JP2004098092A - Method for continuously casting molten hyper-peritectic medium carbon steel - Google Patents

Method for continuously casting molten hyper-peritectic medium carbon steel Download PDF

Info

Publication number
JP2004098092A
JP2004098092A JP2002260711A JP2002260711A JP2004098092A JP 2004098092 A JP2004098092 A JP 2004098092A JP 2002260711 A JP2002260711 A JP 2002260711A JP 2002260711 A JP2002260711 A JP 2002260711A JP 2004098092 A JP2004098092 A JP 2004098092A
Authority
JP
Japan
Prior art keywords
mold
powder
steel
peritectic
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002260711A
Other languages
Japanese (ja)
Other versions
JP3891078B2 (en
Inventor
Yuichi Tsukaguchi
塚口 友一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002260711A priority Critical patent/JP3891078B2/en
Publication of JP2004098092A publication Critical patent/JP2004098092A/en
Application granted granted Critical
Publication of JP3891078B2 publication Critical patent/JP3891078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for continuously casting a hyper-peritectic medium carbon steel at a low speed without developing a constrained breakout. <P>SOLUTION: (1) When molten hyper-peritectic medium carbon steel having 0.18-0.30 mass% C content, is continuously cast, the continuous casting method is performed while using mold powder having 0.8-1.1 basicity, 1,050-1,220°C solidifying temperature, 0.07-1 Pa.s viscosity at 1,300°C, 0.5-0.9 bulk density and 2-20% C content. (2) This continuous casting method of this molten steel is desirable to obtain a large effect by applying ≤ 1.1 m/min casting rate in the casting. (3) Further, it is desirable to use the above mold powder having 2 - 15% oxidize-exothermic metal content. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、連続鋳造方法に関し、さらに詳しくは、、モールドパウダの潤滑作用の低下に起因する拘束性ブレークアウトを防止する連続鋳造方法に関する。
【0002】
【従来の技術】
普通鋼の連続鋳造において、炭素濃度が、包晶点(鉄−炭素系平衡状態図におけるC濃度が0.18質量%の点)以上となる中炭素鋼を過包晶中炭素鋼とすれば、これら過包晶中炭素鋼は、次に述べる理由により、炭素濃度が包晶点未満の亜包晶鋼に比較して、凝固シェルと鋳型との間への溶融パウダの流入不足に起因する凝固シェルの鋳型への焼き付き、すなわち拘束性ブレークアウトが発生しやすい。
【0003】
過包晶中炭素鋼(以下、「過包晶鋼」と記す場合がある)において、凝固シェル・鋳型間への溶融パウダの流入が不足しやすい理由は、以下のとおりである。なお、以下の説明において、特に断らない限り、成分組成の濃度は、「質量%」を表すものとする。
1)亜包晶鋼に比べて凝固シェルの収縮が小さくなる。
【0004】
これは、亜包晶鋼では、大きな体積変化をともなうδ→γ変態が、完全凝固後の強度のある凝固シェル内において発生するので、変態が凝固シェルの大きな収縮を引き起こすのに対して、過包晶鋼の場合には、δ→γ変態は、凝固開始温度(液相線温度)と凝固完了温度(固相線温度)との間、すなわち、完全凝固前に起こるので、変態による体積収縮代は、周囲の液相の体積変化によって吸収され、凝固シェル全体の収縮には影響を及ぼさなくなるからである。このように、包晶点を境として、低炭素濃度領域の亜包晶鋼と、高炭素濃度領域の過包晶鋼とでは、凝固シェルの収縮量に不連続な変化があり、凝固収縮量の小さい過包晶鋼の場合には、凝固シェルと鋳型との間隙が小さくなるので、その間隙への溶融パウダの流入量が少なくなるのである。
上記の説明は、鉄−炭素系平衡状態図に基づく説明である。現実には、合金元素や冷却速度の影響により、包晶点の炭素濃度や、変態温度などに多少の差異は生じるものの、その挙動も上記の理由により説明可能である。
2)炭素濃度の上昇にともない、鋼の液相線温度が低下し、それにともない鋳造時の溶鋼温度が低下することから、パウダの溶融が不十分となりやすい。
炭素濃度が0.08〜0.16%程度の亜包晶鋼に対して、炭素濃度の低い低炭素鋼(例えば、C:0.05%)と炭素濃度の高い過包晶鋼(例えば、C:0.20%)とでは、凝固シェルの収縮量は、いずれも亜包晶鋼よりも小さく同程度である。しかし、過包晶鋼に拘束性ブレークアウトが発生しやすい理由は、炭素濃度が高いことによる鋼の液相線温度の低下にともなって、鋳造時の溶鋼温度が低下し、パウダの溶融が不充分となるためである。さらに、鋳造速度が低い場合には、浸漬ノズルから鋳型内への鋳型内湯面単位面積当たりの溶鋼供給量が低下し、鋳型内湯面上のモールドパウダを溶融させるための熱量が不足しやすいからである。
【0005】
凝固収縮の大きな亜包晶鋼の連続鋳造技術に関しては、縦割れなどの割れ性表面欠陥を防止する観点から以下のような技術が開示されている。
【0006】
特許文献1には、主として中炭素鋼(C:0.08〜0.16%)の連続鋳造時に鋳型内の溶鋼に添加されるモールドパウダーであって、主成分がCaO、SiOであって、CaO/SiOの値が1.2〜1.6であり、MgO含有量が1.5%以下のパウダが開示されている。
【0007】
特許文献2には、C:0.08〜0.18%の亜包晶領域の鋼を対象として、CaO/SiOが1.6〜2.5で、IA族に属する元素の酸化物を2種類以上、0.13<(IA族酸化物の合計モル数)<1.6で表される関係式の範囲内で含有し、かつ、Fを5〜15%含有する連続鋳造用モールドパウダが開示されている。
【0008】
特許文献3には、C:0.05〜0.20%の亜包晶鋼の連続鋳造用モールドパウダであって、CaO、SiOおよびFを基本成分とし、下記(X)式で表されるCaO’の重量%と、SiOがの重量%との比CaO’/SiOが0.9〜2.8であり、下記(Y)式で表されるCaF含有率が所定の範囲を満足し、さらにNaOおよびCを含有する連続鋳造用モールドパウダが開示されている。
CaO’=T.CaO−(56/38)F ・・・(X)
CaF=(78/38)F         ・・・・・・(Y)
しかしながら、拘束性ブレークアウトの問題が残る過包晶鋼の連続鋳造用モールドパウダおよびそれを用いた鋳造方法に関しては、体系的に対応策がとられた例は少なく、試行錯誤的に対応しているのが現状である。
【0009】
【特許文献1】
特開平8−141713号公報
【特許文献2】
特開平10−216907号公報
【特許文献3】
特開平11−320058号公報
【0010】
【発明が解決しようとする課題】
本発明の課題は、上述の問題に鑑み、適正な化学組成および物性を有するモールドパウダを使用することにより、過包晶中炭素鋼を低速で鋳造する際に発生しやすい拘束性ブレークアウトを防止することのできる連続鋳造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者は、上述の課題を達成するために、前記した従来技術の問題点について検討を加え、過包晶鋼を鋳造する場合に、モールドパウダに求められる化学組成および物性について下記の(a)〜(e)の知見を得た。
(a)塩基度は0.8〜1.1の範囲が、また、凝固温度は1050〜1220℃の範囲が適正である。塩基度および凝固温度は、低過ぎると固相パウダフィルム中に析出する結晶が減少し、伝熱抵抗が減少する結果、凝固シェルが急冷却され、割れ性欠陥が生じやすくなる。一方、塩基度および凝固温度が高すぎると、結晶を有する固相フィルムの厚さが増加し、潤滑性の良いガラス層や液相フィルムが不足して、鋳型への凝固シェルの焼き付き(以下、「拘束」ともいう)が発生しやすくなる。
【0012】
(b)粘度は、1300℃における測定値で0.07〜1Pa・s(0.7〜10poise)の範囲が適正である。粘度が低すぎるとモールドパウダの保温性が低下し、高すぎるとパウダフィルムの潤滑性が損なわれる。
(c)嵩比重は、0.5〜0.9の範囲が適正である。嵩比重が高すぎると必要な空気断熱効果が得られない。また、嵩比重が0.5未満のモールドパウダは製造が困難である。
(d)C含有量は、2〜20%の範囲が適正である。Cを2%以上含有させると必要な発熱効果が得られる。しかし、20%を超えるとパウダの溶融速度が低下しすぎるという問題が生じる。
【0013】
(e)酸化発熱金属またはアルカリ金属酸化物を必要に応じて含有させるのが好ましい。酸化発熱金属の燃焼熱により、また、アルカリ金属酸化物による粘度または凝固温度の低下により、保温性がさらに一層向上する。
【0014】
本発明は、上記の知見に基づき完成させたものであり、その要旨は、下記の(1)〜(4)に示す連続鋳造方法にある。
【0015】
(1)C含有量が0.18〜0.30質量%である過包晶中炭素鋼の溶鋼を連続鋳造する際に、塩基度が0.8〜1.1、凝固温度が1050〜1220℃、1300℃における粘度が0.07〜1Pa・s、嵩比重が0.5〜0.9およびC含有量が2〜20%であるモールドパウダを用いることを特徴とする過包晶中炭素鋼溶鋼の連続鋳造方法。
【0016】
(2)前記(1)に記載の過包晶中炭素鋼溶鋼の連続鋳造方法は、鋳造速度が1.1m/min以下の鋳造に適用すると効果が大きく好ましい。
(3)前記(1)または(2)に記載の過包晶中炭素鋼溶鋼の連続鋳造方法において、溶鋼表面上の大気中で酸化し発熱する金属の含有量が2〜15%である上記モールドパウダを用いることが好ましい。
(4)前記(3)に記載の過包晶中炭素鋼溶鋼の連続鋳造方法において、アルカリ金属の酸化物の含有量が8%以下である上記モールドパウダを用いることが好ましい。
【0017】
本発明において、「過包晶中炭素鋼」とは、鋼中の炭素濃度が0.18%以上0.30%以下の普通鋼を意味する。
【0018】
「塩基度」とは、モールドパウダ中の総Ca含有量をCaO含有量(質量%)に換算した値を、総Si含有量をSiO含有量(質量%)に換算した値で除した値(−)をいう。
【0019】
「嵩比重」とは、鋳型内における加熱を模擬して、大気中において700℃で焼成したモールドパウダをJIS−K5101に規定された方法により緩充填状態で測定して得られる比重を意味する。
【0020】
「大気中で酸化し発熱する金属」とは、大気中で酸素との発熱反応により発熱する金属をいい、例えば、Si、Ca、CaSi合金、CaAl合金などが該当する。
「アルカリ金属の酸化物」とは、周期表IA属に属する元素の酸化物をいい、例えば、NaO、LiO、KOなどが該当する。
【0021】
【発明の実施の形態】
本発明は、前記のとおり、適正な化学組成および物性を有するモールドパウダを使用することにより、過包晶中炭素鋼を低速で鋳造する際に発生しやすい拘束性ブレークアウトを防止することのできる連続鋳造方法である。
【0022】
図1は、鋳型内におけるモールドパウダ、凝固シェルなどの挙動を示す模式図である。鋳型1内には、浸漬ノズル2から溶鋼3が供給され、溶鋼は鋳型により冷却されて凝固シェル4を形成しつつ連続的に下方に引き抜かれる。モールドパウダ7は、鋳型内の溶鋼湯面上に添加され、溶鋼に接する部分では溶融スラグとなり溶融層8を形成する。溶融層は鋳型と凝固シェルとの間隙に流入した後、鋳型側では凝固し固相のパウダフィルム6を、凝固シェル側では溶融したまま液相のパウダフィルム5を形成する。
【0023】
これらのパウダフィルムは、固相の割合を増加しつつ順次下方に移動し、やがて鋳型下端から排出される。モールドパウダの役割は、溶鋼の保温、酸化防止、溶鋼中不純物(非金属介在物)の溶かし込み、鋳型内潤滑、および鋳型内冷却制御である。
【0024】
図2は、過包晶鋼における鋳造速度と拘束性ブレークアウト発生率との関係を示す図である。同図の関係は、垂直曲げ型連続鋳造機により、鋳造速度を種々変更させて、鋳片幅800〜1900mm、鋳片厚さ210〜270mmの範囲で過包晶鋼の鋳造試験を行った結果をまとめたものである。
【0025】
鋳造速度が1.1m/min以下の遅い領域では、拘束性ブレークアウトの警報発生率が高くなっている。高速で鋳造した場合においても拘束性ブレークアウトの発生率は高まると考えられるが、同図の鋳造速度の範囲では、その傾向は明確ではなかつた。このように、過包晶鋼は、低速鋳造時に高い頻度で拘束が発生し、本発明に開示した対策が必要となるのである。鋳造速度の下限値は、連続鋳造機の鋳型サイズおよび機長により決定されるが、通常は、0.2m/min以上にて操業される。
【0026】
以下に、本発明におけるモールドパウダの限定理由を説明する。
1)モールドパウダの塩基度:0.8〜1.1、および凝固温度:1050〜1220℃:
モールドパウダの塩基度および凝固温度は、いずれも低すぎる場合には、固相パウダフィルム中に析出する結晶量が減少し、パウダフィルムの伝熱抵抗が小さくなる結果、凝固シェルが急冷却され、凝固シェルに割れ性欠陥が生じやすくなる。一方、塩基度およぴ凝固温度が高すぎる場合には、多量の結晶を有する厚い固相フィルムが生成し、潤滑性の良いガラス層や液相フィルムが相対的に不足する結果、鋳型への凝固シェルの焼き付き、すなわち拘束が発生しやすくなる。
【0027】
本発明者の調査によれば、過包晶鋼の鋳造のために適正な塩基度の範囲は、0.8〜1.1であり、適正な凝固温度の範囲は、1050〜1220℃である。さらに好ましい凝固温度の範囲は、1100〜1180℃である。両者が上記の範囲内にあるとき、潤滑性の維持に必要なパウダフィルム中のガラス層あるいは液相のパウダフィルム厚さを確保した上で、適度な鋳型内緩冷却作用が得られるのである。
なお、モールドパウダの化学組成の主成分を占めるCaOおよびSiO含有量は、溶融スラグの状態において、その合計量が50%以上であることが好ましい。これらの成分を主成分とするのは、これらの成分または、これらの成分を含むパウダ原料は、モールドパウダが溶融層およびフィルムを形成した状態において、溶鋼の保温、酸化防止、溶鋼中の気泡または介在物の吸収、および鋳型内壁と凝固シェルとの潤滑性の確保を促進す上で好ましい作用を有するからである。
【0028】
2)粘度:1300℃において0.07〜1Pa・s:
粘度が低過ぎると、モールドパウダの保温性が低下し、一方、高過ぎると、パウダフィルムの潤滑性を損なう。粘度が低過ぎる場合にモールドパウダの保温性が低下するのは、溶融層の流入度が過大となり、単位時間当たりのパウダ溶融量が増加して溶解熱を奪うこと、および溶融層中に対流が生じやすくなり、溶湯面から溶融層を介して上方に放熱される熱量が増加することによる。
【0029】
一方、粘度が高過ぎる場合にパウダフィルムの潤滑性が損なわれるのは、鋳型と凝固シェルとの間の摩擦抵抗が増加するためであり、これは、十分な量の液相やガラス層が確保されている場合であっても、避けることができない。
【0030】
パウダの1300℃における粘度が0.07Pa・sを下回ると、保温性の低下が顕著となり、また、1Pa・sを超えると、潤滑性の悪化が顕著となる。1300℃における好ましい粘度の範囲は、0.12〜0.6Pa・s(1.2〜6poise)である。
粘度または凝固温度の調整は、モールドパウダの化学成分組成により行うことができる。例えば、Al、MgO、F、酸化鉄、MnO、TiO、ZrOおよびBのうちの少なくとも2種以上の成分を合計で50%未満含有させることにより調整すればよい。
3)保温性:
モールドパウダの保温性を確保するためには、上記の粘度の確保に加え、嵩比重を小さくし、発熱材としてカーボン(C)を含有させることが求められる。さらに、保温を必要とする場合には、Cに加えて発熱金属、さらにはアルカリ金属酸化物を必要量含有させることもできる。
【0031】
嵩比重は0.9以下とすることにより、必要な空気断熱効果が得られる。さらに好ましくは0.7以下とすることにより、保温性は一層向上する。なお、ここでいう嵩比重とは、前述のとおり、700℃にて焼成したモールドパウダを、JIS−K5101に規定された方法により緩充填状態で測定して得られる比重である。
C含有量の適正範囲は、2〜20%である。Cを2%以上含有させると必要な発熱効果が得られるからである。さらに、4%以上含有させると一層大きな発熱効果が得られ、好ましい。しかし、20%を超えるとパウダの溶融速度が低下しすぎるという問題が生じるため、含有量は20%以下とする。
なお、さらに、発熱金属、またはそれに加えてアルカリ金属酸化物を含有させてもよい。
【0032】
発熱金属を含有させる場合は、2〜15%の範囲で含有させるのが好ましい。発熱金属としては、例えば、Si、Ca、CaSi合金、CaAl合金などを用いればよい。
【0033】
アルカリ金属酸化物を粘度または凝固温度の調整のために含有させる場合は、8%以下の範囲で含有させるのが好ましい。アルカリ金属酸化物としては、例えば、NaO、LiO、KOなどを用いればよい。しかし、含有量が8%を超えると、約800℃においてパウダ中の主成分の一つであるSiO成分と溶融層直上で反応して液相を生じ、パウダを焼結させる結果、嵩比重が増大し、伝熱抵抗が低下して保温性を損なうこととなる。したがって、含有量は8%以下とするのが好ましい。
【0034】
上記のパウダの焼結は、鋳型内溶鋼の湯面レベルの変動が大きい場合や、鋳型内でのパウダの滞留時間が長い場合に発生する傾向がある。そのような悪条件下においても安定して良好な保温性を維持するには、モールドパウダ中のアルカリ金属酸化物の含有量は少ないことが好ましい。したがって、含有量を5%以下とするのがさらに一層好ましい。
また、前記の嵩比重の低下、C含有量の調整、およびさらには発熱金属含有量やアルカリ金属酸化物含有量の調整は、それぞれ保熱性の向上のための条件を同時に満足する範囲で行われる必要がある。
【0035】
4)鋳造速度:
鋳造速度が1.1m/min以下では、浸漬ノズルから鋳型内への溶鋼供給量が少なくなるため、鋳型内溶鋼湯面の単位面積当たりの溶鋼供給量が低下する。そのため、溶鋼湯面上のモールドパウダを溶融させるための熱量が不足しやすい状態となる。したがって、本発明の方法で用いる保温性の良好なパウダは、このような鋳造速度の遅い条件下において用いれば、一層大きな効果を発揮する。
上記のように、モールドパウダの物性を適正化し、保温性、潤滑性などを確保した上で、さらに鋳造に用いる浸漬ノズルの形状を、以下のようにするのが好ましい。すなわち、ノズルの底部および側面に開孔した2つ以上の吐出孔を有し、浸漬ノズル内を下降する溶鋼流に水平方向の速度成分を与えて吐出させる形状とするのが好ましい。このようにすることにより、鋳型内溶鋼湯面に向かう上昇流が形成されて溶鋼湯面への熱供給が促進され、モールドパウダが安定して溶融する。浸漬ノズルの吐出孔の数は、多すぎると吐出孔1個当たりの吐出孔面積が小さくなり、閉塞しやすくなるので、6孔以内とするのが好ましい。
【0036】
また、鋳型内の溶鋼を電磁力を利用して攪拌するのが好ましく、常に一定の鋳型内流動を形成させると、鋳型内において溶鋼流の淀みが生じにくくなり、溶鋼湯面全面において、モールドパウダが安定して溶融する。
【0037】
【実施例】
本発明の連続鋳造方法の効果を確認するため、各種の物性を有するモールドパウダを作製し、そのモールドパウダを使用して、垂直曲げ型連続鋳造機により、鋳造速度などの条件を種々変更して、鋳片幅800〜1900mm、鋳片厚さ210〜270mmの範囲で過包晶鋼の鋳造試験を行った。
【0038】
表1に試験条件および試験結果を示す。
【0039】
【表1】

Figure 2004098092
【0040】
なお、試験結果の評価は、拘束発生率(拘束性ブレークアウト発生率)、および鋳片割れ性欠陥の発生率について、それぞれ下記の評価基準により行った。
【0041】
〔拘束発生率の評価〕:(数値の単位は、×10−2/鋳造長さ(m))
A:0.0001未満、 B:0.0001以上、0.01未満、 C:0.01以上、1.0未満、 D:1.0以上。
【0042】
〔鋳片割れ性欠陥発生率の評価〕:
A:ほとんど発生しない、 B:まれに発生することがある、 C:頻繁に発生する、 D:ほぼ確実に発生する。
【0043】
試験番号A〜Hは、本発明例についての試験であり、試験番号I〜Nは、比較例についての試験である。
【0044】
試験番号A〜Hは、いずれも本発明で規定する全ての条件について適正範囲を満足しており、拘束発生率および鋳片割れ性欠陥発生率ともに低く、試験結果の評価はB以上であった。
【0045】
特に、本発明例の試験番号Hは、モールドパウダの塩基度、凝固温度および粘度ともに本発明で規定する範囲の中央値に比較的近い値を有しており、嵩比重も好ましい範囲内にあり、さらに、発熱金属およびアルカリ金属酸化物を好ましい含有量の範囲内で含有しており、総合的に優れたパウダである。拘束発生率および鋳片割れ性欠陥発生率ともに最高の評価Aであった。
【0046】
本発明例の試験番号Cは、試験番号Hとともに拘束発生率は最高の評価Aであったが、鋳片割れ性欠陥発生率の評価はBであった。これは、潤滑性は良好であったものの、パウダの凝固温度が本発明で規定する下限値に近いため、凝固シェルの冷却がやや強くなり、若干の割れ性欠陥を発生させたことによると考えられる。
【0047】
試験番号I〜Nは、比較例であり、いずれも、本発明で規定する塩基度からC含有量までの条件の少なくともいずれかが適正範囲を外れている。比較例の試験番号Iは、嵩比重が大きいため保温性が悪化し、拘束発生率が高くなっている。比較例の試験番号Jは、パウダの塩基度が高いため、パウダフィルムの潤滑性が悪化し、拘束発生率が高くなっている。比較例の試験番号Kは、パウダの塩基度、凝固温度、粘度、嵩比重およびC含有量が全て本発明で規定する範囲を外れ、アルカリ金属酸化物の含有量も好ましい範囲を超えていることから、保温性、潤滑性が特に悪く、さらに、鋳型内電磁撹絆を実施していないことと相俟って、拘束発生率が特に高くなった。比較例の中でも、評価は最低のDとなっている。
【0048】
比較例の試験番号Lは、塩基度および凝固温度がともに低すぎるので鋳型内において凝固シェルが強冷却され、割れ性欠陥が多く発生した。比較例の試験番号Mは、塩基度が低すぎるので鋳片割れ性欠陥の発生率が高く、また、粘度が高すぎるので拘束発生率も高くなった。比較例の試験番号Nは、嵩比重が大きく、C含有量も少ないことから保温性が悪く、加えて浸漬ノズルが1孔のストレートノズルであることから、鋳型内湯面への熱の供給が不足し、拘束が多く発生した。
【0049】
【発明の効果】
本発明の連続鋳造方法によれば、適正な化学組成および物性を有するモールドパウダを使用することにより、過包晶中炭素鋼を低速で鋳造する際に発生しやすい拘束性ブレークアウトを防止することができ、同時に鋳片割れ性欠陥も抑制できるので、連続鋳造技術の発展に大きく寄与する。
【図面の簡単な説明】
【図1】鋳型内におけるモールドパウダ、凝固シェルなどの挙動を示す模式図である。
【図2】過包晶鋼における鋳造速度と拘束性ブレークアウト発生率との関係を示す図である。
【符号の説明】
1:鋳型、
2:浸漬ノズル、
3:溶鋼、
4:凝固シェル、
5:液相のパウダフィルム、
6:固相のパウダフィルム、
7:モールドパウダ、
8:溶融層。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous casting method, and more particularly to a continuous casting method for preventing a constraining breakout due to a decrease in the lubricating action of a mold powder.
[0002]
[Prior art]
In continuous casting of ordinary steel, if the carbon concentration is equal to or higher than the peritectic point (the point where the C concentration in the iron-carbon equilibrium diagram is 0.18% by mass), the medium carbon steel is the overperitectic medium carbon steel. These peritectic carbon steels are caused by insufficient flow of molten powder between the solidified shell and the mold as compared to subperitectic steels having a carbon concentration below the peritectic point for the following reasons. A seizure of the solidified shell to the mold, that is, a constraining breakout is likely to occur.
[0003]
The reason why the inflow of molten powder between the solidified shell and the mold tends to be insufficient in the overperitectic medium carbon steel (hereinafter sometimes referred to as “superperitectic steel”) is as follows. In the following description, unless otherwise specified, the concentration of the component composition represents “mass%”.
1) The shrinkage of the solidified shell is smaller than that of hypoperitectic steel.
[0004]
This is because, in hypoperitectic steel, the δ → γ transformation with a large volume change occurs in a strong solidified shell after complete solidification, whereas the transformation causes a large shrinkage of the solidified shell. In the case of peritectic steel, the δ → γ transformation occurs between the solidification start temperature (liquidus temperature) and the solidification completion temperature (solidus temperature), that is, before complete solidification. This is because the cost is absorbed by the volume change of the surrounding liquid phase and does not affect the shrinkage of the entire solidified shell. In this way, there is a discontinuous change in the shrinkage of the solidified shell between the subperitectic steel in the low carbon concentration region and the hyperperitectic steel in the high carbon concentration region, with the peritectic point as a boundary. In the case of an overperitectic steel having a small size, the gap between the solidified shell and the mold becomes small, so that the amount of molten powder flowing into the gap becomes small.
The above description is based on an iron-carbon equilibrium diagram. In reality, although there are some differences in the carbon concentration of the peritectic point, the transformation temperature, and the like due to the influence of the alloying elements and the cooling rate, the behavior can also be explained for the above reasons.
2) As the carbon concentration increases, the liquidus temperature of the steel decreases, and the molten steel temperature during casting decreases accordingly. Therefore, the melting of the powder tends to be insufficient.
A low carbon steel (for example, C: 0.05%) with a low carbon concentration and a superperitectic steel with a high carbon concentration (for example, for example) C: 0.20%), the shrinkage amount of the solidified shell is smaller than that of hypoperitectic steel and is about the same. However, the reason why constraining breakout is likely to occur in hyperperitectic steel is that the liquidus temperature of the steel decreases due to the high carbon concentration, and the molten steel temperature at the time of casting decreases, and the melting of the powder does not occur. This is enough. Furthermore, when the casting speed is low, the amount of molten steel supplied per unit area of the mold surface from the immersion nozzle to the mold decreases, and the amount of heat for melting the mold powder on the mold surface in the mold tends to be insufficient. is there.
[0005]
Regarding the continuous casting technology of hypoperitectic steel with large solidification shrinkage, the following technologies are disclosed from the viewpoint of preventing cracking surface defects such as longitudinal cracks.
[0006]
Patent Document 1 mainly discloses a mold powder added to molten steel in a mold during continuous casting of medium carbon steel (C: 0.08 to 0.16%), and the main components are CaO and SiO 2. A powder having a CaO / SiO 2 value of 1.2 to 1.6 and an MgO content of 1.5% or less is disclosed.
[0007]
In Patent Document 2, C: 0.08 to 0.18% of the subperitectic region steel, CaO / SiO 2 is 1.6 to 2.5, and oxides of elements belonging to Group IA Two or more types, mold powder for continuous casting containing 0.13 <(total number of moles of group IA oxide) <1.6 within the range of the relational expression and containing 5 to 15% of F Is disclosed.
[0008]
Patent Document 3 discloses a mold powder for continuous casting of C: 0.05 to 0.20% subperitectic steel, which is composed of CaO, SiO 2 and F as basic components and represented by the following formula (X). CaO that / SiO 2 'weight percent, the ratio of CaO to the weight% of SiO 2 is' is from 0.9 to 2.8, range CaF 2 content of a predetermined represented by the following (Y) formula And a mold powder for continuous casting containing Na 2 O and C is disclosed.
CaO ′ = T. CaO- (56/38) F (X)
CaF 2 = (78/38) F (Y)
However, there are few examples of systematic countermeasures for the mold powder for continuous casting of peritectic steel and the casting method using the same, which still have the problem of constraining breakout. The current situation is.
[0009]
[Patent Document 1]
JP-A-8-141713 [Patent Document 2]
Japanese Patent Laid-Open No. 10-216907 [Patent Document 3]
Japanese Patent Laid-Open No. 11-320058
[Problems to be solved by the invention]
In view of the above-mentioned problems, the object of the present invention is to prevent a constraining breakout that tends to occur when casting a peritectic carbon steel at low speed by using a mold powder having an appropriate chemical composition and physical properties. It is in providing the continuous casting method which can be performed.
[0011]
[Means for Solving the Problems]
In order to achieve the above-mentioned problems, the present inventor has studied the above-mentioned problems of the prior art, and the following chemical composition and physical properties required for a mold powder when casting an overperitectic steel (a) ) To (e) were obtained.
(A) The basicity is suitably in the range of 0.8 to 1.1, and the solidification temperature is suitably in the range of 1050 to 1220 ° C. If the basicity and the solidification temperature are too low, the number of crystals precipitated in the solid-state powder film decreases and the heat transfer resistance decreases. As a result, the solidified shell is rapidly cooled, and cracking defects tend to occur. On the other hand, if the basicity and the solidification temperature are too high, the thickness of the solid phase film having crystals increases, the glass layer or liquid phase film having good lubricity is insufficient, and the solidified shell is baked on the mold (hereinafter, (Also referred to as “restraint”) is likely to occur.
[0012]
(B) The viscosity is suitably in the range of 0.07 to 1 Pa · s (0.7 to 10 poise) as measured at 1300 ° C. If the viscosity is too low, the heat retaining property of the mold powder is lowered, and if it is too high, the lubricity of the powder film is impaired.
(C) The range of 0.5-0.9 is appropriate for the bulk specific gravity. If the bulk specific gravity is too high, the necessary air insulation effect cannot be obtained. Moreover, it is difficult to manufacture a mold powder having a bulk specific gravity of less than 0.5.
(D) The C content is suitably in the range of 2 to 20%. When 2% or more of C is contained, a necessary heat generation effect can be obtained. However, if it exceeds 20%, there arises a problem that the melting rate of the powder is too low.
[0013]
(E) It is preferable to contain an oxidation exothermic metal or an alkali metal oxide as necessary. The heat retention is further improved by the combustion heat of the oxidation exothermic metal and by the decrease in viscosity or solidification temperature due to the alkali metal oxide.
[0014]
This invention is completed based on said knowledge, The summary exists in the continuous casting method shown to following (1)-(4).
[0015]
(1) When continuously casting a molten steel of an overperitectic medium carbon steel having a C content of 0.18 to 0.30% by mass, the basicity is 0.8 to 1.1 and the solidification temperature is 1050 to 1220. Overperitectic carbon characterized by using a mold powder having a viscosity of 0.07 to 1 Pa · s at 1 ° C., a bulk specific gravity of 0.5 to 0.9, and a C content of 2 to 20%. Continuous casting method for molten steel.
[0016]
(2) The continuous casting method of carbon steel in the peritectic medium steel described in (1) has a large effect when applied to casting with a casting speed of 1.1 m / min or less.
(3) In the continuous casting method of the overperitectic medium carbon steel molten steel as described in (1) or (2) above, the content of the metal that oxidizes and generates heat in the atmosphere on the molten steel surface is 2 to 15%. It is preferable to use a mold powder.
(4) In the continuous casting method of molten carbon steel having a peritectic crystal as described in (3), it is preferable to use the above-mentioned mold powder having an alkali metal oxide content of 8% or less.
[0017]
In the present invention, “overperitectic medium carbon steel” means ordinary steel having a carbon concentration in the steel of 0.18% or more and 0.30% or less.
[0018]
“Basicity” is a value obtained by dividing the value obtained by converting the total Ca content in the mold powder into the CaO content (mass%) by the value obtained by converting the total Si content into the SiO 2 content (mass%). (-).
[0019]
The “bulk specific gravity” means specific gravity obtained by simulating heating in a mold and measuring a mold powder fired at 700 ° C. in the atmosphere in a slowly filled state by a method defined in JIS-K5101.
[0020]
“A metal that oxidizes in the atmosphere and generates heat” refers to a metal that generates heat by an exothermic reaction with oxygen in the atmosphere, and includes, for example, Si, Ca, CaSi alloy, CaAl alloy, and the like.
“Alkali metal oxide” refers to an oxide of an element belonging to Group IA of the periodic table, and examples thereof include Na 2 O, Li 2 O, and K 2 O.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
As described above, by using a mold powder having an appropriate chemical composition and physical properties, the present invention can prevent a constraining breakout that is likely to occur when casting a peritectic carbon steel at low speed. It is a continuous casting method.
[0022]
FIG. 1 is a schematic diagram showing the behavior of a mold powder, a solidified shell, etc. in a mold. Molten steel 3 is supplied from the immersion nozzle 2 into the mold 1, and the molten steel is cooled by the mold and continuously drawn out while forming a solidified shell 4. The mold powder 7 is added on the surface of the molten steel in the mold, and becomes molten slag at the portion in contact with the molten steel to form the molten layer 8. The molten layer flows into the gap between the mold and the solidified shell and then solidifies on the mold side to form a solid powder film 6 and forms a liquid powder film 5 while being melted on the solidified shell side.
[0023]
These powder films sequentially move downward while increasing the proportion of the solid phase, and are eventually discharged from the lower end of the mold. The role of the mold powder is to keep the molten steel warm, prevent oxidation, dissolve impurities (non-metallic inclusions) in the molten steel, lubricate the mold, and control the cooling in the mold.
[0024]
FIG. 2 is a diagram showing the relationship between the casting speed and the rate of occurrence of constraining breakout in hyperperitectic steel. The relationship of the figure is the result of performing the peritectic steel casting test in the range of slab width 800 to 1900 mm and slab thickness 210 to 270 mm by changing the casting speed with a vertical bending type continuous casting machine. Is a summary.
[0025]
In the slow region where the casting speed is 1.1 m / min or less, the alarming rate of restraint breakout is high. Even when casting at high speed, the occurrence rate of constraining breakout is considered to increase, but the tendency is not clear within the range of casting speed in the figure. As described above, the peritectic steel is restrained at a high frequency during low-speed casting, and the measures disclosed in the present invention are necessary. The lower limit of the casting speed is determined by the mold size and length of the continuous casting machine, but is usually operated at 0.2 m / min or more.
[0026]
Below, the reason for limitation of the mold powder in this invention is demonstrated.
1) Basicity of mold powder: 0.8 to 1.1, and solidification temperature: 1050 to 1220 ° C:
If both the basicity and the solidification temperature of the mold powder are too low, the amount of crystals precipitated in the solid-phase powder film is reduced, and the heat transfer resistance of the powder film is reduced, resulting in rapid cooling of the solidified shell, Cracking defects are likely to occur in the solidified shell. On the other hand, if the basicity and the solidification temperature are too high, a thick solid phase film having a large amount of crystals is formed, and a relatively poor glass layer or liquid phase film with good lubricity is relatively short. The solidified shell is seized, that is, restrained.
[0027]
According to the inventor's investigation, the range of basicity appropriate for the casting of superperitectic steel is 0.8 to 1.1, and the range of proper solidification temperature is 1050 to 1220 ° C. . A more preferable range of the solidification temperature is 1100 to 1180 ° C. When both are within the above range, an appropriate slow cooling action in the mold can be obtained while ensuring the glass layer or powder phase thickness in the powder film necessary for maintaining the lubricity.
Incidentally, CaO and SiO 2 contents occupy the main component of the chemical composition of the mold powder is in the state of the molten slag, it is preferred that the total amount is 50% or more. The main component of these components is that these components or the powder raw materials containing these components are used in the state that the mold powder forms a molten layer and a film. This is because it has a preferable effect in promoting the absorption of inclusions and ensuring the lubricity between the inner wall of the mold and the solidified shell.
[0028]
2) Viscosity: 0.07 to 1 Pa · s at 1300 ° C .:
If the viscosity is too low, the heat retention of the mold powder will be reduced, while if too high, the lubricity of the powder film will be impaired. When the viscosity is too low, the heat retention of the mold powder decreases because the inflow rate of the molten layer becomes excessive, the amount of powder melting per unit time increases to take heat of dissolution, and convection is generated in the molten layer. This is because the amount of heat radiated upward from the molten metal surface through the molten layer increases.
[0029]
On the other hand, when the viscosity is too high, the lubricity of the powder film is impaired because the frictional resistance between the mold and the solidified shell increases, which ensures a sufficient amount of liquid phase and glass layer. Even if it is, it cannot be avoided.
[0030]
When the viscosity at 1300 ° C. of the powder is less than 0.07 Pa · s, the decrease in heat retention becomes remarkable, and when it exceeds 1 Pa · s, the deterioration of lubricity becomes remarkable. A preferable viscosity range at 1300 ° C. is 0.12 to 0.6 Pa · s (1.2 to 6 poise).
The viscosity or solidification temperature can be adjusted by the chemical component composition of the mold powder. For example, Al 2 O 3, MgO, F, iron oxide, MnO, it may be adjusted by containing less than 50% of at least two or more components of TiO 2, ZrO 2 and B 2 O 3 in total.
3) Thermal insulation:
In order to ensure the heat retaining properties of the mold powder, it is required to reduce the bulk specific gravity and contain carbon (C) as a heat generating material in addition to ensuring the above viscosity. Furthermore, when heat insulation is required, in addition to C, a required amount of exothermic metals and further alkali metal oxides can be contained.
[0031]
By setting the bulk specific gravity to 0.9 or less, a necessary air insulation effect can be obtained. More preferably, by keeping it to 0.7 or less, the heat retaining property is further improved. In addition, the bulk specific gravity here is specific gravity obtained by measuring the mold powder baked at 700 degreeC by the method prescribed | regulated to JIS-K5101 in the slow filling state as mentioned above.
The appropriate range of C content is 2 to 20%. This is because if 2% or more of C is contained, a necessary heat generation effect can be obtained. Further, if contained in 4% or more, a larger exothermic effect is obtained, which is preferable. However, if it exceeds 20%, there is a problem that the melting rate of the powder is too low, so the content is made 20% or less.
Further, an exothermic metal or an alkali metal oxide may be contained in addition thereto.
[0032]
When containing exothermic metal, it is preferable to make it contain in 2 to 15% of range. As the exothermic metal, for example, Si, Ca, CaSi alloy, CaAl alloy or the like may be used.
[0033]
When the alkali metal oxide is contained for adjusting the viscosity or the solidification temperature, it is preferably contained within a range of 8% or less. As the alkali metal oxide, for example, Na 2 O, Li 2 O, K 2 O or the like may be used. However, if the content exceeds 8%, the SiO 2 component, which is one of the main components in the powder, reacts immediately above the molten layer at about 800 ° C. to form a liquid phase and sinter the powder. Increases, the heat transfer resistance decreases, and the heat retention is impaired. Therefore, the content is preferably 8% or less.
[0034]
The above-mentioned powder sintering tends to occur when there is a large fluctuation in the molten steel surface level of the molten steel in the mold or when the residence time of the powder in the mold is long. In order to stably maintain good heat retention even under such adverse conditions, it is preferable that the content of the alkali metal oxide in the mold powder is small. Therefore, it is still more preferable that the content is 5% or less.
In addition, the reduction of the bulk specific gravity, the adjustment of the C content, and further the adjustment of the exothermic metal content and the alkali metal oxide content are performed within a range that simultaneously satisfies the conditions for improving heat retention. There is a need.
[0035]
4) Casting speed:
When the casting speed is 1.1 m / min or less, the amount of molten steel supplied from the immersion nozzle into the mold decreases, and the amount of molten steel supplied per unit area of the molten steel surface in the mold decreases. Therefore, the amount of heat for melting the mold powder on the molten steel surface is likely to be insufficient. Therefore, the powder having good heat retention used in the method of the present invention exhibits a greater effect when used under such a low casting speed condition.
As described above, it is preferable to optimize the physical properties of the mold powder and ensure the heat retaining property, lubricity, and the like, and the shape of the immersion nozzle used for casting is as follows. That is, it is preferable to have a shape that has two or more discharge holes opened at the bottom and side surfaces of the nozzle, and discharges the molten steel flow descending through the immersion nozzle by applying a horizontal velocity component. By doing so, an upward flow toward the molten steel surface in the mold is formed, heat supply to the molten steel surface is promoted, and the mold powder is stably melted. If the number of discharge holes of the immersion nozzle is too large, the discharge hole area per discharge hole becomes small and it is easy to close the discharge hole.
[0036]
Moreover, it is preferable to stir the molten steel in the mold using electromagnetic force. If a constant flow in the mold is always formed, the molten steel flow is less likely to stagnate in the mold, and the mold powder is spread over the entire surface of the molten steel. Melts stably.
[0037]
【Example】
In order to confirm the effect of the continuous casting method of the present invention, a mold powder having various physical properties was produced, and the mold powder was used to change various conditions such as casting speed by a vertical bending type continuous casting machine. The casting test of overperitectic steel was performed in the range of slab width 800 to 1900 mm and slab thickness 210 to 270 mm.
[0038]
Table 1 shows test conditions and test results.
[0039]
[Table 1]
Figure 2004098092
[0040]
In addition, evaluation of the test result was performed according to the following evaluation criteria with respect to the occurrence rate of restraint (restriction breakout occurrence rate) and the occurrence rate of slab cracking defects, respectively.
[0041]
[Evaluation of occurrence rate of restraint]: (Numerical unit is × 10 −2 / Casting length (m))
A: Less than 0.0001, B: 0.0001 or more, less than 0.01, C: 0.01 or more, less than 1.0, D: 1.0 or more.
[0042]
[Evaluation of slab cracking defect occurrence rate]:
A: Almost never occurs, B: Rarely occurs, C: Frequently occurs, D: Almost certainly occurs.
[0043]
Test numbers A to H are tests for the examples of the present invention, and test numbers I to N are tests for the comparative examples.
[0044]
Test numbers A to H all satisfy the appropriate ranges for all the conditions specified in the present invention, both the restraint occurrence rate and the slab cracking defect occurrence rate were low, and the evaluation of the test results was B or more.
[0045]
In particular, the test number H of the present invention example has values that are relatively close to the median value of the range defined in the present invention for the basicity, solidification temperature, and viscosity of the mold powder, and the bulk specific gravity is also within the preferred range. Furthermore, it contains exothermic metals and alkali metal oxides within a preferable content range, and is an overall excellent powder. Both the restraint occurrence rate and the slab cracking defect occurrence rate were the highest evaluation A.
[0046]
The test number C of the present invention example was the highest evaluation A with the test number H, and the evaluation of the slab cracking defect generation rate was B. This is thought to be due to the fact that although the lubricity was good, the solidification temperature of the powder was close to the lower limit specified in the present invention, so the cooling of the solidified shell became slightly stronger and some cracking defects were generated. It is done.
[0047]
Test numbers I to N are comparative examples, and in any case, at least one of the conditions from basicity to C content specified in the present invention is out of the proper range. Since test number I of the comparative example has a large bulk specific gravity, the heat retention is deteriorated and the occurrence rate of restraint is high. In the test number J of the comparative example, since the powder basicity is high, the lubricity of the powder film is deteriorated, and the restraint occurrence rate is high. The test number K of the comparative example is that the basicity, solidification temperature, viscosity, bulk specific gravity and C content of the powder are all out of the range specified in the present invention, and the content of the alkali metal oxide exceeds the preferable range. Thus, the heat retention and lubricity were particularly poor, and the restraint occurrence rate was particularly high in combination with the fact that no electromagnetic stirring in the mold was performed. Among the comparative examples, the evaluation is the lowest D.
[0048]
In the test number L of the comparative example, since both the basicity and the solidification temperature were too low, the solidified shell was strongly cooled in the mold, and many cracking defects were generated. The test number M of the comparative example has a high basicity too low, so the incidence of slab cracking defects is high, and the viscosity is too high, resulting in a high rate of restraint. The test number N of the comparative example has a large bulk specific gravity and a low C content, so that the heat retaining property is poor. In addition, since the immersion nozzle is a single-hole straight nozzle, the supply of heat to the mold surface is insufficient. However, many restraints occurred.
[0049]
【The invention's effect】
According to the continuous casting method of the present invention, by using a mold powder having an appropriate chemical composition and physical properties, it is possible to prevent a constraining breakout that is likely to occur when casting a peritectic carbon steel at low speed. At the same time, and can suppress slab cracking defects, greatly contributing to the development of continuous casting technology.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the behavior of a mold powder, a solidified shell, etc. in a mold.
FIG. 2 is a graph showing the relationship between the casting speed and the rate of occurrence of constraining breakout in superperitectic steel.
[Explanation of symbols]
1: mold,
2: Immersion nozzle,
3: Molten steel,
4: Solidified shell,
5: Liquid phase powder film,
6: Solid phase powder film,
7: Mold powder,
8: Molten layer.

Claims (4)

C含有量が0.18〜0.30質量%である過包晶中炭素鋼の溶鋼を連続鋳造する際に、塩基度が0.8〜1.1、凝固温度が1050〜1220℃、1300℃における粘度が0.07〜1Pa・s、嵩比重が0.5〜0.9およびC含有量が2〜20質量%であるモールドパウダを用いることを特徴とする過包晶中炭素鋼溶鋼の連続鋳造方法。When continuously casting a molten steel of an overperitectic medium carbon steel having a C content of 0.18 to 0.30% by mass, the basicity is 0.8 to 1.1, the solidification temperature is 1050 to 1220 ° C, and 1300. Use of a mold powder having a viscosity of 0.07 to 1 Pa · s, a bulk specific gravity of 0.5 to 0.9, and a C content of 2 to 20% by mass at a temperature of ° C. Continuous casting method. 鋳造速度が1.1m/min以下で鋳造することを特徴とする請求項1に記載の過包晶中炭素鋼溶鋼の連続鋳造方法。2. The continuous casting method for carbon steel molten steel in a peritectic crystal according to claim 1, wherein casting is performed at a casting speed of 1.1 m / min or less. 溶鋼表面上の大気中で酸化することにより発熱する金属の含有量が2〜15質量%である上記モールドパウダを用いることを特徴とする請求項1または2に記載の過包晶中炭素鋼溶鋼の連続鋳造方法。The over-peritectic medium-carbon steel molten steel according to claim 1 or 2, wherein the mold powder has a content of a metal that generates heat by being oxidized in the atmosphere on the molten steel surface. Continuous casting method. アルカリ金属の酸化物の含有量が8質量%以下である上記モールドパウダを用いることを特徴とする請求項3に記載の過包晶中炭素鋼溶鋼の連続鋳造方法。4. The continuous casting method for super peritectic carbon steel molten steel according to claim 3, wherein the mold powder has an alkali metal oxide content of 8% by mass or less.
JP2002260711A 2002-09-06 2002-09-06 Continuous casting method of molten perovskite carbon steel Expired - Fee Related JP3891078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260711A JP3891078B2 (en) 2002-09-06 2002-09-06 Continuous casting method of molten perovskite carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260711A JP3891078B2 (en) 2002-09-06 2002-09-06 Continuous casting method of molten perovskite carbon steel

Publications (2)

Publication Number Publication Date
JP2004098092A true JP2004098092A (en) 2004-04-02
JP3891078B2 JP3891078B2 (en) 2007-03-07

Family

ID=32261283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260711A Expired - Fee Related JP3891078B2 (en) 2002-09-06 2002-09-06 Continuous casting method of molten perovskite carbon steel

Country Status (1)

Country Link
JP (1) JP3891078B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231399A (en) * 2005-02-28 2006-09-07 Kobe Steel Ltd Mold powder for continuous casting of medium carbon steel, and continuous casting method
WO2006109739A1 (en) 2005-04-11 2006-10-19 Hitachi Metals, Ltd. Process for the casting of molten alloy
JP2007130684A (en) * 2005-11-14 2007-05-31 Sumitomo Metal Ind Ltd Mold powder for continuously casting steel and continuous casting method
JP2007185671A (en) * 2006-01-11 2007-07-26 Sumitomo Metal Ind Ltd Mold powder for continuous casting and method for continuously casting plain steel
JP2007210010A (en) * 2006-02-09 2007-08-23 Sumitomo Metal Ind Ltd Mold powder for continuously casting steel, and continuous casting method
KR100844760B1 (en) * 2005-11-30 2008-07-07 가부시키가이샤 고베 세이코쇼 Continuous Casting Method
JP2009195951A (en) * 2008-02-21 2009-09-03 Sumitomo Metal Ind Ltd Continuous casting method for steel

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231399A (en) * 2005-02-28 2006-09-07 Kobe Steel Ltd Mold powder for continuous casting of medium carbon steel, and continuous casting method
JP4515287B2 (en) * 2005-02-28 2010-07-28 株式会社神戸製鋼所 Continuous casting method
WO2006109739A1 (en) 2005-04-11 2006-10-19 Hitachi Metals, Ltd. Process for the casting of molten alloy
EP1870182A1 (en) * 2005-04-11 2007-12-26 Hitachi Metals, Ltd. Process for the casting of molten alloy
EP1870182A4 (en) * 2005-04-11 2009-01-14 Hitachi Metals Ltd Process for the casting of molten alloy
JP2007130684A (en) * 2005-11-14 2007-05-31 Sumitomo Metal Ind Ltd Mold powder for continuously casting steel and continuous casting method
JP4508086B2 (en) * 2005-11-14 2010-07-21 住友金属工業株式会社 Mold powder for continuous casting of steel and continuous casting method
CN100421837C (en) * 2005-11-30 2008-10-01 株式会社神户制钢所 Continuous casting method
DE102006056164B4 (en) * 2005-11-30 2008-09-04 Kabushiki Kaisha Kobe Seiko Sho, Kobe Continuous casting process
KR100844760B1 (en) * 2005-11-30 2008-07-07 가부시키가이샤 고베 세이코쇼 Continuous Casting Method
US7493936B2 (en) 2005-11-30 2009-02-24 Kobe Steel, Ltd. Continuous casting method
JP2007185671A (en) * 2006-01-11 2007-07-26 Sumitomo Metal Ind Ltd Mold powder for continuous casting and method for continuously casting plain steel
JP4626522B2 (en) * 2006-01-11 2011-02-09 住友金属工業株式会社 Mold powder for continuous casting and continuous casting method for plain steel
JP2007210010A (en) * 2006-02-09 2007-08-23 Sumitomo Metal Ind Ltd Mold powder for continuously casting steel, and continuous casting method
JP4687489B2 (en) * 2006-02-09 2011-05-25 住友金属工業株式会社 Steel continuous casting method
JP2009195951A (en) * 2008-02-21 2009-09-03 Sumitomo Metal Ind Ltd Continuous casting method for steel

Also Published As

Publication number Publication date
JP3891078B2 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
JP4337748B2 (en) Mold powder for continuous casting of steel
JP3891078B2 (en) Continuous casting method of molten perovskite carbon steel
JP4881203B2 (en) Powder for continuous casting
JP4650452B2 (en) Steel continuous casting method
JP2017170494A (en) Continuous casting mold powder of steel and continuous casting method
JP2005040835A (en) Mold powder for continuous casting of steel
JP4486878B2 (en) Mold powder for continuous casting of steel and continuous casting method
JP2006192440A (en) Mold powder for continuously casting steel
JP3141187B2 (en) Powder for continuous casting of steel
JP3317258B2 (en) Mold powder for continuous casting of high Mn round section slabs
JP4773225B2 (en) Mold powder for continuous casting of steel and continuous casting method of steel using the same
JP5835153B2 (en) Mold flux for continuous casting of steel and continuous casting method
JPH1034301A (en) Mold powder at initial stage for continuous casting
KR102629377B1 (en) Mold powder and continuous casting method for continuous casting of Al-containing apostatic steel
JP4871773B2 (en) Flux for continuous casting of Ti-containing stainless steel and continuous casting method using the same
JP2675376B2 (en) High speed continuous casting of steel
JP4508086B2 (en) Mold powder for continuous casting of steel and continuous casting method
JPH07214263A (en) Molding powder for continuous casting
JP5219264B2 (en) Continuous casting method of high Al content steel
JP2000158105A (en) Mold powder for continuous steel casting and continuous casting method
JP2004001017A (en) Mold powder for continuous casting of steel
JP6701379B2 (en) Mold flux and casting method using the same
JP2008207187A (en) Powder for continuously casting ni-cu-based alloy, and continuous casting method
JP2007210010A (en) Mold powder for continuously casting steel, and continuous casting method
JP3256148B2 (en) Continuous casting method of steel with large shrinkage during solidification process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3891078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees