JP2004354947A - Planar optical circuit component and its manufacturing method - Google Patents

Planar optical circuit component and its manufacturing method Download PDF

Info

Publication number
JP2004354947A
JP2004354947A JP2003155796A JP2003155796A JP2004354947A JP 2004354947 A JP2004354947 A JP 2004354947A JP 2003155796 A JP2003155796 A JP 2003155796A JP 2003155796 A JP2003155796 A JP 2003155796A JP 2004354947 A JP2004354947 A JP 2004354947A
Authority
JP
Japan
Prior art keywords
substrate
optical waveguide
optical
adhesive
waveguide circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003155796A
Other languages
Japanese (ja)
Other versions
JP4156442B2 (en
Inventor
Motohaya Ishii
元速 石井
Takeshi Kitagawa
毅 北川
Shinji Mino
真司 美野
Ikuo Ogawa
育生 小川
Toshikazu Hashimoto
俊和 橋本
Yoshiyuki Doi
芳行 土居
Takashi Yamada
貴 山田
Masahiro Yanagisawa
雅弘 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003155796A priority Critical patent/JP4156442B2/en
Publication of JP2004354947A publication Critical patent/JP2004354947A/en
Application granted granted Critical
Publication of JP4156442B2 publication Critical patent/JP4156442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To fix an optical waveguide circuit board and a substrate-attached optical component accurately onto a holding plate through an adhesive. <P>SOLUTION: The optical waveguide circuit board 101 has, on a planar base plate 104, a core 102 and a clad 103 that is formed in a manner surrounding the core. The holding plate 120 has adhesive surfaces 122, i.e., a plurality of difference-in-level surfaces sectioned by more than one steps of different depths, with a reference surface 121 provided at both ends which is one level higher than the adhesive surfaces 122. The optical waveguide circuit board 101 is fixed in the manner closely stuck to the uppermost surface which is the reference surface 121 of the holding plate 120. A proper amount of adhesive 114 is applied to the adhesive surfaces 122 which are the difference-in-level surfaces situated at a comparatively shallow position from the reference surface 121 of the holding plate 120. Then, the adhesive 114 is filled between the optical waveguide circuit board 101 and the adhesive surfaces 122, so that the optical waveguide circuit board 101 and the holding plate 120 are fixed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、平面光回路部品及びその作製方法に関し、より詳細には、光通信などの分野に適用され、光導波回路基板や基板付光部品を保持基板に接着固定してなる平面光回路部品及びその作製方法に関する。
【0002】
【従来の技術】
平面基板上に高い屈折率を有するコアと、このコアを取り囲む低い屈折率を有するクラッドとからなる光導波路、または基板上に固定された受光素子・発光素子などの基板付光部品は、光ファイバと接続させたり、あるいは光部品間で結合させたりすることによって、実用的で高機能な光デバイスを実現することが可能である。このような実用的で高機能な光デバイスとして、低損失かつ機械的強度に優れ、高い信頼性を有する光デバイスを作製するためには、光部品を安定的に把持する固定構造が必要となる。
【0003】
従来、光導波路の固定方法として、光導波路を保持基板(ホルダー)に接着固定する方法が用いられている。
図9は、従来の光導波路の固定方法を説明するための図で、図中符号401は光導波回路基板、414は接着剤、450は桶状の下部ホルダー、450aはスペーサ部、451は上部ホルダーを示している。
【0004】
この従来の光導波路の固定方法は、所定の機能を有する光回路部と光入出力導波路部とを備えた光導波回路基板401を、下部ホルダー450及び上部ホルダー451に固定するに際し、光回路部を下部ホルダー450及び上部ホルダー451に対して非接触状態に置くとともに、光入出力導波路部の一部を接着剤414により下部ホルダー450及び上部ホルダー451に固定している。このような従来の光導波路の固定方法では、光回路部に応力を掛けること無く光導波回路基板401を固定できるため、低損失で高い機械強度を有する光回路部品を実現することが可能である(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開平6−67041号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上述した従来の光導波路の固定方法では、光導波回路基板と保持基板とを固定する固定剤(接着剤)の厚さが不均一であり、光導波回路基板が傾いたり、あるいは光導波回路基板と保持基板との間に固定剤がほとんど介在しない部分が存在し、温度サイクルなどの信頼性試験において、両者が剥離するなどの問題があった。
【0007】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、光導波回路基板や、受光素子又は発光素子などを備えた基板付光部品を、接着剤を介して保持基板に固定することによって、光導波回路基板や基板付光部品を精度良く保持基板に固定して高い信頼性を有する平面光回路部品及びその作製方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、このような目的を達成するためになされたもので、請求項1に記載の発明は、平面基板上に、高い屈折率を有するコアと、該コアを囲むように形成された低い屈折率を有するクラッドとを備えた光導波回路基板と、該光導波回路基板を固定する保持基板とから構成される平面光回路部品において、前記保持基板は、前記光導波回路基板との接触面となる基準面と、少なくとも2段以上の深さの異なる段差によって区切られた複数の段差面である接着面とを備え、前記基準面に対して深さの浅い段差面と前記光導波回路基板との間隙に設けられた接着剤により、前記光導波回路基板と前記保持基板とが接着固定されていることを特徴とする。
【0009】
また、請求項2に記載の発明は、請求項1に記載の発明において、前記光導波回路基板が、前記保持基板に設けられた深さの異なる複数の接着面にそれぞれ固定されていることを特徴とする。
【0010】
また、請求項3に記載の発明は、請求項1又は2に記載の発明において、前記光導波回路基板と接触する前記保持基板の基準面が、複数の突起状の基準面であることを特徴とする。
【0011】
また、請求項4に記載の発明は、請求項1,2又は3に記載の発明において、前記保持基板の深い段差面に設けられた台座上に、熱伝導材料が設けられていることを特徴とする。
【0012】
また、請求項5に記載の発明は、請求項1乃至4のいずれかに記載の発明において、前記光導波回路基板の前記コアに対向した位置に配置される受光素子又は発光素子と、該受光素子又は発光素子を保持する固定基板とを有する基板付光部品を、前記保持基板上に設けたことを特徴とする。
【0013】
また、請求項6に記載の発明は、請求項5に記載の発明において、前記基板付光部品を搭載する部分の前記保持基板が、前記基板付光部品との接触面となる基準面と、少なくとも2段以上の深さの異なる段差によって区切られた複数の段差面である接着面とを備え、前記基準面に対して深さの浅い段差面と前記基板付光部品との間隙に設けられた接着剤により、前記基板付光部品と前記保持基板とが接着固定されていることを特徴とする。
【0014】
また、請求項7に記載の発明は、請求項6に記載の発明において、前記保持基板の側壁に、前記基準面及び前記接着面を設けたことを特徴とする。
【0015】
また、請求項8に記載の発明は、請求項1乃至7のいずれかに記載の発明において、前記前記基準面に対して深さの深い段差面を構成する凹部を、前記接着剤の逃げ溝としたことを特徴とする。
【0016】
また、請求項9に記載の発明は、平面基板上に、高い屈折率を有するコアと、該コアを囲むように形成された低い屈折率を有するクラッドとを備えた光導波回路基板と、該光導波回路基板を固定する保持基板とから構成される平面光回路部品の作製方法において、前記保持基板に、前記光導波回路基板との接触面となる基準面を形成するとともに、少なくとも2段以上の深さの異なる段差によって区切られた複数の段差面である接着面を有する段差部を形成し、前記基準面に対して深さの浅い段差面と前記光導波回路基板との間隙に接着剤を充填して、前記光導波回路基板と前記保持基板とを接着固定することを特徴とする。
【0017】
また、請求項10に記載の発明は、請求項9に記載の発明において、前記光導波回路基板を、前記保持基板に形成された深さの異なる複数の接着面にそれぞれ固定することを特徴とする。
【0018】
また、請求項11に記載の発明は、請求項9又は10に記載の発明において、前記保持基板に形成された複数の突起状の基準面に、前記光導波回路基板を接触させて固定することを特徴とする。
【0019】
また、請求項12に記載の発明は、請求項9,10又は11に記載の発明において、前記保持基板の深い段差面に台座を形成し、該台座上に熱伝導材料を設けることを特徴とする。
【0020】
また、請求項13に記載の発明は、請求項9乃至12のいずれかに記載の発明において、前記該光導波回路基板の前記コアに対向した位置に配置される受光素子又は発光素子と、該受光素子又は発光素子を保持する固定基板とを有する基板付光部品を、前記保持基板上に形成することを特徴とする。
【0021】
また、請求項14に記載の発明は、請求項13に記載の発明において、前記基板付光部品を搭載する前記保持基板に、前記基板付光部品との接触面となる基準面を形成するとともに、少なくとも2段以上の深さの異なる段差によって区切られた複数の段差面である接着面を形成し、前記基準面に対して深さの浅い段差面と前記基板付光部品との間隙に接着剤を充填して、前記基板付光部品と前記保持基板を接着固定することを特徴とする。
【0022】
また、請求項15に記載の発明は、請求項14に記載の発明において、前記保持基板の側壁に、前記基準面及び前記接着面を形成することを特徴とする。
【0023】
また、請求項16に記載の発明は、請求項9乃至15のいずれかに記載の発明において、前記基準面に対して深さの深い段差面を構成する凹部を、前記接着剤の逃げ溝とすることを特徴とする。
【0024】
このような構成により、光導波回路基板や基板付光部品を保持基板に設けられた複数の深さの異なる段差面である接着面の内、最上面を基準面として接するように固定することによって、光導波回路基板や基板付光部品を精度良く固定することが可能となる。さらに、基準面と接着面との段差が接着剤の厚さとして確保されるので、接着剤の硬化時の収縮率と硬化後の硬性を考慮して所望の段差に設定することによって、高い信頼性を有する平面光回路部品を提供することができる。
【0025】
【発明の実施の形態】
以下、図面を参照して本発明の実施例について説明する。
[実施例1]
図1乃至図3は、本発明に係る平面光回路部品の実施例1を説明するための構成図で、図1は各要素部品の固定前の構成図、図2は各要素部品の固定後の構成図、図3がその断面図である。図中符号101は光導波回路基板、102はコア、103はクラッド、104は平面基板、114は接着剤、120は保持基板、121は基準面、122は接着面、123は接着剤の逃げ溝を示している。
【0026】
本発明の平面光回路部品は、石英系の光導波回路基板101と保持基板120とから構成されていて、光導波回路基板101は、平面基板104上に、高い屈折率を有するコア102と、このコア102の周りを囲むように形成された低い屈折率を有するクラッド103とを備えている。
【0027】
また、保持基板120は、複数の深さの異なる段差によって区切られた複数の段差面である接着面122を有するとともに、両端部に、接着面122より一段高く、光導波回路基板101との接触面となる基準面121が設けられている。
【0028】
光導波回路基板101は、保持基板120の基準面121となる最上面に密着するようにして固定されている。この固定方法は、まず、保持基板120の基準面121から見て比較的浅い位置にある段差面である接着面122に適量の接着剤114を塗布しておき、次に、光導波回路基板101と基準面121が密着するように位置決めし、接着剤を硬化させることによって、光導波回路基板101と保持基板120とを固定している。
【0029】
本実施例1では、粘性が高い弾性接着剤などを充填した場合であっても、光導波回路基板101を保持基板120に密着する際の抑える位置、抑える圧力によって、接着剤層の厚みが変化することなく、光導波回路基板101を安定に固定するため、深い段差面を構成する凹部分を余分な接着剤が逃げる逃げ溝123としている。
【0030】
また、光導波回路基板101を保持基板120の基準面121に接するように抑え込むことによって、塗布された接着剤114は、光導波回路基板101と保持基板120との接着面122との間に所望の接着層を形成する。ここで、基準面121の面積(幅)を比較的小さくすることによって、基準面121上に残る接着剤114をできるだけ少なくし、光導波回路基板101を安定的に保持基板120上に固定することができる。
【0031】
本実施例1では、基準面121の幅d1を1mmとしたが、10mm以下であれば、本実施例1と同様の効果があることを確認している。また、接着剤114の逃げ溝123を複数形成することによって、接着層をセグメント化できるため、小さな抑え圧力で光導波回路基板101を保持基板120の基準面121に密着することが可能となり、かつ接着剤114の硬化時の接着層の変化が小さいため、光導波回路基板101を所望の高さに固定することが可能である。
【0032】
光導波回路基板101を保持基板120に固定する接着層の厚みは、薄すぎると十分な接着力が得られず、また厚すぎると硬化時の収縮幅が大きくなり、光導波回路基板101に応力を与えることになるため、適切な接着層厚に制御する必要がある。ここで、接着剤114の収縮率を考慮して、接着層を制御することによって、接着剤114が収縮した際に、光導波回路基板101と保持基板120を密着させる効果がある。
【0033】
本実施例1では、収縮率が数%の接着剤を使用したため、基準面121と接着面122の段差d2は、図3に示すように、0.03mmに設定した。また、逃げ溝123の段差d3は、0.5mmとした。一般的に、接着剤の収縮率は数%程度であるため、基準面121と接着面122の段差を0.1mm以下に設定することが望ましい。
【0034】
本実施例1において、保持基板120は、アルミニウム板を機械加工によって切削して作製し、弾性接着剤で固定することによって、光導波回路基板101を保持基板120に対して0.01mm以下の高さ精度で固定できることが確認できた。さらに、温度サイクル(−40℃〜75℃で、100サイクル)試験後も剥離などの劣化は無いことを確認した。
【0035】
本実施例1では、保持基板120の材料として、アルミニウムを用いたが、他の金属またはプラスチック,セラミックなどの非金属であっても同様の効果を奏する。また、段差を有する面を形成する手段として、機械加工を用いたが、成形加工によっても精度良く作製することが可能である。
【0036】
[実施例2]
図4及び図5は、本発明に係る平面光回路部品の実施例2を説明するための構成図で、図4は各要素部品の固定前の構成図、図5は各要素部品の固定後の平面光回路部品を温調装置に取付けた図である。図中符号201は光導波回路基板、202はコア、203はクラッド、204は平面基板(シリコン基板)、205はスラブ導波路、206はアレイ導波路、213は熱伝導性剤、214は接着剤、220は保持基板、221は基準面、222は接着面、223は接着剤の逃げ溝、224は台座、231は放熱板、232はペルチェ素子を示している。
【0037】
本実施例2の平面光回路部品は、光導波回路基板201と保持基板220とから構成されていて、光導波回路基板201は、平面基板204上に、高い屈折率を有する石英系ガラスから成るコア202と、このコア202の周りを囲むように形成された低い屈折率を有するクラッド203とを備えている。
【0038】
一般的にこのような複合材料から成る光導波回路基板201は、シリコン基板204と光導波路を形成するガラスとの熱膨張係数の差によって、僅かな曲率の反りを有する。光導波回路基板201の反りは基板全体で一定の曲率を有しておらず、場所によって曲率が異なっている。そのため、大きな1つの面あるいは4点で光導波回路基板201を支持した場合、ガタついて、安定的に固定することが困難である。そこで、本実施例2の保持基板220は、基準面221として3つの突起状の基準面を設け、光導波回路基板201を安定的に支持できるように構成されている。
【0039】
光導波回路基板201には、機能回路として、2つのスラブ導波路205とその間をつなぐ複数のアレイ導波路206とから成るアレイ導波路格子が形成されている。このアレイ導波路格子は、このアレイ導波路205を伝搬する光の光路差を高精度に制御することによって、入射した光を波長毎に分波したり、あるいは合波したりすることが可能な機能回路である。従って、アレイ導波路格子は、環境温度の変化によって分波波長特性が変化しないようにペルチェ素子232などを用いて温調する必要がある。
【0040】
また、光導波回路基板201を保持基板220に固定する際に応力が掛からないように固定する必要がある。従って、光導波回路基板201を保持基板220上に固定する際に、アレイ導波路206の直下に台座224を設け、つまり、深い段差面に台座224を設け、その台座224に熱伝導性剤213を塗布することによって、保持基板220と光導波回路基板201の熱的な接続を実現した。
【0041】
台座224の高さは、保持基板220の基準面221および光導波回路基板201の反り量を考慮して、光導波回路基板201と台座224の間隙が0.1mmとなるように作製した。また、この台座224は、塗布した熱伝導性剤213の量が多い場合に、余分な熱伝導性剤213が逃げ溝223に流れるように、逃げ溝223で囲むように一段高くしている。この逃げ溝223は、接着剤または熱伝導性剤で完全に充填されないため、光導波回路基板201全面を接着剤または熱伝導性剤で固定したものと比べると基板への応力を小さくする効果がある。
【0042】
光導波回路基板201と保持基板220は、台座224および接着面222にそれぞれ熱伝導性剤および接着剤を塗布した後、光導波回路基板201と保持基板220に設けられた3つの突起状の基準面とが密着するように固定した。本実施例2の平面光回路部品の有効性を確認するため、放熱板231上に固定されたペルチェ素子232上に作製した保持基板220の裏面が接するように固定して、環境温度に対する分波波長特性を評価した。
【0043】
その結果、環境温度20〜60度において、ペルチェ素子232を駆動することによって、光導波回路基板201の温度変化は、0.1度以下に保持できることを確認した。また、光導波回路基板201を保持基板220へ接着固定した際の特性劣化も無いことを確認している。なお、本実施例2で用いた突起状の基準面のサイズは、幅1mm,長さ2mm,高さ0.03mmとした。
【0044】
[実施例3]
図6乃至図8は、本発明に係る平面光回路部品の実施例3を説明するための構造図で、図6は各要素部品の固定前の構造図、図7は各要素部品の固定後の上面図、図8は各要素部品の固定後の側面図である。
【0045】
図中符号301は光導波回路基板、302はコア、303はクラッド、304は平面基板、314は接着剤、320は保持基板、321は第1の基準面、322は第1の接着面、323は第1の接着剤の逃げ溝、324は第2の基準面、325は第2の接着面、326は第2の接着剤の逃げ溝、330は基板付光部品、331は受光素子、332は受光素子の固定基板、341は第3の基準面、342は第3の接着面、343は第3の接着剤の逃げ溝、344は第4の基準面、345は第4の接着面、346は第4の接着剤の逃げ溝、347は第5の基準面、348は第5の接着面、349は第5の接着剤の逃げ溝を示している。
【0046】
本実施例3に係る平面光回路部品は、石英系の光導波回路基板301と、固定基板332に固定された受光素子331から成る基板付光部品330と、保持基板320とから構成されている。光導波回路基板301は、平面基板304上に、高い屈折率を有するコア302と、このコア302の周りを囲むように形成された低い屈折率を有するクラッド303とを備えている。
【0047】
保持基板320は、光導波回路基板301または基板付光部品330の底面および側面と接する部分に複数の深さの異なる段差によって区切られた複数の段差面である接着面を有している。第1と第2の基準面321,324および第3と第4の基準面341,344は、光導波回路基板301のコア302の光軸が、基板付光部品330の受光素子331の中心に一致するように、それぞれのy,z方向の相対高さを高精度に制御して作製した。
【0048】
光導波回路基板301のx方向の位置は、第2の基準面324を形成する段差の側面を基準にし、基板付光部品330は、第5の基準面347を用いて支持している。光導波回路基板301および基板付光部品330と保持基板320は、それぞれの接着面322,324,342,344,348に塗布した接着剤314を介して固定している。余分に塗布された接着剤314は、逃げ溝323,326,343,346に流れ込むことによって、光導波回路基板301および基板付光部品330を所望の位置で固定することが可能となった。
【0049】
本実施例3の平面光回路部品によって、光導波回路基板301のコア302の光軸と、基板付光部品330の受光素子331の中心を20μm以下の精度で合わせることが可能となった。また、各基準面と接着面との段差を0.03mmとして接着層の厚さを制御した。作製した平面光回路部品は、温度サイクル試験においても特性劣化が無いことを確認した。
【0050】
【発明の効果】
以上説明したように本発明によれば、保持基板は、光導波回路基板との接触面を有する基準面と、少なくとも2段以上の深さの異なる段差によって区切られた複数の段差面である接着面とを備え、基準部に対して深さの浅い段差面と光導波回路基板との間隙に設けられ接着剤により、光導波回路基板と保持基板とを接着固定したので、保持基板が深さの異なる段差によって区切られて複数の基準面、接着面および逃げ溝を有することによって、光導波回路基板を精度良く保持し、かつ高い信頼性を有するという効果がある。
【0051】
また、光導波回路基板のコアに対向した位置に配置される受光素子又は発光素子と、受光素子又は発光素子を保持する固定基板とを有する基板付光部品を、光導波回路基板と同様な固定手段で保持基板に設けたので、光導波回路基板のコアの光軸と、基板付光部品の受光素子の中心を20μm以下の精度で合わせることが可能となった。
【図面の簡単な説明】
【図1】本発明に係る平面光回路部品の実施例1を説明するための構成図である。
【図2】各要素部品の固定後の構成図である。
【図3】各要素部品の固定後の断面図である。
【図4】本発明に係る平面光回路部品の実施例2を説明するための構成図である。
【図5】各要素部品の固定後の平面光回路部品を温調装置に取付けた図である。
【図6】本発明に係る平面光回路部品の実施例3を説明するための構造図である。
【図7】各要素部品の固定後の上面図である。
【図8】各要素部品の固定後の側面図である。
【図9】従来の光導波路の固定方法を説明するための図である。
【符号の説明】
101,201,301 光導波回路基板
102,202,302 コア
103,203,303 クラッド
104,204,304 平面基板
114,214,314 接着剤
120,220,320 保持基板
121,221 基準面
122,222 接着面
123,223 接着剤の逃げ溝
205 スラブ導波路
206 アレイ導波路
213 熱伝導性剤
224 台座
231 放熱板
232 ペルチェ素子
321 第1の基準面
322 第1の接着面
323 第1の接着剤の逃げ溝
324 第2の基準面
325 第2の接着面
326 第2の接着剤の逃げ溝
330 基板付光部品
331 受光素子
332 受光素子の固定基板
341 第3の基準面
342 第3の接着面
343 第3の接着剤の逃げ溝
344 第4の基準面
345 第4の接着面
346 第4の接着剤の逃げ溝
347 第5の基準面
348 第5の接着面
349 第5の接着剤の逃げ溝
401 光導波回路基板
414 接着剤
450 桶状の下部ホルダー
450a スペーサ部
451 上部ホルダー
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planar optical circuit component and a method of manufacturing the same, and more particularly, to a planar optical circuit component which is applied to the field of optical communication and the like, and is formed by bonding and fixing an optical waveguide circuit substrate or an optical component with a substrate to a holding substrate. And a manufacturing method thereof.
[0002]
[Prior art]
An optical waveguide consisting of a core having a high refractive index on a flat substrate and a clad having a low refractive index surrounding the core, or an optical component with a substrate such as a light receiving element and a light emitting element fixed on the substrate is an optical fiber. By connecting them to each other or by connecting them between optical components, it is possible to realize a practical and high-performance optical device. In order to produce such a practical and highly functional optical device having low loss, excellent mechanical strength, and high reliability, a fixing structure that stably holds an optical component is required. .
[0003]
Conventionally, as a method of fixing an optical waveguide, a method of bonding and fixing an optical waveguide to a holding substrate (holder) has been used.
FIG. 9 is a view for explaining a conventional method of fixing an optical waveguide. In the figure, reference numeral 401 denotes an optical waveguide circuit board, 414 denotes an adhesive, 450 denotes a lower holder in the shape of a trough, 450a denotes a spacer, and 451 denotes an upper. Shows a holder.
[0004]
This conventional method for fixing an optical waveguide is based on an optical circuit when fixing an optical waveguide circuit board 401 having an optical circuit section having a predetermined function and an optical input / output waveguide section to a lower holder 450 and an upper holder 451. The part is placed in a non-contact state with respect to the lower holder 450 and the upper holder 451, and a part of the optical input / output waveguide is fixed to the lower holder 450 and the upper holder 451 with an adhesive 414. In such a conventional method for fixing an optical waveguide, the optical waveguide circuit board 401 can be fixed without applying stress to the optical circuit portion, and thus an optical circuit component having low loss and high mechanical strength can be realized. (For example, see Patent Document 1).
[0005]
[Patent Document 1]
JP-A-6-67041
[Problems to be solved by the invention]
However, in the above-described conventional optical waveguide fixing method, the thickness of the fixing agent (adhesive) for fixing the optical waveguide circuit substrate and the holding substrate is not uniform, and the optical waveguide circuit substrate is inclined or the optical waveguide is not fixed. There is a portion where the fixing agent hardly intervenes between the circuit board and the holding substrate, and there has been a problem that the two peel off in a reliability test such as a temperature cycle.
[0007]
The present invention has been made in view of such a problem, and an object thereof is to hold an optical component with a substrate including an optical waveguide circuit board and a light receiving element or a light emitting element via an adhesive. An object of the present invention is to provide a planar optical circuit component having high reliability by fixing an optical waveguide circuit substrate and an optical component with a substrate to a holding substrate with high precision by fixing the optical waveguide circuit substrate and the substrate-mounted optical component, and a method of manufacturing the same.
[0008]
[Means for Solving the Problems]
The present invention has been made to achieve such an object, and the invention according to claim 1 has a core having a high refractive index on a planar substrate and a low core formed to surround the core. In a planar optical circuit component comprising an optical waveguide circuit substrate having a cladding having a refractive index, and a holding substrate for fixing the optical waveguide circuit substrate, the holding substrate has a contact surface with the optical waveguide circuit substrate. A reference surface, and an adhesive surface which is a plurality of step surfaces separated by at least two or more steps having different depths, the step surface having a depth smaller than the reference surface, and the optical waveguide circuit board. The optical waveguide circuit substrate and the holding substrate are bonded and fixed by an adhesive provided in a gap between the optical waveguide circuit substrate and the holding substrate.
[0009]
According to a second aspect of the present invention, in the first aspect of the present invention, the optical waveguide circuit board is fixed to a plurality of adhesive surfaces having different depths provided on the holding substrate. Features.
[0010]
According to a third aspect of the present invention, in the first or second aspect, the reference surface of the holding substrate that is in contact with the optical waveguide circuit substrate is a plurality of projecting reference surfaces. And
[0011]
According to a fourth aspect of the present invention, in the first, second, or third aspect, a heat conductive material is provided on a pedestal provided on a deep step surface of the holding substrate. And
[0012]
According to a fifth aspect of the present invention, in the first aspect of the present invention, the light receiving element or the light emitting element disposed at a position facing the core of the optical waveguide circuit board; An optical component with a substrate having an element or a fixed substrate for holding a light emitting element is provided on the holding substrate.
[0013]
According to a sixth aspect of the present invention, in the invention according to the fifth aspect, the holding substrate at a portion where the optical component with a substrate is mounted has a reference surface serving as a contact surface with the optical component with a substrate. An adhesive surface which is a plurality of step surfaces separated by at least two or more steps having different depths, and is provided in a gap between the step surface having a depth smaller than the reference surface and the optical component with a substrate. The optical component with a substrate and the holding substrate are bonded and fixed by the adhesive.
[0014]
The invention according to claim 7 is the invention according to claim 6, wherein the reference surface and the bonding surface are provided on a side wall of the holding substrate.
[0015]
According to an eighth aspect of the present invention, in the invention according to any one of the first to seventh aspects, a concave portion forming a stepped surface having a depth greater than the reference surface is provided with a relief groove for the adhesive. It is characterized by having.
[0016]
Further, the invention according to claim 9 is an optical waveguide circuit board comprising a core having a high refractive index and a clad having a low refractive index formed so as to surround the core, on a planar substrate, In a method of manufacturing a planar optical circuit component comprising a holding substrate for fixing an optical waveguide circuit board, a reference surface serving as a contact surface with the optical waveguide circuit board is formed on the holding substrate, and at least two or more steps are provided. Forming a step portion having an adhesive surface which is a plurality of step surfaces separated by steps having different depths, and providing an adhesive in a gap between the step surface having a depth smaller than the reference surface and the optical waveguide circuit board. And the optical waveguide circuit substrate and the holding substrate are bonded and fixed.
[0017]
According to a tenth aspect, in the ninth aspect, the optical waveguide circuit board is fixed to a plurality of adhesive surfaces having different depths formed on the holding substrate. I do.
[0018]
According to an eleventh aspect of the present invention, in the ninth or tenth aspect, the optical waveguide circuit board is fixed by contacting the plurality of projecting reference surfaces formed on the holding substrate. It is characterized.
[0019]
According to a twelfth aspect of the present invention, in the ninth, tenth or eleventh aspect, a pedestal is formed on a deep step surface of the holding substrate, and a heat conductive material is provided on the pedestal. I do.
[0020]
According to a thirteenth aspect of the present invention, in the invention according to any one of the ninth to twelfth aspects, a light receiving element or a light emitting element disposed at a position facing the core of the optical waveguide circuit board, An optical component with a substrate having a fixed substrate for holding a light receiving element or a light emitting element is formed on the holding substrate.
[0021]
According to a fourteenth aspect of the present invention, in the thirteenth aspect, a reference surface serving as a contact surface with the substrate-mounted optical component is formed on the holding substrate on which the substrate-mounted optical component is mounted. Forming an adhesive surface, which is a plurality of step surfaces separated by at least two or more steps having different depths, and adhering to a gap between the step surface having a smaller depth with respect to the reference surface and the optical component with a substrate. An optical component is filled, and the optical component with a substrate and the holding substrate are bonded and fixed.
[0022]
According to a fifteenth aspect, in the fourteenth aspect, the reference surface and the bonding surface are formed on a side wall of the holding substrate.
[0023]
According to a sixteenth aspect of the present invention, in the invention according to any one of the ninth to fifteenth aspects, a concave portion forming a stepped surface having a depth greater than the reference surface is formed as a relief groove for the adhesive. It is characterized by doing.
[0024]
With such a configuration, by fixing the optical waveguide circuit substrate and the optical component with the substrate so that the uppermost surface of the bonding surfaces that are the step surfaces having different depths provided on the holding substrate is in contact with the uppermost surface as a reference surface. Thus, the optical waveguide circuit board and the optical component with the board can be fixed with high accuracy. Furthermore, since the step between the reference surface and the adhesive surface is secured as the thickness of the adhesive, the desired step is set in consideration of the shrinkage ratio during curing of the adhesive and the hardness after curing, thereby achieving high reliability. It is possible to provide a planar optical circuit component having flexibility.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Example 1]
FIGS. 1 to 3 are configuration diagrams for explaining a planar optical circuit component according to a first embodiment of the present invention. FIG. 1 is a configuration diagram before fixing each component, and FIG. 2 is a diagram after fixing each component. FIG. 3 is a sectional view of the same. In the figure, reference numeral 101 denotes an optical waveguide circuit board, 102 denotes a core, 103 denotes a clad, 104 denotes a flat substrate, 114 denotes an adhesive, 120 denotes a holding substrate, 121 denotes a reference surface, 122 denotes an adhesive surface, and 123 denotes a groove for the adhesive. Is shown.
[0026]
The planar optical circuit component of the present invention includes a silica-based optical waveguide circuit substrate 101 and a holding substrate 120. The optical waveguide circuit substrate 101 has a core 102 having a high refractive index on a planar substrate 104, And a clad 103 having a low refractive index formed so as to surround the core 102.
[0027]
In addition, the holding substrate 120 has a plurality of bonding surfaces 122 which are a plurality of step surfaces separated by a plurality of steps having different depths, and has a step higher than the bonding surface 122 at both ends so as to make contact with the optical waveguide circuit board 101. A reference surface 121 serving as a surface is provided.
[0028]
The optical waveguide circuit substrate 101 is fixed so as to be in close contact with the uppermost surface serving as the reference surface 121 of the holding substrate 120. In this fixing method, first, an appropriate amount of adhesive 114 is applied to an adhesive surface 122 which is a step surface at a relatively shallow position as viewed from the reference surface 121 of the holding substrate 120, and then the optical waveguide circuit substrate 101 The optical waveguide circuit substrate 101 and the holding substrate 120 are fixed by positioning the optical waveguide circuit substrate 101 and the reference surface 121 in close contact with each other and curing the adhesive.
[0029]
In the first embodiment, even when a highly viscous elastic adhesive or the like is filled, the thickness of the adhesive layer changes depending on the position and pressure at which the optical waveguide circuit substrate 101 is held in close contact with the holding substrate 120. In order to stably fix the optical waveguide circuit board 101 without performing the above, the concave portion forming the deep stepped surface is formed as an escape groove 123 from which excess adhesive escapes.
[0030]
Also, by holding down the optical waveguide circuit substrate 101 so as to be in contact with the reference surface 121 of the holding substrate 120, the applied adhesive 114 is desired between the adhesive surface 122 of the optical waveguide circuit substrate 101 and the holding substrate 120. Is formed. Here, by making the area (width) of the reference surface 121 relatively small, the adhesive 114 remaining on the reference surface 121 is reduced as much as possible, and the optical waveguide circuit substrate 101 is stably fixed on the holding substrate 120. Can be.
[0031]
In the first embodiment, the width d1 of the reference surface 121 is set to 1 mm. However, if the width d1 is 10 mm or less, it is confirmed that the same effect as the first embodiment is obtained. Further, since the adhesive layer can be segmented by forming a plurality of escape grooves 123 of the adhesive 114, the optical waveguide circuit substrate 101 can be brought into close contact with the reference surface 121 of the holding substrate 120 with a small holding pressure, and Since the change in the adhesive layer when the adhesive 114 is hardened is small, the optical waveguide substrate 101 can be fixed at a desired height.
[0032]
If the thickness of the adhesive layer for fixing the optical waveguide circuit substrate 101 to the holding substrate 120 is too small, sufficient adhesive strength cannot be obtained. Therefore, it is necessary to control the thickness of the adhesive layer to an appropriate value. Here, by controlling the adhesive layer in consideration of the contraction rate of the adhesive 114, when the adhesive 114 contracts, there is an effect of bringing the optical waveguide circuit substrate 101 into close contact with the holding substrate 120.
[0033]
In Example 1, since an adhesive having a shrinkage of several percent was used, the step d2 between the reference surface 121 and the bonding surface 122 was set to 0.03 mm as shown in FIG. The step d3 of the clearance groove 123 was 0.5 mm. In general, since the shrinkage of the adhesive is about several percent, it is desirable to set the step between the reference surface 121 and the bonding surface 122 to 0.1 mm or less.
[0034]
In the first embodiment, the holding substrate 120 is formed by cutting an aluminum plate by machining, and fixing the optical waveguide circuit substrate 101 to the holding substrate 120 by a height of 0.01 mm or less by fixing with an elastic adhesive. It was confirmed that it can be fixed with accuracy. Furthermore, it was confirmed that there was no deterioration such as peeling even after a temperature cycle (−40 ° C. to 75 ° C., 100 cycles) test.
[0035]
In the first embodiment, aluminum is used as the material of the holding substrate 120. However, similar effects can be obtained by using other metals or non-metals such as plastics and ceramics. In addition, although machining is used as a means for forming a surface having a step, it can also be manufactured with high precision by molding.
[0036]
[Example 2]
4 and 5 are configuration diagrams for explaining a planar optical circuit component according to a second embodiment of the present invention. FIG. 4 is a configuration diagram before fixing each component, and FIG. 5 is a diagram after fixing each component. FIG. 4 is a diagram in which the flat optical circuit component of FIG. In the figure, reference numeral 201 denotes an optical waveguide circuit substrate, 202 denotes a core, 203 denotes a clad, 204 denotes a plane substrate (silicon substrate), 205 denotes a slab waveguide, 206 denotes an array waveguide, 213 denotes a heat conductive agent, and 214 denotes an adhesive. , 220 is a holding substrate, 221 is a reference surface, 222 is an adhesive surface, 223 is an adhesive escape groove, 224 is a pedestal, 231 is a heat sink, and 232 is a Peltier element.
[0037]
The planar optical circuit component according to the second embodiment includes an optical waveguide circuit substrate 201 and a holding substrate 220. The optical waveguide circuit substrate 201 is formed of a silica-based glass having a high refractive index on a planar substrate 204. A core 202 and a clad 203 having a low refractive index and formed so as to surround the core 202 are provided.
[0038]
In general, the optical waveguide circuit substrate 201 made of such a composite material has a slight curvature due to a difference in thermal expansion coefficient between the silicon substrate 204 and the glass forming the optical waveguide. The warpage of the optical waveguide circuit substrate 201 does not have a constant curvature over the entire substrate, and varies depending on the location. Therefore, when the optical waveguide circuit substrate 201 is supported on one large surface or four points, it is difficult to stably fix the optical waveguide circuit substrate 201 with play. In view of this, the holding substrate 220 of the second embodiment is configured so that three projection-shaped reference surfaces are provided as the reference surface 221 so that the optical waveguide circuit substrate 201 can be stably supported.
[0039]
On the optical waveguide circuit board 201, an arrayed waveguide grating including two slab waveguides 205 and a plurality of arrayed waveguides 206 connecting between the slab waveguides 205 is formed as a functional circuit. The array waveguide grating can separate or multiplex incident light for each wavelength by controlling the optical path difference of light propagating through the array waveguide 205 with high accuracy. It is a functional circuit. Therefore, it is necessary to control the temperature of the arrayed waveguide grating using the Peltier element 232 or the like so that the demultiplexing wavelength characteristic does not change due to a change in environmental temperature.
[0040]
Further, it is necessary to fix the optical waveguide circuit substrate 201 to the holding substrate 220 so that stress is not applied. Therefore, when fixing the optical waveguide circuit substrate 201 on the holding substrate 220, the pedestal 224 is provided immediately below the array waveguide 206, that is, the pedestal 224 is provided on a deep step surface, and the pedestal 224 is provided with the heat conductive agent 213. Is applied, thermal connection between the holding substrate 220 and the optical waveguide circuit substrate 201 is realized.
[0041]
The height of the pedestal 224 was made such that the gap between the optical waveguide circuit board 201 and the pedestal 224 was 0.1 mm in consideration of the reference surface 221 of the holding substrate 220 and the amount of warpage of the optical waveguide circuit board 201. The base 224 is raised one step so as to be surrounded by the escape groove 223 so that when the amount of the applied heat conductive agent 213 is large, the excess heat conductive agent 213 flows into the escape groove 223. Since the escape groove 223 is not completely filled with the adhesive or the heat conductive agent, the effect of reducing the stress on the substrate is smaller than that in which the entire surface of the optical waveguide circuit board 201 is fixed with the adhesive or the heat conductive agent. is there.
[0042]
The optical waveguide circuit substrate 201 and the holding substrate 220 are formed by applying a heat conductive agent and an adhesive to the pedestal 224 and the bonding surface 222, respectively, and then forming three projection-shaped reference surfaces provided on the optical waveguide circuit substrate 201 and the holding substrate 220. It was fixed so that it was in close contact with the surface. In order to confirm the effectiveness of the planar optical circuit component of the second embodiment, the holding substrate 220 manufactured on the Peltier element 232 fixed on the heat sink 231 is fixed so that the back surface thereof is in contact with the Peltier device 232, and the demultiplexing with respect to the environmental temperature is performed. The wavelength characteristics were evaluated.
[0043]
As a result, it was confirmed that by driving the Peltier element 232 at an ambient temperature of 20 to 60 degrees, the temperature change of the optical waveguide circuit board 201 could be maintained at 0.1 degrees or less. In addition, it has been confirmed that there is no deterioration in characteristics when the optical waveguide circuit substrate 201 is bonded and fixed to the holding substrate 220. The size of the projecting reference surface used in Example 2 was 1 mm in width, 2 mm in length, and 0.03 mm in height.
[0044]
[Example 3]
6 to 8 are structural views for explaining a planar optical circuit component according to a third embodiment of the present invention. FIG. 6 is a structural diagram before fixing each component, and FIG. 7 is a diagram after fixing each component. FIG. 8 is a side view after fixing of each component.
[0045]
In the figure, reference numeral 301 denotes an optical waveguide circuit substrate, 302 denotes a core, 303 denotes a clad, 304 denotes a flat substrate, 314 denotes an adhesive, 320 denotes a holding substrate, 321 denotes a first reference surface, 322 denotes a first bonding surface, and 323. Is a relief groove for the first adhesive, 324 is a second reference surface, 325 is a second adhesive surface, 326 is a relief groove for the second adhesive, 330 is an optical component with a substrate, 331 is a light receiving element, 332 Is a fixed substrate of the light receiving element, 341 is a third reference surface, 342 is a third adhesive surface, 343 is a relief groove for the third adhesive, 344 is a fourth reference surface, 345 is a fourth adhesive surface, 346 denotes a fourth adhesive escape groove, 347 denotes a fifth reference surface, 348 denotes a fifth adhesive surface, and 349 denotes a fifth adhesive escape groove.
[0046]
The planar optical circuit component according to the third embodiment includes a quartz-based optical waveguide circuit substrate 301, an optical component with a substrate 330 including a light receiving element 331 fixed to a fixed substrate 332, and a holding substrate 320. . The optical waveguide circuit substrate 301 includes, on a plane substrate 304, a core 302 having a high refractive index and a clad 303 having a low refractive index formed so as to surround the core 302.
[0047]
The holding substrate 320 has an adhesive surface which is a plurality of step surfaces separated by a plurality of steps having different depths at portions which are in contact with the bottom surface and side surfaces of the optical waveguide circuit substrate 301 or the optical component 330 with a substrate. The first and second reference surfaces 321 and 324 and the third and fourth reference surfaces 341 and 344 are arranged such that the optical axis of the core 302 of the optical waveguide circuit board 301 is at the center of the light receiving element 331 of the optical component 330 with a substrate. They were manufactured by controlling the relative heights in the y and z directions with high precision so as to match.
[0048]
The position of the optical waveguide circuit board 301 in the x direction is based on the side surface of the step forming the second reference plane 324, and the optical component with board 330 is supported using the fifth reference plane 347. The optical waveguide circuit board 301, the optical component with board 330, and the holding board 320 are fixed via an adhesive 314 applied to the respective bonding surfaces 322, 324, 342, 344, 348. The excessively applied adhesive 314 flows into the escape grooves 323, 326, 343, and 346, whereby the optical waveguide circuit board 301 and the optical component with board 330 can be fixed at desired positions.
[0049]
With the planar optical circuit component of the third embodiment, the optical axis of the core 302 of the optical waveguide circuit board 301 can be aligned with the center of the light receiving element 331 of the optical component 330 with a precision of 20 μm or less. The thickness of the adhesive layer was controlled by setting the step between each reference surface and the adhesive surface at 0.03 mm. It was confirmed that the fabricated planar optical circuit component had no characteristic deterioration even in a temperature cycle test.
[0050]
【The invention's effect】
As described above, according to the present invention, the holding substrate is a reference surface having a contact surface with the optical waveguide circuit substrate and a plurality of step surfaces separated by at least two or more steps having different depths. The optical waveguide circuit substrate and the holding substrate are bonded and fixed by an adhesive provided in the gap between the step surface having a shallow depth with respect to the reference portion and the optical waveguide circuit substrate. By having a plurality of reference surfaces, adhesive surfaces, and relief grooves separated by different steps, there is an effect that the optical waveguide circuit board is accurately held and has high reliability.
[0051]
Also, an optical component with a substrate having a light receiving element or a light emitting element arranged at a position facing the core of the optical waveguide circuit board and a fixed substrate holding the light receiving element or the light emitting element is fixed in the same manner as the optical waveguide circuit board. Since the optical axis is provided on the holding substrate by means, the optical axis of the core of the optical waveguide circuit substrate and the center of the light receiving element of the optical component with the substrate can be aligned with an accuracy of 20 μm or less.
[Brief description of the drawings]
FIG. 1 is a configuration diagram for explaining Embodiment 1 of a planar optical circuit component according to the present invention.
FIG. 2 is a configuration diagram after fixing of each element part.
FIG. 3 is a sectional view after fixing of each element part.
FIG. 4 is a configuration diagram for explaining Embodiment 2 of the planar optical circuit component according to the present invention.
FIG. 5 is a diagram in which a planar optical circuit component after fixing of each component is attached to a temperature control device.
FIG. 6 is a structural diagram for explaining Embodiment 3 of the planar optical circuit component according to the present invention.
FIG. 7 is a top view after fixing of each element part.
FIG. 8 is a side view after fixing of each element part.
FIG. 9 is a view for explaining a conventional optical waveguide fixing method.
[Explanation of symbols]
101, 201, 301 Optical waveguide circuit substrates 102, 202, 302 Cores 103, 203, 303 Claddings 104, 204, 304 Plane substrates 114, 214, 314 Adhesives 120, 220, 320 Holding substrates 121, 221 Reference surfaces 122, 222 Adhesive surfaces 123, 223 Adhesive escape groove 205 Slab waveguide 206 Arrayed waveguide 213 Thermal conductive agent 224 Pedestal 231 Heat sink 232 Peltier element 321 First reference surface 322 First adhesive surface 323 First adhesive surface Escape groove 324 Second reference surface 325 Second adhesive surface 326 Escape groove 330 for second adhesive Optical component 331 with substrate Light receiving element 332 Fixed substrate 341 for light receiving element Third reference surface 342 Third adhesive surface 343 Third adhesive relief groove 344 Fourth reference surface 345 Fourth adhesive surface 346 Fourth adhesive relief groove 3 7 a fifth reference surface 348 fifth adhesive surface 349 fifth adhesive escape groove 401 optical waveguide board 414 glue 450 trough-shaped lower holder 450a spacer portion 451 the upper holder of

Claims (16)

平面基板上に、高い屈折率を有するコアと、該コアを囲むように形成された低い屈折率を有するクラッドとを備えた光導波回路基板と、該光導波回路基板を固定する保持基板とから構成される平面光回路部品において、
前記保持基板は、前記光導波回路基板との接触面となる基準面と、少なくとも2段以上の深さの異なる段差によって区切られた複数の段差面である接着面とを備え、
前記基準面に対して深さの浅い段差面と前記光導波回路基板との間隙に設けられた接着剤により、前記光導波回路基板と前記保持基板とが接着固定されていることを特徴とする平面光回路部品。
On a flat substrate, an optical waveguide circuit substrate including a core having a high refractive index and a clad having a low refractive index formed so as to surround the core, and a holding substrate for fixing the optical waveguide circuit substrate. In the configured planar optical circuit component,
The holding substrate includes a reference surface serving as a contact surface with the optical waveguide circuit substrate, and an adhesive surface serving as a plurality of step surfaces separated by steps having different depths of at least two steps.
The optical waveguide circuit substrate and the holding substrate are adhered and fixed by an adhesive provided in a gap between the step surface having a depth smaller than the reference surface and the optical waveguide circuit substrate. Planar optical circuit parts.
前記光導波回路基板が、前記保持基板に設けられた深さの異なる複数の接着面にそれぞれ固定されていることを特徴とする請求項1に記載の平面光回路部品。2. The planar optical circuit component according to claim 1, wherein the optical waveguide circuit board is fixed to a plurality of adhesive surfaces having different depths provided on the holding substrate. 3. 前記光導波回路基板と接触する前記保持基板の基準面が、複数の突起状の基準面であることを特徴とする請求項1又は2に記載の平面光回路部品。The planar optical circuit component according to claim 1, wherein a reference surface of the holding substrate that contacts the optical waveguide circuit substrate is a plurality of protrusion-like reference surfaces. 前記保持基板の深い段差面に設けられた台座上に、熱伝導材料が設けられていることを特徴とする請求項1,2又は3に記載の平面光回路部品。4. The planar optical circuit component according to claim 1, wherein a heat conductive material is provided on a pedestal provided on a deep step surface of the holding substrate. 5. 前記光導波回路基板の前記コアに対向した位置に配置される受光素子又は発光素子と、該受光素子又は発光素子を保持する固定基板とを有する基板付光部品を、前記保持基板上に設けたことを特徴とする請求項1乃至4のいずれかに記載の平面光回路部品。An optical component with a substrate having a light receiving element or a light emitting element disposed at a position facing the core of the optical waveguide circuit board and a fixed substrate holding the light receiving element or the light emitting element is provided on the holding substrate. The planar optical circuit component according to any one of claims 1 to 4, wherein: 前記基板付光部品を搭載する部分の前記保持基板が、
前記基板付光部品との接触面となる基準面と、少なくとも2段以上の深さの異なる段差によって区切られた複数の段差面である接着面とを備え、
前記基準面に対して深さの浅い段差面と前記基板付光部品との間隙に設けられた接着剤により、前記基板付光部品と前記保持基板とが接着固定されていることを特徴とする請求項5に記載の平面光回路部品。
The holding substrate of the portion for mounting the optical component with a substrate,
A reference surface serving as a contact surface with the substrate-attached optical component, and an adhesive surface that is a plurality of step surfaces separated by at least two or more steps having different depths,
The optical component with a substrate and the holding substrate are bonded and fixed by an adhesive provided in a gap between the stepped surface having a small depth with respect to the reference surface and the optical component with a substrate. A planar optical circuit component according to claim 5.
前記保持基板の側壁に、前記基準面及び前記接着面を設けたことを特徴とする請求項6に記載の平面光回路部品。The planar optical circuit component according to claim 6, wherein the reference surface and the adhesive surface are provided on a side wall of the holding substrate. 前記前記基準面に対して深さの深い段差面を構成する凹部を、前記接着剤の逃げ溝としたことを特徴とする請求項1乃至7のいずれかに記載の平面光回路部品。The planar optical circuit component according to any one of claims 1 to 7, wherein a concave portion that forms a stepped surface having a depth greater than the reference surface is a relief groove for the adhesive. 平面基板上に、高い屈折率を有するコアと、該コアを囲むように形成された低い屈折率を有するクラッドとを備えた光導波回路基板と、該光導波回路基板を固定する保持基板とから構成される平面光回路部品の作製方法において、
前記保持基板に、前記光導波回路基板との接触面となる基準面を形成するとともに、少なくとも2段以上の深さの異なる段差によって区切られた複数の段差面である接着面を有する段差部を形成し、
前記基準面に対して深さの浅い段差面と前記光導波回路基板との間隙に接着剤を充填して、前記光導波回路基板と前記保持基板とを接着固定することを特徴とする平面光回路部品の作製方法。
On a flat substrate, an optical waveguide circuit substrate including a core having a high refractive index and a clad having a low refractive index formed so as to surround the core, and a holding substrate for fixing the optical waveguide circuit substrate. In the method for manufacturing a planar optical circuit component to be configured,
On the holding substrate, a reference surface serving as a contact surface with the optical waveguide circuit substrate is formed, and a step having an adhesive surface that is a plurality of step surfaces separated by steps having different depths of at least two steps or more is provided. Forming
An adhesive is filled in a gap between the step surface having a smaller depth with respect to the reference surface and the optical waveguide circuit substrate, and the optical waveguide circuit substrate and the holding substrate are bonded and fixed. How to make circuit parts.
前記光導波回路基板を、前記保持基板に形成された深さの異なる複数の接着面にそれぞれ固定することを特徴とする請求項9記載の平面光回路部品の作製方法。10. The method of manufacturing a planar optical circuit component according to claim 9, wherein the optical waveguide circuit board is fixed to a plurality of adhesive surfaces having different depths formed on the holding substrate. 前記保持基板に形成された複数の突起状の基準面に、前記光導波回路基板を接触させて固定することを特徴とする請求項9又は10に記載の平面光回路部品の作製方法。The method of manufacturing a planar optical circuit component according to claim 9, wherein the optical waveguide circuit substrate is brought into contact with and fixed to a plurality of projecting reference surfaces formed on the holding substrate. 前記保持基板の深い段差面に台座を形成し、該台座上に熱伝導材料を設けることを特徴とする請求項9,10又は11に記載の平面光回路部品の作製方法。The method according to claim 9, wherein a pedestal is formed on a deep step surface of the holding substrate, and a heat conductive material is provided on the pedestal. 前記該光導波回路基板の前記コアに対向した位置に配置される受光素子又は発光素子と、該受光素子又は発光素子を保持する固定基板とを有する基板付光部品を、前記保持基板上に形成することを特徴とする請求項9乃至12のいずれかに記載の平面光回路部品の作製方法。Forming an optical component with a substrate having a light receiving element or a light emitting element disposed at a position facing the core of the optical waveguide circuit board, and a fixed substrate holding the light receiving element or the light emitting element on the holding substrate. The method for manufacturing a planar optical circuit component according to claim 9, wherein 前記基板付光部品を搭載する前記保持基板に、前記基板付光部品との接触面となる基準面を形成するとともに、少なくとも2段以上の深さの異なる段差によって区切られた複数の段差面である接着面を形成し、
前記基準面に対して深さの浅い段差面と前記基板付光部品との間隙に接着剤を充填して、前記基板付光部品と前記保持基板を接着固定することを特徴とする請求項13に記載の平面光回路部品の作製方法。
On the holding substrate on which the substrate-mounted optical component is mounted, a reference surface serving as a contact surface with the substrate-mounted optical component is formed, and at least two or more steps are separated by different steps having different depths. Form an adhesive surface,
An adhesive is filled into a gap between the stepped surface having a depth smaller than the reference surface and the optical component with a substrate, and the optical component with a substrate and the holding substrate are bonded and fixed. 3. The method for producing a planar optical circuit component according to 1.
前記保持基板の側壁に、前記基準面及び前記接着面を形成することを特徴とする請求項14に記載の平面光回路部品の作製方法。15. The method according to claim 14, wherein the reference surface and the adhesive surface are formed on a side wall of the holding substrate. 前記基準面に対して深さの深い段差面を構成する凹部を、前記接着剤の逃げ溝とすることを特徴とする請求項9乃至15のいずれかに記載の平面光回路部品の作製方法。The method of manufacturing a planar optical circuit component according to any one of claims 9 to 15, wherein a concave portion that forms a stepped surface having a depth greater than the reference surface is used as a relief groove for the adhesive.
JP2003155796A 2003-05-30 2003-05-30 Planar optical circuit component and manufacturing method thereof Expired - Fee Related JP4156442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003155796A JP4156442B2 (en) 2003-05-30 2003-05-30 Planar optical circuit component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003155796A JP4156442B2 (en) 2003-05-30 2003-05-30 Planar optical circuit component and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008035218A Division JP4504435B2 (en) 2008-02-15 2008-02-15 Planar optical circuit component and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004354947A true JP2004354947A (en) 2004-12-16
JP4156442B2 JP4156442B2 (en) 2008-09-24

Family

ID=34050092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003155796A Expired - Fee Related JP4156442B2 (en) 2003-05-30 2003-05-30 Planar optical circuit component and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4156442B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251212A (en) * 2005-03-09 2006-09-21 Toshiba Corp Optical transmission line holding member, optical module and method for manufacturing optical module
JP2007178578A (en) * 2005-12-27 2007-07-12 Hitachi Cable Ltd Optical transmitter-receiver
WO2013035434A1 (en) * 2011-09-09 2013-03-14 古河電気工業株式会社 Arrayed waveguide grating type optical multiplexer/demultiplexer
WO2014118836A1 (en) * 2013-02-01 2014-08-07 日本電気株式会社 Optical function integration unit and method for producing same
WO2016200031A1 (en) * 2015-06-11 2016-12-15 주식회사 네온포토닉스 Light-receiving module using optical waveguide chip and manufacturing method therefor
WO2022071381A1 (en) * 2020-09-30 2022-04-07 住友大阪セメント株式会社 Optical waveguide element, and optical modulation device and optical transmission apparatus using same
JPWO2022244230A1 (en) * 2021-05-21 2022-11-24

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186187A (en) * 1996-12-24 1998-07-14 Nippon Telegr & Teleph Corp <Ntt> Flexible optical waveguide device
JPH11211941A (en) * 1998-01-28 1999-08-06 Fujitsu Ltd Optical module
JPH11289131A (en) * 1997-09-02 1999-10-19 Matsushita Electric Ind Co Ltd Wavelength variable semiconductor laser and photointegrated device as well as manufacture thereof
JPH11287926A (en) * 1997-03-13 1999-10-19 Nippon Telegr & Teleph Corp <Ntt> Optical element mounting substrate, optical module using the same and production thereof
JP2000121870A (en) * 1998-10-14 2000-04-28 Sharp Corp Optical transmission and reception module, and its manufacture
JP2000347083A (en) * 1999-03-31 2000-12-15 Ngk Insulators Ltd Adhered structure of optical parts and its production
JP2001185800A (en) * 1999-12-27 2001-07-06 Kyocera Corp Optical module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186187A (en) * 1996-12-24 1998-07-14 Nippon Telegr & Teleph Corp <Ntt> Flexible optical waveguide device
JPH11287926A (en) * 1997-03-13 1999-10-19 Nippon Telegr & Teleph Corp <Ntt> Optical element mounting substrate, optical module using the same and production thereof
JPH11289131A (en) * 1997-09-02 1999-10-19 Matsushita Electric Ind Co Ltd Wavelength variable semiconductor laser and photointegrated device as well as manufacture thereof
JPH11211941A (en) * 1998-01-28 1999-08-06 Fujitsu Ltd Optical module
JP2000121870A (en) * 1998-10-14 2000-04-28 Sharp Corp Optical transmission and reception module, and its manufacture
JP2000347083A (en) * 1999-03-31 2000-12-15 Ngk Insulators Ltd Adhered structure of optical parts and its production
JP2001185800A (en) * 1999-12-27 2001-07-06 Kyocera Corp Optical module

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251212A (en) * 2005-03-09 2006-09-21 Toshiba Corp Optical transmission line holding member, optical module and method for manufacturing optical module
JP2007178578A (en) * 2005-12-27 2007-07-12 Hitachi Cable Ltd Optical transmitter-receiver
JP4609311B2 (en) * 2005-12-27 2011-01-12 日立電線株式会社 Optical transceiver
WO2013035434A1 (en) * 2011-09-09 2013-03-14 古河電気工業株式会社 Arrayed waveguide grating type optical multiplexer/demultiplexer
JPWO2014118836A1 (en) * 2013-02-01 2017-01-26 日本電気株式会社 Optical function integrated unit and manufacturing method thereof
WO2014118836A1 (en) * 2013-02-01 2014-08-07 日本電気株式会社 Optical function integration unit and method for producing same
US9577410B2 (en) 2013-02-01 2017-02-21 Nec Corporation Optical functional integrated unit and method for manufacturing thereof
WO2016200031A1 (en) * 2015-06-11 2016-12-15 주식회사 네온포토닉스 Light-receiving module using optical waveguide chip and manufacturing method therefor
KR101824668B1 (en) * 2015-06-11 2018-02-01 주식회사 네온포토닉스 Optical receiver module using optical waveguide chip and method for manufacturing the same
WO2022071381A1 (en) * 2020-09-30 2022-04-07 住友大阪セメント株式会社 Optical waveguide element, and optical modulation device and optical transmission apparatus using same
JP7468280B2 (en) 2020-09-30 2024-04-16 住友大阪セメント株式会社 Optical waveguide element, optical modulation device using the same, and optical transmission device
JPWO2022244230A1 (en) * 2021-05-21 2022-11-24
JP7381174B2 (en) 2021-05-21 2023-11-15 三菱電機株式会社 optical module

Also Published As

Publication number Publication date
JP4156442B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP4704126B2 (en) Optical module
CN208125949U (en) The coupling unit and opto-electronic device of a kind of lens fiber array, itself and chip
WO2006073229A1 (en) Packaging method of temperature insensitive arrayed waveguide grating
CN215067594U (en) Optical waveguide element
JP2011095295A (en) Optical fiber block of optical module and method of manufacturing the same
JP4504435B2 (en) Planar optical circuit component and manufacturing method thereof
CN104503026B (en) A kind of afebrile array waveguide grating wavelength division multiplexer and its manufacture method
JP4156442B2 (en) Planar optical circuit component and manufacturing method thereof
JP2018194802A (en) Optical module and method for manufacturing the same
CN101093263B (en) Optical waveguide, method of manufacturing the same and optical communication module
JP7372578B2 (en) optical module
JP2005062645A (en) Optical connection structure body and its manufacturing method
JP2000131556A (en) Connecting structure of optical waveguide and optical fiber and connection method therefor
JP2006251046A (en) Optical waveguide substrate, optical surface mounting waveguide element, and their manufacturing method
JPWO2002079831A1 (en) Optical fiber array and method of manufacturing the same
US20030235388A1 (en) Method for fabricating fiber blocks using solder as bonding material
JP2008164943A (en) Multichannel optical path conversion element and its manufacturing method
JP5039523B2 (en) Optical waveguide circuit chip
JP2001272570A (en) Optical fiber array
JP5047591B2 (en) Flexible optical waveguide and optical waveguide module
JP3447364B2 (en) Optical circuit component and method of manufacturing the same
JP2000347083A (en) Adhered structure of optical parts and its production
JPH10231131A (en) Preform for molding and molded product
JP2005099382A (en) Manufacturing method and device
JP4018852B2 (en) Optical waveguide substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees