transmission device
JP6882030B2 (en) * 2017-03-23 2021-06-02 京セラ株式会社 Electronic device
US10234644B1 (en) * 2017-10-20 2019-03-19 Corning Optical Communications LLC Optical-electrical printed circuit boards with integrated optical waveguide arrays and photonic assemblies using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280105A (en) * 1989-03-18 1990-11-16 Smiths Ind Plc Optical assembly
JPH11248956A (en) * 1998-03-06 1999-09-17 Brother Ind Ltd Substrate with optical waveguide and its manufacture
JP2002107560A (en) * 2000-09-29 2002-04-10 Dainippon Printing Co Ltd Mounting substrate
JP2005084203A (en) * 2003-09-05 2005-03-31 Sharp Corp Optical wiring board and manufacturing method of optical module using it
JP2006258835A (en) * 2005-03-15 2006-09-28 Sony Corp Optical waveguide module, photoelectric converter and optical waveguide member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280105A (en) * 1989-03-18 1990-11-16 Smiths Ind Plc Optical assembly
JPH11248956A (en) * 1998-03-06 1999-09-17 Brother Ind Ltd Substrate with optical waveguide and its manufacture
JP2002107560A (en) * 2000-09-29 2002-04-10 Dainippon Printing Co Ltd Mounting substrate
JP2005084203A (en) * 2003-09-05 2005-03-31 Sharp Corp Optical wiring board and manufacturing method of optical module using it
JP2006258835A (en) * 2005-03-15 2006-09-28 Sony Corp Optical waveguide module, photoelectric converter and optical waveguide member

Also Published As

Publication number Publication date
JP2008299287A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP4674596B2 (en) Method for manufacturing optoelectronic circuit board
US8417078B2 (en) Printed circuit board element including an optoelectronic component and an optical waveguide
TW200404487A (en) A light reception/emission device built-in module with optical and electrical wiring combined therein and method of making the same
JP5477723B2 (en) Photoelectric conversion module and method for manufacturing photoelectric conversion module
JP2007258667A (en) Photoelectric composite substrate, and electronic equipment
US20130177277A1 (en) Optical waveguide, method for producing optical waveguide, optical waveguide module, method for producing optical waveguide module, and electronic apparatus
US20090010591A1 (en) Photoelectric circuit board
JP2011113039A (en) Optical waveguide device and method of manufacturing the same
JP5130731B2 (en) OPTICAL MODULE, OPTICAL TRANSMISSION DEVICE, AND OPTICAL MODULE MANUFACTURING METHOD
JP4845333B2 (en) Photoelectric conversion element package, manufacturing method thereof, and optical connector
JP4227471B2 (en) Method for manufacturing photoelectric mixed wiring module with built-in light receiving / emitting element
JP2008250007A (en) Optoelectronic circuit board
WO2006115248A1 (en) Optical coupling structure, substrate with built-in optical transmission function and method for manufacturing such substrate
JP2009003272A (en) Optoelectronic circuit board
JP2013041020A (en) Connection method and connection device of optical fiber
JP4915303B2 (en) Optical waveguide manufacturing method and optical module manufacturing method
JP4337918B2 (en) Optoelectronic circuit board
JP4893333B2 (en) Manufacturing method of optical module
KR101246137B1 (en) Light emitting device and optical coupling module
JP2009058747A (en) Optoelectronic circuit board and inspecting device of the same
JP2013057720A (en) Optical module
JP2008294226A (en) Optoelectronic circuit substrate
JP2009014858A (en) Optoelectronic circuit substrate and inspection apparatus of the same
JP2009003265A (en) Inspection method for optoelectronic circuit board, optical module and optoelectronic circuit board
JP2010152075A (en) Optical transmission apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees