JP4626522B2 - Mold powder for continuous casting and continuous casting method for plain steel - Google Patents

Mold powder for continuous casting and continuous casting method for plain steel Download PDF

Info

Publication number
JP4626522B2
JP4626522B2 JP2006003944A JP2006003944A JP4626522B2 JP 4626522 B2 JP4626522 B2 JP 4626522B2 JP 2006003944 A JP2006003944 A JP 2006003944A JP 2006003944 A JP2006003944 A JP 2006003944A JP 4626522 B2 JP4626522 B2 JP 4626522B2
Authority
JP
Japan
Prior art keywords
mold
continuous casting
powder
mold powder
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006003944A
Other languages
Japanese (ja)
Other versions
JP2007185671A (en
Inventor
友一 塚口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006003944A priority Critical patent/JP4626522B2/en
Publication of JP2007185671A publication Critical patent/JP2007185671A/en
Application granted granted Critical
Publication of JP4626522B2 publication Critical patent/JP4626522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、化学組成において塩基度およびAl23濃度が比較的高く、溶鋼中に巻き込まれにくい特性を備えた連続鋳造用モールドパウダー、及びこのモールドパウダーを用いた普通鋼の連続鋳造方法に関するものである。 The present invention relates to a mold powder for continuous casting having the characteristics that the basicity and Al 2 O 3 concentration are relatively high in chemical composition and difficult to be caught in molten steel, and a method for continuously casting ordinary steel using this mold powder. Is.

従来、溶鋼中に巻き込まれにくい特性を備えた高塩基度かつ高粘度のモールドパウダーとして、一旦溶融した後に徐冷した場合に析出もしくは晶出する結晶が、ゲーレナイト(gehlenite)またはアケルマナイト(Akermanite)もしくは両者の全率固溶体であるメリライト(melilite)であるモールドパウダーが、特許文献1や特許文献2に開示されている。
特開2003−225744号公報 特開2005−40835号公報
Conventionally, as a highly basic and high-viscosity mold powder having characteristics that are difficult to be caught in molten steel, crystals that precipitate or crystallize when melted once and then slowly cool are gehlenite or akermanite or Patent Literature 1 and Patent Literature 2 disclose a mold powder that is melilite, which is a solid solution of both.
JP 2003-225744 A Japanese Patent Laid-Open No. 2005-40835

しかしながら、Al23濃度が10質量%以上と比較的高い前記のモールドパウダーにおいて、Na2Oなどのアルカリ金属酸化物濃度を高めて凝固温度あるいは粘度を下げようとする際に、F濃度が低いと粘度測定値が安定しないことを、発明者は知見した。
そして、前記粘度測定値の不安定さは、溶融スラグ構造、具体的には両性酸化物であるAl23のネットワーク構造の不安定さに起因すると考えられた。
However, in the mold powder having a relatively high Al 2 O 3 concentration of 10% by mass or more, when the concentration of alkali metal oxides such as Na 2 O is increased to lower the solidification temperature or viscosity, the F concentration is The inventor has found that the viscosity measurement value is not stable if it is low.
The instability of the measured viscosity value was thought to be due to the instability of the molten slag structure, specifically the network structure of Al 2 O 3 that is an amphoteric oxide.

粘度はモールドパウダーの消費量を規定する重要な要素のひとつであり、粘度が安定しないことは、消費量の不安定さにつながり、潤滑不良などの操業トラブルを引き起こす原因となりうる。一方で、F濃度を高めることは、カスピダインの晶出もしくは析出を促進し、ゲーレナイトまたはアケルマナイトもしくは両者の全率固溶体であるメリライトの晶出あるいは析出を阻害するおそれがあった。   Viscosity is one of the important factors that regulate the consumption of mold powder, and the unstable viscosity can lead to instability of the consumption and cause operational troubles such as poor lubrication. On the other hand, increasing the F concentration promotes the crystallization or precipitation of caspidyne and may inhibit the crystallization or precipitation of melilite, which is a solid solution of gelenite, akermanite, or both.

本発明が解決しようとする問題点は、特許文献1及び2で開示されたモールドパウダーにおいて、Na2Oなどのアルカリ金属酸化物濃度を高めて凝固温度あるいは粘度を下げようとする際に、F濃度が低いと粘度測定値が安定しないという点である。 The problem to be solved by the present invention is that when the mold powder disclosed in Patent Documents 1 and 2 is used to increase the concentration of alkali metal oxides such as Na 2 O to lower the solidification temperature or viscosity, F If the concentration is low, the viscosity measurement value is not stable.

本発明は、前記の問題を解消し、粘度の安定化と結晶の晶出もしくは析出の安定化を両立すべく、ゲーレナイトまたはアケルマナイトもしくは両者の全率固溶体であるメリライトを晶出もしくは析出するモールドパウダーにおいて、アルカリ金属酸化物濃度とF濃度との関係を規定しようと調査・研究した結果成されたものである。   The present invention solves the above-mentioned problems, and mold powder that crystallizes or precipitates melilite, which is a solid solution of gelenite or akermanite, or both, in order to achieve both stabilization of viscosity and stabilization of crystal crystallization or precipitation. The result of the investigation and research to define the relationship between the alkali metal oxide concentration and the F concentration.

すなわち、本発明の連続鋳造用モールドパウダーは、
質量%で、
CaO%をSiO2%で除した比(CaO/SiO2)が1.1〜1.6、
Al23の含有量が10〜25%で、かつAl23およびMgOの合計の含有量が15〜30%、
TiO2の含有量が7%未満であって、
一旦溶融した後に徐冷した場合に晶出もしくは析出する分子量が500未満の主たる結晶が、ゲーレナイトまたはアケルマナイト、もしくはこれらの全率固溶体であるメリライトに加えて、カスピダイン(Cuspidine)であり、
さらに、
F−0.613×Na2O−1.27×Li2
の式で表される値を0〜3.5%とする、F,Na2OおよびLi2Oの含有量と
凝固温度を1030〜1160℃としたことを最も主要な特徴としている。
That is, the mold powder for continuous casting of the present invention is
% By mass
The ratio (CaO / SiO 2 ) obtained by dividing CaO% by SiO 2 % is 1.1 to 1.6,
The content of Al 2 O 3 is 10-25%, and the total content of Al 2 O 3 and MgO is 15-30%,
The TiO 2 content is less than 7%,
The main crystal having a molecular weight of less than 500 that crystallizes or precipitates when melted once and then slowly cools is galenite or akermanite, or in addition to melilite which is a solid solution of all of them, caspidine (Cuspidine),
further,
F-0.613 × Na 2 O-1.27 × Li 2 O
Of the 0 to 3.5% the value of the formula, F, and the content of Na 2 O and Li 2 O,
The main feature is that the solidification temperature is 1030 to 1160 ° C.

冷却速度の大きな条件下では、本発明の連続鋳造用モールドパウダーは、鋳型内の溶鋼表面で溶融したモールドパウダーが、鋳型内壁と凝固シェルの間隙に流入して凝固したパウダーフィルム中に生成する主たる結晶が、ゲーレナイトまたはアケルマナイト、もしくはこれらの全率固溶体であるメリライト1種が優先的に晶出もしくは析出する。   Under conditions with a high cooling rate, the mold powder for continuous casting according to the present invention is mainly produced in a powder film in which the mold powder melted on the molten steel surface in the mold flows into the gap between the mold inner wall and the solidified shell and solidifies. The crystal is preferentially crystallized or precipitated from gehlenite or akermanite, or one kind of melilite which is a solid solution of all of them.

また、本発明の連続鋳造方法は、
前記の本発明の連続鋳造用モールドパウダーを用いて、
質量%で、
炭素含有量が0.08%以下の普通鋼、または炭素含有量が0.18〜1.2%の普通鋼を鋳造することを最も主要な特徴としている。
Moreover, the continuous casting method of the present invention comprises:
Using the above-mentioned mold powder for continuous casting of the present invention,
% By mass
The most important feature is to cast ordinary steel having a carbon content of 0.08% or less, or ordinary steel having a carbon content of 0.18 to 1.2%.

本発明によれば、溶鋼中に巻き込まれにくい特性を備えた高塩基度かつ高粘度のモールドパウダーである、パウダーフィルム中にゲーレナイトまたはアケルマナイトもしくは両者の全率固溶体であるメリライトを晶出もしくは析出するモールドパウダーにおいて、粘度の安定化を図って凝固温度を低下させることが可能になる。その結果、溶鋼中に巻き込まれにくい優れた特性を有したモールドパウダーを、幅広い鋼種に適用することが可能となる。   According to the present invention, it is a mold powder having a high basicity and high viscosity that has the property of being difficult to be caught in molten steel, and crystallizing or precipitating melilite, a gelenite or akermanite, or a total solid solution of both in a powder film. In the mold powder, the viscosity can be stabilized and the solidification temperature can be lowered. As a result, it is possible to apply a mold powder having excellent properties that are difficult to be caught in molten steel to a wide range of steel types.

以下、本発明を実施するための形態と共に最良の形態について、詳細に説明する。
本発明の連続鋳造用モールドパウダーは、前述の通り、粘度の安定化と結晶の晶出もしくは析出の安定化を両立すべく、ゲーレナイトまたはアケルマナイトもしくは両者の全率固溶体であるメリライトを晶出もしくは析出するモールドパウダーにおいて、アルカリ金属酸化物濃度とF濃度との関係を規定したものである。
Hereinafter, the best mode as well as the mode for carrying out the present invention will be described in detail.
As described above, the mold powder for continuous casting of the present invention crystallizes or precipitates melilite, which is a solid solution of gelenite or akermanite, or both, in order to achieve both stabilization of viscosity and stabilization of crystallization or precipitation of crystals. In this mold powder, the relationship between the alkali metal oxide concentration and the F concentration is specified.

すなわち、本発明の連続鋳造用モールドパウダーは、
質量%で、
CaO%をSiO2%で除した比(CaO/SiO2)の値が1.1〜1.6、
Al23の含有量が10〜25%で、かつAl23およびMgOの合計の含有量が15〜30%、
TiO2の含有量が7%未満であって、
一旦溶融した後に徐冷した場合に晶出もしくは析出する分子量が500未満の主たる結晶が、ゲーレナイトまたはアケルマナイト、もしくはこれらの全率固溶体であるメリライトに加えて、カスピダインであり、
さらに、
F−0.613×Na2O−1.27×Li2
の式で表される値を0〜3.5%とする、F,Na2OおよびLi2Oの含有量と
凝固温度を1030〜1160℃としたことを最も主要な特徴としている。
That is, the mold powder for continuous casting of the present invention is
% By mass
The ratio obtained by dividing the CaO% with SiO 2% value of (CaO / SiO 2) is 1.1 to 1.6,
The content of Al 2 O 3 is 10-25%, and the total content of Al 2 O 3 and MgO is 15-30%,
The TiO 2 content is less than 7%,
The main crystal having a molecular weight of less than 500, which is crystallized or precipitated when it is gradually cooled after being melted, is caspidine, in addition to gelenite or akermanite, or melilite, which is a solid solution of all of them,
further,
F-0.613 × Na 2 O-1.27 × Li 2 O
Of the 0 to 3.5% the value of the formula, F, and the content of Na 2 O and Li 2 O,
The main feature is that the solidification temperature is 1030 to 1160 ° C.

本発明の連続鋳造用モールドパウダーにおいて、CaO/SiO2の値を1.1〜1.6としたのは、CaO/SiO2の値が1.1未満であると溶鋼中への巻き込みが多くなるからである。反対に、1.6を超えると、凝固温度が高くなりすぎて鋼の連続鋳造には適さなくなるからである。 In the continuous casting mold powder of the present invention, CaO / SiO 2 is the value of was 1.1 to 1.6 are, CaO / SiO 2 values Many entrainment into the molten steel is less than 1.1 Because it becomes. On the other hand, if it exceeds 1.6, the solidification temperature becomes too high and it is not suitable for continuous casting of steel.

また、本発明の連続鋳造用モールドパウダーにおいて、F−0.613×Na2O−1.27×Li2Oの式(以下、(1)式という。)で表される値を0〜3.5%とする、F,Na2OおよびLi2Oの含有量としたのは、(1)式の値が3.5質量%を超えるとカスピダインの晶出量もしくは析出量が増大し、ゲーレナイトまたはアケルマナイトもしくは両者の全率固溶体であるメリライトの晶出もしくは析出が不安定となるからである。反対に、(1)式の値が負の値となる場合には、粘度測定値が不安定となるからである。 In the mold powder for continuous casting of the present invention, the value represented by the formula of F-0.613 × Na 2 O-1.27 × Li 2 O (hereinafter referred to as the formula (1)) is set to 0 to 3. and .5%, F, had a content of Na 2 O and Li 2 O is, (1) crystallization amount or the amount of precipitated Kasupidain the value of expression is more than 3.5 mass% increases, This is because crystallization or precipitation of melilite, which is a solid solution of gelenite, akermanite, or both, becomes unstable. On the contrary, when the value of the expression (1) is a negative value, the measured viscosity value becomes unstable.

ここで、(1)式の値は、FがCaよりもNaあるいはLiと優先的に結合するとの仮定に立って、Caと結合できるF濃度を計算した式である。実際には、Fが100%優先的にNaやLiと結合するものではないと考えられるが、発明者の経験上、この(1)式の値が大きくなるにつれ、カスピダインの晶出もしくは析出が促進され、(1)式の値が負の場合には、粘度の不安定さが顕著となった。(1)式の値が負であるとは、単にNaイオンとLiイオンの総数がFイオンの総数よりも多いことを示しており、実際のF濃度が負であることを示しているのではない。   Here, the value of the expression (1) is an expression obtained by calculating the F concentration capable of binding to Ca on the assumption that F binds preferentially to Na or Li rather than Ca. Actually, it is considered that F does not bind to Na or Li preferentially 100%. However, according to the inventor's experience, crystallization or precipitation of caspidyne increases as the value of this equation (1) increases. When the value of formula (1) was negative, the viscosity instability became remarkable. The negative value of the expression (1) simply indicates that the total number of Na ions and Li ions is larger than the total number of F ions, and does not indicate that the actual F concentration is negative. Absent.

また、本発明の連続鋳造用モールドパウダーにおいて、Al23の含有量を10〜25質量%としたのは、Al23の含有量が10質量%未満の場合は粘度測定値が不安定になる現象が生じないので本発明の適用範囲外となるからである。反対に25質量%を超えると、粘度が高くなりすぎて普通鋼の連続鋳造に適さないからである。 In the mold powder for continuous casting of the present invention, the content of Al 2 O 3 is set to 10 to 25% by mass when the content of Al 2 O 3 is less than 10% by mass, the viscosity measurement value is not good. This is because the phenomenon of stabilization does not occur and the scope of the present invention is not applied. On the other hand, if it exceeds 25% by mass, the viscosity becomes too high and is not suitable for continuous casting of ordinary steel.

また、本発明の連続鋳造用モールドパウダーにおいて、Al23およびMgOの合計の含有量を15〜30質量%としたのは、この範囲を外れた場合には、ゲーレナイトまたはアケルマナイトもしくは両者の全率固溶体であるメリライトの析出もしくは晶出が不安定になるからである。 Further, in the mold powder for continuous casting of the present invention, the total content of Al 2 O 3 and MgO is set to 15 to 30% by mass. This is because the precipitation or crystallization of melilite, which is a solid solution, becomes unstable.

また、本発明の連続鋳造用モールドパウダーにおいて、TiO2の含有量を7質量%未満としたのは、TiO2を7質量%以上添加すると、高融点のペロブスカイト(CaO・TiO2)の析出量が増え、潤滑性に悪影響を及ぼすからである。TiO2濃度のより好ましい範囲は5質量%未満である。なお、TiO2は添加しなくても良いが、規定濃度範囲内で添加すると凝固温度の低下に有用である。 Further, in the continuous casting mold powder of the present invention, to that the content of TiO 2 and less than 7% by mass, the addition of TiO 2 7% by mass or more, the precipitation amount of the refractory perovskites (CaO · TiO 2) This is because it increases the adverse effect on lubricity. A more preferable range of the TiO 2 concentration is less than 5% by mass. TiO 2 need not be added, but it is useful for lowering the solidification temperature if it is added within the specified concentration range.

また、本発明の連続鋳造用モールドパウダーにおいて、一旦溶融した後に徐冷した場合に析出もしくは晶出する分子量が500未満の主たる結晶が、ゲーレナイトまたはアケルマナイトもしくは両者の全率固溶体であるメリライトに加えてカスピダインであるとは、以下の現象を指す。   In addition, in the mold powder for continuous casting of the present invention, the main crystal having a molecular weight of less than 500, which is precipitated or crystallized when it is once cooled after being melted, is added to melilite which is a solid solution of gelenite or akermanite or both. Caspidine is the following phenomenon.

一旦溶融した後に徐冷するとは、具体的には、例えば一旦1400℃で溶融した後に100〜200℃/hrの冷却速度で冷却することを言う。
ここで、分子量が500未満の結晶のみを対象とするのは、たとえば3Na2O・2Al23・4SiO2のような、分子量が500以上の結晶は、上記のような徐冷条件下では晶出もしくは析出しても、冷却速度が大きな実際の鋳造時における鋳型と凝固シェル間隙のパウダーフィルム中では晶出もしくは析出することが難しいからである。
More specifically, the slow cooling after melting once means, for example, cooling at a cooling rate of 100 to 200 ° C./hr after once melting at 1400 ° C.
Here, the molecular weight is intended only for less than 500 crystals, for example 3Na like 2 O · 2Al 2 O 3 · 4SiO 2, the molecular weight of 500 or more crystals, the slow cooling conditions, such as the This is because it is difficult to crystallize or precipitate in the powder film between the mold and the solidified shell at the time of actual casting having a high cooling rate even if it is crystallized or precipitated.

次に、主たる結晶とは、X線回折ピーク強度の最大値が他の結晶のX線回折ピーク強度の1.5倍以上あることを指す。本発明の連続鋳造用モールドパウダーにおいては、この主結晶が、大きく分けて2種、すなわち、ゲーレナイトまたはアケルマナイトもしくは両者の全率固溶体であるメリライトという1種と、カスピダインの2種である。   Next, the main crystal means that the maximum value of the X-ray diffraction peak intensity is 1.5 times or more the X-ray diffraction peak intensity of other crystals. In the mold powder for continuous casting of the present invention, the main crystals are roughly divided into two types, that is, one type of merelite which is a solid solution of gelenite or akermanite or both, and two types of caspidine.

ゲーレナイトとアケルマナイトは結晶構造が酷似しており、互いに全率で固溶してメリライトを形成するので、これらを区別するのは難しく、これらを1種の結晶と定義する。
本発明の連続鋳造用モールドパウダーにおいて、これら2種の結晶が主たる結晶であるとは、これらのX線回折ピーク強度が近い値であり、その最大値に1.5倍以上の開きがないことを指す。
Gerenite and akermanite are very similar in crystal structure and form a melilite by solid solution at a total rate, so it is difficult to distinguish them, and these are defined as one kind of crystal.
In the mold powder for continuous casting of the present invention, the fact that these two types of crystals are the main crystals is that these X-ray diffraction peak intensities are close to each other, and the maximum value does not have a difference of 1.5 times or more. Point to.

本発明の連続鋳造用モールドパウダーにおいて発明者が知見したところによると、ゲーレナイトまたはアケルマナイトもしくは両者の全率固溶体であるメリライトという1種と、カスピダインの2種が徐冷試料に見られる主たる結晶であるとき、冷却速度が大きな実際の鋳造時における鋳型と凝固シェル間隙のパウダーフィルム中ではゲーレナイトまたはアケルマナイトもしくは両者の全率固溶体であるメリライト1種が優先的に晶出もしくは析出し、カスピダイン構成成分の多くは結晶化せずガラス相のままとどまる。   According to the inventor's knowledge in the mold powder for continuous casting of the present invention, one type of merelite, which is a solid solution of gelenite or akermanite, or both, and two types of caspidyne are the main crystals found in the slowly cooled sample. In the actual casting, the powder film in the gap between the casting mold and the solidified shell has a high cooling rate. In the powder film of the gelenite, akermanite, or both, a single melilite, which is a solid solution of both, crystallizes or precipitates preferentially, and many of the components of caspidine Does not crystallize and remains in the glass phase.

このガラス相は潤滑性を高める作用があるので、鋳型サイズや鋳造する鋼種等の鋳造条件によっては、このようにしてガラス相を確保したモールドパウダーでなければ鋳造が難しい場合がある。   Since this glass phase has an effect of enhancing lubricity, depending on the casting conditions such as the mold size and the type of steel to be cast, casting may be difficult unless the mold powder ensures the glass phase in this way.

このように、比較的高い潤滑性が要求される鋳造条件において、巻き込まれにくい高塩基度かつ高粘度のモールドパウダーを用いる場合に、本発明の技術が必要となるのである。   Thus, the technique of the present invention is necessary when using a mold powder having a high basicity and a high viscosity that is difficult to be caught under casting conditions that require relatively high lubricity.

本発明の連続鋳造用モールドパウダーにおいて、凝固温度が1030〜1160℃であるのは、凝固温度が1030℃未満に低下すると、モールドパウダーの鋳型と凝固シェル間隙への流入が過多となり、縦割れ等の鋳片表面欠陥を生じやすくなるからである。加えて、本発明のモールドパウダーの凝固温度を1030℃未満に低下させるのは難しいからである。   In the mold powder for continuous casting of the present invention, the solidification temperature is 1030 to 1160 ° C. When the solidification temperature falls below 1030 ° C., the mold powder excessively flows into the mold and the solidified shell gap, causing vertical cracks, etc. This is because a slab surface defect is likely to occur. In addition, it is difficult to lower the solidification temperature of the mold powder of the present invention below 1030 ° C.

また、凝固温度が1160℃を超えると、鋳型内における潤滑性が悪化し、本発明が必要とされる比較的高い潤滑性が要求される鋳造条件に適さなくなるからである。凝固温度が1160℃を超えるものは、前述の特許文献1によっても得ることができる。凝固温度を1160℃以下に低下させる場合に、本発明が必要となるのである。   Further, if the solidification temperature exceeds 1160 ° C., the lubricity in the mold deteriorates, and it becomes unsuitable for casting conditions that require the relatively high lubricity required by the present invention. A solidification temperature exceeding 1160 ° C. can also be obtained by the above-mentioned Patent Document 1. The present invention is required when the solidification temperature is lowered to 1160 ° C. or lower.

先に説明した本発明の連続鋳造用モールドパウダーで規定したような2種の結晶が競合して晶出もしくは析出するモールドパウダーは、通常、結晶化が不安定となり鋳型内冷却が安定しない。   Mold powder in which two types of crystals compete with each other and crystallize or precipitate as defined in the above-described continuous casting mold powder of the present invention usually has unstable crystallization and unstable cooling in the mold.

しかしながら、本発明のモールドパウダーは、前述のように、冷却速度の大きな条件下では、ゲーレナイトまたはアケルマナイトもしくは両者の全率固溶体であるメリライト1種が優先的に晶出もしくは析出し、カスピダイン構成成分の多くは結晶化せずガラス相のままとどまる。   However, as described above, the mold powder of the present invention crystallizes or precipitates preferentially crystallization or precipitation of melilite, which is a solid solution of gehlenite or akermanite, or both, under the conditions of a large cooling rate, Many do not crystallize and remain in the glass phase.

従って、実際の鋳造時におけるパウダーフィルム中においては、主たる結晶がゲーレナイトまたはアケルマナイトもしくは両者の全率固溶体であるメリライト1種となるのである。これが請求項2に係る本発明の連続鋳造用モールドパウダーである。   Therefore, in the powder film at the time of actual casting, the main crystal is one type of melilite which is a solid solution of gelenite or akermanite or both. This is the mold powder for continuous casting according to the second aspect of the present invention.

ここで、鋳型壁と凝固シェルの間隙に存在するパウダーフィルム中の結晶を確認するには、鋳型出口においてパウダーフィルムを回収して、X線回折に供すると良い。もしくは、鋳型壁と凝固シェルの間隙に存在するパウダーフィルムが受ける平均的な冷却速度を模した溶融スラグ冷却装置を用いて、一旦溶融したモールドパウダーを冷却し、得られた試料をX線回折に供しても良い。   Here, in order to confirm the crystals in the powder film existing in the gap between the mold wall and the solidified shell, the powder film may be collected at the mold outlet and subjected to X-ray diffraction. Alternatively, using a molten slag cooling device simulating the average cooling rate received by the powder film existing in the gap between the mold wall and the solidified shell, the mold powder once melted is cooled, and the obtained sample is subjected to X-ray diffraction. May be provided.

鋳型壁と凝固シェルの間隙に存在するパウダーフィルムが受ける平均的な冷却速度を求めるには、例えば、冷却速度が大きいほど試料はガラス化し結晶のX線回折ピークが小さくなることを利用して、鋳型出口で回収したパウダーフィルムのX線回折結果(回折ピーク)と同等の結果が得られる冷却速度を実験的に求めると良い。   In order to determine the average cooling rate received by the powder film present in the gap between the mold wall and the solidified shell, for example, the larger the cooling rate, the more the sample vitrifies and the smaller the X-ray diffraction peak of the crystal, It is preferable to experimentally obtain a cooling rate at which a result equivalent to the X-ray diffraction result (diffraction peak) of the powder film collected at the mold outlet is obtained.

前記の本発明の連続鋳造用モールドパウダーを用いて、
質量%で、
炭素含有量が0.08%以下の普通鋼、または炭素含有量が0.18〜1.2%の普通鋼を鋳造する。これが本発明の連続鋳造方法である。
Using the above-mentioned mold powder for continuous casting of the present invention,
% By mass
An ordinary steel having a carbon content of 0.08% or less or an ordinary steel having a carbon content of 0.18 to 1.2% is cast. This is the continuous casting method of the present invention.

本発明は、前述のように、比較的高い潤滑性が要求される場合に、必要な技術である。
普通鋼の連続鋳造においては、炭素含有量が0.09質量%〜0.17質量%のいわゆる亜包晶鋼は、凝固直後のδ→γ変態により凝固シェルが大きく収縮するので、鋳型と凝固シェルの間隙が大きくなり、潤滑性が良好となる。
As described above, the present invention is a necessary technique when a relatively high lubricity is required.
In continuous casting of ordinary steel, so-called hypoperitectic steel with a carbon content of 0.09% to 0.17% by mass undergoes a large shrinkage of the solidified shell due to the δ → γ transformation immediately after solidification. The gap between the shells is increased and the lubricity is improved.

それに対し、炭素含有量が0.08質量%以下の低炭素鋼もしくは極低炭素鋼といった普通鋼、あるいは炭素含有量が0.18質量%以上の過包晶鋼もしくは高炭素鋼といった普通鋼は、凝固シェルの収縮が小さく、比較的高い潤滑性が要求されるので、本発明のモールドパウダーを用いるのに適している。   On the other hand, ordinary steel such as low carbon steel or ultra low carbon steel having a carbon content of 0.08% by mass or less, or ordinary steel such as peritectic steel or high carbon steel having a carbon content of 0.18% by mass or more is used. Since the shrinkage of the solidified shell is small and relatively high lubricity is required, it is suitable for using the mold powder of the present invention.

特に、スラブの連続鋳造においては、鋳型の矩形比が大きいので、凝固シェルがバルジングしやすく、鋳型と凝固シェルの間隙が小さくなりやすいことに加え、鋳造速度が大きいので、本発明のモールドパウダー使用にさらに好適である。   Especially in continuous casting of slabs, since the rectangular ratio of the mold is large, the solidified shell is easy to bulge, the gap between the mold and the solidified shell tends to be small, and the casting speed is large. It is further suitable for.

なお、本発明において規定される結晶の組成は、ゲーレナイトが2CaO・Al23・SiO2、アケルマナイトが2CaO・MgO・2SiO2、メリライトはゲーレナイトとアケルマナイトとの全率固溶体であり、両組成間の任意の組成をとることができる。また、カスピダインは3CaO・2SiO2・CaF2である。 The composition of the crystal as defined in the present invention, gehlenite is 2CaO · Al 2 O 3 · SiO 2, Akerumanaito is 2CaO · MgO · 2SiO 2, melilite are complete solid solution of gehlenite and Akerumanaito, between the composition Any composition can be adopted. The caspidine is 3CaO.2SiO 2 .CaF 2 .

以下、本発明の効果を確認するために行った実施結果について説明する。
本発明の実施例および比較例の組成を下記表1に、凝固温度等の性質や徐冷時やパウダーフィルム中の主たる結晶を表2に示す。
Hereinafter, the implementation results performed to confirm the effect of the present invention will be described.
The compositions of Examples and Comparative Examples of the present invention are shown in Table 1 below, and the properties such as the solidification temperature, the time of slow cooling, and the main crystals in the powder film are shown in Table 2.

Figure 0004626522
Figure 0004626522

Figure 0004626522
Figure 0004626522

表1及び表2のA〜Cは、本発明の請求項1および2を満たすモールドパウダーの実施例である。
A〜Cは、塩基度(CaO/SiO2)が比較的高く、SiO2等の低級酸化物活量が低く抑えられている。加えて、1300℃における粘度が0.2〜0.3Pa・Sと、高塩基度かつ低凝固温度の割には高粘度であるので、溶鋼中への巻き込みが生じ難い特質を有する。
A to C in Tables 1 and 2 are examples of mold powders satisfying claims 1 and 2 of the present invention.
A to C have a relatively high basicity (CaO / SiO 2 ), and the activity of lower oxides such as SiO 2 is kept low. In addition, since the viscosity at 1300 ° C. is 0.2 to 0.3 Pa · S, which is a high viscosity for a high basicity and a low solidification temperature, it has the property that it is difficult to cause entrainment in molten steel.

また、A〜Cは、F−0.613×Na2O−1.27×Li2Oで示す(1)式の値およびAl23含有量、MgO含有量が適正な範囲内にあるので、一旦溶融した後に徐冷した場合に晶出もしくは析出する主たる結晶が、分子量が500未満のメリライトおよびカスピダインの2種であり、かつ鋳型壁と凝固シェルの間隙に存在するパウダーフィルム中の主たる結晶が、メリライト1種である。このことは、連続鋳造時においては、メリライト1種が安定して晶出もしくは析出することを示している。 Further, A to C are within the proper ranges of the value of the formula (1) represented by F-0.613 × Na 2 O-1.27 × Li 2 O, the Al 2 O 3 content, and the MgO content. Therefore, the main crystals in the powder film existing in the gap between the mold wall and the solidified shell are the main crystals that crystallize or precipitate when they are once melted and then slowly cooled, and are the two types of melilite and caspidyne having a molecular weight of less than 500 The crystal is a kind of melilite. This indicates that one kind of melilite is stably crystallized or precipitated during continuous casting.

ここで、ゲーレナイトとアケルマナイトとは結晶構造が酷似しておりX線回折ピークパターンが近いことから、表2においては、ゲーレナイトあるいはアケルマナイトと見なされる結晶は、全てメリライトと記述している。   Here, since the crystal structures of gehlenite and akermanite are very similar and the X-ray diffraction peak patterns are close, in Table 2, all the crystals regarded as gehlenite or akermanite are described as melilite.

また、A〜Cは、TiO2濃度が7質量%未満であり、かつ凝固温度が1160℃以下であるので、潤滑性に優れている。また凝固温度が1030℃以上であるので、パウダーの鋳型と凝固シェルの間隙への過剰流入が防止できる。 A to C are excellent in lubricity because the TiO 2 concentration is less than 7% by mass and the solidification temperature is 1160 ° C. or lower. Further, since the solidification temperature is 1030 ° C. or higher, excessive inflow into the gap between the powder mold and the solidified shell can be prevented.

一方、表1及び表2のD〜Fは、本発明の比較例である。
D〜Fにおいては、(1)式の値が負の領域にあるので、粘度測定値が不安定であった。表2における粘度の記述、例えば0.3〜0.7は、粘度測定条件の違いによって0.3Pa・S〜0.7Pa・Sの粘度測定値の変動が生じたことを示す。
On the other hand, D to F in Table 1 and Table 2 are comparative examples of the present invention.
In D to F, since the value of the formula (1) is in a negative region, the measured viscosity value was unstable. The description of the viscosity in Table 2, for example, 0.3 to 0.7 indicates that the variation in the measured viscosity value of 0.3 Pa · S to 0.7 Pa · S occurred due to the difference in the viscosity measurement conditions.

ここで言う粘度測定条件の違いとは、粘度測定時に、1350℃で溶融した後速やかに2℃/minの速度で冷却しつつ凝固温度に到るまでの粘度を連続的に測定した通常の測定条件と、1350℃で溶融した後、その温度で90分間保持した後、2℃/minの速度で冷却しつつ凝固温度に到るまでの粘度を連続的に測定した溶融状態でスラグを長時間保持した条件との違いである。   The difference in the viscosity measurement conditions referred to here is a normal measurement in which the viscosity is measured continuously until the solidification temperature is reached while cooling at a rate of 2 ° C./min immediately after melting at 1350 ° C. After melting at 1350 ° C. and holding at that temperature for 90 minutes, the slag is kept in a molten state for a long time in a molten state in which the viscosity until reaching the solidification temperature is measured while cooling at a rate of 2 ° C./min. This is a difference from the held conditions.

一般には、溶融状態でスラグを長時間保持すると、化学組成の内、FやNa2Oが揮発して減少し、粘度が上昇する場合が多いのであるが、D〜Fにおいては、溶融状態でスラグを長時間保持した場合の方が、粘度が低下した。 In general, when slag is kept in a molten state for a long time, among chemical compositions, F and Na 2 O volatilize and decrease, and the viscosity increases in many cases. When the slag was held for a long time, the viscosity decreased.

すなわち、表2における粘度の記述、例えば0.3〜0.7は、通常の測定条件では0.7Pa・S、溶融状態でスラグを長時間保持した測定条件で0.3Pa・Sであったことを示す。なお、表2において粘度が単一の値のみ記述されているのは、両条件での測定値に有意差が無かったことを示している。   That is, the description of the viscosity in Table 2, for example, 0.3 to 0.7 was 0.7 Pa · S under normal measurement conditions, and 0.3 Pa · S under measurement conditions in which the slag was held for a long time in a molten state. It shows that. In Table 2, only a single value for the viscosity is described, indicating that there was no significant difference in the measured values under both conditions.

表1及び表2のGも、本発明の比較例である。
GはF濃度が比較的低いのでカスピダインの晶出もしくは析出が抑えられ、一旦溶融した後に徐冷した場合に晶出もしくは析出する分子量が500未満の主たる結晶、鋳型壁と凝固シェルの間隙に存在するパウダーフィルム中の主たる結晶が、ともにメリライト1種である。このことは、結晶析出の安定性においては好ましいのであるが、GはF濃度を抑えた結果、凝固温度が本発明の請求範囲を外れて高く、潤滑性に難が生じた。また、F濃度が低いことは、本発明の実施例A〜Cに比べてパウダーフィルム中においてガラス相を形成する成分が少ないことを示し、その点においても潤滑性に劣る。
G in Tables 1 and 2 is also a comparative example of the present invention.
Since G has a relatively low F concentration, crystallization or precipitation of caspodyne is suppressed, and when it is once melted, it is crystallized or precipitated in the main crystal with a molecular weight of less than 500, and exists in the gap between the mold wall and the solidified shell. The main crystals in the powder film to be processed are both a kind of melilite. This is preferable in terms of the stability of crystal precipitation, but as a result of suppressing the F concentration of G, the solidification temperature is high outside the claimed range of the present invention, resulting in difficulty in lubricity. Moreover, low F density | concentration shows that there are few components which form a glass phase in a powder film compared with Example AC of this invention, and it is inferior to lubricity also in that point.

表1及び表2のHも、本発明の比較例である。
Hは(1)式の値が本発明の範囲を超えて大きいのでカスピダインの晶出もしくは析出が促進され、かつAl23およびMgOの合計の含有量が本発明の範囲の下限値未満であるので、ゲーレナイトまたはアケルマナイトもしくは両者の全率固溶体であるメリライトの晶出もしくは析出が阻害された結果、一旦溶融した後に徐冷した場合に晶出もしくは析出する分子量が500未満の主たる結晶、鋳型壁と凝固シェルの間隙に存在するパウダーフィルム中の主たる結晶が、ともにカスピダインである点において、本発明の範囲外である。
H in Tables 1 and 2 is also a comparative example of the present invention.
Since H has a large value of the formula (1) exceeding the range of the present invention, crystallization or precipitation of caspidine is promoted, and the total content of Al 2 O 3 and MgO is less than the lower limit of the range of the present invention. As a result, crystallization or precipitation of melilite which is a solid solution of gelenite and / or akermanite or both is hindered. It is outside the scope of the present invention in that the main crystals in the powder film existing in the gap between the solidified shell and the solidified shell are both caspidine.

発明者の経験上、主たる結晶がカスピダインである場合に、このようにAl23濃度が高いと、カスピダインの晶出もしくは析出が不安定であり、鋳型内冷却の均一さや安定性に悪影響が生じる。 According to the inventor's experience, when the main crystal is caspodyne, if the Al 2 O 3 concentration is high in this way, crystallization or precipitation of caspodyne is unstable, and the uniformity and stability of cooling in the mold are adversely affected. Arise.

また、Hにおいては、TiO2濃度が7質量%と高いので、高融点のペロブスカイト(CaO・TiO2)が、低いピークではあるが析出する。ゆえに、鋳型内における潤滑性が悪化するおそれがある。 In H, since the TiO 2 concentration is as high as 7% by mass, perovskite having a high melting point (CaO · TiO 2 ) precipitates although it has a low peak. Therefore, the lubricity in the mold may be deteriorated.

次に、表1及び表2のパウダーB(実施例)およびG(比較例)を用いて、スラブ連続鋳造機において極低炭素鋼を鋳造した結果を以下に示す。
鋳造条件は、鋳型サイズが厚み270mm×幅1600mm、鋳造速度が1.6m/min、タンディッシュ内の溶鋼過熱度が平均25℃、鋳型のオシレーションストロークが5.4mm、鋳型のオシレーション振動数が193cpmであった。
Next, the result of casting ultra-low carbon steel in a slab continuous casting machine using powder B (Example) and G (Comparative Example) in Tables 1 and 2 is shown below.
The casting conditions were: mold size 270 mm thickness x width 1600 mm, casting speed 1.6 m / min, molten steel superheat degree in the tundish on average 25 ° C, mold oscillation stroke 5.4 mm, mold oscillation frequency Was 193 cpm.

鋳型内潤滑性の指標として、鋳型内湯面から100mm下方の稼働面から5mmの深さにおける鋳型銅板の温度を熱電対により測定し、鋳造定常部において、鋳型銅板の温度変動の大きさを標準偏差/平均値という指標を用いて評価した。   As an index of lubricity in the mold, the temperature of the mold copper plate at a depth of 5 mm from the working surface 100 mm below the mold surface is measured with a thermocouple. / Evaluated using an index called average value.

その結果、パウダーB(実施例)では0.011に対し、G(比較例)では0.017と、凝固温度の高い比較例では潤滑性の悪化が認められた。ここで、発明者の経験上、上記指標の値は、極低炭素鋼では通常0.007〜0.013であり、0.015以下であれば潤滑性に問題はない。   As a result, 0.011 for powder B (Example) and 0.017 for G (Comparative Example), and deterioration of lubricity was observed in the Comparative Example having a high solidification temperature. Here, from the experience of the inventor, the value of the index is usually 0.007 to 0.013 for ultra-low carbon steel, and if it is 0.015 or less, there is no problem in lubricity.

両パウダーは、塩基度(CaO/SiO2)や粘度、パウダーフィルム中に晶出もしくは析出する結晶が同じであるにもかかわらず、このように潤滑性に差が生じたのは、本発明によってパウダーBの凝固温度を下げることができたことが主な要因と考えられる。 Although both powders have the same basicity (CaO / SiO 2 ), viscosity, and crystals that crystallize or precipitate in the powder film, the difference in lubricity is caused by the present invention. The main factor is that the solidification temperature of the powder B could be lowered.

本発明は上記の例に限らず、各請求項に記載された技術的思想の範囲内で、適宜実施の形態を変更しても良いことは言うまでもない。   The present invention is not limited to the above example, and it goes without saying that the embodiment may be appropriately changed within the scope of the technical idea described in each claim.

Claims (3)

質量%で、
CaO%をSiO2%で除した比(CaO/SiO2)が1.1〜1.6、
Al23の含有量が10〜25%で、かつAl23およびMgOの合計の含有量が15〜30%、
TiO2の含有量が7%未満であって、
一旦溶融した後に徐冷した場合に晶出もしくは析出する分子量が500未満の主たる結晶が、ゲーレナイトまたはアケルマナイト、もしくはこれらの全率固溶体であるメリライトに加えて、カスピダインであり、
さらに、
F−0.613×Na2O−1.27×Li2
の式で表される値を0〜3.5%とする、F,Na2OおよびLi2Oの含有量と
凝固温度を1030〜1160℃としたことを特徴とする連続鋳造用モールドパウダー。
% By mass
The ratio (CaO / SiO 2 ) obtained by dividing CaO% by SiO 2 % is 1.1 to 1.6,
The content of Al 2 O 3 is 10-25%, and the total content of Al 2 O 3 and MgO is 15-30%,
The TiO 2 content is less than 7%,
The main crystal having a molecular weight of less than 500, which is crystallized or precipitated when it is gradually cooled after being melted, is caspidine, in addition to gelenite or akermanite, or melilite, which is a solid solution of all of them,
further,
F-0.613 × Na 2 O-1.27 × Li 2 O
Of the 0 to 3.5% the value of the formula, F, and the content of Na 2 O and Li 2 O,
A mold powder for continuous casting, wherein the solidification temperature is 1030 to 1160 ° C.
鋳型内の溶鋼表面で溶融したモールドパウダーが鋳型内壁と凝固シェルの間隙に流入して凝固したパウダーフィルム中に生成する主たる結晶が、ゲーレナイトまたはアケルマナイト、もしくはこれらの全率固溶体であるメリライト1種が優先的に晶出もしくは析出するようにしたことを特徴とする請求項1に記載の連続鋳造用モールドパウダー。 The main crystal produced in the powder film that is solidified by the mold powder melted on the surface of the molten steel in the mold flowing into the gap between the mold inner wall and the solidified shell is gehlenite or akermanite, or one kind of melilite that is a solid solution of all of them. 2. The mold powder for continuous casting according to claim 1 , wherein crystallization or precipitation is preferentially performed . 請求項1または2に記載のモールドパウダーを用いて、
質量%で、
炭素含有量が0.08%以下の普通鋼、または炭素含有量が0.18〜1.2%の普通鋼を鋳造することを特徴とする連続鋳造方法。
Using the mold powder according to claim 1 or 2,
% By mass
A continuous casting method characterized by casting ordinary steel having a carbon content of 0.08% or less or ordinary steel having a carbon content of 0.18 to 1.2%.
JP2006003944A 2006-01-11 2006-01-11 Mold powder for continuous casting and continuous casting method for plain steel Active JP4626522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006003944A JP4626522B2 (en) 2006-01-11 2006-01-11 Mold powder for continuous casting and continuous casting method for plain steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006003944A JP4626522B2 (en) 2006-01-11 2006-01-11 Mold powder for continuous casting and continuous casting method for plain steel

Publications (2)

Publication Number Publication Date
JP2007185671A JP2007185671A (en) 2007-07-26
JP4626522B2 true JP4626522B2 (en) 2011-02-09

Family

ID=38341197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006003944A Active JP4626522B2 (en) 2006-01-11 2006-01-11 Mold powder for continuous casting and continuous casting method for plain steel

Country Status (1)

Country Link
JP (1) JP4626522B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283881B2 (en) * 2007-10-09 2013-09-04 株式会社神戸製鋼所 Method for continuous casting of steel characterized by raising and lowering the surface level

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241655A (en) * 1994-03-02 1995-09-19 Nippon Steel Corp Continuous casting powder for ti-containing steel
JP2000158107A (en) * 1998-11-30 2000-06-13 Shinagawa Refract Co Ltd Mold powder for open casting
JP2003225744A (en) * 2002-02-05 2003-08-12 Sumitomo Metal Ind Ltd Powder for continuous casting and continuous casting method using this powder
JP2004098092A (en) * 2002-09-06 2004-04-02 Sumitomo Metal Ind Ltd Method for continuously casting molten hyper-peritectic medium carbon steel
JP2004148376A (en) * 2002-10-31 2004-05-27 Nippon Steel Corp Powder for continuously casting steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241655A (en) * 1994-03-02 1995-09-19 Nippon Steel Corp Continuous casting powder for ti-containing steel
JP2000158107A (en) * 1998-11-30 2000-06-13 Shinagawa Refract Co Ltd Mold powder for open casting
JP2003225744A (en) * 2002-02-05 2003-08-12 Sumitomo Metal Ind Ltd Powder for continuous casting and continuous casting method using this powder
JP2004098092A (en) * 2002-09-06 2004-04-02 Sumitomo Metal Ind Ltd Method for continuously casting molten hyper-peritectic medium carbon steel
JP2004148376A (en) * 2002-10-31 2004-05-27 Nippon Steel Corp Powder for continuously casting steel

Also Published As

Publication number Publication date
JP2007185671A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP4646849B2 (en) Mold powder for continuous casting of high aluminum steel
JP5370929B2 (en) Mold flux for continuous casting of steel
JP3649153B2 (en) Mold powder for continuous casting
JP4932635B2 (en) Continuous casting powder and steel continuous casting method
JP6674093B2 (en) Mold powder for continuous casting of steel and continuous casting method
JP4665785B2 (en) Mold powder for continuous casting of steel
JP2017087273A (en) CONTINUOUS CASTING MOLD POWDER FOR Ti-CONTAINING STEEL, AND CONTINUOUS CASTING METHOD
JP6169648B2 (en) Mold powder for continuous casting of steel and continuous casting method of steel
JP4430638B2 (en) Mold powder for continuous casting of high aluminum steel
JP3427804B2 (en) Mold powder and continuous casting method
JP4881203B2 (en) Powder for continuous casting
JP5703919B2 (en) Mold flux for continuous casting of steel and continuous casting method
JP3780966B2 (en) Continuous casting powder and continuous casting method using it
JP2005040835A (en) Mold powder for continuous casting of steel
JP2010214387A (en) Mold flux for continuous casting, and continuous casting method
JP4626522B2 (en) Mold powder for continuous casting and continuous casting method for plain steel
JP2003225744A (en) Powder for continuous casting and continuous casting method using this powder
JP3656615B2 (en) Mold powder for continuous casting of steel
JP2002239693A (en) Mold powder for continuous casting
JP4014001B2 (en) Mold flux for continuous casting of high Al content steel
JP6510342B2 (en) Continuous casting powder for Al-containing steel and continuous casting method
JP5316879B2 (en) Continuous casting method of alloy steel
JP3610885B2 (en) Mold powder and continuous casting method
JP2010269348A (en) Continuous casting method for high-alloy steel
JP5447118B2 (en) High Si high Al steel continuous casting powder and continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4626522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350