JP5129253B2 - Steel strip production process - Google Patents

Steel strip production process Download PDF

Info

Publication number
JP5129253B2
JP5129253B2 JP2009528610A JP2009528610A JP5129253B2 JP 5129253 B2 JP5129253 B2 JP 5129253B2 JP 2009528610 A JP2009528610 A JP 2009528610A JP 2009528610 A JP2009528610 A JP 2009528610A JP 5129253 B2 JP5129253 B2 JP 5129253B2
Authority
JP
Japan
Prior art keywords
steel
melt
casting
concentration
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009528610A
Other languages
Japanese (ja)
Other versions
JP2010504214A (en
JP2010504214A5 (en
Inventor
クリスティアン・ベルンハルト
ゲラルト・エッカーストールフェール
ゲラルト・ホヘンビッヒラー
ベルント・リンツァー
Original Assignee
シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38541914&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5129253(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー filed Critical シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー
Publication of JP2010504214A publication Critical patent/JP2010504214A/en
Publication of JP2010504214A5 publication Critical patent/JP2010504214A5/ja
Application granted granted Critical
Publication of JP5129253B2 publication Critical patent/JP5129253B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels

Description

本発明は、少なくとも2つの鋳造ロールと、必要に応じて、横方向に配置された側部プレートとを使用する鋼ストリップの連続生産のためのプロセスに関し、このプロセスにおいては、操業中には液状の鋼溶融物を鋳造ロールに導入することが出来る鋳造溶湯貯蔵部を鋳造ロールと側部プレートとの間に形成することが出来る。   The present invention relates to a process for the continuous production of steel strips using at least two casting rolls and, if necessary, laterally arranged side plates, in this process a liquid during operation. A cast molten metal storage part capable of introducing the steel melt into the casting roll can be formed between the casting roll and the side plate.

低炭素濃度の、Mn/Siセミキルド鋼溶融物からの鋼ストリップの生産中に、従来技術から既知である2つの鋳造プロセスが使用される場合には、生産された鋼ストリップは、この生産された鋼ストリップの品質を大幅に低下させる多くの割れ及び表面欠陥を有している。 During the production of steel strips from low carbon concentration, Mn / Si semi-killed steel melts, if two casting processes known from the prior art are used, the produced steel strips were produced It has many cracks and surface defects that greatly reduce the quality of the steel strip.

液状非金属介在物が鋼溶融物中に生じ、これら介在物が鋼のシェルの凝固中に液状のままに維持されて均一な熱流とこれによる均一な冷却効果が鋳造ロールの表面に液体フィルムを形成することによって達成されるように、鋼溶融物の組成を選択することによって割れ及び表面欠陥を防止するか、又は少なくとも割れ及び表面欠陥の数を減少させることが、特許文献1及び特許文献2によって既知となっている。   Liquid non-metallic inclusions occur in the steel melt, and these inclusions remain liquid during the solidification of the steel shell so that a uniform heat flow and a uniform cooling effect thereby create a liquid film on the surface of the casting roll. Preventing cracks and surface defects by selecting the composition of the steel melt, or at least reducing the number of cracks and surface defects, as achieved by forming, is described in US Pat. Is known by

工業的規模での溶融操業中には、操業に係る複数の理由のために、Mn/Siセミキルド鋼溶融物中に実際に存在するMnO/SiOの比は、理論的に計算されたMnO/SiOの比より実質的に低いことが多い。Mn/Siセミキルド鋼溶融物中の非金属介在物の溶融温度は、鋼組成の変化及び関連する前記介在物の組成におけるMnO/SiOの比の変化に非常に敏感である。したがって、液状の非金属介在物の生成に対する、従来技術において特定される金属学法則に従う場合、工業的規模での溶融操業中に、扱われるレードルそれぞれが、液状の非金属介在物が鋳造プロセス中に存在することを確実とする組成を有していることを仮定することは出来ない。よって、割れ及び表面欠陥が再現してしまう場合がある。 During melting operations on an industrial scale, the MnO / SiO 2 ratio actually present in the Mn / Si semi-killed steel melt is due to a number of operational reasons, the theoretically calculated MnO / Often substantially lower than the ratio of SiO 2 . The melting temperature of the non-metallic inclusions in the Mn / Si semi-killed steel melt is very sensitive to changes in the steel composition and the related MnO / SiO 2 ratio in the inclusion composition. Thus, when following the metallurgical rules specified in the prior art for the production of liquid non-metallic inclusions, during the melting operation on an industrial scale, each handled raddle has liquid non-metallic inclusions in the casting process. It cannot be assumed that it has a composition that ensures it exists. Therefore, cracks and surface defects may be reproduced.

国際公開第03024644号パンフレットInternational Publication No. 030246644 Pamphlet 米国特許第2005145304号明細書US Patent No. 2005005145

本発明の目的は、これら従来技術の既知の欠点を回避すること、及び低炭素濃度の、Mn/Siセミキルド鋼溶融物から、割れ及び表面欠陥が殆ど無く、均一な表面を有する鋼ストリップを生産するためのプロセスを提供することである。このプロセスにおいては、鋼組成の望ましい値からのずれに対する非金属介在物の溶融温度の振れ幅は、工業的規模の溶融操業中の鋳造プロセス中、液状の非金属介在物が、扱われるレードルそれぞれの中に存在することを確実とするのに十分でなければならない。 The object of the present invention is to avoid these known drawbacks of the prior art and to produce steel strips with a uniform surface with few cracks and surface defects from a low carbon concentration, Mn / Si semi-killed steel melt. Is to provide a process for In this process, the variation in melting temperature of nonmetallic inclusions with respect to deviation from the desired value of the steel composition is such that during the casting process during an industrial scale melting operation, liquid nonmetallic inclusions are handled in each ladle handled. It must be enough to ensure that it exists within.

本発明によれば、本発明の目的は、通常の操業中において、特定のロール離隔力(RSF:roll separating force)を使用して、特定のMn/Si含有量比、及び特定の硫黄含有量を有する鋼溶融物が処理されるプロセスによって達成される。   According to the present invention, the object of the present invention is to use a specific roll separating force (RSF), a specific Mn / Si content ratio, and a specific sulfur content during normal operation. Achieved by a process in which a steel melt having

したがって、本発明は、低炭素濃度の、Mn/Siセミキルド鋼ストリップを生産するためのプロセスであって、鋼溶融物が、少なくとも2つの鋳造ロールの間の溶湯貯蔵部から導入され、冷却されるとともに鋼ストリップとともに移動し、鋳造ロール上において少なくとも部分的に凝固して鋼ストリップを形成するプロセスにおいて、鋼溶融物が、20〜300ppmの硫黄濃度と、3.5以上のMn/Si比とを有し、通常の操業中にロール離隔力が2〜50kN/mであることを特徴としている。 Accordingly, the present invention is a process for producing a low carbon concentration, Mn / Si semi-killed steel strip wherein the steel melt is introduced and cooled from a melt reservoir between at least two casting rolls. In the process of moving together with the steel strip and at least partially solidifying on the casting roll to form the steel strip, the steel melt has a sulfur concentration of 20-300 ppm and a Mn / Si ratio of 3.5 or more. And the roll separation force is 2 to 50 kN / m during normal operation.

このように生産された鋼ストリップは、思いがけなく大幅に割れ及び表面欠陥が少なく、均一な表面を有している。   The steel strip produced in this way has a uniform surface with unexpectedly significantly less cracking and surface defects.

低炭素濃度鋼ストリップが、0.1重量%未満の炭素濃度を有する鋼ストリップを意味することが理解されるべきである。   It should be understood that a low carbon steel strip means a steel strip having a carbon concentration of less than 0.1% by weight.

MnO−SiO−MnSシステムにおける、温度に対する溶融物の抵抗値範囲の広がりの図である。In MnO-SiO 2 -MnS system diagrams spread of resistance range of the melt with respect to temperature. 鋼溶融物における硫黄濃度の影響を示す図である。It is a figure which shows the influence of the sulfur concentration in a steel melt.

本発明による鋼溶融物の組成は、非金属介在物が低い溶融温度を有することを確実とする。低い溶融温度は、鋳造プロセス中の鋳造ロール上の鋼シェルの凝固中に非金属介在物が液状で存在するという効果を有する。鋼組成の望ましい値からのずれに対する非金属介在物の溶融温度の振れ幅は、液状の非金属介在物が多相システム中に存在する組成範囲が広がることによって増加する。この広がった組成範囲は、特定の鋼組成に対する望ましい値が工業的規模の溶融操業中に正確に合致していない場合でさえ、鋼溶融物が、鋳造プロセス中の液状非金属介在物を保証する組成を有するということを確実にする。   The composition of the steel melt according to the invention ensures that the nonmetallic inclusions have a low melting temperature. The low melting temperature has the effect that non-metallic inclusions are present in liquid form during solidification of the steel shell on the casting roll during the casting process. The fluctuation range of the melting temperature of the nonmetallic inclusion with respect to the deviation from the desired value of the steel composition is increased by increasing the composition range in which the liquid nonmetallic inclusion exists in the multiphase system. This extended composition range ensures that the steel melt is a liquid non-metallic inclusion during the casting process, even if the desired values for a particular steel composition do not exactly match during an industrial scale melt operation. Ensure that it has a composition.

鋼の準備の間に、酸化物又は硫化物の非金属介在物が鋼溶融物中に生じる。Mn/Siセミキルド鋼溶融物における非金属介在物の主な成分は、MnO及びSiOである。 During the preparation of the steel, non-metallic inclusions of oxides or sulfides are formed in the steel melt. The main components of the non-metallic inclusions in the Mn / Si Semikirudo steel melt is MnO and SiO 2.

本発明によれば、硫黄の含有量を20〜300ppmの値に設定し、Mn/Si比を3.5以上に設定することは、非金属介在物が、主成分MnO−SiO−MnSを有する多相システムから本質的に構成されるという効果を有する。この多相システムのMnS含有量が37重量%MnS未満である場合には、多相システムの溶融温度は、主成分がMnO及びSiOからなる多相システムの溶融温度より低い。MnO−SiO−MnSの3相システムは、約1130℃に3元共晶温度を有する。 According to the present invention, setting the sulfur content to a value of 20 to 300 ppm and setting the Mn / Si ratio to 3.5 or more means that the non-metallic inclusions contain the main component MnO—SiO 2 —MnS. It has the effect of consisting essentially of a multiphase system. If this MnS content of the multiphase system is less than 37 wt% MnS, the melt temperature of the multiphase system is less than the melting temperature of the multiphase system consisting of MnO and SiO 2 principal components. The MnO—SiO 2 —MnS three-phase system has a ternary eutectic temperature of about 1130 ° C.

図1の3元システムMnO−SiO−MnSのモデリングは、液相範囲が、共晶点において2相システムMnO−SiOの1251℃の共晶温度での2相システムMnO−SiOの境界に合致し、MnS濃度が増加するにつれて3元システムへの遷移の間に広がる、ということを示している。より低い温度では、液相線範囲は境界システムから離れる方向へ動き、依然として所定の最小のMnS濃度の上にのみ見ることが出来る。 Ternary system MnO-SiO 2-MnS modeling of Figure 1, the liquid phase ranges, a two-phase system MnO-SiO 2 in the boundary of the eutectic temperature of 1251 ° C. for 2-phase system MnO-SiO 2 in a eutectic point And shows that it spreads during the transition to the ternary system as the MnS concentration increases. At lower temperatures, the liquidus range moves away from the boundary system and can still be seen only above a certain minimum MnS concentration.

非金属介在物の低い溶融温度と工業的規模における溶融操業中において十分であるMnS濃度での変動に対する溶融温度の振れ幅とを同時に有する通常の操業点は、本発明による鋼溶融物の組成の場合には、約15重量%MnSである。   The normal operating point having simultaneously the low melting temperature of non-metallic inclusions and the fluctuation of the melting temperature for fluctuations in the MnS concentration which is sufficient during the melting operation on an industrial scale is the composition of the steel melt according to the invention. In some cases, it is about 15% by weight MnS.

不活性ガス中での浸漬試験と、ストリップの鋳造に対応する接触時間及び過熱レベルとを使用した、150〜500ppmの鋼溶融物の硫黄濃度を有する薄いストリップの鋳造設備における凝固条件のシミュレーションでは、7〜40重量%の液状非金属介在物の平均MnS濃度であった。Mn/Siセミキルド鋼溶融物の硫黄濃度の増加は、非金属介在物のMnS濃度を増加させる。 In the simulation of solidification conditions in a thin strip casting facility with a steel melt sulfur concentration of 150-500 ppm, using an immersion test in inert gas and a contact time and superheat level corresponding to the casting of the strip, The average MnS concentration of the liquid nonmetallic inclusions was 7 to 40% by weight. Increasing the sulfur concentration of the Mn / Si semi-killed steel melt increases the MnS concentration of non-metallic inclusions.

図2は、3.5以上のMn/Si比を有する、低炭素濃度の、Mn/Siセミキルド鋼溶融物(C:0.05重量%、Mn:0.3重量%、Si:0.2重量%)の割れの傾向に対する影響を、非金属介在物の組成及び非金属介在物の溶融温度(液相線温度)に対して、割れの頻度又は鋼溶融物の溶融温度間隔によって表わした図である。図2における測定されたデータは、上述の浸漬試験から得られている。 FIG. 2 shows a low carbon concentration, Mn / Si semi-killed steel melt (C: 0.05 wt%, Mn: 0.3 wt%, Si: 0.2 wt%) with a Mn / Si ratio of 3.5 or higher. (% By weight) The effect of cracking tendency on the composition of nonmetallic inclusions and the melting temperature (liquidus temperature) of nonmetallic inclusions by the frequency of cracking or the melting temperature interval of the steel melt It is. The measured data in FIG. 2 is obtained from the immersion test described above.

約1130℃における3元共晶点に対応する、非金属介在物のMnS濃度を生じさせる溶融物の硫黄濃度以下では、非金属介在物の溶融温度は硫黄濃度の増加に伴って低下する。   Below the sulfur concentration of the melt that produces a MnS concentration of nonmetallic inclusions, corresponding to a ternary eutectic point at about 1130 ° C., the melting temperature of the nonmetallic inclusions decreases with increasing sulfur concentration.

約1130℃における3元共晶に対応する非金属介在物のMnS濃度を生じさせる硫黄濃度より上では、非金属介在物の溶融温度及び割れの頻度は急速に増加する。   Above the sulfur concentration that results in the MnS concentration of the nonmetallic inclusions corresponding to the ternary eutectic at about 1130 ° C., the melting temperature of the nonmetallic inclusions and the frequency of cracking increase rapidly.

溶融温度の間隔の幅は、約300ppmの硫黄濃度まで増加し、次いでほぼ一定となる。   The width of the melting temperature interval increases to a sulfur concentration of about 300 ppm and then becomes nearly constant.

図2は、熱間割れにいたる傾向の増加と非金属介在物の溶融温度の降下との間の相対的な挙動を示している。したがって、本発明によって推奨され、非金属介在物の十分に低い溶融温度であって、同時に熱間割れの許容できる傾向を有する硫黄濃度は、図2から見出すことが出来る。鋼合金中の硫黄の存在は、鋼合金の固相/液相の2相領域、すなわち溶融間隔を広げ、同時にその固相線温度を降下させ、このことが、熱間割れが液体非侵入温度(LIT:liquid impenetration temperature)と延性を示さない温度(ZDT: zero ductility temperature)との間において生じる温度範囲を広げる。   FIG. 2 shows the relative behavior between increasing tendency to hot cracking and decreasing melting temperature of non-metallic inclusions. Therefore, the sulfur concentration recommended by the present invention and having a sufficiently low melting temperature of non-metallic inclusions and at the same time having an acceptable tendency to hot cracking can be found from FIG. The presence of sulfur in the steel alloy increases the two-phase region of the solid / liquid phase of the steel alloy, i.e. widens the melting interval and at the same time lowers its solidus temperature. The temperature range generated between (LIT: liquid impermeation temperature) and a temperature not exhibiting ductility (ZDT: zero ductility temperature) is expanded.

2相領域の幅は、鋼溶融物中の300ppmまでの硫黄濃度において、約45℃までほぼ直線的に増加する。この硫黄濃度より高い硫黄濃度では、MnSが凝固中に硫黄濃度の増加とともに析出するので、2相領域の幅はほぼ一定に維持される。これらMnS析出物は、鋳造ロールの表面に固体形状で堆積し、よって均一な熱流又は均一な冷却効果を妨げ、これが表面欠陥及び割れの形成を促進する。鋼溶融物の硫黄濃度の増加は、MnS析出物の量を増加させ、よって表面欠陥及び割れの数を増加させる。   The width of the two-phase region increases almost linearly to about 45 ° C. at sulfur concentrations up to 300 ppm in the steel melt. At a sulfur concentration higher than this sulfur concentration, MnS precipitates with increasing sulfur concentration during solidification, so the width of the two-phase region is maintained approximately constant. These MnS deposits are deposited in solid form on the surface of the casting roll, thus hindering uniform heat flow or uniform cooling effects, which promote the formation of surface defects and cracks. Increasing the sulfur concentration of the steel melt increases the amount of MnS precipitates and thus increases the number of surface defects and cracks.

したがって、本発明によれば、最大硫黄濃度は300ppmに制限される。   Therefore, according to the present invention, the maximum sulfur concentration is limited to 300 ppm.

鋼溶融物の20ppm未満の硫黄濃度においては、主成分MnO及びSiOからなる多相システムに比較した液状非金属介在物の溶融温度は、液状非金属介在物が、鋳造プロセス中に鋳造ロール上の鋼シェルの凝固中に存在することを確実にするほどには十分に高くない。 At a sulfur concentration of less than 20 ppm in the steel melt, the melting temperature of the liquid non-metallic inclusions compared to the multiphase system consisting of the main components MnO and SiO 2 is such that the liquid non-metallic inclusions on the casting roll during the casting process It is not high enough to ensure that it is present during solidification of the steel shell.

さらに、20ppmより少ない硫黄濃度においては、液状非金属介在物が多相システム中に存在する組成領域の幅は、工業的規模での溶融操業中の鋼組成の望ましい値からのずれに対する十分な許容範囲が存在することを確実にするほどには大きくない。   In addition, at sulfur concentrations below 20 ppm, the width of the composition region where liquid non-metallic inclusions are present in the multiphase system is sufficiently tolerant of deviations from the desired value of the steel composition during melting operations on an industrial scale. Not large enough to ensure that a range exists.

硫黄濃度は好ましくは少なくとも50ppmであり、特に好ましくは少なくとも70ppmである。硫黄濃度の上限は好ましくは250ppmであり、特に好ましくは200ppmである。鋼溶融物の硫黄濃度は、脱硫若しくは制御された硫黄又は硫黄化合物の添加によって望ましいレベルに調整することが出来る。   The sulfur concentration is preferably at least 50 ppm, particularly preferably at least 70 ppm. The upper limit of the sulfur concentration is preferably 250 ppm, particularly preferably 200 ppm. The sulfur concentration of the steel melt can be adjusted to the desired level by desulfurization or the addition of controlled sulfur or sulfur compounds.

鋼溶融物における3.5未満のMn/Si比において、主成分MnO−SiO−MnSからなり、主成分MnO及びSiOからなる多相システムに比較して、鋼混合物の溶融温度より低い値までの液状非金属介在物の溶融温度の低下を有する、多相システムが形成されることは無い。したがって本発明によれば、Mn/Si比は3.5以上である必要がある。 A value lower than the melting temperature of the steel mixture compared to a multiphase system consisting of the main components MnO—SiO 2 —MnS and consisting of the main components MnO and SiO 2 at a Mn / Si ratio of less than 3.5 in the steel melt. No multiphase system is formed with a reduction in the melting temperature of liquid non-metallic inclusions up to. Therefore, according to the present invention, the Mn / Si ratio needs to be 3.5 or more.

ロール離隔力は、鋳造ロールが鋳造プロセス中において互いに対して押圧する力であり、鋼ストリップの幅に依存している。ロール離隔力は、鋼ストリップ中の割れ及び表面欠陥の存在に影響する。   The roll separation force is the force with which the casting rolls press against each other during the casting process and depends on the width of the steel strip. The roll separation force affects the presence of cracks and surface defects in the steel strip.

ロール離隔力が大きければ大きいほど、鋼のシェルのキッシングポイント(kissing point)において生じる温度の不均一性は大きくなる。このタイプの温度の不均一性は、鋼ストリップの不均一な冷却を引き起こし、これが表面割れをもたらす。さらに、大きなロール離隔力は、応力がストリップ鋳造された鋼ストリップ中に生じ、この応力が又割れを引き起こし、機械的な特性を損なう。   The greater the roll separation force, the greater the temperature non-uniformity that occurs at the steel shell kissing point. This type of temperature non-uniformity causes non-uniform cooling of the steel strip, which results in surface cracking. In addition, large roll separation forces occur in the strip cast steel strip, which also causes cracking and impairs mechanical properties.

小さなロール離隔力の使用はこれら問題を回避し、さらに、鋳造装置が殆ど機械的応力を受けることが無いという利点を付与する。しかし、小さいロール離隔力の選択は、逆に鋳造プロセスの安定性に影響を及ぼす。これは、小さいロール離隔力の場合には鋳造ロール上の凝固した金属シェルが凝固中の不均一性の故に十分に押し圧されず、鋼ストリップがそれ自身の重さの下で割れを生じる危険、鋼シェルが鋳造ロールの幅の一部分又は全体に付着したままとなる危険、及び、割れが鋼シェル中に生じる危険があるからである。   The use of a small roll separation force avoids these problems and further provides the advantage that the casting apparatus is hardly subjected to mechanical stress. However, the selection of a small roll separation force adversely affects the stability of the casting process. This means that in the case of small roll separation forces, the solidified metal shell on the casting roll is not fully pressed due to non-uniformity during solidification, and the steel strip may crack under its own weight. This is because there is a risk that the steel shell will remain attached to part or all of the width of the casting roll and there is a risk that cracks will occur in the steel shell.

従来技術によるプロセスにおいては、ロール離隔力の大きさは、通常の操業中には、5〜250kN/mである。   In the prior art process, the magnitude of the roll separation force is 5 to 250 kN / m during normal operation.

本発明によれば、ロール離隔力は50kN/m未満である。本発明による鋼溶融物の組成が、鋼シェルの凝固中に液状の非金属介在物が生じることを確実にするという事実によって非均一性の発生を最小化するので、このような小さなロール離隔力を、鋳造プロセスの安定性の危険を有することなく使用することができる。   According to the invention, the roll separation force is less than 50 kN / m. Such a small roll separation force because the composition of the steel melt according to the invention minimizes the occurrence of non-uniformity by the fact that it ensures that liquid non-metallic inclusions occur during solidification of the steel shell. Can be used without risking the stability of the casting process.

割れの頻度はロール離隔力の増加に伴って増加する。50kN/m以上のロール離隔力が使用される場合、殆ど割れ及び表面欠陥の無い鋼ストリップの均一な表面の生成を確実とすることはできない。   The frequency of cracking increases with increasing roll separation force. When roll separation forces of 50 kN / m or more are used, it is not possible to ensure the production of a uniform surface of the steel strip with almost no cracks and surface defects.

本発明によれば、ロール離隔力に対する下限は2kN/mである。鋳造プロセスの十分な安定性は、この値未満においては確実とはならない。   According to the invention, the lower limit for the roll separation force is 2 kN / m. Sufficient stability of the casting process is not assured below this value.

ロール離隔力は好ましくは少なくとも5kN/mである。ロール離隔力の上限は好ましくは30kN/mである。   The roll separation force is preferably at least 5 kN / m. The upper limit of the roll separation force is preferably 30 kN / m.

ロール離隔力に対して上述された値は、鋳造設備の安定した通常状態を参照しているが、設備が始動するか、又は過剰な付加の効果が一時的に生じる場合の状況は参照していない。   The values given above for the roll separation force refer to the stable normal state of the casting equipment, but not to the situation when the equipment is started or excessive addition effects occur temporarily. Absent.

本発明によるプロセスのさらなる好ましい実施形態によれば、鋼溶融物中の非金属介在物は、45重量%未満のAlの質量分率を有している。主成分MnO−Si0−MnS−Alを有する結果的な多相システムは、主成分MnOとSiOとからなる多相システムの溶融温度より低い。さらに、液状の非金属介在物が存在する組成範囲は、主成分MnO−Si0−MnS−Alを有する多相システムにおいて、主成分MnO及びSiOからなる多相システムにおけるよりも広い。Al濃度は鋼溶融物を生産するための開始材料の選択と、適切である場合には、Al又はAl化合物の目標とした添加とによって設定される。 According to a further preferred embodiment of the process according to the invention, the nonmetallic inclusions in the steel melt have a mass fraction of Al 2 O 3 of less than 45% by weight. The resulting multiphase system with the main components MnO—SiO 2 —MnS—Al 2 0 3 is lower than the melting temperature of the multiphase system consisting of the main components MnO and SiO 2 . Moreover, the composition range nonmetallic inclusions liquid is present in the multiphase system with the main component MnO-Si0 2 -MnS-Al 2 0 3, wider than in the multiphase system comprising a main component MnO and SiO 2 . The Al 2 O 3 concentration is set by the choice of starting material for producing the steel melt and, where appropriate, the targeted addition of Al or Al compound.

Claims (4)

鋳造された低炭素濃度のMn/Siセミキルド鋼ストリップであるストリップを生産するためのプロセスであって、
鋼溶融物が、少なくとも2つの鋳造ロールの間の溶湯貯蔵部から導入され、冷却されるとともに鋼ストリップとともに移動し、前記鋳造ロール上において少なくとも部分的に凝固して前記鋼ストリップを形成するプロセスにおいて、
前記鋼溶融物が、20〜300ppmの硫黄濃度と、3.5以上のMn/Si比とを有し、通常の操業中にロール離隔力が2〜50kN/mであることを特徴とするプロセス。
A process for producing a strip that is a cast low carbon concentration Mn / Si semi-killed steel strip comprising:
In a process where a steel melt is introduced from a melt reservoir between at least two casting rolls, cooled and moved with the steel strip, and at least partially solidified on the casting roll to form the steel strip. ,
The steel melt has a sulfur concentration of 20 to 300 ppm and a Mn / Si ratio of 3.5 or more, and a roll separation force of 2 to 50 kN / m during normal operation. .
前記鋼溶融物は、50〜250ppm、好ましくは70〜200ppmの硫黄濃度を有することを特徴とする請求項1に記載のプロセス。  Process according to claim 1, characterized in that the steel melt has a sulfur concentration of 50 to 250 ppm, preferably 70 to 200 ppm. 前記ロール離隔力は5〜30kN/mであることを特徴とする請求項1又は2に記載のプロセス。  The process according to claim 1 or 2, wherein the roll separation force is 5 to 30 kN / m. 前記鋼溶融物は、45重量%未満のAlの質量分率を有する非金属介在物を含有することを特徴とする請求項1〜3のいずれか一項に記載のプロセス。The steel melt, the process according to any one of claims 1 to 3, characterized in that it contains non-metallic inclusions with a mass fraction of Al 2 O 3 of less than 45 wt%.
JP2009528610A 2006-09-22 2007-08-16 Steel strip production process Expired - Fee Related JP5129253B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0159306A AT504225B1 (en) 2006-09-22 2006-09-22 METHOD FOR PRODUCING A STEEL STRIP
ATA1593/2006 2006-09-22
PCT/EP2007/007228 WO2008034502A1 (en) 2006-09-22 2007-08-16 Method for producing a steel strip

Publications (3)

Publication Number Publication Date
JP2010504214A JP2010504214A (en) 2010-02-12
JP2010504214A5 JP2010504214A5 (en) 2012-10-11
JP5129253B2 true JP5129253B2 (en) 2013-01-30

Family

ID=38541914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009528610A Expired - Fee Related JP5129253B2 (en) 2006-09-22 2007-08-16 Steel strip production process

Country Status (16)

Country Link
US (1) US20100018665A1 (en)
EP (1) EP2066466B2 (en)
JP (1) JP5129253B2 (en)
KR (1) KR101442724B1 (en)
CN (1) CN101516544B (en)
AT (2) AT504225B1 (en)
AU (1) AU2007299343B2 (en)
BR (1) BRPI0717489B1 (en)
DK (1) DK2066466T3 (en)
ES (1) ES2366139T5 (en)
MX (1) MX2009002629A (en)
PL (1) PL2066466T3 (en)
RU (1) RU2418650C2 (en)
SI (1) SI2066466T1 (en)
UA (1) UA93097C2 (en)
WO (1) WO2008034502A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7975754B2 (en) * 2007-08-13 2011-07-12 Nucor Corporation Thin cast steel strip with reduced microcracking
CN113198995A (en) * 2021-04-25 2021-08-03 芜湖新兴铸管有限责任公司 Peritectic steel continuous casting billet depression improvement control method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016632B2 (en) 1991-07-09 2000-03-06 日新製鋼株式会社 Operation control method of twin roll continuous caster.
JP3308102B2 (en) * 1994-05-26 2002-07-29 キャストリップ・リミテッド・ライアビリティ・カンパニー Metal strip continuous casting method
AUPN281195A0 (en) * 1995-05-05 1995-06-01 Bhp Steel (Jla) Pty Limited Casting steel strip
JPH09168844A (en) * 1995-12-19 1997-06-30 Mitsubishi Heavy Ind Ltd Twin roll continuous casting method
JP3117638B2 (en) * 1996-03-28 2000-12-18 新日本製鐵株式会社 Continuous slab casting method
IT1291931B1 (en) * 1997-06-19 1999-01-21 Voest Alpine Ind Anlagen PROCEDURE FOR THE PRODUCTION OF RAW STEEL CASTING TAPES WITH LOW CARBON CONTENT AND THIS OBTAINABLE TAPES
FR2791286B1 (en) * 1999-03-26 2001-05-04 Lorraine Laminage PROCESS FOR PRODUCING CARBON STEEL STRIPS BY CONTINUOUS CASTING BETWEEN TWO CYLINDERS
JP4518645B2 (en) * 2000-01-21 2010-08-04 日新製鋼株式会社 High strength and high toughness martensitic stainless steel sheet
AUPR047900A0 (en) * 2000-09-29 2000-10-26 Bhp Steel (Jla) Pty Limited A method of producing steel
UA76140C2 (en) * 2001-04-02 2006-07-17 Nucor Corp A method for ladle refining of steel
DE10125669B4 (en) * 2001-05-25 2006-04-27 Hammelmann Maschinenfabrik Gmbh Pump, in particular plunger pump
BRPI0212499B1 (en) 2001-09-14 2015-12-08 Nucor Corp process for producing continuous casting steel strip and thin steel strip produced by the same
FR2834722B1 (en) * 2002-01-14 2004-12-24 Usinor MANUFACTURING PROCESS OF A COPPER-RICH CARBON STEEL STEEL PRODUCT, AND THUS OBTAINED STEEL PRODUCT
KR100489018B1 (en) * 2002-08-30 2005-05-11 주식회사 포스코 Method of Manufacturing High Manganese Steel Strip With Twin Roll Strip Casting Apparatus
AT412072B (en) * 2002-10-15 2004-09-27 Voest Alpine Ind Anlagen METHOD FOR THE CONTINUOUS PRODUCTION OF A THIN STEEL STRIP
JP4598752B2 (en) 2003-01-24 2010-12-15 ニューコア・コーポレーション Steel strip casting
KR101286890B1 (en) * 2003-10-10 2013-07-23 누코 코포레이션 Casting steel strip
WO2007079545A1 (en) * 2006-01-16 2007-07-19 Nucor Corporation Thin cast steel strip with reduced microcracking
US7464746B2 (en) * 2006-08-09 2008-12-16 Nucor Corporation Method of casting thin cast strip

Also Published As

Publication number Publication date
JP2010504214A (en) 2010-02-12
RU2418650C2 (en) 2011-05-20
DK2066466T3 (en) 2011-10-24
EP2066466B2 (en) 2014-08-27
MX2009002629A (en) 2009-03-24
BRPI0717489A2 (en) 2013-10-15
EP2066466A1 (en) 2009-06-10
CN101516544A (en) 2009-08-26
AT504225B1 (en) 2008-10-15
UA93097C2 (en) 2011-01-10
BRPI0717489B1 (en) 2016-02-10
EP2066466B1 (en) 2011-06-29
KR101442724B1 (en) 2014-09-23
AU2007299343B2 (en) 2011-09-08
RU2009115180A (en) 2010-10-27
SI2066466T1 (en) 2011-10-28
WO2008034502A1 (en) 2008-03-27
AU2007299343A1 (en) 2008-03-27
US20100018665A1 (en) 2010-01-28
ATE514502T1 (en) 2011-07-15
ES2366139T5 (en) 2014-10-06
CN101516544B (en) 2011-06-08
KR20090064462A (en) 2009-06-18
PL2066466T3 (en) 2011-11-30
ES2366139T3 (en) 2011-10-17
AT504225A1 (en) 2008-04-15

Similar Documents

Publication Publication Date Title
JP4460462B2 (en) Method for preventing nozzle clogging in continuous casting of steel
JP5129253B2 (en) Steel strip production process
JP2007326150A (en) Method for producing high nitrogen steel
JP2007275903A (en) Method for casting stainless steel or high alloy steel
CN107530769B (en) Continuous casting method using mold flux, and slab manufactured using the same
JP4272577B2 (en) Steel continuous casting method
CN107695311B (en) Input material and casting method using same
JP3772111B2 (en) Mold flux for continuous casting of steel containing high Al / Y / REM
JP2010504214A5 (en)
JP2004098092A (en) Method for continuously casting molten hyper-peritectic medium carbon steel
JP6701379B2 (en) Mold flux and casting method using the same
KR100897143B1 (en) Method of manufacturing high Ni alloy steel with good surface quality
JP7448798B2 (en) Mold flux for continuous casting
RU2815374C1 (en) Composite alloy and method of its manufacture
Falkus An evaluation of the stability of mould flux properties in the process of continuous steel casting
JP2007229803A (en) Powder for continuous casting and continuous casting method for steel
JP2024004032A (en) Continuous casting method
JP4542079B2 (en) Casting method of Ti-containing Fe-Cr-Ni steel with excellent surface properties
JP5004626B2 (en) Appearance of solidified shell thickness in S-print
JP2021030237A (en) Continuous casting method of steel
KR20090104597A (en) Method of manufaturing a magnesium alloy plate and a magnesium alloy plate manufactured by using the same
JP2007050441A (en) Continuous casting method for high alloy steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100409

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A524 Written submission of copy of amendment under section 19 (pct)

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20120821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5129253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees