JP2004054003A - Optoelectronic substrate - Google Patents

Optoelectronic substrate Download PDF

Info

Publication number
JP2004054003A
JP2004054003A JP2002212338A JP2002212338A JP2004054003A JP 2004054003 A JP2004054003 A JP 2004054003A JP 2002212338 A JP2002212338 A JP 2002212338A JP 2002212338 A JP2002212338 A JP 2002212338A JP 2004054003 A JP2004054003 A JP 2004054003A
Authority
JP
Japan
Prior art keywords
hole
mirror
substrate
optical
optoelectronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002212338A
Other languages
Japanese (ja)
Inventor
Motomu Yoshimura
吉村 求
Yukiyasu Nakao
中尾 之泰
Takahiro Nishioka
西岡 孝博
Tetsuyuki Kurata
藏田 哲之
Hiroyuki Fuchigami
渕上 宏幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002212338A priority Critical patent/JP2004054003A/en
Publication of JP2004054003A publication Critical patent/JP2004054003A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by at least one potential or surface barrier
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/421Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical component consisting of a short length of fibre, e.g. fibre stub

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an optoelectronic substrate in which transmission of light signals between light emitting and receiving elements is efficiently performed. <P>SOLUTION: A pair of planar light emitting and receiving elements 12 are mounted on one surface of a multilayer substrate 10 and a first through hole 14a and a second through hole 14b are respectively formed beneath a pair of planar light emitting and receiving elements 12. An aspherical mirror 28 is provided on the other surface of the multilayer substrate 10 facing the first through hole 14a and the second through hole 14b and end parts of an optical waveguide 22 face the aspherical mirror 28 and the aspherical mirror 28 changes an optical path to a through hole direction or an optical waveguide direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光信号を光路変換して電子回路等に中継する機能を有する光電子基板に関するものである。
【0002】
【従来の技術】
図5は、特開2000‐81524号公報に記載された光送受信システムの断面図である。
多層基板10の上面には、面型発光受光素子12が受発光面を下向きにして、対をなして実装され、多層基板10の上面と下面とを貫通する貫通孔14a、14bが設けられているが、面型発光受光素子12のそれぞれの受発光面の中心と、上記貫通孔の中心とは同一軸上にある。なお、貫通孔14a、14bの内壁は全面を反射材で覆った空洞とするか、光導波路を設けている。
また、多層基板10の下面には、コア部24とこのコア部24の周囲に設けたクラッド部26からなる光導波路22が設けられ、この光導波路22は、一方の貫通孔14aから他方の貫通孔14bの真下まで延び、反射ミラー38a、38bは光導波路22の両端面を45°カットして作製されている。
【0003】
上記光送受信システムにおいては、図5に示すように、例えば貫通孔14aを伝搬してきた光信号は45°カットミラー38aにより直角に全反射されて、光導波路22に入射し、光導波路22のコア部24内を伝搬する。コア部24内を伝搬してきた光信号は45°カットミラー38bにより直角に全反射されて、貫通孔14bに入射して、この貫通孔14b内を伝搬し、以上により、一対の面型発光受光素子12間の光信号送受信が行われる。
【0004】
図6は、特開2000‐81524号公報に記載された別の光送受信システムの断面図で、多層基板10の上面には、面型発光受光素子12が受発光面を下向きにして実装され、貫通孔14はその中心が、面型発光受光素子12の受発光面の中心と同一軸上になるように設けられている。
多層基板10の下面には貫通孔14の真下まで延びる光導波路22が設けられ、貫通孔14の真下には反射ミラー38が光導波路22の端面を45°カットして作製されている。
また、光導波路22の貫通孔と反対側の端面は、端面型発光受光素子32と接するように固定されている。
【0005】
上記光送受信システムにおいては、図6に示すように、例えば貫通孔14を伝搬してきた光信号は45°カットミラー38により直角に全反射されて、光導波路22に入射し、光導波路22のコア部24内を伝搬して、面型発光受光素子12と端面型発光受光素子32間の光信号送受信が行われる。
【0006】
【発明が解決しようとする課題】
図7は、上記図5または図6におけるA領域を拡大して、45°カットミラーによる集光状態を示す説明図であり、図中矢印は光信号の方向を示す。
上記従来の光送受信システムでは、光導波路22の端面に形成された45°カットミラー38により、基板の貫通孔14を伝送した光信号を反射させて、光導波路のコア部24に入射させていた。
この場合、図7に示すように、上記貫通孔14を伝送した光信号は、上記45°カットミラー38に、一定の角度で入射するのではないので、上記45°カットミラー38を位置精度良く、貫通孔14の中心軸に対応するように取り付けても、上記45°カットミラー38で全反射された反射光が広範囲に散乱してしまう。
つまり、上記45°カットミラー38の、信号光をコア部へ導入するための反射鏡としての性能が充分ではないので、コア部24への光信号の入射損失が高くて入射効率が悪くなり、そのため光信号の伝送損失が高く、光電子基板としての性能が悪くなるという課題があった。
【0007】
本発明は、かかる課題を解決するためになされたものであり、光信号の伝送が効率良く行われる光電子基板を得ることを目的とする。
【0008】
【課題を解決するための手段】
本発明に係る第1の光電子基板は、基板と、この基板の一方の面と他方の面とを貫通する貫通孔と、上記基板の一方の面に実装され、上記貫通孔を光伝送路とする発光受光素子と、上記基板の他方の面上に設けられ、上記貫通孔と対向する光路変換手段と、一端が上記光路変換手段と対向する光導波路とを備え、上記光路変換手段により、光路を上記貫通孔方向または上記光導波路方向に変換する光電子基板において、上記光路変換手段が複数種の反射面角を有する反射鏡を備えたことを特徴とするものである。
【0009】
本発明に係る第2の光電子基板は、上記第1の光電子基板において、複数種の反射面角を有する反射鏡が非球面鏡であることを特徴とするものである。
【0010】
本発明に係る第3の光電子基板は、上記第1または第2の光電子基板において、複数種の反射面角を有する反射鏡が多面体鏡であることを特徴とするものである。
【0011】
本発明に係る第4の光電子基板は、上記第1ないし第3のいずれかの光電子基板において、複数種の反射面角を有する反射鏡が、金蒸着されたものであることを特徴とするものである。
【0012】
本発明に係る第5の光電子基板は、上記第1ないし第4のいずれかの光電子基板において、複数種の反射面角を有する反射鏡が、光導波路の端面に光導波路と一体に設けられていることを特徴とするものである。
【0013】
本発明に係る第6の光電子基板は、上記第1ないし第5のいずれかの光電子基板において、貫通孔に、光ファイバが保持されていることを特徴とするものである。
【0014】
本発明に係る第7の光電子基板は、上記第1ないし第6のいずれかの光電子基板において、複数種の反射面角を有する反射鏡が、支持部材により固定されていることを特徴とするものである。
【0015】
【発明の実施の形態】
実施の形態1.
図1は本発明の第1の実施の形態の光電子基板の説明図であり、(a)は上記光電子基板の断面図、(b)は上記光電子基板を、図1(a)において下側から見た平面図である。
図中、10は第1〜第4の絶縁層10a、10b、10c、10dが順に積層された多層基板、12は多層基板22の一方の面に設けられた面型発光受光素子で対をなして設けられ、14a、14bは多層基板10の一方の面と他方の面とを貫通する第1、第2の貫通孔である。図は、貫通孔には光ファイバ30が挿入されている場合を示し、貫通孔で光が散乱されて光伝搬損失が大きくなるのを防止できる。
28は多層基板22の他方の面上に設けられた、光路変換手段となる非球面鏡で、複数種の反射面角を有する反射鏡の一例であり、第1、第2の貫通孔14a、14bと対向して設けられ、29は非球面鏡28を固定する支持部材である。
22は上記光路変換手段となる非球面鏡28と対向する光導波路で、コア部24とコア部の周囲に設けたクラッド部26からなる。
なお、本実施の形態における非球面鏡とは、反射面が真球でなく、球面の曲率が球面の各点で必ずしも同一でない球面形状の反射鏡を意味するものとする。
つまり、本実施の形態の光電子基板においては、光路変換手段28により、上記第1の貫通孔14aを出射した光を上記光導波路22のコア部24に集光させたり、上記光導波路22のコア部24を出射した光を上記第2の貫通孔14bに集光させることができる。
【0016】
また、図2は、本実施の形態の光電子基板に係わる光路変換手段の斜視図で、非球面鏡が支持部材により固定されたものであり、図3は図1におけるA領域を拡大して、非球面鏡による集光状態を示す説明図であり、図中矢印は光信号の方向を示す。
【0017】
つまり、本実施の形態の光電子基板は、多層基板10の一方の面、即ち、図1においては上面に、面型発光受光素子12が受発光面を下向きにして対をなして実装されている。
第1、第2の貫通孔14a、14bは、光ファイバ30を保持しており、上記光ファイバ30は、面型発光受光素子12のそれぞれの受発光面の中心と、上記光ファイバ30の中心とを同一軸上になるようにして挿入されている。
光導波路22は多層基板10の下面に取り付けられており、その両方の端部はそれぞれ非球面鏡28に対向するように固定され、必要に応じて、紫外線硬化接着剤で接合され、光導波路22のコア部24は、それぞれ対をなす面型発光受光素子12a、12bからの光信号と、位置精度良く結合されている。
図1は、非球面鏡28が支持部材29により支持されている場合を示し、光路を変換するとともに、さらに上記支持部材29により光導波路を固定する固定部ともなっている。
【0018】
図4は本実施の形態の別の光電子基板の説明図であり、(a)は上記光電子基板の断面図、(b)は上記光電子基板を、図4(a)において下側から見た平面図で、図中32は端面型発光受光素子である。
【0019】
つまり、多層基板10の一方の面、即ち、図4においては上面に、面型発光受光素子12が受発光面を下向きにして実装され、多層基板10の他方の面上には光導波路22が設けられているが、その一端が上記貫通孔14に対向し、他端が面型発光受光素子32に接して固定され、必要に応じて紫外線硬化接着剤で接合されている。なお、その他は図1に示す光電子基板と同様である。
【0020】
本実施の形態においては、光路変換手段として用いる複数種の反射面角を有する反射鏡として、非球面鏡を用いた場合について示すが、そもそも、本発明の光電子基板に係わる光路変換手段に係わる、複数種の反射面角を有する反射鏡は、反射鏡の反射面の角度が複数であるので、それだけ入射角度の多様性に対応でき、入射光を効率良くコア部に入射できるという作用効果を有するものである。
つまり、図7や図8に示すように、上記従来の反射鏡が45°カットミラー(図7)や、反射面が真球面である反射鏡(図8)では、反射面の角度が一定であるので、一定の角度で入射するのではない光信号を、光導波路のコア部に集光させることが困難であることを改善するものである。なお、図8は比較として示す、反射面が真球面である反射鏡による集光状態を示す説明図で、図中矢印は光信号の方向を示す。
しかしながら、上記複数種の反射面角を有する反射鏡の一例として示す非球面鏡では、図3に示すように、曲率を任意に設定することができるので、貫通孔からの光信号をコア部に効率良く入射させ、集光効率を向上させることができる。また、上記複数種の反射面角を有する反射鏡により、コア部から貫通孔への集光効率も同様に向上させることができる。
さらに、上記非球面鏡を用いると、貫通孔と光導波路の位置がある程度ずれてもコア部に集光することができる。
【0021】
また、本実施の形態において、複数種の反射面角を有する反射鏡として、多面体鏡を用いても、上記非球面鏡を用いた場合と同様の作用効果を得ることができる。
また、図2に示すように、非球面鏡を保持する支持部材を用いれば、非球面鏡を長期に渡り安定に保持でき、さらに光導波路の位置をも正確に決められるため集光効率がより増大する。
また、非球面鏡の外側に、図2に示すように、反射膜33を形成することは、反射効率が向上するため望ましい。反射膜としては、基幹光通光として、1.5μmと1.3μmが用いられていると、この波長帯域に吸収を持たない、例えば金を蒸着する。
【0022】
以下に、本実施の形態の光電子基板に係わる非球面鏡の製造方法の一例を図1、図4を参照しながら説明する。
まず、コア部24の中心部に集光できるような非球面形状の鋳型を、反射面の各点での法線を基準にして、光がコア部に集中するように、光反射の式により曲率を算出して作製する。
次に、上記鋳型を用いてモールド法で非球面鏡を作製するが、例えば、ポリメチルメタクリレート系樹脂、ポリカーボネート系樹脂等を用い、モールド法として、エンボス法、射出成型法またはUV硬化法を用いる。なお、透明性の樹脂であれば他の汎用性ポリマーでも良い。
さらに、上記非球面鏡に反射膜をコートすると、反射効率が向上するために望ましい。
【0023】
なお、本実施の形態においては、非球面鏡28を予め製造して、光導波路22に固定する例を示したが、光導波路の端面を所定の曲率を有する非球面となるようにカットしても良い。
【0024】
また、図示はしないが、多層基板10の上面には、面型発光受光素子12の他に、例えば発光駆動、受光増幅回路、LSI回路、インダクタ、キャパシタまたは抵抗などの電子部品がフリップチップ接合法やワイヤボンディング接合法を用いて実装されている。
また、多層基板10の上面および下面並びに各絶縁層には、各種の電子部品を電気的に接合する配線層が形成され、さらにこれらの配線層は各絶縁層に形成されたビアホールを介して接続され、全体として多層配線構造をなしている。
【0025】
【実施例】
実施例1.
まず、本発明の実施例に係わる非球面鏡を、ポリメチルメタクリレートを用い、反射鏡面の各点での法線を基準にして、各点での反射光がコア部に入射するように反射光の式から曲率を決め、そのデータをCADに入力して作製した鋳型を用いて製造し、これに金蒸着する。
【0026】
表1に、上記のようにして作製した非球面鏡の入射損失を、下記比較例1に示す真球の反射鏡および下記比較例2に示す光導波路の端面を従来のように45°でカットして形成したミラーと比較して示す。
【0027】
【表1】

Figure 2004054003
【0028】
表1に示すように、本実施例に係わる非球面鏡では、貫通孔から光導波路への入射損失が極めて低い。
【0029】
次に、上記非球面鏡を支持する支持部材29を作製する。
つまり、石英ガラスで形成した図2における支持部材29の形状の型枠に、メチルメタアクリレート(MMA)を入れて、75℃で25分間、窒素雰囲気中で重合させた。その後、45℃に加熱して、石英ガラスを暖めて膨張させて隙間を与え、上記重合したポリマーメチルメタアクリレートの支持部材を型枠から取り出した。
取り出した支持部材が、非球面鏡を挟持するところの幅は220μmにした。
さらに、貫通孔の中心軸と、支持部材の中心軸を一致させて固定し、取り付けのために、固定部の周辺部に薄く接着剤を用いた。
【0030】
一方、GaAlAs系の面発光レーザ(VCSEL)とアバランシェ型PINホトダイオード(PD)を、フェイスダウン方式で、半田バンプで多層基板の一方の面上に取り付ける。なお、VCSELの出力は、850nm帯域で10mA電流を流して、4.3mWの出力にした。
VCSELとPDの、それぞれの真下には、それぞれの中心軸が一致するように、ポリイミド製の多層基板に貫通孔があけられている。
VCSELの発光面の直径が3μm、広がり角度が20°であり、半田バンプの厚みは10μmに設定したので、両方の貫通孔の直径は、光ファイバが保持できる130μmとし、光ファイバとしては、広げられたレーザ光が完全に入る9.5μmのコアを有するシングルモードファイバを用いた。
【0031】
貫通孔は、YAG、COまたはエキシマーレーザを用いて、通常の半導体技術を用いて、2つの貫通孔の距離は8mmにして開ける。好ましくは、YAGレーザを用い、YAGレーザ出力100Wで、照射時間は、基板の厚みによって異なるが、今回は、基板厚み2.5mmであり、30秒照射して貫通孔を開けた。さらに、信号光の伝送効率を高めるために、貫通孔に上記のシングルモード光ファイバを挿入した。
【0032】
また、多層基板の他方の面に、フッ素化ポリイミドを用いて通常の方法で光導波路を作製した。
クラッド層の厚みは、上下それぞれ50μmで、コア部は、40μm角の、マルチモード型のものを、幅200μm、長さ5mmに切り出した。
このようにして、図1に示すように、2ヶ所に、上記貫通孔に対向するように、支持部材により狭持された非球面鏡を取り付け、次に支持部材に合致するように、上記光導波路を接着剤を極薄く塗りつけて基板に取り付け、本実施例の光電子基板を作製した。
【0033】
表1に示すように、本実施例に係わる非球面鏡では、貫通孔から光導波路への入射損失が極めて低いので、伝送特性を調べたところ、VCSELからの4.3mWは、貫通孔に完全に入り、非球面鏡により全反射されて、9.5μm径の狭い出射口からでて行くので、全反射されて出射されたレーザ光のプロファイルの広がりも抑えられ、PDでは0.41mWとして受光された。この時の伝送損失は10.2dBであり、下記従来のものより少なかった。
【0034】
比較例1.
実施例1において光路変換手段として用いた非球面鏡の代わりに、上記非球面鏡を作製したのと同じ材料で、図8に示すように、半径が光導波路幅となるようにして作製した真球ミラーを用い、これに金蒸着した他は、実施例1と同様にして、光電子基板を作製したところ、伝送損失は21.3dBであった。
【0035】
比較例2.
実施例1において光路変換手段として用いた非球面鏡の代わりに、実施例1における光導波路端面にダイシングにより、45°カットミラーを形成し、これに金蒸着した他は、実施例1と同様にして、光電子基板を作製したところ、伝送損失は20.5dBであった。
【0036】
実施例2.
上記実施例1における反射鏡の鋳型の作製を、反射鏡面の各点での法線を基準にして、各点での反射光がコア部に入射するように反射光の式から微少平面の傾きを決め、そのデータをCADに入力することにより行い、この鋳型を用いて、実施例1において非球面鏡と同様の材料により、実施例1と同様にして多面体鏡を作製し、金蒸着を施したところ、入射損失は1.01dBであった。
次に、上記多面体鏡を用いて上記実施例1と同様にして光電子基板を作製したところ、伝送損失は11.05dBであった。
【0037】
実施例3.
GaAlAs系の面発光レーザ(VCSEL)をフェイスダウン方式で、鉛ボンダーで多層基板上に取り付ける。アバランシェ型PINホトダイオード(PD)を上記多層基板の裏面に直接取り付ける。なお、VCSELの出力は、850nm帯域で10mA電流を流して、4.3mWの出力にした。
実施例1と同様にして、多層基板のVCSELの真下に、光ファイバを有する貫通孔を開け、実施例1と同様のシングルモード光ファイバを収める。
一方、上記実施例1と同様にして、非球面鏡とその支持部材を作製して、上記多層基板に光導波路とともに設け、図4に示すような、本発明の実施例の光電子基板を作製した。
【0038】
なお、本実施例の非球面鏡の支持部材は、石英ガラスで形成した型枠にメチルメタアクリレート(MMA)を入れて、500WのXeランプを60分照射し、窒素雰囲気中で重合させ、その後、45℃に加熱して、石英ガラスを暖めて膨張させて隙間を与え、上記重合したポリマーメチルメタアクリレートを型枠から取り出すことにより作製した。
【0039】
本実施例の光電子基板の伝送特性を調べたところ、VCSELからの4.3mWは、PDでは0.45mWとして、受光された。伝送損失は9.8dBと少なかった。
【0040】
実施例4.
実施例3において、支持部材を、石英ガラスで形成した型枠にメチルメタアクリレート(MMA)を入れて、初めから、基板に装着して、500WのXeランプを60分照射して、窒素雰囲気中で重合させて作製する他は実施例3と同様にして光電子基板を作製した。
本実施例の光電子基板の伝送特性を調べたところ。VCSELからの4.3mWは、PDでは0.46mWとして、受光された。伝送損失は10.6dBと少なかった。
【0041】
【発明の効果】
本発明の第1の光電子基板は、基板と、この基板の一方の面と他方の面とを貫通する貫通孔と、上記基板の一方の面に実装され、上記貫通孔を光伝送路とする発光受光素子と、上記基板の他方の面上に設けられ、上記貫通孔と対向する光路変換手段と、一端が上記光路変換手段と対向する光導波路とを備え、上記光路変換手段により、光路を上記貫通孔方向または上記光導波路方向に変換する光電子基板において、上記光路変換手段が複数種の反射面角を有する反射鏡を備えたことを特徴とするもので、光信号の伝送が効率良く行われるという効果がある。
【0042】
本発明の第2の光電子基板は、上記第1の光電子基板において、複数種の反射面角を有する反射鏡が非球面鏡であることを特徴とするもので、光信号の伝送が効率良く行われるという効果がある。
【0043】
本発明の第3の光電子基板は、上記第1または第2の光電子基板において、複数種の反射面角を有する反射鏡が多面体鏡であることを特徴とするもので、光信号の伝送が効率良く行われるという効果がある。
【0044】
本発明の第4の光電子基板は、上記第1ないし第3のいずれかの光電子基板において、複数種の反射面角を有する反射鏡が、金蒸着されたものであることを特徴とするもので、光信号の伝送がより効率良く行われるという効果がある。
【0045】
本発明の第5の光電子基板は、上記第1ないし第4のいずれかの光電子基板において、複数種の反射面角を有する反射鏡が、光導波路の端面に光導波路と一体に設けられていることを特徴とするもので、製造効率が向上するという効果がある。
【0046】
本発明の第6の光電子基板は、上記第1ないし第5のいずれかの光電子基板において、貫通孔に、光ファイバが保持されていることを特徴とするもので、光信号の伝送がより効率良く行われるという効果がある。
【0047】
本発明の第7の光電子基板は、上記第1ないし第6のいずれかの光電子基板において、複数種の反射面角を有する反射鏡が、支持部材により固定されていることを特徴とするもので、より長期に渡り、光信号の伝送が効率良く行われるという効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の光電子基板の説明図である。
【図2】本実施の形態の光電子基板に係わる光路変換手段の斜視図である。
【図3】図1におけるA領域を拡大して、非球面鏡による集光状態を示す説明図である。
【図4】本発明の第1の実施の形態の別の光電子基板の説明図である。
【図5】従来の光送受信システムの断面図である。
【図6】従来の光送受信システムの断面図である。
【図7】図5または図6におけるA領域を拡大して示す説明図である。
【図8】図8は比較として示す反射面が真球面である反射鏡による集光状態を示す説明図である。
【符号の説明】
10 基板、12 面型発光受光素子、14a、14b 貫通孔、22 光導波路、24 コア部、28 光路変換手段、29 支持部材、33 反射膜。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optoelectronic substrate having a function of converting an optical signal into an optical path and relaying the optical signal to an electronic circuit or the like.
[0002]
[Prior art]
FIG. 5 is a cross-sectional view of the optical transmission and reception system described in Japanese Patent Application Laid-Open No. 2000-81524.
On the upper surface of the multilayer substrate 10, the surface-type light emitting and receiving elements 12 are mounted in pairs with the light receiving and emitting surfaces facing downward, and through holes 14a and 14b penetrating the upper surface and the lower surface of the multilayer substrate 10 are provided. However, the center of each light emitting / receiving surface of the surface type light emitting / receiving element 12 and the center of the through hole are on the same axis. The inner walls of the through-holes 14a and 14b are formed as cavities whose entire surfaces are covered with a reflective material, or provided with optical waveguides.
On the lower surface of the multilayer substrate 10, an optical waveguide 22 including a core portion 24 and a clad portion 26 provided around the core portion 24 is provided. The optical waveguide 22 extends from one through hole 14a to the other through hole 14a. The reflection mirrors 38a and 38b extend to just below the hole 14b and are formed by cutting both end surfaces of the optical waveguide 22 by 45 °.
[0003]
In the optical transmission / reception system, as shown in FIG. 5, for example, the optical signal propagating through the through-hole 14a is totally reflected at a right angle by the 45 ° cut mirror 38a, enters the optical waveguide 22, and enters the core of the optical waveguide 22. Propagation in the section 24. The optical signal that has propagated in the core portion 24 is totally reflected at a right angle by the 45 ° cut mirror 38b, enters the through hole 14b, propagates in the through hole 14b, and as described above, a pair of planar light emitting and receiving Optical signal transmission and reception between the elements 12 are performed.
[0004]
FIG. 6 is a cross-sectional view of another optical transmission / reception system described in Japanese Patent Application Laid-Open No. 2000-81524. On the upper surface of the multilayer substrate 10, a surface-type light emitting / receiving element 12 is mounted with the light receiving / emitting surface facing down, The through hole 14 is provided such that the center thereof is coaxial with the center of the light receiving and emitting surface of the surface light emitting and receiving element 12.
An optical waveguide 22 extending right below the through hole 14 is provided on the lower surface of the multilayer substrate 10, and a reflection mirror 38 is formed directly below the through hole 14 by cutting the end face of the optical waveguide 22 by 45 °.
The end face of the optical waveguide 22 opposite to the through hole is fixed so as to be in contact with the end face type light emitting / receiving element 32.
[0005]
In the optical transmission / reception system, as shown in FIG. 6, for example, the optical signal propagating through the through-hole 14 is totally reflected at a right angle by a 45 ° cut mirror 38, enters the optical waveguide 22, and enters the core of the optical waveguide 22. An optical signal is transmitted and received between the surface light emitting and receiving element 12 and the end face light emitting and receiving element 32 by propagating in the section 24.
[0006]
[Problems to be solved by the invention]
FIG. 7 is an explanatory view showing the state of light condensing by the 45 ° cut mirror by enlarging the region A in FIG. 5 or FIG. 6, and the arrow in the figure shows the direction of the optical signal.
In the above-mentioned conventional optical transmission / reception system, the optical signal transmitted through the through hole 14 of the substrate is reflected by the 45 ° cut mirror 38 formed on the end face of the optical waveguide 22 to be incident on the core portion 24 of the optical waveguide. .
In this case, as shown in FIG. 7, since the optical signal transmitted through the through hole 14 does not enter the 45 ° cut mirror 38 at a fixed angle, the 45 ° cut mirror 38 is moved with high positional accuracy. However, even if it is mounted so as to correspond to the central axis of the through hole 14, the light totally reflected by the 45 ° cut mirror 38 is scattered over a wide range.
That is, since the performance of the 45 ° cut mirror 38 as a reflecting mirror for introducing signal light into the core portion is not sufficient, the incidence loss of the optical signal to the core portion 24 is high, and the incidence efficiency is deteriorated. Therefore, there has been a problem that the transmission loss of the optical signal is high and the performance as the optoelectronic substrate is deteriorated.
[0007]
The present invention has been made to solve such a problem, and an object of the present invention is to provide an optoelectronic substrate in which optical signals are transmitted efficiently.
[0008]
[Means for Solving the Problems]
A first optoelectronic substrate according to the present invention includes a substrate, a through hole passing through one surface and the other surface of the substrate, and a first hole mounted on one surface of the substrate. A light-emitting and light-receiving element, and an optical path conversion means provided on the other surface of the substrate, facing the through hole, and an optical waveguide having one end facing the optical path conversion means. In the direction of the through hole or the direction of the optical waveguide, wherein the optical path conversion means includes a reflecting mirror having a plurality of reflection surface angles.
[0009]
According to a second optoelectronic substrate according to the present invention, in the first optoelectronic substrate, the reflecting mirror having a plurality of types of reflecting surface angles is an aspherical mirror.
[0010]
A third optoelectronic substrate according to the present invention is characterized in that, in the first or second optoelectronic substrate, the reflecting mirror having a plurality of kinds of reflecting surface angles is a polyhedral mirror.
[0011]
A fourth optoelectronic substrate according to the present invention is characterized in that, in any one of the first to third optoelectronic substrates, a reflecting mirror having a plurality of reflection surface angles is gold-deposited. It is.
[0012]
According to a fifth optoelectronic substrate according to the present invention, in any one of the first to fourth optoelectronic substrates, a reflecting mirror having a plurality of types of reflecting surface angles is provided integrally with the optical waveguide on an end face of the optical waveguide. It is characterized by having.
[0013]
A sixth optoelectronic substrate according to the present invention is characterized in that, in any of the first to fifth optoelectronic substrates, an optical fiber is held in a through hole.
[0014]
A seventh optoelectronic substrate according to the present invention is characterized in that, in any one of the first to sixth optoelectronic substrates, a reflecting mirror having a plurality of reflection surface angles is fixed by a support member. It is.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
1A and 1B are explanatory views of an optoelectronic substrate according to a first embodiment of the present invention, wherein FIG. 1A is a cross-sectional view of the optoelectronic substrate, and FIG. FIG.
In the drawing, reference numeral 10 denotes a multilayer substrate in which first to fourth insulating layers 10a, 10b, 10c, and 10d are sequentially stacked, and 12 denotes a surface-type light-emitting and light-receiving element provided on one surface of a multilayer substrate 22. 14a and 14b are first and second through holes penetrating one surface and the other surface of the multilayer substrate 10. The figure shows a case where the optical fiber 30 is inserted in the through hole, and it is possible to prevent light from being scattered by the through hole and increasing light propagation loss.
Reference numeral 28 denotes an aspherical mirror provided on the other surface of the multilayer substrate 22 and serving as an optical path changing means, which is an example of a reflecting mirror having a plurality of types of reflecting surface angles, and includes first and second through holes 14a and 14b. Reference numeral 29 denotes a support member for fixing the aspherical mirror 28.
Reference numeral 22 denotes an optical waveguide facing an aspherical mirror 28 serving as the optical path conversion means, and includes a core portion 24 and a clad portion 26 provided around the core portion.
Note that the aspherical mirror in the present embodiment means a reflecting mirror having a spherical surface whose reflecting surface is not a true sphere and whose curvature is not always the same at each point of the sphere.
That is, in the optoelectronic substrate of the present embodiment, the light emitted from the first through hole 14a is condensed on the core portion 24 of the optical waveguide 22 by the The light emitted from the portion 24 can be focused on the second through hole 14b.
[0016]
FIG. 2 is a perspective view of an optical path changing means according to the optoelectronic substrate of the present embodiment, in which an aspherical mirror is fixed by a support member. FIG. 3 is an enlarged view of a region A in FIG. FIG. 4 is an explanatory diagram showing a light condensing state by a spherical mirror, and arrows in the figure indicate directions of optical signals.
[0017]
That is, in the optoelectronic substrate of the present embodiment, the surface-type light-emitting and light-receiving elements 12 are mounted on one surface of the multilayer substrate 10, that is, on the upper surface in FIG. .
The first and second through holes 14a and 14b hold an optical fiber 30, and the optical fiber 30 is connected to the center of each light receiving / emitting surface of the surface light emitting / receiving element 12 and the center of the optical fiber 30. Are inserted on the same axis.
The optical waveguide 22 is attached to the lower surface of the multilayer substrate 10, and both ends thereof are fixed so as to face the aspheric mirror 28, respectively, and if necessary, are joined with an ultraviolet curing adhesive, and the optical waveguide 22 is formed. The core section 24 is coupled with optical signals from the pair of surface light emitting and receiving elements 12a and 12b with high positional accuracy.
FIG. 1 shows a case where the aspherical mirror 28 is supported by a support member 29, and serves as a fixing portion that converts an optical path and further fixes an optical waveguide by the support member 29.
[0018]
4A and 4B are explanatory views of another optoelectronic substrate according to the present embodiment, wherein FIG. 4A is a cross-sectional view of the optoelectronic substrate, and FIG. 4B is a plan view of the optoelectronic substrate viewed from below in FIG. In the figure, reference numeral 32 denotes an end face type light emitting / receiving element.
[0019]
That is, the surface-type light emitting and receiving element 12 is mounted on one surface of the multilayer substrate 10, that is, the upper surface in FIG. 4 with the light receiving and emitting surface facing down, and the optical waveguide 22 is formed on the other surface of the multilayer substrate 10. Although it is provided, one end thereof is opposed to the through hole 14 and the other end is fixed in contact with the surface light emitting and receiving element 32, and is joined with an ultraviolet curing adhesive as required. The rest is the same as the optoelectronic substrate shown in FIG.
[0020]
In the present embodiment, a case is described in which an aspherical mirror is used as a reflecting mirror having a plurality of types of reflecting surface angles used as an optical path converting means. However, in the first place, a plurality of optical path converting means related to the optoelectronic substrate of the present invention are used. Reflecting mirrors with different types of reflecting surface angles have a plurality of reflecting surface angles, so they can respond to a variety of incident angles and have the effect of efficiently entering incident light into the core. It is.
That is, as shown in FIGS. 7 and 8, when the conventional reflecting mirror is a 45 ° cut mirror (FIG. 7) or a reflecting mirror whose reflecting surface is a perfect spherical surface (FIG. 8), the angle of the reflecting surface is constant. Therefore, it is possible to improve the difficulty in collecting an optical signal that is not incident at a fixed angle on the core portion of the optical waveguide. FIG. 8 is an explanatory diagram showing, as a comparison, the state of light condensing by a reflecting mirror whose reflecting surface is a true spherical surface, and the arrows in the figure indicate the directions of optical signals.
However, in the aspherical mirror shown as an example of the reflecting mirror having the plurality of types of reflecting surface angles, as shown in FIG. 3, the curvature can be set arbitrarily, so that the optical signal from the through hole is efficiently transmitted to the core. It is possible to make the light incident well and to improve the light collection efficiency. Further, with the reflecting mirror having the plurality of types of reflecting surface angles, the light collecting efficiency from the core portion to the through hole can be similarly improved.
Further, when the aspherical mirror is used, even if the position of the through hole and the position of the optical waveguide deviate to some extent, the light can be focused on the core portion.
[0021]
Further, in the present embodiment, even when a polyhedral mirror is used as a reflecting mirror having a plurality of types of reflecting surface angles, the same operation and effect as when the aspherical mirror is used can be obtained.
Further, as shown in FIG. 2, if a support member for holding the aspherical mirror is used, the aspherical mirror can be stably held for a long period of time, and the position of the optical waveguide can be accurately determined, so that the light collection efficiency is further increased. .
In addition, as shown in FIG. 2, it is desirable to form a reflection film 33 outside the aspherical mirror because the reflection efficiency is improved. When 1.5 .mu.m and 1.3 .mu.m are used as the basic light transmission as the reflection film, for example, gold which does not have absorption in this wavelength band is deposited.
[0022]
Hereinafter, an example of a method of manufacturing an aspherical mirror according to the optoelectronic substrate of the present embodiment will be described with reference to FIGS.
First, a mold having an aspherical shape capable of condensing light at the center of the core portion 24 is formed by a light reflection formula so that light is concentrated on the core portion with reference to a normal line at each point of the reflection surface. It is produced by calculating the curvature.
Next, an aspherical mirror is manufactured by a molding method using the above-described mold. For example, a polymethyl methacrylate resin, a polycarbonate resin, or the like is used, and an embossing method, an injection molding method, or a UV curing method is used as a molding method. In addition, other general-purpose polymers may be used as long as they are transparent resins.
Further, it is desirable to coat the aspherical mirror with a reflective film because the reflection efficiency is improved.
[0023]
In the present embodiment, an example has been described in which the aspheric mirror 28 is manufactured in advance and fixed to the optical waveguide 22. However, the end surface of the optical waveguide may be cut to have an aspheric surface having a predetermined curvature. good.
[0024]
Although not shown, on the upper surface of the multilayer substrate 10, in addition to the surface-type light-emitting and light-receiving element 12, for example, electronic components such as a light-emitting drive, a light-receiving amplifier circuit, an LSI circuit, an inductor, a capacitor or a resistor are formed by a flip chip bonding method. And using a wire bonding method.
Wiring layers for electrically connecting various electronic components are formed on the upper and lower surfaces of the multilayer substrate 10 and each insulating layer, and these wiring layers are connected via via holes formed in each insulating layer. Thus, a multilayer wiring structure is formed as a whole.
[0025]
【Example】
Embodiment 1 FIG.
First, the aspherical mirror according to the embodiment of the present invention uses polymethyl methacrylate, and the reflected light at each point is incident on the core with reference to the normal at each point of the reflecting mirror surface. The curvature is determined from the formula, the data is input to a CAD, and the data is manufactured using a mold produced, and gold is vapor-deposited thereon.
[0026]
In Table 1, the incident loss of the aspherical mirror manufactured as described above was measured by cutting the end faces of the true spherical reflecting mirror shown in Comparative Example 1 below and the end face of the optical waveguide shown in Comparative Example 2 below at 45 ° as in the related art. This is shown in comparison with a mirror formed by the above method.
[0027]
[Table 1]
Figure 2004054003
[0028]
As shown in Table 1, in the aspheric mirror according to the present embodiment, the incident loss from the through hole to the optical waveguide is extremely low.
[0029]
Next, a support member 29 for supporting the aspherical mirror is manufactured.
That is, methyl methacrylate (MMA) was put into a mold of the support member 29 in FIG. 2 formed of quartz glass, and polymerized at 75 ° C. for 25 minutes in a nitrogen atmosphere. Thereafter, the support was heated to 45 ° C. to warm and expand the quartz glass to provide a gap, and the support member of the polymerized polymer methyl methacrylate was taken out of the mold.
The width at which the support member taken out sandwiches the aspherical mirror was 220 μm.
Furthermore, the center axis of the through hole and the center axis of the support member were fixed and fixed, and a thin adhesive was used around the fixed part for attachment.
[0030]
On the other hand, a GaAlAs-based surface emitting laser (VCSEL) and an avalanche PIN photodiode (PD) are mounted on one surface of a multilayer substrate by solder bumps in a face-down manner. The output of the VCSEL was set to 4.3 mW by passing a 10 mA current in the 850 nm band.
Immediately below each of the VCSEL and the PD, a through-hole is formed in the polyimide multilayer substrate so that the respective central axes coincide.
The diameter of the light emitting surface of the VCSEL was set to 3 μm, the spread angle was set to 20 °, and the thickness of the solder bump was set to 10 μm. Therefore, the diameter of both through holes was set to 130 μm that could hold the optical fiber, and the diameter of the optical fiber was expanded. A single-mode fiber having a core of 9.5 μm in which the laser beam completely entered was used.
[0031]
The through holes are formed using a YAG, CO 2 or excimer laser and using a normal semiconductor technique, with the distance between the two through holes being 8 mm. Preferably, a YAG laser is used, and the irradiation time varies with the thickness of the substrate at a YAG laser output of 100 W. In this case, the substrate thickness was 2.5 mm, and irradiation was performed for 30 seconds to form a through hole. Further, in order to enhance the transmission efficiency of the signal light, the above-mentioned single mode optical fiber was inserted into the through hole.
[0032]
Further, an optical waveguide was formed on the other surface of the multilayer substrate by using a fluorinated polyimide by a usual method.
The thickness of the cladding layer was 50 μm for each of the upper and lower sides, and the core part was cut out of a multi-mode type 40 μm square having a width of 200 μm and length of 5 mm.
In this way, as shown in FIG. 1, the aspherical mirror held by the support member is attached to two places so as to face the through holes, and then the optical waveguide is fitted so as to match the support member. Was applied to the substrate by applying an adhesive very thinly, thereby producing an optoelectronic substrate of this example.
[0033]
As shown in Table 1, in the aspherical mirror according to the present embodiment, since the incident loss from the through hole to the optical waveguide was extremely low, when the transmission characteristics were examined, 4.3 mW from the VCSEL was completely lost in the through hole. The laser light is totally reflected by the aspherical mirror and exits from the narrow exit port having a diameter of 9.5 μm, so that the spread of the profile of the totally reflected and emitted laser light is suppressed, and the PD receives light of 0.41 mW. . At this time, the transmission loss was 10.2 dB, which was smaller than the conventional one described below.
[0034]
Comparative Example 1
Instead of the aspherical mirror used as the optical path changing means in the first embodiment, a true spherical mirror made of the same material as that used to manufacture the above-mentioned aspherical mirror and having a radius equal to the width of the optical waveguide as shown in FIG. Then, an optoelectronic substrate was produced in the same manner as in Example 1 except that gold was vapor-deposited thereon, and the transmission loss was 21.3 dB.
[0035]
Comparative Example 2.
Instead of the aspherical mirror used as the optical path changing means in the first embodiment, a 45 ° cut mirror was formed by dicing on the end face of the optical waveguide in the first embodiment, and gold was vapor-deposited on this mirror in the same manner as in the first embodiment. When the optoelectronic substrate was manufactured, the transmission loss was 20.5 dB.
[0036]
Embodiment 2. FIG.
The fabrication of the casting mold of the reflecting mirror in Example 1 was performed based on the formula of the reflected light such that the reflected light at each point was incident on the core with reference to the normal at each point on the reflecting mirror surface. Was determined by inputting the data to CAD, and using this mold, a polyhedral mirror was produced in the same manner as in Example 1 using the same material as the aspherical mirror in Example 1, and gold deposition was performed. However, the incident loss was 1.01 dB.
Next, an optoelectronic substrate was produced using the above-mentioned polyhedral mirror in the same manner as in Example 1, and the transmission loss was 11.05 dB.
[0037]
Embodiment 3 FIG.
A GaAlAs-based surface emitting laser (VCSEL) is mounted on a multilayer substrate by a lead bonder in a face-down manner. An avalanche PIN photodiode (PD) is directly attached to the back surface of the multilayer substrate. The output of the VCSEL was set to 4.3 mW by passing a 10 mA current in the 850 nm band.
In the same manner as in the first embodiment, a through-hole having an optical fiber is opened immediately below the VCSEL on the multilayer substrate, and the same single-mode optical fiber as in the first embodiment is accommodated.
On the other hand, in the same manner as in Example 1, an aspherical mirror and a supporting member for the same were manufactured and provided on the multilayer substrate together with an optical waveguide, thereby manufacturing an optoelectronic substrate according to an example of the present invention as shown in FIG.
[0038]
The support member of the aspherical mirror according to the present embodiment is obtained by putting methyl methacrylate (MMA) into a mold formed of quartz glass, irradiating a 500 W Xe lamp for 60 minutes, and polymerizing in a nitrogen atmosphere. It was manufactured by heating to 45 ° C. to warm and expand the quartz glass to provide a gap, and taking out the polymerized polymer methyl methacrylate from the mold.
[0039]
When the transmission characteristics of the optoelectronic substrate of this example were examined, 4.3 mW from the VCSEL was received as 0.45 mW in the PD and received. The transmission loss was as low as 9.8 dB.
[0040]
Embodiment 4. FIG.
In Example 3, methyl methacrylate (MMA) was put into a mold formed of quartz glass as a support member, and was attached to the substrate from the beginning, and a 500 W Xe lamp was irradiated for 60 minutes to form a support member in a nitrogen atmosphere. An optoelectronic substrate was produced in the same manner as in Example 3 except that the substrate was produced by polymerization.
4 shows the transmission characteristics of the optoelectronic substrate of this example. 4.3 mW from the VCSEL was received as 0.46 mW in the PD. The transmission loss was as low as 10.6 dB.
[0041]
【The invention's effect】
The first optoelectronic substrate of the present invention is mounted on a substrate, a through hole passing through one surface and the other surface of the substrate, and one surface of the substrate, and the through hole is used as an optical transmission path. A light-emitting and light-receiving element, provided on the other surface of the substrate, an optical path conversion unit facing the through hole, and an optical waveguide having one end facing the optical path conversion unit, and the optical path conversion unit In the optoelectronic substrate for converting in the direction of the through hole or the direction of the optical waveguide, the optical path conversion means includes a reflecting mirror having a plurality of types of reflecting surface angles. It has the effect of being done.
[0042]
The second optoelectronic substrate of the present invention is characterized in that, in the first optoelectronic substrate, the reflecting mirror having a plurality of types of reflecting surface angles is an aspherical mirror, and the transmission of an optical signal is performed efficiently. This has the effect.
[0043]
A third optoelectronic substrate according to the present invention is characterized in that, in the first or second optoelectronic substrate, the reflecting mirror having a plurality of kinds of reflecting surface angles is a polyhedral mirror, and transmission of an optical signal is efficient. There is an effect that it is performed well.
[0044]
According to a fourth optoelectronic substrate of the present invention, in any one of the first to third optoelectronic substrates, a reflecting mirror having a plurality of kinds of reflecting surface angles is gold-deposited. In addition, there is an effect that transmission of an optical signal is performed more efficiently.
[0045]
According to a fifth optoelectronic substrate of the present invention, in any one of the first to fourth optoelectronic substrates, a reflecting mirror having a plurality of types of reflection surface angles is provided integrally with the optical waveguide on an end face of the optical waveguide. This has the effect of improving manufacturing efficiency.
[0046]
According to a sixth optoelectronic substrate of the present invention, in any one of the first to fifth optoelectronic substrates, an optical fiber is held in a through-hole, and transmission of an optical signal is more efficient. There is an effect that it is performed well.
[0047]
According to a seventh optoelectronic substrate of the present invention, in any one of the first to sixth optoelectronic substrates, a reflecting mirror having a plurality of types of reflecting surface angles is fixed by a support member. Thus, there is an effect that the transmission of the optical signal is performed efficiently for a longer period.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an optoelectronic substrate according to a first embodiment of the present invention.
FIG. 2 is a perspective view of an optical path changing unit according to the optoelectronic substrate of the present embodiment.
FIG. 3 is an explanatory diagram showing a state in which light is condensed by an aspherical mirror by enlarging an area A in FIG. 1;
FIG. 4 is an explanatory diagram of another optoelectronic substrate according to the first embodiment of the present invention.
FIG. 5 is a sectional view of a conventional optical transmission / reception system.
FIG. 6 is a cross-sectional view of a conventional optical transmission / reception system.
FIG. 7 is an explanatory diagram showing an enlarged area A in FIG. 5 or FIG. 6;
FIG. 8 is an explanatory diagram showing a light condensing state by a reflecting mirror whose reflecting surface is a true spherical surface for comparison.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 board | substrate, 12-surface type light emitting / receiving element, 14a, 14b through-hole, 22 optical waveguides, 24 core parts, 28 optical path conversion means, 29 support members, 33 reflection film.

Claims (7)

基板と、この基板の一方の面と他方の面とを貫通する貫通孔と、上記基板の一方の面に実装され、上記貫通孔を光伝送路とする発光受光素子と、上記基板の他方の面上に設けられ、上記貫通孔と対向する光路変換手段と、一端が上記光路変換手段と対向する光導波路とを備え、上記光路変換手段により、光路を上記貫通孔方向または上記光導波路方向に変換する光電子基板において、上記光路変換手段が複数種の反射面角を有する反射鏡を備えたことを特徴とする光電子基板。A substrate, a through-hole penetrating one surface and the other surface of the substrate, a light-emitting and light-receiving element mounted on one surface of the substrate, and using the through-hole as an optical transmission path; An optical path conversion means provided on the surface and facing the through hole, and an optical waveguide having one end facing the optical path conversion means, wherein the optical path is directed in the direction of the through hole or the direction of the optical waveguide by the optical path conversion means. An optoelectronic substrate for conversion, wherein the optical path conversion means includes a reflecting mirror having a plurality of reflection surface angles. 複数種の反射面角を有する反射鏡が非球面鏡であることを特徴とする請求項1に記載の光電子基板。The optoelectronic substrate according to claim 1, wherein the reflecting mirror having a plurality of types of reflecting surface angles is an aspherical mirror. 複数種の反射面角を有する反射鏡が多面体鏡であることを特徴とする請求項1または請求項2に記載の光電子基板。3. The optoelectronic substrate according to claim 1, wherein the reflecting mirror having a plurality of types of reflecting surface angles is a polyhedral mirror. 複数種の反射面角を有する反射鏡が、金蒸着されたものであることを特徴とする請求項1ないし請求項3のいずれかに記載の光電子基板。4. The optoelectronic substrate according to claim 1, wherein the reflecting mirror having a plurality of kinds of reflecting surface angles is formed by depositing gold. 複数種の反射面角を有する反射鏡が、光導波路の端面に光導波路と一体に設けられていることを特徴とする請求項1ないし請求項4のいずれかに記載の光電子基板。The optoelectronic substrate according to any one of claims 1 to 4, wherein a reflecting mirror having a plurality of types of reflecting surface angles is provided integrally with the optical waveguide at an end face of the optical waveguide. 貫通孔に、光ファイバが保持されていることを特徴とする請求項1ないし請求項5のいずれかに記載の光電子基板。The optoelectronic substrate according to claim 1, wherein an optical fiber is held in the through hole. 複数種の反射面角を有する反射鏡が、支持部材により固定されていることを特徴とする請求項1ないし請求項6のいずれかに記載の光電子基板。7. The optoelectronic substrate according to claim 1, wherein a reflecting mirror having a plurality of types of reflecting surface angles is fixed by a support member.
JP2002212338A 2002-07-22 2002-07-22 Optoelectronic substrate Pending JP2004054003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002212338A JP2004054003A (en) 2002-07-22 2002-07-22 Optoelectronic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002212338A JP2004054003A (en) 2002-07-22 2002-07-22 Optoelectronic substrate

Publications (1)

Publication Number Publication Date
JP2004054003A true JP2004054003A (en) 2004-02-19

Family

ID=31935299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002212338A Pending JP2004054003A (en) 2002-07-22 2002-07-22 Optoelectronic substrate

Country Status (1)

Country Link
JP (1) JP2004054003A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1619528A1 (en) 2004-07-23 2006-01-25 Shinko Electric Industries Co., Ltd. Semiconductor device with an optical waveguide mounting member and the method of manufacturing thereof
EP1624478A2 (en) * 2004-07-16 2006-02-08 Shinko Electric Industries Co., Ltd. Substrate, semiconductor device, method of manufacturing substrate, and method of manufacturing semiconductor device
JP2006178001A (en) * 2004-12-20 2006-07-06 Ibiden Co Ltd Optical path convertible member, multilayer printed wiring board, and optical communication device
JP2006284781A (en) * 2005-03-31 2006-10-19 Furukawa Electric Co Ltd:The Circuit board
WO2006115248A1 (en) * 2005-04-25 2006-11-02 Kyocera Corporation Optical coupling structure, substrate with built-in optical transmission function and method for manufacturing such substrate
US7230278B2 (en) * 2003-09-01 2007-06-12 Kabushiki Kaisha Toshiba Optoelectronic semiconductor device and light signal input/output device
WO2007114316A1 (en) 2006-03-30 2007-10-11 Kyocera Corporation Optical transmission substrate and method for fabricating the same, and optoelectronic hybrid substrate
JP2008281817A (en) * 2007-05-11 2008-11-20 Shinko Electric Ind Co Ltd Opto-electric hybrid substrate and method for manufacturing the same
JP2009198946A (en) * 2008-02-25 2009-09-03 Fujikura Ltd Optical path alternation structure, method of manufacturing the same, and optical transmitter/receiver
JP2009258417A (en) * 2008-04-17 2009-11-05 Nitto Denko Corp Manufacturing method of optical waveguide module
CN104101958A (en) * 2013-04-03 2014-10-15 鸿富锦精密工业(深圳)有限公司 Light communication device
US8989531B2 (en) 2009-03-30 2015-03-24 Kyocera Corporation Optical-electrical wiring board and optical module
CN108140688A (en) * 2015-09-28 2018-06-08 曜晟光电有限公司 Semiconductor structure
US11520236B2 (en) * 2019-10-29 2022-12-06 Waymo Llc Non-telecentric light guide elements

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7427804B2 (en) 2003-09-01 2008-09-23 Kabushiki Kaisha Toshiba Optoelectronic semiconductor device and light signal input/output device
US7230278B2 (en) * 2003-09-01 2007-06-12 Kabushiki Kaisha Toshiba Optoelectronic semiconductor device and light signal input/output device
EP1624478A3 (en) * 2004-07-16 2008-03-12 Shinko Electric Industries Co., Ltd. Substrate, semiconductor device, method of manufacturing substrate, and method of manufacturing semiconductor device
EP1624478A2 (en) * 2004-07-16 2006-02-08 Shinko Electric Industries Co., Ltd. Substrate, semiconductor device, method of manufacturing substrate, and method of manufacturing semiconductor device
US7221816B2 (en) 2004-07-16 2007-05-22 Shinko Electric Industries Co., Ltd. Substrate, semiconductor device, method of manufacturing substrate, and method of manufacturing semiconductor device
JP2006039046A (en) * 2004-07-23 2006-02-09 Shinko Electric Ind Co Ltd Optical waveguide mounting member, substrate, semiconductor device, manufacturing method of optical waveguide mounting member, and manufacturing method of substrate
JP4558400B2 (en) * 2004-07-23 2010-10-06 新光電気工業株式会社 Semiconductor device
EP1619528A1 (en) 2004-07-23 2006-01-25 Shinko Electric Industries Co., Ltd. Semiconductor device with an optical waveguide mounting member and the method of manufacturing thereof
US7251391B2 (en) 2004-07-23 2007-07-31 Shinko Electric Industries Co., Ltd. Optical waveguide mounting member, substrate, semiconductor device, method of manufacturing optical waveguide mounting member, and method of manufacturing substrate
JP2006178001A (en) * 2004-12-20 2006-07-06 Ibiden Co Ltd Optical path convertible member, multilayer printed wiring board, and optical communication device
US7995880B2 (en) 2004-12-20 2011-08-09 Ibiden Co., Ltd. Optical path converting member, multilayer print circuit board, and device for optical communication
JP4646618B2 (en) * 2004-12-20 2011-03-09 イビデン株式会社 Optical path conversion member, multilayer printed wiring board, and optical communication device
JP2006284781A (en) * 2005-03-31 2006-10-19 Furukawa Electric Co Ltd:The Circuit board
WO2006115248A1 (en) * 2005-04-25 2006-11-02 Kyocera Corporation Optical coupling structure, substrate with built-in optical transmission function and method for manufacturing such substrate
US7986862B2 (en) 2006-03-30 2011-07-26 Kyocera Corporation Optical transmission substrate, method for fabricating the same, and optoelectronic hybrid substrate
JPWO2007114316A1 (en) * 2006-03-30 2009-08-20 京セラ株式会社 OPTICAL TRANSMISSION BOARD, MANUFACTURING METHOD THEREOF, AND OPTICAL ELECTRONIC HYBRID SUBSTRATE
WO2007114316A1 (en) 2006-03-30 2007-10-11 Kyocera Corporation Optical transmission substrate and method for fabricating the same, and optoelectronic hybrid substrate
JP2008281817A (en) * 2007-05-11 2008-11-20 Shinko Electric Ind Co Ltd Opto-electric hybrid substrate and method for manufacturing the same
JP2009198946A (en) * 2008-02-25 2009-09-03 Fujikura Ltd Optical path alternation structure, method of manufacturing the same, and optical transmitter/receiver
JP2009258417A (en) * 2008-04-17 2009-11-05 Nitto Denko Corp Manufacturing method of optical waveguide module
US8989531B2 (en) 2009-03-30 2015-03-24 Kyocera Corporation Optical-electrical wiring board and optical module
CN104101958A (en) * 2013-04-03 2014-10-15 鸿富锦精密工业(深圳)有限公司 Light communication device
CN104101958B (en) * 2013-04-03 2017-10-03 赛恩倍吉科技顾问(深圳)有限公司 optical communication device
CN108140688A (en) * 2015-09-28 2018-06-08 曜晟光电有限公司 Semiconductor structure
US11520236B2 (en) * 2019-10-29 2022-12-06 Waymo Llc Non-telecentric light guide elements
US11868050B2 (en) 2019-10-29 2024-01-09 Waymo Llc Non-telecentric light guide elements

Similar Documents

Publication Publication Date Title
US7324723B2 (en) Optical waveguide having specular surface formed by laser beam machining
JP2004054003A (en) Optoelectronic substrate
JPWO2002073256A1 (en) Optical circuit element, method of manufacturing the same, arrayed optical circuit element, and optical circuit device using the same
JP2008009098A (en) Optical connection device and mounting method
JP3257776B2 (en) Optical module mounting structure
JP2004029798A (en) Alignment device
US7526153B2 (en) Optical element device and two-dimensional optical waveguide device and optoelectronic circuit board using the same
JP4659422B2 (en) Manufacturing method of optical waveguide
WO2004015463A1 (en) Mirrors for polymer waveguides
JP2003131081A (en) Semiconductor device, photoelectric combined substrate, method for manufacturing the same, and electronics device using the same
US7407595B2 (en) Optical member, manufacturing method of the optical member, waveguide substrate, and photo-electric integrated substrate
US7391937B2 (en) Compact transition in layered optical fiber
JP5244585B2 (en) OPTICAL TRANSMISSION BOARD, MANUFACTURING METHOD THEREOF, AND OPTICAL TRANSMISSION DEVICE
JP3795869B2 (en) Optical module
JP2010217322A (en) Optical coupling structure and optical transmission and reception module
JP2004233687A (en) Optical waveguide substrate and optical module
JP2930178B2 (en) Light receiving structure of waveguide type optical device
JP4511291B2 (en) Manufacturing method of optical connection device and optical connection device
JP4609311B2 (en) Optical transceiver
JPH10170765A (en) Optical waveguide
JP2005164801A (en) Optical waveguide film and its manufacturing method
JP2006047764A (en) Projected optical waveguide, method of manufacturing the same and optoelectric hybrid substrate using the same
JP2012098756A (en) Optical path converting body and packaging structure thereof, and optical module with the same
JP2008046333A (en) Optical transmission/reception module
JP4119809B2 (en) Opto-electric hybrid board

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040712