JP2005062645A - Optical connection structure body and its manufacturing method - Google Patents

Optical connection structure body and its manufacturing method Download PDF

Info

Publication number
JP2005062645A
JP2005062645A JP2003294933A JP2003294933A JP2005062645A JP 2005062645 A JP2005062645 A JP 2005062645A JP 2003294933 A JP2003294933 A JP 2003294933A JP 2003294933 A JP2003294933 A JP 2003294933A JP 2005062645 A JP2005062645 A JP 2005062645A
Authority
JP
Japan
Prior art keywords
optical
frame
wiring layer
connection structure
frame member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003294933A
Other languages
Japanese (ja)
Inventor
Koichi Kumai
晃一 熊井
Mamoru Ishizaki
守 石崎
Hatsune Hara
初音 原
Shinichi Inoue
真一 井上
Taketo Tsukamoto
健人 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2003294933A priority Critical patent/JP2005062645A/en
Publication of JP2005062645A publication Critical patent/JP2005062645A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical connection structure body in which increase in loss caused by warping, extension and contraction of an optical wiring layer is suppressed and to provide a manufacturing method of the optical connection structure body. <P>SOLUTION: The optical connection structure body is provided with optical parts mounted on a substrate, a frame member which is arranged to surround the optical parts and an optical wiring layer which is adhered to the frame member and has a mirror at its tip part. Firstly, in the optical connection structure body, increase in the loss caused by the deformation of the optical wiring layer is prevented by adhering the optical wiring layer around the optical parts using the frame member. Secondly, spreading of light beams and reflection is suppressed by burying inside of the frame with optical adhesive and better and stable connection is realized. Thirdly, the amount of use of the adhesive is limited by burying a portion of the frame by the optical adhesive and a simple manufacturing method is realized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光インターコネクション等に使用する光配線層を含む光接続構造体及びその製造方法に関する。   The present invention relates to an optical connection structure including an optical wiring layer used for optical interconnection and the like, and a manufacturing method thereof.

近年、光通信技術の進展によって、光の優位性が実証されてきた。また、LSI等の信号の高速化に伴い、電気信号を光信号に置き換える技術の研究開発が進められている。光信号を伝送する媒体が光配線であり、光配線としては光ファイバや光導波路が期待されている。光配線を面内に含む構造が光配線層である。   In recent years, the superiority of light has been demonstrated by the progress of optical communication technology. In addition, with the speeding up of signals of LSIs and the like, research and development of techniques for replacing electrical signals with optical signals are being carried out. A medium for transmitting an optical signal is an optical wiring, and an optical fiber or an optical waveguide is expected as the optical wiring. The structure including the optical wiring in the plane is the optical wiring layer.

近年開発が進められている高分子光導波路は、大面積に形成することが可能であり、1cm〜1mのオーダーの光インターコネクションへの適用が図られている。また、光配線層上に光路変換ミラーを形成して、光配線層の表面に光部品を実装することが行われている。   Polymer optical waveguides that have been developed in recent years can be formed in a large area, and are applied to optical interconnections on the order of 1 cm to 1 m. In addition, an optical path conversion mirror is formed on the optical wiring layer, and an optical component is mounted on the surface of the optical wiring layer.

従来は図11のように、基板上の光部品2(発光部品または受光部品)の上方にミラー6付き光配線層5を設置し、電気信号を光信号に変えてやりとりする方法があった(非特許文献1参照)。電気信号は、発光素子2aであるVCSELによって光に変換され、光は光配線層5の端面ミラー6によって光路変換され、光配線5aに沿って進む。また、光配線層5を通ってきた光が端面ミラー6によって光路変換され、受光素子2bであるPDに入って、電気に変換される。   Conventionally, as shown in FIG. 11, there is a method in which an optical wiring layer 5 with a mirror 6 is installed above an optical component 2 (light emitting component or light receiving component) on a substrate, and an electrical signal is converted into an optical signal and exchanged ( Non-patent document 1). The electrical signal is converted into light by the VCSEL which is the light emitting element 2a, and the light is optically converted by the end face mirror 6 of the optical wiring layer 5 and travels along the optical wiring 5a. In addition, the light that has passed through the optical wiring layer 5 is optically path-converted by the end face mirror 6, enters the PD that is the light receiving element 2b, and is converted into electricity.

しかしながら、この構造では、光配線層5が張り出した構造になっており、光配線層5が上または下に反ったり、光配線層5が熱膨張等によって伸縮したりすることによって、接続効率が悪化する場合があった。
IEEE Jounal of Selected Topics in Quantum Electronics,Vol.5,No.5,1999 pp.1237−1242.のFig.1(b)。
However, in this structure, the optical wiring layer 5 protrudes, and the connection efficiency is improved by the optical wiring layer 5 warping up or down, or the optical wiring layer 5 expanding or contracting due to thermal expansion or the like. There were cases where it worsened.
IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, no. 5, 1999 pp. 1237-1242. FIG. 1 (b).

本発明は、係る従来技術の状況に鑑みてなされたもので、光配線層の反りや伸縮による損失の増加を抑えられる光接続構造体を提供することを目的とする。また、その製造方法を提供することを目的とする。   The present invention has been made in view of the state of the related art, and an object thereof is to provide an optical connection structure that can suppress an increase in loss due to warping or expansion / contraction of an optical wiring layer. Moreover, it aims at providing the manufacturing method.

上記の課題を達成するために、まず請求項1の発明は、少なくとも基板上に実装された光部品と、該光部品を囲むように設置された枠部材と、該枠部材に接着された、端部にミラーを有する光配線層からなることを特徴とする光接続構造体としたものである。   In order to achieve the above object, first, the invention of claim 1 is an optical component mounted on at least a substrate, a frame member installed so as to surround the optical component, and bonded to the frame member. The optical connection structure is characterized by comprising an optical wiring layer having a mirror at the end.

請求項2の発明は、上記枠部材が、基板と同等の材質からなることを特徴とする請求項1記載の光接続構造体としたものである。   The invention according to claim 2 is the optical connection structure according to claim 1, wherein the frame member is made of the same material as the substrate.

請求項3の発明は、上記枠内を、光学接着剤で埋めてなることを特徴とする請求項1又は2記載の光接続構造体としたものである。   The invention according to claim 3 is the optical connection structure according to claim 1 or 2, wherein the inside of the frame is filled with an optical adhesive.

請求項4の発明は、上記光学接着剤が、枠内の一部のみを埋め込むことを特徴とする請求項3記載の光接続構造体としたものである。   The invention according to claim 4 is the optical connection structure according to claim 3, wherein the optical adhesive embeds only a part of the frame.

請求項5の発明は、光部品を実装した基板上に、該光部品を囲むように枠部材を設置し、上記枠内に光学接着剤を流し込んだ後に、端部にミラーを有する光配線層を枠上に接着することを特徴とする光接続構造体の製造方法としたものである。   According to the invention of claim 5, an optical wiring layer having a mirror at an end after a frame member is installed on a substrate on which the optical component is mounted so as to surround the optical component, and an optical adhesive is poured into the frame. Is bonded to a frame, and the manufacturing method of the optical connection structure is provided.

請求項6の発明は、光部品を実装した基板上に、該光部品を囲むように枠部材を設置し、端部にミラーを有する光配線層を枠上に接着した後に、上記枠内に光学接着剤を流し込むことを特徴とする光接続構造体の製造方法としたものである。   In a sixth aspect of the present invention, a frame member is placed on a substrate on which an optical component is mounted so as to surround the optical component, and an optical wiring layer having a mirror at an end is bonded onto the frame, and then the frame is placed in the frame. An optical connection structure manufacturing method is characterized by pouring an optical adhesive.

以上の説明から理解できるように、本発明には、以下の効果がある。   As can be understood from the above description, the present invention has the following effects.

第1に、光部品の周囲に枠部材を用い、光配線層を接着することにより、光配線層の変形による損失増を防止できる。第2に、枠内を光学接着剤で埋め込むことにより、光の広がりや反射を抑え、より良好かつ安定な接続を実現できる。第3に、枠内の一部のみを光学接着剤で埋め込むことにより、接着剤の使用量を抑え、かつ簡便な方法で製造できる。   First, an increase in loss due to deformation of the optical wiring layer can be prevented by using a frame member around the optical component and bonding the optical wiring layer. Second, by embedding the inside of the frame with an optical adhesive, it is possible to suppress the spread and reflection of light and realize a better and more stable connection. Thirdly, by embedding only a part of the inside of the frame with an optical adhesive, the amount of adhesive used can be suppressed and it can be manufactured by a simple method.

本発明の実施の形態について、以下詳細に説明する。   Embodiments of the present invention will be described in detail below.

請求項1は、基板1と光配線層5との間隔を規定する枠部材3を設けることにより、基板1上の光部品2と光配線層5との距離を一定に保つ。ここで枠部材3とは、光部品2の周囲を完全に囲み、光配線層5の光路変換ミラー6の周囲180゜以上を保持する形状(図1)か、少なくとも光部品2の周囲180゜以上を囲み、光配線層5の光路変換ミラーの周囲180゜以上を保持する形状(図2)を有する。この枠部材3に光配線層5を接着することにより、光配線層5の変形を抑え、光接続を正常な状態に保つことができる。また、枠以外にたるみ部分7を設けることにより、熱膨張による伸縮の影響をなくすことができる。なお、光部品2との電気信号のやりとりは、基板1上に形成した電気配線によって行う。電気接続の方法は、ワイヤボンディング、フリップチップボンディング等を用いることができるが、これらに限定されるものではない。   According to the first aspect of the present invention, the distance between the optical component 2 on the substrate 1 and the optical wiring layer 5 is kept constant by providing the frame member 3 that defines the distance between the substrate 1 and the optical wiring layer 5. Here, the frame member 3 has a shape (FIG. 1) that completely surrounds the periphery of the optical component 2 and holds at least 180 ° around the optical path conversion mirror 6 of the optical wiring layer 5 or at least 180 ° around the optical component 2. Surrounding the above, the optical wiring layer 5 has a shape (FIG. 2) that holds 180 ° or more around the optical path conversion mirror. By bonding the optical wiring layer 5 to the frame member 3, deformation of the optical wiring layer 5 can be suppressed and the optical connection can be maintained in a normal state. Further, by providing the slack portion 7 other than the frame, the influence of expansion and contraction due to thermal expansion can be eliminated. Note that the exchange of electric signals with the optical component 2 is performed by electric wiring formed on the substrate 1. As a method of electrical connection, wire bonding, flip chip bonding, or the like can be used, but the method is not limited to these.

請求項2は、上記枠部材3の平面方向の熱膨張係数と、上記基板1の平面方向の熱膨張係数の差が10ppm/℃以内であることを規定する。特に請求項3は、上記枠部材3が、基板1と同等の材質からなることを規定する。これらは、温度が変わっても熱膨張係数差による変形を起こさないためである。例えば基板1としてガラスエポキシを用いた場合、枠部材3として銅、ガラスエポキシ、ビスマレイミドトリアジン、ポリイミド樹脂等を用いることができる。   Claim 2 defines that the difference between the thermal expansion coefficient in the planar direction of the frame member 3 and the thermal expansion coefficient in the planar direction of the substrate 1 is within 10 ppm / ° C. In particular, the third aspect defines that the frame member 3 is made of the same material as the substrate 1. These are because deformation due to a difference in thermal expansion coefficient does not occur even when the temperature changes. For example, when glass epoxy is used as the substrate 1, copper, glass epoxy, bismaleimide triazine, polyimide resin, or the like can be used as the frame member 3.

請求項4は、上記枠部材3の熱伝導率が10W/m・K以上であることを規定する。特に請求項5は、上記枠部材3が金属であることを規定する。これらは、面内に温度分布が起こっても、光部品近傍の温度を平均化することにより、温度分布による変形を起こさないためである。   The fourth aspect defines that the thermal conductivity of the frame member 3 is 10 W / m · K or more. Particularly, claim 5 defines that the frame member 3 is a metal. This is because even if a temperature distribution occurs in the plane, the temperature in the vicinity of the optical component is averaged to prevent deformation due to the temperature distribution.

請求項6は、上記枠内を、光学接着剤4で埋めることを規定する(図3)。これにより、光部品2と光配線層5との位置関係を強固に固定できること、光の広がりを小さくできること、光配線層5表面での反射を低減できることができる。   Claim 6 defines that the inside of the frame is filled with the optical adhesive 4 (FIG. 3). Thereby, the positional relationship between the optical component 2 and the optical wiring layer 5 can be firmly fixed, the spread of light can be reduced, and the reflection on the surface of the optical wiring layer 5 can be reduced.

光部品2と光配線層4との位置関係を強固に固定できるのは、光路全体を固体化できるためである。光の広がりを小さくできるのは、屈折率1の空気でなく屈折率が大きい(例えば1.4〜1.8程度の)光学接着剤4を用いることにより、VCSEL2aあるいは光配線層5から出射される光の回折角が小さくなるためである(図4)。光配線層5表面での反射を小さくできるのは、屈折率1の空気でなく屈折率が光配線層5に近い(例えばクラッド5bの屈折率±5%以内程度の)光学接着剤4を用いることにより、屈折率変化を小さくできるためである。   The reason why the positional relationship between the optical component 2 and the optical wiring layer 4 can be firmly fixed is that the entire optical path can be solidified. The light spread can be reduced by using the optical adhesive 4 having a large refractive index (for example, about 1.4 to 1.8) instead of air having a refractive index of 1, and is emitted from the VCSEL 2a or the optical wiring layer 5. This is because the diffraction angle of the light becomes smaller (FIG. 4). The reflection on the surface of the optical wiring layer 5 can be reduced by using the optical adhesive 4 that has a refractive index close to that of the optical wiring layer 5 (for example, the refractive index of the cladding 5b is within ± 5%) instead of air having a refractive index of 1. This is because the change in refractive index can be reduced.

請求項7は、上記光学接着剤4が、枠内の一部のみを埋めることを規定する(図5、6)。これにより、光学接着剤4の使用量を減らすことができるとともに、構造体の作製が容易になる。   Claim 7 defines that the optical adhesive 4 fills only a part of the frame (FIGS. 5 and 6). Thereby, while the usage-amount of the optical adhesive 4 can be reduced, preparation of a structure becomes easy.

請求項8は、上記枠内に光学接着剤4を埋め込んだ後に、光配線層5を枠上に接着することを特徴とする(図7、9)。請求項6は、上記光配線層5を枠上に接着した後に、枠内に光学接着剤4を流し込むことを特徴とする(図8)。   The eighth aspect is characterized in that after the optical adhesive 4 is embedded in the frame, the optical wiring layer 5 is bonded onto the frame (FIGS. 7 and 9). According to a sixth aspect of the present invention, the optical adhesive 4 is poured into the frame after the optical wiring layer 5 is bonded onto the frame (FIG. 8).

図7は、図3の構造体を製造する方法の一例である。基板1上に光部品2を実装し(a)、実装された光部品2を囲むように枠3を実装し(b)、枠内を光学接着剤4で埋め込む(c)。光学接着剤4としては、エポキシ樹脂やアクリル樹脂等が好適に用いられる。硬化方法としては、紫外線硬化、室温硬化、熱硬化等が可能であるが、紫外線硬化が好適に用いられる。また、埋め込み後、表面研磨を行ってもよい。この上に、ミラー6付き光配線層5を位置合わせ、接着固定する(d)。   FIG. 7 is an example of a method for manufacturing the structure of FIG. The optical component 2 is mounted on the substrate 1 (a), the frame 3 is mounted so as to surround the mounted optical component 2 (b), and the inside of the frame is embedded with the optical adhesive 4 (c). As the optical adhesive 4, an epoxy resin, an acrylic resin, or the like is preferably used. As a curing method, ultraviolet curing, room temperature curing, thermal curing, and the like are possible, but ultraviolet curing is preferably used. Further, after the embedding, surface polishing may be performed. On this, the optical wiring layer 5 with the mirror 6 is aligned and fixed by bonding (d).

図8は、図5の構造体を製造する方法の一例である。基板1上に光部品2を実装し(a)、実装された光部品2を囲むように枠3を実装し(b)、先に光配線層5を接着する。この際、あらかじめ光学接着剤4を枠上あるいは光配線層5に滴下しておき、両者を位置合わせしてから、紫外線硬化等によって接着する(c)。その後、シリンジ等を用いて光部品2・光配線層5間に光学接着剤4を流し込み、紫外線硬化等によって硬化させる(d)。   FIG. 8 shows an example of a method for manufacturing the structure of FIG. The optical component 2 is mounted on the substrate 1 (a), the frame 3 is mounted so as to surround the mounted optical component 2 (b), and the optical wiring layer 5 is bonded first. At this time, the optical adhesive 4 is dropped on the frame or the optical wiring layer 5 in advance, the two are aligned, and then bonded by ultraviolet curing or the like (c). Thereafter, the optical adhesive 4 is poured between the optical component 2 and the optical wiring layer 5 using a syringe or the like and cured by ultraviolet curing or the like (d).

図9は、図6の構造体を製造する方法の一例である。基板1上に光部品2を実装し(a)、実装された光部品2を囲むように枠3を実装し(b)、枠内を光学接着剤4で埋め込む。この際、枠内全体を埋め込むのでなく、一部のみを埋め込む。例えば光学接着剤4を適量滴下した後、上面にダミーフィルムを載せた状態で硬化させる(図示せず)。あるいは、上面にダミーフィルムを載せた状態で、シリンジ等を用いて光部品2・ダミーフィルム間に光学接着剤4を流し込み、紫外線硬化等によって硬化させる(図示せず)。ダミーフィルムを除去することで一部埋め込みができる(c)。この上に、ミラー6付き光配線層5を位置合わせ、接着固定する(d)。   FIG. 9 is an example of a method for manufacturing the structure of FIG. The optical component 2 is mounted on the substrate 1 (a), the frame 3 is mounted so as to surround the mounted optical component 2 (b), and the inside of the frame is embedded with the optical adhesive 4. At this time, instead of embedding the entire frame, only a part is embedded. For example, an appropriate amount of the optical adhesive 4 is dropped and then cured with a dummy film placed on the upper surface (not shown). Alternatively, with the dummy film placed on the upper surface, the optical adhesive 4 is poured between the optical component 2 and the dummy film using a syringe or the like and cured by ultraviolet curing or the like (not shown). Part of the film can be embedded by removing the dummy film (c). On this, the optical wiring layer 5 with the mirror 6 is aligned and fixed by bonding (d).

このように、枠内の一部のみを埋め込むことにより、図8や図9のような方法によって、表面研磨なしで平坦化することができ、工程を簡略化できる。   Thus, by embedding only a part of the frame, it is possible to planarize without surface polishing by the method as shown in FIGS. 8 and 9, and the process can be simplified.

なお、光部品2の実装と、枠部材3の実装の順序は、どちらが先でもよい。また、ミラー4としては、端面をカットした全反射ミラーだけでなく、反射膜を成膜したミラーや、反射膜を埋め込んだミラー等、各種ミラーが使用可能である。位置合わせには、光部品2上と光配線層5中のアライメントマークを合わせる方法が好適に用いられる。   Note that the order of mounting the optical component 2 and the mounting of the frame member 3 may be either first. Further, as the mirror 4, various mirrors such as a mirror with a reflection film and a mirror with a reflection film embedded therein can be used as well as a total reflection mirror with a cut end surface. For alignment, a method of aligning the alignment marks on the optical component 2 and the optical wiring layer 5 is preferably used.

この接続構造体は、光部品2と外部のファイバアレイ(図示せず)を接続するだけでなく、同一基板1内の光部品2同士の接続や、近接基板1内の光部品2同士の接続にも用いることができる。光配線層5には、MTコネクタ等の光コネクタを接続してもよい。   This connection structure not only connects the optical component 2 and an external fiber array (not shown), but also connects the optical components 2 in the same substrate 1 or connects the optical components 2 in the adjacent substrate 1. Can also be used. An optical connector such as an MT connector may be connected to the optical wiring layer 5.

[枠内全埋め込み]
本発明の実施例について、図7を用いて説明する。基板1(ガラスエポキシ樹脂:平面方向の熱膨張係数=15〜16ppm/℃)上に、VCSELアレイ2aをフリップチップボンディングした(a)。次に、図5と同じ形状の枠部材3(ビスマレイミドトリアジン樹脂:平面方向の熱膨張係数=13〜16ppm/℃、熱伝導率=0.4W/m・K)をベアチップ接着剤を用いて実装し(b)、枠内を光学接着剤4で埋め込み、紫外線硬化後、上面を研磨した(c)。最後に、光配線層5裏面に光学接着剤4を滴下後、VCSEL2aに位置合わせし、紫外線硬化によって固定し(d)、図3の構造体が完成した。
[Embed all in frame]
An embodiment of the present invention will be described with reference to FIG. The VCSEL array 2a was flip-chip bonded on the substrate 1 (glass epoxy resin: thermal expansion coefficient in the planar direction = 15 to 16 ppm / ° C.) (a). Next, frame member 3 (bismaleimide triazine resin: thermal expansion coefficient in the plane direction = 13 to 16 ppm / ° C., thermal conductivity = 0.4 W / m · K) having the same shape as FIG. 5 is used with a bare chip adhesive. After mounting (b), the inside of the frame was filled with the optical adhesive 4, and after UV curing, the upper surface was polished (c). Finally, after the optical adhesive 4 was dropped on the back surface of the optical wiring layer 5, it was aligned with the VCSEL 2a and fixed by ultraviolet curing (d) to complete the structure shown in FIG.

同様の方法によって、PD側の接続も行った。両側ミラー付き導波路で長さ3cmの場合、光損失は約3dBであった。パルス信号を用いて、光伝送を安定して行うことができた。   The PD side connection was also made in the same manner. When the length of the waveguide with mirrors on both sides was 3 cm, the optical loss was about 3 dB. Using the pulse signal, optical transmission could be performed stably.

[枠内一部埋め込み1]
本発明の実施例について、図8を用いて説明する。基板1(ガラスエポキシ樹脂:平面方向の熱膨張係数=15〜16ppm/℃)上に、VCSELアレイ2aをベアチップボンディングした(a)。次に、図5と同じ形状の枠部材3(ガラスエポキシ樹脂:平面方向の熱膨張係数=15〜16ppm/℃、熱伝導率=0.4W/m・K)をベアチップ接着剤を用いて実装し、VCSELアレイ2aにワイヤボンディングを施した(b)。枠上面に光学接着剤4を滴下後、光配線層5をVCSEL2aに位置合わせし、紫外線硬化によって固定した(c)。最後に、シリンジによって枠内のVCSEL2a・光配線層5間に光学接着剤4を流し込み、紫外線硬化させた(d)。
[Partially embedded in frame 1]
An embodiment of the present invention will be described with reference to FIG. On the substrate 1 (glass epoxy resin: coefficient of thermal expansion in the planar direction = 15 to 16 ppm / ° C.), the VCSEL array 2a was bare chip bonded (a). Next, the frame member 3 having the same shape as that of FIG. 5 (glass epoxy resin: coefficient of thermal expansion in the planar direction = 15 to 16 ppm / ° C., thermal conductivity = 0.4 W / m · K) is mounted using a bare chip adhesive. Then, wire bonding was performed on the VCSEL array 2a (b). After the optical adhesive 4 was dropped on the upper surface of the frame, the optical wiring layer 5 was aligned with the VCSEL 2a and fixed by ultraviolet curing (c). Finally, the optical adhesive 4 was poured between the VCSEL 2a and the optical wiring layer 5 in the frame with a syringe and cured with ultraviolet rays (d).

同様の方法によって、PD側の接続も行った。両側ミラー付き導波路で長さ3cmの場合、光損失は約3dBであった。パルス信号を用いて、光伝送を安定して行うことができた。   The PD side connection was also made in the same manner. When the length of the waveguide with mirrors on both sides was 3 cm, the optical loss was about 3 dB. Using the pulse signal, optical transmission could be performed stably.

[枠内一部埋め込み2]
本発明の実施例について、図9を用いて説明する。基板1(ガラスエポキシ樹脂:平面方向の熱膨張係数=15〜16ppm/℃)上に、VCSELアレイ2aをフリップチップボンディングした(a)。次に、図6と同じ形状の枠部材3(ガラスエポキシ樹脂:平面方向の熱膨張係数=15〜16ppm/℃、熱伝導率=0.4W/m・K)をベアチップ接着剤を用いて実装した(b)。シリコーン処理PETフィルム(図示せず)を枠上に載せて、シリンジによって枠内に光学接着剤4を流し込み、紫外線硬化させた後にシリコーン処理PETを剥がすことによって部分埋め込みした(c)。最後に、枠上面に光学接着剤4を滴下後、光配線層5をVCSEL2aに位置合わせし、紫外線硬化によって固定した(d)。
[Partially embedded in frame 2]
An embodiment of the present invention will be described with reference to FIG. The VCSEL array 2a was flip-chip bonded on the substrate 1 (glass epoxy resin: thermal expansion coefficient in the planar direction = 15 to 16 ppm / ° C.) (a). Next, the frame member 3 (glass epoxy resin: coefficient of thermal expansion in the plane direction = 15 to 16 ppm / ° C., thermal conductivity = 0.4 W / m · K) having the same shape as FIG. 6 is mounted using a bare chip adhesive. (B). A silicone-treated PET film (not shown) was placed on the frame, and the optical adhesive 4 was poured into the frame by a syringe, UV cured, and then partially embedded by removing the silicone-treated PET (c). Finally, after the optical adhesive 4 was dropped on the upper surface of the frame, the optical wiring layer 5 was aligned with the VCSEL 2a and fixed by ultraviolet curing (d).

同様の方法によって、PD側の接続も行った。両側ミラー付き導波路で長さ3cmの場合、光損失は約3dBであった。パルス信号を用いて、光伝送を安定して行うことができた。   The PD side connection was also made in the same manner. When the length of the waveguide with mirrors on both sides was 3 cm, the optical loss was about 3 dB. Using the pulse signal, optical transmission could be performed stably.

[金属枠]
本発明の実施例について、図10を用いて説明する。基板1(ガラスエポキシ樹脂:平面方向の熱膨張係数=15〜16ppm/℃)上に、VCSELアレイ2aをベアチップボンディングした(a)。次に、図6と同じ形状の枠部材3(銅(熱膨張係数=16.5ppm/℃、熱伝導率=400W/m・K)にニッケルめっきしたもの)をベアチップ接着剤を用いて実装し、VCSELアレイ2aにワイヤボンディングを施した(b)。枠上面に光学接着剤を滴下後、光配線層5をVCSELアレイ2aに位置合わせし、紫外線硬化によって固定した(c)。最後に、シリンジによって枠内のVCSEL2a・光配線層5間に光学接着剤4を流し込み、紫外線硬化させた(d)。
[Metal frame]
An embodiment of the present invention will be described with reference to FIG. On the substrate 1 (glass epoxy resin: coefficient of thermal expansion in the planar direction = 15 to 16 ppm / ° C.), the VCSEL array 2a was bare chip bonded (a). Next, the frame member 3 having the same shape as FIG. 6 (copper (coefficient of thermal expansion = 16.5 ppm / ° C., thermal conductivity = 400 W / m · K) plated with nickel) is mounted using a bare chip adhesive. Then, wire bonding was performed on the VCSEL array 2a (b). After the optical adhesive was dropped on the upper surface of the frame, the optical wiring layer 5 was aligned with the VCSEL array 2a and fixed by ultraviolet curing (c). Finally, the optical adhesive 4 was poured between the VCSEL 2a and the optical wiring layer 5 in the frame with a syringe and cured with ultraviolet rays (d).

同様の方法によって、PD側の接続も行った。両側ミラー付き導波路で長さ3cmの場合、光損失は約3dBであった。パルス信号を用いて、光伝送を安定して行うことができた。また、この場合、VCSELから2cm離れた点を加熱してVCSEL近傍に温度分布を与えても、伝送特性に変化は見られなかった。一方、実施例1〜3の場合、VCSEL近傍に温度分布を与えると信号の低下が見られた。   The PD side connection was also made in the same manner. When the length of the waveguide with mirrors on both sides was 3 cm, the optical loss was about 3 dB. Using the pulse signal, optical transmission could be performed stably. In this case, even if a point 2 cm away from the VCSEL was heated to give a temperature distribution in the vicinity of the VCSEL, no change was observed in the transmission characteristics. On the other hand, in Examples 1 to 3, when the temperature distribution was given in the vicinity of the VCSEL, the signal was reduced.

なお、枠部材3がステンレス(熱膨張係数=14.7ppm/℃、熱伝導率=15W/m・K)やアルミニウム(熱膨張係数=23.1ppm/℃、熱伝導率=240W/m・K)でも、銅(ニッケルめっき付き)と同様の効果があった。   The frame member 3 is made of stainless steel (thermal expansion coefficient = 14.7 ppm / ° C., thermal conductivity = 15 W / m · K) or aluminum (thermal expansion coefficient = 23.1 ppm / ° C., thermal conductivity = 240 W / m · K). However, it had the same effect as copper (with nickel plating).

比較例Comparative example

[ガラス枠]
本発明の実施例について、図10を用いて説明する。基板1(ガラスエポキシ樹脂:平面方向の熱膨張係数=15〜16ppm/℃)上に、VCSELアレイ2aをベアチップボンディングした(a)。次に、図6と同じ形状の枠部材3(石英ガラス:熱膨張係数=0.5ppm/℃)をベアチップ接着剤を用いて実装を試みたが、枠部材3が簡単に取れてしまった。
[Glass frame]
An embodiment of the present invention will be described with reference to FIG. On the substrate 1 (glass epoxy resin: coefficient of thermal expansion in the planar direction = 15 to 16 ppm / ° C.), the VCSEL array 2a was bare chip bonded (a). Next, an attempt was made to mount the frame member 3 (quartz glass: thermal expansion coefficient = 0.5 ppm / ° C.) having the same shape as in FIG. 6 using a bare chip adhesive, but the frame member 3 was easily removed.

本発明の光接続構造体の一例を示す斜視図である。It is a perspective view which shows an example of the optical connection structure of this invention. 本発明の光接続構造体の他の例を示す斜視図である。It is a perspective view which shows the other example of the optical connection structure of this invention. 本発明の光接続構造体の他の例を示す斜視図である。It is a perspective view which shows the other example of the optical connection structure of this invention. 従来および本発明の光の広がりを示す断面図である。It is sectional drawing which shows the breadth of the light of the past and this invention. 本発明の光接続構造体の他の例を示す斜視図である。It is a perspective view which shows the other example of the optical connection structure of this invention. 本発明の光接続構造体の他の例を示す斜視図である。It is a perspective view which shows the other example of the optical connection structure of this invention. 図3の光接続構造体の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the optical connection structure of FIG. 図5の光接続構造体の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the optical connection structure of FIG. 図6の光接続構造体の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the optical connection structure of FIG. 図6の光接続構造体の製造方法の他の例を示す断面図である。It is sectional drawing which shows the other example of the manufacturing method of the optical connection structure of FIG. 従来の光接続構造体の一例を示す斜視図である。It is a perspective view which shows an example of the conventional optical connection structure.

符号の説明Explanation of symbols

1 … 基板
2 … 光部品
2a … VCSEL
2b … PD
3 … 枠部材
4 … 光学接着剤
5 … 光配線層
5a … コア
5b … クラッド
6 … ミラー
7 … たるみ部分
10 … スペーサ
DESCRIPTION OF SYMBOLS 1 ... Board | substrate 2 ... Optical component 2a ... VCSEL
2b PD
DESCRIPTION OF SYMBOLS 3 ... Frame member 4 ... Optical adhesive 5 ... Optical wiring layer 5a ... Core 5b ... Cladding 6 ... Mirror 7 ... Slack part 10 ... Spacer

Claims (9)

少なくとも基板上に実装された光部品と、該光部品を囲むように設置された枠部材と、該枠部材に接着された、端部にミラーを有する光配線層からなることを特徴とする光接続構造体。   An optical component comprising at least an optical component mounted on a substrate, a frame member installed so as to surround the optical component, and an optical wiring layer having a mirror at an end bonded to the frame member Connection structure. 上記枠部材の平面方向の熱膨張係数と、上記基板の平面方向の熱膨張係数の差が10ppm/℃以内であることを特徴とする請求項1記載の光接続構造体。   2. The optical connection structure according to claim 1, wherein a difference between a thermal expansion coefficient in the planar direction of the frame member and a thermal expansion coefficient in the planar direction of the substrate is within 10 ppm / ° C. 3. 上記枠部材が、基板と同等の材質からなることを特徴とする請求項1又は2記載の光接続構造体。   3. The optical connection structure according to claim 1, wherein the frame member is made of a material equivalent to the substrate. 上記枠部材の熱伝導率が10W/m・K以上であることを特徴とする請求項1〜3の何れかに記載の光接続構造体。   The optical connection structure according to claim 1, wherein the frame member has a thermal conductivity of 10 W / m · K or more. 上記枠部材が金属であることを特徴とする請求項1〜4の何れかに記載の光接続構造体。   The optical connection structure according to claim 1, wherein the frame member is a metal. 上記枠内を、光学接着剤で埋めてなることを特徴とする請求項1〜5の何れかに記載の光接続構造体。   6. The optical connection structure according to claim 1, wherein the inside of the frame is filled with an optical adhesive. 上記光学接着剤が、枠内の一部のみを埋め込むことを特徴とする請求項6記載の光接続構造体。   7. The optical connection structure according to claim 6, wherein the optical adhesive embeds only a part of the frame. 基板上に、光部品と、該光部品を囲むような枠部材を設置し、光部品を実装した基板上に、該光部品を囲むように枠部材を設置し、上記枠内に光学接着剤を流し込んだ後に、端部にミラーを有する光配線層を枠上に接着することを特徴とする光接続構造体の製造方法。   An optical component and a frame member surrounding the optical component are installed on the substrate, and the frame member is installed on the substrate on which the optical component is mounted so as to surround the optical component. After pouring in, an optical wiring layer having a mirror at the end is bonded onto the frame. 基板上に、光部品と、該光部品を囲むような枠部材を設置し、光部品を実装した基板上に、該光部品を囲むように枠部材を設置し、端部にミラーを有する光配線層を枠上に接着した後に、上記枠内に光学接着剤を流し込むことを特徴とする光接続構造体の製造方法。   An optical component and a frame member that surrounds the optical component are installed on the substrate, and the frame member is installed to surround the optical component on the substrate on which the optical component is mounted, and light having a mirror at the end. A method for manufacturing an optical connection structure, wherein an optical adhesive is poured into the frame after the wiring layer is bonded onto the frame.
JP2003294933A 2003-08-19 2003-08-19 Optical connection structure body and its manufacturing method Pending JP2005062645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003294933A JP2005062645A (en) 2003-08-19 2003-08-19 Optical connection structure body and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003294933A JP2005062645A (en) 2003-08-19 2003-08-19 Optical connection structure body and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005062645A true JP2005062645A (en) 2005-03-10

Family

ID=34371324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003294933A Pending JP2005062645A (en) 2003-08-19 2003-08-19 Optical connection structure body and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005062645A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267501A (en) * 2005-03-23 2006-10-05 Fuji Xerox Co Ltd Method of manufacturing submount, submount and optical transmission/reception module
JP2007148107A (en) * 2005-11-29 2007-06-14 Omron Corp Optical cable module, its manufacturing method and electronic equipment having the same
WO2007116998A1 (en) * 2006-04-07 2007-10-18 Omron Corporation Optical cable module
WO2007119778A1 (en) * 2006-04-14 2007-10-25 Omron Corporation Optical module, method of producing optical module, optical transmission module, and electronic apparatus
JP2008020719A (en) * 2006-07-13 2008-01-31 Fuji Xerox Co Ltd Multi-core bidirectional communication waveguide array, method of manufacturing same, and bidirectional communication module
JP2008191397A (en) * 2007-02-05 2008-08-21 Fuji Xerox Co Ltd Optical module, optical transmitter, and method of manufacturing optical module
WO2008114657A1 (en) * 2007-03-16 2008-09-25 Omron Corporation Light transmission path package, light transmission module, electronic device and method for manufacturing light transmission module
JP2008256870A (en) * 2007-04-03 2008-10-23 Omron Corp Optical cable module and electronic device incorporating it
JP2011070045A (en) * 2009-09-28 2011-04-07 Toppan Printing Co Ltd Optical substrate and method of manufacturing the same
JP2012074453A (en) * 2010-09-28 2012-04-12 Sumitomo Bakelite Co Ltd Optical element mounted substrate
JP2014081411A (en) * 2012-10-12 2014-05-08 Nippon Telegr & Teleph Corp <Ntt> Multi-chip optical integrated module
WO2014196043A1 (en) * 2013-06-05 2014-12-11 株式会社日立製作所 Optical module and method for manufacturing optical module

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267501A (en) * 2005-03-23 2006-10-05 Fuji Xerox Co Ltd Method of manufacturing submount, submount and optical transmission/reception module
JP2007148107A (en) * 2005-11-29 2007-06-14 Omron Corp Optical cable module, its manufacturing method and electronic equipment having the same
JP4631671B2 (en) * 2005-11-29 2011-02-16 オムロン株式会社 Optical cable module and electronic device including optical cable module
KR100999685B1 (en) 2006-04-07 2010-12-08 오므론 가부시키가이샤 Optical cable module
WO2007116998A1 (en) * 2006-04-07 2007-10-18 Omron Corporation Optical cable module
US7657140B2 (en) 2006-04-07 2010-02-02 Omron Corporation Optical cable module
WO2007119778A1 (en) * 2006-04-14 2007-10-25 Omron Corporation Optical module, method of producing optical module, optical transmission module, and electronic apparatus
US8696216B2 (en) 2006-04-14 2014-04-15 Omron Corporation Optical module, method of producing optical module, optical transmission module, and electronic apparatus
JP2008020719A (en) * 2006-07-13 2008-01-31 Fuji Xerox Co Ltd Multi-core bidirectional communication waveguide array, method of manufacturing same, and bidirectional communication module
JP4692424B2 (en) * 2006-07-13 2011-06-01 富士ゼロックス株式会社 Waveguide array for multicore bidirectional communication, method for manufacturing the same, and bidirectional communication module
JP2008191397A (en) * 2007-02-05 2008-08-21 Fuji Xerox Co Ltd Optical module, optical transmitter, and method of manufacturing optical module
JPWO2008114657A1 (en) * 2007-03-16 2010-07-01 オムロン株式会社 OPTICAL TRANSMISSION PACKAGE, LIGHT TRANSMISSION MODULE, ELECTRONIC DEVICE, AND OPTICAL TRANSMISSION MODULE MANUFACTURING METHOD
EP2128671A1 (en) * 2007-03-16 2009-12-02 Omron Corporation Light transmission path package, light transmission module, electronic device and method for manufacturing light transmission module
KR101077729B1 (en) 2007-03-16 2011-10-27 오무론 가부시키가이샤 Light transmission path package, light transmission module, electronic device and method for manufacturing light transmission module
EP2128671A4 (en) * 2007-03-16 2012-11-07 Omron Tateisi Electronics Co Light transmission path package, light transmission module, electronic device and method for manufacturing light transmission module
JP5077342B2 (en) * 2007-03-16 2012-11-21 オムロン株式会社 OPTICAL TRANSMISSION PACKAGE, OPTICAL TRANSMISSION MODULE, ELECTRONIC DEVICE, AND OPTICAL TRANSMISSION MODULE MANUFACTURING METHOD
WO2008114657A1 (en) * 2007-03-16 2008-09-25 Omron Corporation Light transmission path package, light transmission module, electronic device and method for manufacturing light transmission module
US8792755B2 (en) 2007-03-16 2014-07-29 Omron Corporation Light transmission path package, light transmission module, electronic device and method for manufacturing light transmission module
JP2008256870A (en) * 2007-04-03 2008-10-23 Omron Corp Optical cable module and electronic device incorporating it
JP2011070045A (en) * 2009-09-28 2011-04-07 Toppan Printing Co Ltd Optical substrate and method of manufacturing the same
JP2012074453A (en) * 2010-09-28 2012-04-12 Sumitomo Bakelite Co Ltd Optical element mounted substrate
JP2014081411A (en) * 2012-10-12 2014-05-08 Nippon Telegr & Teleph Corp <Ntt> Multi-chip optical integrated module
WO2014196043A1 (en) * 2013-06-05 2014-12-11 株式会社日立製作所 Optical module and method for manufacturing optical module

Similar Documents

Publication Publication Date Title
KR101122442B1 (en) Printed circuit board element including at least one optical waveguide and method for producing such a printed circuit board element
KR100720854B1 (en) Photoelectric wiring board, packaging board, and photoelectric wiring board producing method
CN210072134U (en) Semiconductor device and electronic system
CN110945976A (en) Optical interconnect module based on glass substrate with polymer waveguides
JP4704126B2 (en) Optical module
JP2005062645A (en) Optical connection structure body and its manufacturing method
JP2003294964A (en) Optical communication module
JP2009198804A (en) Optical module and optical waveguide
KR20080068405A (en) Photoelectronic wired flexible printed circuit board using optical fiber
JP2006259730A (en) Apparatus and method for coupling optical element
JP2006259590A (en) Optical transmitting and receiving module
JPH1152198A (en) Optical connecting structure
JP2006251046A (en) Optical waveguide substrate, optical surface mounting waveguide element, and their manufacturing method
JP2007178950A (en) Optical wiring board and optical wiring module
JP2004233687A (en) Optical waveguide substrate and optical module
JP2011053717A (en) Optical path changing connector
JP2000214340A (en) Optical waveguide, light beam spot converter and optical transmission module
JP2007187870A (en) Optical module comprising structure of optical element embedded in substrate
JP3440090B1 (en) Optical communication component, laminated optical communication module, and method of manufacturing the same
JP2004354947A (en) Planar optical circuit component and its manufacturing method
KR100864829B1 (en) Opto-electric Interface Apparatus
JP2008197380A (en) Multichannel optical path converting element and its manufacturing method
KR20060096029A (en) Multichannel optical path changing device and its production method
JP2005338704A (en) Wiring board with optical coupling function, its manufacturing method and optical coupling system
JP2003021737A (en) Optical coupling structure of optical waveguide and light receiving element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104