JP3257776B2 - Optical module mounting structure - Google Patents

Optical module mounting structure

Info

Publication number
JP3257776B2
JP3257776B2 JP1304599A JP1304599A JP3257776B2 JP 3257776 B2 JP3257776 B2 JP 3257776B2 JP 1304599 A JP1304599 A JP 1304599A JP 1304599 A JP1304599 A JP 1304599A JP 3257776 B2 JP3257776 B2 JP 3257776B2
Authority
JP
Japan
Prior art keywords
optical
film
wiring
optical device
mounting structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1304599A
Other languages
Japanese (ja)
Other versions
JP2000214351A (en
Inventor
秀行 高原
秀起 恒次
信建 小勝負
鈴子 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1304599A priority Critical patent/JP3257776B2/en
Publication of JP2000214351A publication Critical patent/JP2000214351A/en
Application granted granted Critical
Publication of JP3257776B2 publication Critical patent/JP3257776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光情報通信装置等
に使用される光モジュールの実装構造に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mounting structure of an optical module used for an optical information communication device or the like.

【0002】[0002]

【従来の技術】高速大容量な情報通信装置や、多数のプ
ロセッサ間を並列処理する超並列コンピュータの開発に
向けて、装置内を高速高密度で通信する並列光インタコ
ネクションモジュールの開発が盛んに行われている。こ
うした並列光インタコネクションモジュールでは、数百
m以下の比較的短距離を伝送すること、複雑な光結合を
除外してモジュールコストを低下させること、のために
ファイバインタフェースとしてマルチモードが採用され
ている。このため、VCSEL等の光デバイスと光ファ
イバとの間を接続する光配線には、マルチモード形成が
容易なポリマー光導波路をフィルム化したものが用いら
れている(例えば、Y.S.Liu et.al.,
“High Density Optical Int
erconnects for Board and
Backplane Applications us
ing VCSELs and Polymer Wa
veguides”;Proc.47th ECTC
pp.391−398(1997))。この光モジュー
ルは、光デバイスとフィルム光配線との間が固定されて
いないために、例えば室温で位置あわせしても光モジュ
ールの動作時や信頼性試験時に温度負荷されると、フィ
ルム光配線を構成するポリマーと基板を構成するセラミ
ックスの間の熱膨張率の差(約10倍ポリマーの方が
大)のために、フィルム光配線が位置ずれを生じて光結
合損失が増大し、光モジュール特性を劣化させる恐れが
ある。そこで、柔軟性を有するフィルム光配線と光デバ
イスをはんだ等から成るバンプで固定した後に、基板上
に光デバイスをダイボンディングする構造が提案されて
いる(特願平10−157328号)。この構造を図5
に示す。図中、10はバンプ、11はフィルム光配線、
12は光導波路コア、13はミラー面、14は光デバイ
ス、15は光コネクタ、16は光ファイバ、17は基
板、18は光デバイス14の活性部、19はダイボンデ
ィング部である。本構造ではフィルム光配線11と光デ
バイス14とがはんだ等から成るバンプ10により固定
され、かつフィルム光配線11に柔軟性を有するものを
用いているため、フィルム光配線11が熱膨張しても、
フィルム光配線11が座屈することにより、光デバイス
14とフィルム光配線11との固定状態は変化しないの
で、位置ずれを抑制することができる。
2. Description of the Related Art For the development of high-speed and large-capacity information communication devices and massively parallel computers that perform parallel processing among a large number of processors, the development of parallel optical interconnection modules for high-speed and high-density communication in the devices has been active. Is being done. In such a parallel optical interconnection module, a multi-mode is adopted as a fiber interface for transmitting a relatively short distance of several hundred meters or less and reducing module cost by eliminating complicated optical coupling. . For this reason, a film formed from a polymer optical waveguide that can easily form a multimode is used as an optical wiring for connecting an optical device such as a VCSEL to an optical fiber (for example, YS Liu et. .Al.,
“High Density Optical Int
erconnects for Board and and
Backplane Applications
ing VCSELs and Polymer Wa
veguides "; Proc. 47th ECTC
pp. 391-398 (1997)). Since the optical module is not fixed between the optical device and the film optical wiring, even if the optical module is positioned at room temperature and is subjected to a temperature load during the operation of the optical module or during a reliability test, the film optical wiring is not fixed. Due to the difference in the coefficient of thermal expansion between the constituting polymer and the ceramic constituting the substrate (about 10 times the polymer is larger), the film optical wiring is displaced and the optical coupling loss increases, and the optical module characteristics May deteriorate. Therefore, there has been proposed a structure in which a flexible film optical wiring and an optical device are fixed with bumps made of solder or the like, and then the optical device is die-bonded onto a substrate (Japanese Patent Application No. 10-157328). This structure is shown in FIG.
Shown in In the figure, 10 is a bump, 11 is a film optical wiring,
12 is an optical waveguide core, 13 is a mirror surface, 14 is an optical device, 15 is an optical connector, 16 is an optical fiber, 17 is a substrate, 18 is an active part of the optical device 14, and 19 is a die bonding part. In this structure, the film optical wiring 11 and the optical device 14 are fixed by the bumps 10 made of solder or the like, and a flexible film optical wiring 11 is used. ,
When the film optical wiring 11 buckles, the fixed state between the optical device 14 and the film optical wiring 11 does not change, so that the displacement can be suppressed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、図5に
示した光モジュール実装構造では、フィルム光配線11
と光デバイス14との間が空隙になっており、光デバイ
ス14の活性部18が埃や湿気等にさらされる危険があ
ること、またバンプ数が少ない場合にはフィルム光配線
11と光デバイス14間の接続強度が不十分になる可能
性があるといった問題がある。
However, in the optical module mounting structure shown in FIG.
There is a gap between the optical device 14 and the optical device 14, and there is a danger that the active portion 18 of the optical device 14 is exposed to dust, moisture, or the like. There is a problem that the connection strength between them may be insufficient.

【0004】本発明は上記の事情に鑑みてなされたもの
で、フィルム光配線と光デバイスの間の空隙が接着剤で
充填されていることにより、光デバイスの活性部が埃や
湿気にさらされることがなく、また、フィルム光配線と
光デバイス間の接続強度が増加するため、バンプ数が少
ない場合でも信頼性が向上する光モジュール実装構造を
提供することを目的とする。
The present invention has been made in view of the above circumstances, and the active portion of an optical device is exposed to dust and moisture by filling the gap between the film optical wiring and the optical device with an adhesive. In addition, an object of the present invention is to provide an optical module mounting structure in which the reliability is improved even when the number of bumps is small because the connection strength between the film optical wiring and the optical device is increased.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明の光モジュール実装構造は、光信号が伝搬する
光導波路コアが、該光導波路コアよりも小さい屈折率か
ら成る光導波路クラッド層内に形成されており、さらに
該光導波路コアを伝搬する該光信号の伝搬方向に対し、
該光信号が全反射する角度あるいは45度の角度をなし
て斜め面が任意の位置に形成されているフィルム光配線
と、該斜め面で反射されたもしくは反射する該光信号を
受けるもしくは送る光デバイスとを少なくとも持つ光モ
ジュール実装構造において、該光デバイスは、該フィル
ム光配線の該斜め面で反射された該光導波路コアの伝搬
光を受光する位置もしくは該光デバイスから出射した光
信号を該斜め面で反射して、該光導波路コアに伝搬させ
る位置に、1つ以上のバンプを用いて該フィルム光配線
面に固定され、かつ該バンプを介してつくられる該光デ
バイスと該フィルム光配線の間の空隙は、屈折率が1
から該光導波路クラッド層の屈折率までの間の所定値を
持つ接着剤で充填されていることを特徴とするものであ
る。
In order to achieve the above object, an optical module mounting structure according to the present invention is characterized in that an optical waveguide core through which an optical signal propagates has an optical waveguide cladding layer having a smaller refractive index than the optical waveguide core. Are formed in the optical waveguide core, and further in the propagation direction of the optical signal propagating through the optical waveguide core,
A film optical wiring having an oblique surface formed at an arbitrary position at an angle at which the optical signal is totally reflected or at an angle of 45 degrees, and light receiving or transmitting the optical signal reflected or reflected at the oblique surface In the optical module mounting structure having at least a device, the optical device is configured to receive an optical signal emitted from the optical device at a position for receiving the propagation light of the optical waveguide core reflected on the oblique surface of the film optical wiring or the optical signal. The optical device and the film optical wiring, which are fixed to the film optical wiring surface using one or more bumps at positions where the light is reflected by the oblique surface and propagated to the optical waveguide core, and are formed via the bumps. gap between a refractive index 1
Characterized in that it is filled with an adhesive having a predetermined value ranging from the refractive index of the optical waveguide cladding layer to the refractive index of the optical waveguide cladding layer.

【0006】また本発明は、上記光モジュール実装構造
において、該バンプを介して該フィルム光配線と該光デ
バイスとの間につくられる空隙を充填する接着剤は、該
光デバイスの活性部、および該活性部と対向する該フィ
ルム光配線面のうち該活性部を投影した部分を含む空間
を囲むように、該空隙を充填していることを特徴とする
ものである。
Further, according to the present invention, in the above optical module mounting structure, the adhesive filling the void formed between the film optical wiring and the optical device via the bump is provided in an active portion of the optical device, and The gap is filled so as to surround a space including a portion where the active portion is projected on the film optical wiring surface facing the active portion.

【0007】また本発明は、上記光モジュール実装構造
において、該フィルム光配線が柔軟性を有するポリマー
で構成されていることを特徴とするものである。
Further, the present invention is characterized in that in the optical module mounting structure, the film optical wiring is made of a polymer having flexibility.

【0008】また本発明は、上記光モジュール実装構造
において、該接着剤が紫外線硬化材料から成ることを特
徴とするものである。
Further, the present invention is characterized in that in the optical module mounting structure, the adhesive is made of an ultraviolet curable material.

【0009】本発明による光モジュール実装構造を用い
れば、フィルム光配線と光デバイスの間の空隙が接着剤
で充填されているため、光デバイスの活性部が埃や湿気
にさらされることがなくなる。また、フィルム光配線と
光デバイス間の接続強度が増加するため、バンプ数が少
ない場合でも信頼性が向上する、といったメリットがあ
る。
According to the optical module mounting structure of the present invention, since the gap between the film optical wiring and the optical device is filled with the adhesive, the active portion of the optical device is not exposed to dust or moisture. Further, since the connection strength between the film optical wiring and the optical device is increased, there is an advantage that the reliability is improved even when the number of bumps is small.

【0010】[0010]

【発明の実施の形態】以下図面を参照して本発明の実施
形態例を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0011】図1は本発明の一実施形態例を示す断面
(x−z面)図であり、図2は図1のA−A′線断面
(x−y面)である。図において、10はバンプ、11
はフィルム光配線、12は光導波路コア、13はミラー
面、14は光デバイス、15は光コネクタ、16は光フ
ァイバ、17は基板、18は光デバイス14の活性部、
20は接着剤である。
FIG. 1 is a sectional view (xz plane) showing an embodiment of the present invention, and FIG. 2 is a sectional view (xy plane) taken along the line AA 'of FIG. In the figure, 10 is a bump, 11
Is a film optical wiring, 12 is an optical waveguide core, 13 is a mirror surface, 14 is an optical device, 15 is an optical connector, 16 is an optical fiber, 17 is a substrate, 18 is an active portion of the optical device 14,
20 is an adhesive.

【0012】図1及び図2において、フィルム光配線1
1は以下のようにして形成する。例えば、図示していな
いSiウエハー上にスピンコート、キュア、反応性イオ
ンエッチングにより、例えばフッ素化ポリイミドから成
る厚さ37.5μmの下部クラッド層、50μm角の光
導波路コア12(例えば比屈折率差1.2%)、さらに
下部クラッド層と全く同様にして厚さ37.5μmの上
部クラッド層を順次形成する。次に、フッ素化ポリイミ
ド光導波路膜の表面に、例えばスパッタとエッチング等
により直径35μmのTi/Pt/Auから成る円形の
パッドを、例えば正方形の各角に位置するように120
μm間隔で4ヶ形成し、同時に、図示していない位置
に、例えば幅10μmの直線マーカを光導波路コア12
の長手方向に対して直角に形成しておく。次に、例えば
フッ酸によりSi基板から剥離してフッ素化ポリイミド
光導波路フィルムを形成し、例えば図示していない粘着
シートに固定する。次に、フッ素化ポリイミド光導波路
フィルムに対し、円形のパッドが形成されていない面か
ら、前述の直線マーカにそうようにして例えばダイシン
グすることにより45度の角度のミラー面13を形成
し、さらに光導波路コア12の端を90度にカットして
所望のサイズに切り出すことにより、フィルム光配線1
1が完成する。
In FIG. 1 and FIG.
1 is formed as follows. For example, a lower cladding layer made of, for example, fluorinated polyimide and having a thickness of 37.5 μm, a 50 μm square optical waveguide core 12 (for example, a relative refractive index difference) is formed on a Si wafer (not shown) by spin coating, curing, or reactive ion etching. 1.2%), and an upper clad layer having a thickness of 37.5 μm is formed in the same manner as the lower clad layer. Next, a circular pad made of Ti / Pt / Au having a diameter of 35 μm is formed on the surface of the fluorinated polyimide optical waveguide film by sputtering or etching, for example, so as to be positioned at each corner of a square.
Four linear markers having a width of, for example, 10 μm are formed at positions (not shown) at the same time on the optical waveguide core 12.
Is formed at right angles to the longitudinal direction. Next, the fluorinated polyimide optical waveguide film is formed by peeling off the Si substrate with, for example, hydrofluoric acid, and fixed to, for example, an adhesive sheet (not shown). Next, for the fluorinated polyimide optical waveguide film, from the surface on which the circular pad is not formed, a mirror surface 13 having a 45-degree angle is formed by, for example, dicing in the above-described straight line marker, and further, By cutting the end of the optical waveguide core 12 at 90 degrees and cutting it into a desired size, the film optical wiring 1
1 is completed.

【0013】次に、例えばAu/Snから成る直径40
μm,120μm間隔の例えば球状のはんだから成るバ
ンプ10が正方形の各角に位置するように4ヶついた光
デバイス14を、フィルム光配線11の4つの円形のパ
ッドに位置あわせした後に、バンプ10を介して光デバ
イス14とフィルム光配線11を接続する。この場合、
はんだから成るバンプ10のセルフアライメント効果に
より、光デバイス14はフィルム光配線11と1μm以
下の精度(x−y面内)で位置あわせ固定することがで
きる。
Next, a diameter 40 made of, for example, Au / Sn
After aligning four optical devices 14 having four bumps 10 made of, for example, spherical solder at intervals of μm and 120 μm at each corner of a square, to four circular pads of the film optical wiring 11, the bumps 10 are formed. The optical device 14 and the film optical wiring 11 are connected via the. in this case,
Due to the self-alignment effect of the bumps 10 made of solder, the optical device 14 can be aligned and fixed with the film optical wiring 11 with an accuracy of 1 μm or less (within the xy plane).

【0014】次に、光デバイス14の裏面を例えばAl
Nから成る基板17と例えばSn/Pbはんだによりダ
イボンディングした後に、90度カットした光導波路コ
ア12の端を、基板17に固定された光コネクタ15内
に固定し、さらに図示していない微小ノズルを介して、
屈折率が1からフィルム光配線11のクラッドの屈折率
までの間のある一定値を持ち、伝送信号の波長に対して
例えば20dB/cm以下の損失を持つ接着剤20を、
光デバイス14とフィルム光配線11の間の空隙に充填
した後に、例えば紫外線を照射して硬化させる。最後に
光コネクタ15に光ファイバ16を挿入して、図1に示
すような本発明の第1の光モジュール実装構造が完成す
る。図2は図1中のA―A′線で断面したx−y面で、
接着剤20がフィルム光配線11と光デバイス14の間
に充填されていることを示している。なお、活性部18
は接着剤20により覆われている。
Next, the back surface of the optical device 14 is
After die bonding with the substrate 17 made of N by, for example, Sn / Pb solder, the end of the optical waveguide core 12 cut at 90 degrees is fixed in the optical connector 15 fixed to the substrate 17, and a micro nozzle (not shown) Through
An adhesive 20 having a certain refractive index between 1 and the refractive index of the cladding of the film optical wiring 11 and having a loss of, for example, 20 dB / cm or less with respect to the wavelength of the transmission signal,
After filling the gap between the optical device 14 and the film optical wiring 11, it is cured by irradiating, for example, ultraviolet rays. Finally, the optical fiber 16 is inserted into the optical connector 15 to complete the first optical module mounting structure of the present invention as shown in FIG. FIG. 2 is an xy plane sectioned along the line AA 'in FIG.
This shows that the adhesive 20 is filled between the film optical wiring 11 and the optical device 14. The active part 18
Is covered with the adhesive 20.

【0015】図3は本発明の他の実施形態例を示す断面
(x−z面)図であり、図4は図3のB−B′線断面
(x−y面)である。図において、10はバンプ、11
はフィルム光配線、12は光導波路コア、13はミラー
面、14は光デバイス、15は光コネクタ、16は光フ
ァイバ、17は基板、18は光デバイス14の活性部、
20′は接着剤である。
FIG. 3 is a cross-sectional view (x-z plane) showing another embodiment of the present invention, and FIG. 4 is a cross-sectional view (xy plane) along the line BB 'in FIG. In the figure, 10 is a bump, 11
Is a film optical wiring, 12 is an optical waveguide core, 13 is a mirror surface, 14 is an optical device, 15 is an optical connector, 16 is an optical fiber, 17 is a substrate, 18 is an active portion of the optical device 14,
20 'is an adhesive.

【0016】図3及び図4において、フィルム光配線1
1は以下のようにして形成する。例えば、図示していな
いSiウエハー上にスピンコート、キュア、反応性イオ
ンエッチングにより、例えばフッ素化ポリイミドから成
る厚さ37.5μmの下部クラッド層、50μm角の光
導波路コア12(例えば比屈折率差1.2%)、さらに
下部クラッド層と全く同様にして厚さ37.5μmの上
部クラッド層を順次形成する。次に、フッ素化ポリイミ
ド光導波路膜の表面に、例えばスパッタとエッチング等
により直径35μmのTi/Pt/Auから成る円形の
パッドを、例えば正方形の各角に位置するように120
μm間隔で4ヶ形成し、同時に、図示していない位置
に、例えば幅10μmの直線マーカを光導波路コア12
の長手方向に対して直角に形成しておく。次に、例えば
フッ酸によりSi基板から剥離してフッ素化ポリイミド
光導波路フィルムを形成し、例えば図示していない粘着
シートに固定する。次に、フッ素化ポリイミド光導波路
フィルムに対し、円形のパッドが形成されていない面か
ら、前述の直線マーカにそうようにして例えばダイシン
グすることにより45度の角度のミラー面13を形成
し、さらに光導波路コア12の端を90度にカットして
所望のサイズに切り出すことにより、フィルム光配線1
1が完成する。
In FIGS. 3 and 4, the film optical wiring 1 is shown.
1 is formed as follows. For example, a lower cladding layer made of, for example, fluorinated polyimide and having a thickness of 37.5 μm, a 50 μm square optical waveguide core 12 (for example, a relative refractive index difference) is formed on a Si wafer (not shown) by spin coating, curing, or reactive ion etching. 1.2%), and an upper clad layer having a thickness of 37.5 μm is formed in the same manner as the lower clad layer. Next, a circular pad made of Ti / Pt / Au having a diameter of 35 μm is formed on the surface of the fluorinated polyimide optical waveguide film by sputtering or etching, for example, so as to be positioned at each corner of a square.
Four linear markers having a width of, for example, 10 μm are formed at positions (not shown) at the same time on the optical waveguide core 12.
Is formed at right angles to the longitudinal direction. Next, the fluorinated polyimide optical waveguide film is formed by peeling off the Si substrate with, for example, hydrofluoric acid, and fixed to, for example, an adhesive sheet (not shown). Next, for the fluorinated polyimide optical waveguide film, from the surface on which the circular pad is not formed, a mirror surface 13 having a 45-degree angle is formed by, for example, dicing in the above-described straight line marker, and further, By cutting the end of the optical waveguide core 12 at 90 degrees and cutting it into a desired size, the film optical wiring 1
1 is completed.

【0017】次に、例えばAu/Snから成る直径40
μm,120μm間隔の例えば球状のはんだから成るバ
ンプ10が正方形の各角に位置するように4ヶついた光
デバイス14を、フィルム光配線11の4つの円形のパ
ッドに位置あわせした後に、バンプ10を介して光デバ
イス14とフィルム光配線11を接続する。この場合、
はんだから成るバンプ10のセルフアライメント効果に
より、光デバイス14はフィルム光配線11と1μm以
下の精度(x−y面内)で位置あわせ固定することがで
きる。
Next, for example, a diameter 40 of Au / Sn
After aligning four optical devices 14 having four bumps 10 made of, for example, spherical solder at intervals of μm and 120 μm at each corner of a square, to four circular pads of the film optical wiring 11, the bumps 10 are formed. The optical device 14 and the film optical wiring 11 are connected via the. in this case,
Due to the self-alignment effect of the bumps 10 made of solder, the optical device 14 can be aligned and fixed with the film optical wiring 11 with an accuracy of 1 μm or less (within the xy plane).

【0018】次に、光デバイス14の裏面を例えばAl
Nから成る基板17と例えばSn/Pbはんだによりダ
イボンディングした後に、90度カットした光導波路コ
ア12の端を、基板17に固定された光コネクタ15内
に固定し、さらに図示していない微小ノズルを介して、
屈折率が1からフィルム光配線11のクラッドの屈折率
までの間のある一定値を持ち、伝送信号の波長に対して
例えば20dB/cm以下の損失を持つ接着剤20′
を、光デバイス14上の周辺をなぞるようにしながらフ
ィルム光配線11と光デバイス14との間の空隙に充填
した後に、例えば紫外線を照射して硬化させる。この
時、接着剤20′の粘性は高い方が望ましい。最後に光
コネクタ15に光ファイバ16を挿入して、図3に示す
ような本発明の他の実施形態例の光モジュール実装構造
が完成する。図4は図3中のB−B′線断面(x−y
面)で、光デバイス14の活性部18の周辺を除いて接
着剤20′がフィルム光配線11と光デバイス14の間
に充填されていることを示している。
Next, the back surface of the optical device 14 is
After die bonding with the substrate 17 made of N by, for example, Sn / Pb solder, the end of the optical waveguide core 12 cut at 90 degrees is fixed in the optical connector 15 fixed to the substrate 17, and a micro nozzle (not shown) Through
Adhesive 20 'having a certain refractive index between 1 and the refractive index of the cladding of film optical wiring 11 and having a loss of, for example, 20 dB / cm or less with respect to the wavelength of the transmission signal.
Is filled in the gap between the film optical wiring 11 and the optical device 14 while tracing the periphery on the optical device 14, and then cured by irradiating, for example, ultraviolet rays. At this time, it is desirable that the viscosity of the adhesive 20 'is higher. Finally, the optical fiber 16 is inserted into the optical connector 15 to complete the optical module mounting structure according to another embodiment of the present invention as shown in FIG. FIG. 4 is a sectional view taken along the line BB ′ in FIG.
(Face) shows that the adhesive 20 ′ is filled between the film optical wiring 11 and the optical device 14 except for the periphery of the active portion 18 of the optical device 14.

【0019】また同図には示していないが、光デバイス
14に対向するフィルム光配線11面の接着状態も同様
であり、光デバイス14の活性部18を投影するフィル
ム光配線11面を除いて接着剤20′が充填されてい
る。こうした構造にすることにより、光デバイス14と
して例えばVCSELを用いた場合、活性部18と活性
部18を投影するフィルム光配線11面の間は空隙が保
持され、従ってVCSELの活性部18における反射率
が接着剤20′の屈折率により変化することがない。
Although not shown in the figure, the bonding state of the film optical wiring 11 surface facing the optical device 14 is the same, except for the film optical wiring 11 surface on which the active portion 18 of the optical device 14 is projected. The adhesive 20 'is filled. With such a structure, when, for example, a VCSEL is used as the optical device 14, a gap is maintained between the active portion 18 and the surface of the film optical wiring 11 that projects the active portion 18, and therefore, the reflectance in the active portion 18 of the VCSEL is maintained. Does not change due to the refractive index of the adhesive 20 '.

【0020】なお、上記各実施形態例において、ミラー
面は45度の角度に限らず、光信号が全反射する角度で
あってもよい。またフィルム光配線11の材料はフッ素
化ポリイミドに限るものでなく、シリコーン樹脂、エポ
キシ樹脂等の柔軟性を有するポリマー材料が使用でき
る。また接着剤の硬化は紫外線に限らず熱硬化等であっ
ても良く、伝送信号の波長に対する損失は上述の20d
B/cm以下に限らないが小さい方が望ましい。なお、
図3及び図4に示した他の実施形態例では、接着剤の屈
折率および損失は特に規定するものではない。さらに、
接着剤はフィルム光配線と光デバイスの間の空隙に加え
て、光デバイスを包むように、すなわち光デバイスの厚
さ方向の周辺を囲んでいてもよく、さらには基板面にま
で接していても良い。また、フィルム光配線が光コネク
タに接続される部分は片端に限ることなく、例えばフィ
ルム光配線の各辺が光コネクタにより固定されて、フィ
ルム光配線面内の任意の位置に、ミラー面やはんだバン
プで固定された光デバイスが配置され、フィルム光配線
と光デバイスの間の空隙が接着剤で充填されていても良
い。また光コネクタを介してフィルム光配線と接続され
る媒体は光ファイバに限ることなく、別のフィルム光配
線であっても良い。またフィルム光配線の作成方法は上
記に限ることなく、例えばキャスティングにより作成さ
れたポリマーシートに紫外線等を照射して光導波路コア
を形成しても良い。また、光導波路はマルチモードに限
ることなくシングルモードであっても良い。さらに、バ
ンプ材料はAu/Snはんだに限らずSn/Pbはんだ
やSn/Agはんだ、はんだコートした例えばポリスチ
レン等から成るポリマービーズ、Auバンプ等であって
も良く、また形状も球に限らず楕円形または角形状であ
っても、本発明を逸脱するものではないことは言うまで
もない。
In each of the above embodiments, the mirror surface is not limited to an angle of 45 degrees, but may be an angle at which an optical signal is totally reflected. The material of the film optical wiring 11 is not limited to fluorinated polyimide, but a flexible polymer material such as silicone resin or epoxy resin can be used. The curing of the adhesive is not limited to ultraviolet rays, and may be thermal curing or the like.
Although not limited to B / cm or less, a smaller one is desirable. In addition,
In the other embodiments shown in FIGS. 3 and 4, the refractive index and the loss of the adhesive are not particularly specified. further,
The adhesive, in addition to the gap between the film optical wiring and the optical device, may surround the optical device, that is, surround the periphery in the thickness direction of the optical device, and may even contact the substrate surface. . Also, the portion where the film optical wiring is connected to the optical connector is not limited to one end. For example, each side of the film optical wiring is fixed by the optical connector, and the mirror surface or the solder is placed at an arbitrary position in the film optical wiring surface. An optical device fixed by a bump may be arranged, and a gap between the film optical wiring and the optical device may be filled with an adhesive. The medium connected to the film optical wiring via the optical connector is not limited to an optical fiber, but may be another film optical wiring. The method of forming the film optical wiring is not limited to the above method. For example, the polymer sheet formed by casting may be irradiated with ultraviolet rays or the like to form the optical waveguide core. Further, the optical waveguide is not limited to the multimode, but may be a single mode. Further, the bump material is not limited to Au / Sn solder, but may be Sn / Pb solder, Sn / Ag solder, polymer beads made of, for example, polystyrene, or Au bumps, and the shape of the bump is not limited to a sphere but may be an ellipse. It goes without saying that a shape or a square shape does not depart from the invention.

【0021】[0021]

【発明の効果】以上詳細に説明したように、本発明の光
モジュール実装構造を用いれば、フィルム光配線と光デ
バイスの間の空隙が接着剤で充填されているため、光デ
バイスの活性部が埃や湿気にさらされることがなくな
る。また、フィルム光配線と光デバイス間の接続強度が
増加するため、バンプ数が少ない場合でも信頼性が向上
する。しかも、接着剤は屈折率が1からフィルム光配線
のクラッドの屈折率までの間のある一定値を取るため、
光デバイスとフィルム光配線間での反射が抑制できる。
さらに、光デバイスの活性部と活性部を投影するフィル
ム光配線面がつくる空間を除いて接着剤を充填した構造
では、光デバイスとして例えばVCSELを用いた場
合、活性部における反射率が接着剤の屈折率により変化
することはないので、接着剤に合わせて活性部の膜構成
を変える必要はない、といったメリットもある。
As described above in detail, when the optical module mounting structure of the present invention is used, the gap between the film optical wiring and the optical device is filled with the adhesive, so that the active portion of the optical device can be formed. No exposure to dust or moisture. Further, since the connection strength between the film optical wiring and the optical device increases, the reliability improves even when the number of bumps is small. Moreover, since the adhesive takes a certain value between 1 and the refractive index of the cladding of the film optical wiring,
The reflection between the optical device and the film optical wiring can be suppressed.
Further, in a structure in which the adhesive is filled except for the space created by the active portion of the optical device and the film optical wiring surface that projects the active portion, when a VCSEL is used as the optical device, for example, the reflectance in the active portion is reduced by the adhesive. Since there is no change due to the refractive index, there is also an advantage that it is not necessary to change the film configuration of the active portion according to the adhesive.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態例に係る光モジュール実装
構造を示す断面(x−z面)図である。
FIG. 1 is a sectional view (xz plane) showing an optical module mounting structure according to an embodiment of the present invention.

【図2】図1のA−A′線断面(x−y面)図である。FIG. 2 is a sectional view (xy plane) taken along line AA ′ of FIG.

【図3】本発明の他の実施形態例に係る光モジュール実
装構造を示す断面(x−z面)図である。
FIG. 3 is a sectional view (xz plane) showing an optical module mounting structure according to another embodiment of the present invention.

【図4】図3のB−B′線断面(x−y面)図である。FIG. 4 is a sectional view (xy plane) taken along line BB ′ of FIG. 3;

【図5】従来の光モジュール実装構造を説明するための
断面図である。
FIG. 5 is a cross-sectional view illustrating a conventional optical module mounting structure.

【符号の説明】[Explanation of symbols]

10 バンプ 11 フィルム光配線 12 光導波路コア 13 ミラー面 14 光デバイス 15 光コネクタ 16 光ファイバ 17 基板 18 光デバイスの活性部 19 ダイボンディング部 20 接着剤 20′ 接着剤 DESCRIPTION OF SYMBOLS 10 Bump 11 Film optical wiring 12 Optical waveguide core 13 Mirror surface 14 Optical device 15 Optical connector 16 Optical fiber 17 Substrate 18 Active part of optical device 19 Die bonding part 20 Adhesive 20 'Adhesive

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石沢 鈴子 東京都新宿区西新宿三丁目19番2号 日 本電信電話株式会社内 (56)参考文献 特開 平6−222230(JP,A) 特開 平3−290606(JP,A) 特開 平8−21930(JP,A) 特開 平3−265804(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 6/42 G02B 6/12 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Suzuko Ishizawa 3-19-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo Nippon Telegraph and Telephone Corporation (56) References JP-A-6-222230 (JP, A) JP-A-3-290606 (JP, A) JP-A-8-21930 (JP, A) JP-A-3-265804 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02B 6 / 42 G02B 6/12

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光信号が伝搬する光導波路コアが、該光
導波路コアよりも小さい屈折率から成る光導波路クラッ
ド層内に形成されており、さらに該光導波路コアを伝搬
する該光信号の伝搬方向に対し、該光信号が全反射する
角度あるいは45度の角度をなして斜め面が任意の位置
に形成されているフィルム光配線と、該斜め面で反射さ
れたもしくは反射する該光信号を受けるもしくは送る光
デバイスとを少なくとも持つ光モジュール実装構造にお
いて、 該光デバイスは、該フィルム光配線の該斜め面で反射さ
れた該光導波路コアの伝搬光を受光する位置もしくは該
光デバイスから出射した光信号を該斜め面で反射して、
該光導波路コアに伝搬させる位置に、1つ以上のバンプ
を用いて該フィルム光配線面に固定され、かつ該バンプ
を介してつくられる該光デバイスと該フィルム光配線
の間の空隙は、屈折率が1から該光導波路クラッド層の
屈折率までの間の所定値を持つ接着剤で充填されている
ことを特徴とする光モジュール実装構造。
An optical waveguide core through which an optical signal propagates is formed in an optical waveguide cladding layer having a smaller refractive index than the optical waveguide core, and further, the optical signal propagates through the optical waveguide core. A film optical wiring in which an oblique surface is formed at an arbitrary position at an angle at which the optical signal is totally reflected or at an angle of 45 degrees with respect to the direction, and the optical signal reflected or reflected by the oblique surface is An optical module mounting structure having at least a receiving or transmitting optical device, wherein the optical device emits light from the optical device at a position for receiving the propagation light of the optical waveguide core reflected on the oblique surface of the film optical wiring or from the optical device. The optical signal is reflected by the oblique surface,
A position between the optical device and the film optical wiring, which is fixed to the film optical wiring surface using one or more bumps at a position where the light propagates to the optical waveguide core, and is formed via the bumps. Wherein the gap is filled with an adhesive having a predetermined value between 1 and the refractive index of the cladding layer of the optical waveguide.
【請求項2】 請求項1記載の光モジュール実装構造に
おいて、該バンプを介して該フィルム光配線と該光デバ
イスとの間につくられる空隙を充填する接着剤は、該光
デバイスの活性部、および該活性部と対向する該フィル
ム光配線面のうち該活性部を投影した部分を含む空間を
囲むように、該空隙を充填していることを特徴とする光
モジュール実装構造。
2. The optical module mounting structure according to claim 1, wherein the adhesive filling the gap formed between the film optical wiring and the optical device via the bump comprises: an active portion of the optical device; And an optical module mounting structure, wherein the space is filled so as to surround a space including a portion where the active portion is projected on the film optical wiring surface facing the active portion.
【請求項3】 請求項1又は2記載の光モジュール実装
構造において、該フィルム光配線が柔軟性を有するポリ
マーで構成されていることを特徴とする光モジュール実
装構造。
3. The optical module mounting structure according to claim 1, wherein said film optical wiring is made of a polymer having flexibility.
【請求項4】 請求項1、2又は3記載の光モジュール
実装構造において、該接着剤が紫外線硬化材料から成る
ことを特徴とする光モジュール実装構造。
4. The optical module mounting structure according to claim 1, wherein the adhesive is made of an ultraviolet curing material.
JP1304599A 1999-01-21 1999-01-21 Optical module mounting structure Expired - Fee Related JP3257776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1304599A JP3257776B2 (en) 1999-01-21 1999-01-21 Optical module mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1304599A JP3257776B2 (en) 1999-01-21 1999-01-21 Optical module mounting structure

Publications (2)

Publication Number Publication Date
JP2000214351A JP2000214351A (en) 2000-08-04
JP3257776B2 true JP3257776B2 (en) 2002-02-18

Family

ID=11822160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1304599A Expired - Fee Related JP3257776B2 (en) 1999-01-21 1999-01-21 Optical module mounting structure

Country Status (1)

Country Link
JP (1) JP3257776B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090842A1 (en) 2008-01-15 2009-07-23 Omron Corporation Optical transmission module, electronic device and method for manufacturing optical transmission module

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1491927B1 (en) 2002-04-01 2013-02-27 Ibiden Co., Ltd. Ic chip mounting substrate, and ic chip mounting substrate manufacturing method
JP3800135B2 (en) 2002-06-18 2006-07-26 セイコーエプソン株式会社 OPTICAL COMMUNICATION MODULE, OPTICAL COMMUNICATION MODULE MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP3920201B2 (en) * 2002-11-27 2007-05-30 日本電信電話株式会社 Subcarrier and optical module using the same
JP2004191564A (en) * 2002-12-10 2004-07-08 Mitsubishi Electric Corp Optical path converting connector
JP4289053B2 (en) * 2003-07-17 2009-07-01 日立電線株式会社 Parallel optical transceiver
JPWO2005052666A1 (en) 2003-11-27 2008-03-06 イビデン株式会社 IC chip mounting substrate, motherboard substrate, optical communication device, IC chip mounting substrate manufacturing method, and motherboard substrate manufacturing method
JP2006030294A (en) * 2004-07-12 2006-02-02 Nitto Denko Corp Method for manufacturing flexible optical waveguide
JP4631671B2 (en) * 2005-11-29 2011-02-16 オムロン株式会社 Optical cable module and electronic device including optical cable module
US8045829B2 (en) 2005-12-02 2011-10-25 Kyocera Corporation Optical waveguide member, optical wiring board, optical wiring module and method for manufacturing optical waveguide member and optical wiring board
JP4668049B2 (en) * 2005-12-02 2011-04-13 京セラ株式会社 Optical wiring module
US8052337B2 (en) * 2005-12-28 2011-11-08 Omron Corporation Optical module
KR100999685B1 (en) 2006-04-07 2010-12-08 오므론 가부시키가이샤 Optical cable module
JP4367430B2 (en) 2006-04-14 2009-11-18 オムロン株式会社 OPTICAL MODULE, OPTICAL MODULE MANUFACTURING METHOD, OPTICAL TRANSMISSION MODULE, AND ELECTRONIC DEVICE
JP2007310014A (en) 2006-05-16 2007-11-29 Shinko Electric Ind Co Ltd Method for manufacturing wiring board and device for manufacturing wiring board
JP5130731B2 (en) * 2007-02-05 2013-01-30 富士ゼロックス株式会社 OPTICAL MODULE, OPTICAL TRANSMISSION DEVICE, AND OPTICAL MODULE MANUFACTURING METHOD
JP5077342B2 (en) 2007-03-16 2012-11-21 オムロン株式会社 OPTICAL TRANSMISSION PACKAGE, OPTICAL TRANSMISSION MODULE, ELECTRONIC DEVICE, AND OPTICAL TRANSMISSION MODULE MANUFACTURING METHOD
WO2008114717A1 (en) 2007-03-16 2008-09-25 Omron Corporation Optical waveguide, optical waveguide module, and electronic apparatus
JP2009258341A (en) 2008-04-16 2009-11-05 Japan Aviation Electronics Industry Ltd Optical module and photoelectric converter
JP2011258741A (en) * 2010-06-09 2011-12-22 Fuji Xerox Co Ltd Optical transmission device
JP6730583B2 (en) * 2016-02-12 2020-07-29 富士通株式会社 Optical semiconductor device and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090842A1 (en) 2008-01-15 2009-07-23 Omron Corporation Optical transmission module, electronic device and method for manufacturing optical transmission module
US8168940B2 (en) 2008-01-15 2012-05-01 Omron Corporation Optical transmission module, electronic device and method for manufacturing optical transmission module
CN101784932B (en) * 2008-01-15 2013-01-23 欧姆龙株式会社 Optical transmission module, electronic device and method for manufacturing optical transmission module

Also Published As

Publication number Publication date
JP2000214351A (en) 2000-08-04

Similar Documents

Publication Publication Date Title
JP3257776B2 (en) Optical module mounting structure
KR100720854B1 (en) Photoelectric wiring board, packaging board, and photoelectric wiring board producing method
JP5089643B2 (en) Optical connection element manufacturing method, optical transmission board, optical connection component, connection method, and optical transmission system
US7835602B2 (en) Photonic guiding device
US6915049B2 (en) Optical module and method of manufacturing the same, and optical transmission device
JP2008145684A (en) Optical waveguide and optical module
JP2008009098A (en) Optical connection device and mounting method
JP2007072007A (en) Optical waveguide module
JP3285539B2 (en) Optical module mounting structure
US7039274B2 (en) Light signal transmitting device and signal processing device
JP2004054003A (en) Optoelectronic substrate
JP2008102283A (en) Optical waveguide, optical module and method of manufacturing optical waveguide
JP5256082B2 (en) Optical coupling structure and optical transceiver module
JP2000098153A (en) Optical device packaging structure
JP5395042B2 (en) Manufacturing method of optical path conversion device
JP4609311B2 (en) Optical transceiver
JP4607063B2 (en) Manufacturing method of optical path conversion connector
JP2000214345A (en) Optical communication device and bi-directional optical communication equipment
JP2005338704A (en) Wiring board with optical coupling function, its manufacturing method and optical coupling system
JP2009223340A (en) Optical component and optical path changing device used for the same
JP4800409B2 (en) Manufacturing method of optical path conversion connector
Thomas et al. Industry trends in photonics packaging: passive fiber and die coupling
JP2008197380A (en) Multichannel optical path converting element and its manufacturing method
JP2008281695A (en) Light guide and light guide substrate
JP2001091773A (en) Optical circuit module

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees