JP5122729B2 - 3D shape measurement method - Google Patents

3D shape measurement method Download PDF

Info

Publication number
JP5122729B2
JP5122729B2 JP2005128271A JP2005128271A JP5122729B2 JP 5122729 B2 JP5122729 B2 JP 5122729B2 JP 2005128271 A JP2005128271 A JP 2005128271A JP 2005128271 A JP2005128271 A JP 2005128271A JP 5122729 B2 JP5122729 B2 JP 5122729B2
Authority
JP
Japan
Prior art keywords
measurement
shape
contour
light source
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005128271A
Other languages
Japanese (ja)
Other versions
JP2006308323A (en
Inventor
照明 與語
Original Assignee
照明 與語
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 照明 與語 filed Critical 照明 與語
Priority to JP2005128271A priority Critical patent/JP5122729B2/en
Publication of JP2006308323A publication Critical patent/JP2006308323A/en
Application granted granted Critical
Publication of JP5122729B2 publication Critical patent/JP5122729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、3次元形状の被測定物に格子像を投影し、この変形格子像から被測定物の形状を測定する3次元形状測定方法に関する。   The present invention relates to a three-dimensional shape measurement method for projecting a lattice image on a three-dimensional object to be measured and measuring the shape of the object to be measured from the deformed lattice image.

従来より、被測定物に格子像を投影し、被測定物各部の高さ分布に応じて変形した格子像から3次元形状を測定するモアレ法やヘテロダイン法が知られている。モアレ法では変形格子像に基準格子を重ねることにより被測定物の高さ分布の等高線を与えるモアレ縞を発生させて高さ分布を求めている。ヘテロダイン法では基準格子を無変調の空間的キャリア波長信号と考え、変形格子像を空間的に位相変調されたキャリア信号とみなして変形量を位相として検出することにより被測定物の高さ分布を求めている。   Conventionally, a moire method or a heterodyne method is known in which a lattice image is projected onto a measurement object and a three-dimensional shape is measured from the lattice image deformed according to the height distribution of each part of the measurement object. In the moire method, the height distribution is obtained by generating moire fringes that give contour lines of the height distribution of the object to be measured by superimposing a reference lattice on the deformed lattice image. In the heterodyne method, the reference grating is considered as an unmodulated spatial carrier wavelength signal, the deformation grating image is regarded as a spatially phase-modulated carrier signal, and the amount of deformation is detected as the phase to detect the height distribution of the object to be measured. Looking for.

また、不連続段差をもつ被測定物を測定するため、特許文献1や特許文献2にあるように、周期と向きとが互いに異なる複数の1次元格子を重畳させた2次元格子像を被測定物に投影し、被測定物の3次元形状に応じて変形した2次元格子像を撮像し、2次元格子像から各1次元格子成分毎に位相を検出し、各位相に基づいて3次元形状の測定値を得る方法が知られている。
特開平10−246612号公報 特開2002−318109号公報
Further, in order to measure an object to be measured having a discontinuous step, a two-dimensional lattice image in which a plurality of one-dimensional lattices having different periods and directions are superimposed is measured as described in Patent Document 1 and Patent Document 2. A two-dimensional lattice image that is projected onto an object and deformed according to the three-dimensional shape of the object to be measured is picked up. A method of obtaining a measured value of is known.
Japanese Patent Laid-Open No. 10-246612 JP 2002-318109 A

しかしながら、こうした従来の方法では、被測定物に投影した格子像が、被測定物のエッジ等の輪郭に重なると、輪郭が格子像の縞模様の中に隠されてしまい、例えば、白黒の格子像の場合、黒い縞の中に隠されてしまい、輪郭の形状測定を精度よくできない。そのため、格子像を投影しない白色光のみで、被測定物の輪郭を別途測定しなければならず、測定が煩わしく、しかも、二度撮像しなければならず、測定に長時間を必要とすると共に、二度撮像するために、その間の手ぶれ等により測定精度が低下するという問題があった。   However, in such a conventional method, when the lattice image projected on the object to be measured overlaps the contour of the object to be measured, the contour is hidden in the striped pattern of the lattice image. In the case of an image, it is hidden in black stripes, and the contour shape cannot be measured accurately. For this reason, the outline of the object to be measured must be separately measured with only white light that does not project a lattice image, and the measurement is troublesome, and the image must be taken twice, which requires a long time for measurement. In order to take an image twice, there is a problem that the measurement accuracy is lowered due to camera shake or the like during that time.

本発明の課題は、短時間で、精度よく3次元形状を測定できる3次元形状測定方法を提供することにある。   The subject of this invention is providing the three-dimensional shape measuring method which can measure a three-dimensional shape accurately in a short time.

かかる課題を達成すべく、本発明は課題を解決するため次の方法を取った。即ち、
3次元形状の被測定物に形状測定用光源から格子像を投影し、形状測定用撮像器により撮像した格子像から前記被測定物の3次元形状の測定値を得る3次元形状測定方法において、
前記形状測定用光源から前記格子像を参照平面上に置かれ輪郭の3次元形状が既知の基準ターゲットに投影し、また、前記形状測定用光源と異なる波長の輪郭測定用光源により前記基準ターゲットを照射して、前記形状測定用光源による前記格子像を撮像する前記形状測定用撮像器と前記輪郭測定用光源による照射像を撮像する輪郭測定用撮像器とにより前記基準ターゲットを撮像し、前記基準ターゲットの形状と、前記形状測定用撮像器により撮像した前記格子像から得られる前記基準ターゲットの3次元形状と、前記輪郭測定用撮像器により得られる前記基準ターゲットの2次元輪郭とに基づいて、前記形状測定用撮像器と前記輪郭測定用撮像器との位置関係を校正し、
次に、前記参照平面、前記形状測定用撮像器、前記輪郭測定用撮像器、前記形状測定用光源の位置関係が同じ状態で、前記形状測定用光源からの投影と同時に、前記輪郭測定用光源により前記基準ターゲットに代えて前記参照平面上に置かれた前記被測定物を照射して、前記形状測定用撮像器と前記輪郭測定用撮像器とにより前記被測定物を同時に撮像し、前記形状測定用撮像器により撮像した前記格子像から得られる前記被測定物の3次元形状と、前記輪郭測定用撮像器により得られる前記被測定物の2次元輪郭とに基づいて、前記被測定物の3次元輪郭の測定値を得ることを特徴とする3次元形状測定方法がそれである。
In order to achieve this problem, the present invention takes the following method to solve the problem. That is,
In a three-dimensional shape measurement method for projecting a lattice image from a shape measurement light source onto a three-dimensional shape measurement object and obtaining a measurement value of the three-dimensional shape of the measurement object from a lattice image captured by a shape measurement image pickup device,
The lattice image is placed on a reference plane from the shape measurement light source and projected onto a reference target whose contour three-dimensional shape is known, and the reference target is projected by a contour measurement light source having a wavelength different from that of the shape measurement light source. The reference target is imaged by the shape measurement imager that irradiates and captures the lattice image by the shape measurement light source and the contour measurement imager that captures an irradiation image by the contour measurement light source, and the reference Based on the shape of the target, the three-dimensional shape of the reference target obtained from the lattice image imaged by the shape-measuring imager, and the two-dimensional contour of the reference target obtained by the contour-measuring imager, Calibrate the positional relationship between the shape measurement imager and the contour measurement imager;
Next, with the same positional relationship among the reference plane, the shape measuring image pickup device, the contour measuring image pickup device, and the shape measuring light source , the contour measuring light source is projected simultaneously with the projection from the shape measuring light source. By irradiating the object to be measured placed on the reference plane instead of the standard target, the shape measuring image sensor and the contour measuring image sensor simultaneously image the object to be measured, and the shape Based on the three-dimensional shape of the measurement object obtained from the lattice image captured by the measurement imager and the two-dimensional contour of the measurement object obtained by the contour measurement imager, the measurement object A three-dimensional shape measuring method is characterized in that a three-dimensional contour measurement value is obtained.

前記形状測定用撮像器と前記輪郭測定用撮像器とは、共通の光軸を有し、波長分離プリズムによりそれぞれの波長に分離してもよい。前記形状測定用光源と前記輪郭測定用光源とは、それぞれ白色光源から異なる波長の透過フィルタを通して照射してもよい。   The shape measurement image pickup device and the contour measurement image pickup device may have a common optical axis and may be separated into respective wavelengths by a wavelength separation prism. The shape measurement light source and the contour measurement light source may each be irradiated from a white light source through transmission filters having different wavelengths.

本発明の3次元形状測定方法によると、波長の異なる光源で被測定物を同時に照射し、撮像する波長が異なる撮像器で撮像して、3次元輪郭を得るので、短時間で、精度よく測定できるという効果を奏する。   According to the three-dimensional shape measurement method of the present invention, the object to be measured is simultaneously irradiated with light sources having different wavelengths, and images are taken with imagers having different wavelengths to obtain three-dimensional contours. There is an effect that can be done.

以下本発明を実施するための最良の形態を図面に基づいて詳細に説明する。
図1に示すように、1は参照平面P上に置かれた被測定物で、本実施形態では、図2に示すように、被測定物1は直方形状の台1a上に、円錐台1bが形成されたもので、台1aには、傾斜部1cが形成されている。2は形状測定用光源であり、形状測定用光源2は、白色光源4と反射鏡6と投影レンズ8とを備えると共に、白色光源4と投影レンズ8との間に形状測定用透過フィルタ10と格子縞板12とを備えている。
The best mode for carrying out the present invention will be described below in detail with reference to the drawings.
As shown in FIG. 1, reference numeral 1 denotes an object to be measured placed on a reference plane P. In this embodiment, as shown in FIG. 2, the object to be measured 1 is on a rectangular base 1 a and a truncated cone 1 b. The base 1a has an inclined portion 1c. Reference numeral 2 denotes a shape measurement light source. The shape measurement light source 2 includes a white light source 4, a reflecting mirror 6, and a projection lens 8, and a shape measurement transmission filter 10 between the white light source 4 and the projection lens 8. A checkerboard 12.

形状測定用透過フィルタ10は、白色光源4からの光のうち、特定の波長の光を透過、例えば、赤色あるいは青色等の波長の光を透過するフィルタである。格子縞板12には、周期的繰り返しによる条線が形成されており、格子縞板12を通過した照射光により、被測定物1上に格子縞が投影される。   The shape measurement transmission filter 10 is a filter that transmits light of a specific wavelength out of light from the white light source 4, for example, light of a wavelength such as red or blue. A striped line is formed on the checkered strip 12 by periodic repetition, and the checkered pattern is projected onto the DUT 1 by the irradiation light that has passed through the checkered plate 12.

形状測定用光源2の近傍には、輪郭測定用光源14が設けられており、輪郭測定用光源14は、白色光源16と反射鏡18と投影レンズ20とを備えると共に、白色光源16と投影レンズ20との間に輪郭測定用透過フィルタ22を備えている。輪郭測定用透過フィルタ22は、白色光源16からの光のうち、特定の波長の光を透過、例えば、緑色等の波長の光を透過するフィルタである。   A contour measuring light source 14 is provided in the vicinity of the shape measuring light source 2, and the contour measuring light source 14 includes a white light source 16, a reflecting mirror 18, and a projection lens 20, and the white light source 16 and the projection lens. 20 is provided with a transmission filter 22 for contour measurement. The contour measurement transmission filter 22 is a filter that transmits light of a specific wavelength out of light from the white light source 16, for example, light of a wavelength such as green.

形状測定用透過フィルタ10と輪郭測定用透過フィルタ22とは、透過させる光の波長が互いに異なる。例えば、形状測定用透過フィルタ10が赤色を透過されるフィルタであれば、輪郭測定用透過フィルタ22は緑色を透過させるフィルタである。また、形状測定用光源2と輪郭測定用光源14とは、形状測定用透過フィルタ10と輪郭測定用透過フィルタ22とを用いて、照射する光の波長を異なるものとする場合に限らず、フィルタを用いることなく、形状測定用光源2が可視光を照射し、輪郭測定用光源14が赤外線を照射する場合でもよく、両光源2,14の波長が異なればよい。   The shape measurement transmission filter 10 and the contour measurement transmission filter 22 have different wavelengths of transmitted light. For example, if the shape measurement transmission filter 10 is a filter that transmits red, the contour measurement transmission filter 22 is a filter that transmits green. Further, the shape measurement light source 2 and the contour measurement light source 14 are not limited to the case where the shape measurement transmission filter 10 and the contour measurement transmission filter 22 are used to change the wavelength of light to be irradiated. The shape measuring light source 2 may irradiate visible light and the contour measuring light source 14 may irradiate infrared light, as long as the wavelengths of the light sources 2 and 14 are different.

24はカメラであり、形状測定用撮像器26と輪郭測定用撮像器28とが一体的に組み込まれており、形状測定用撮像器26は結像レンズ30により被測定物1の像を波長分離プリズム32を介して、CCD素子34上に結像する。輪郭測定用撮像器28は結像レンズ30により被測定物1の像を波長分離プリズム32を介して、CCD素子36上に結像する。   Reference numeral 24 denotes a camera, in which a shape measuring image pickup device 26 and a contour measuring image pickup device 28 are integrated, and the shape measuring image pickup device 26 wavelength-separates the image of the object 1 to be measured by the imaging lens 30. An image is formed on the CCD element 34 via the prism 32. The contour measuring imager 28 forms an image of the DUT 1 on the CCD element 36 via the wavelength separation prism 32 by the imaging lens 30.

波長分離プリズム32は、異なる波長の光を分離するもので、形状測定用光源2からの波長の光をCCD素子34に、輪郭測定用光源14からの波長の光をCCD素子36にそれぞれ分離する。本実施形態では、形状測定用撮像器26と輪郭測定用撮像器28とは、被測定物1と波長分離プリズム32の間の光軸33が共通となるように配置されている。   The wavelength separation prism 32 separates light having different wavelengths, and separates light having a wavelength from the shape measuring light source 2 into a CCD element 34 and separating light having a wavelength from the contour measuring light source 14 into a CCD element 36. . In the present embodiment, the shape measurement image pickup device 26 and the contour measurement image pickup device 28 are arranged such that the optical axis 33 between the DUT 1 and the wavelength separation prism 32 is common.

形状測定用光源2、輪郭測定用光源14、カメラ24は、それぞれ同期回路38に接続されており、同期回路38から同時に出力される駆動信号により、形状測定用光源2、輪郭測定用光源14、カメラ24が同時に駆動されるように構成されている。同期回路38は、制御回路40に接続されており、制御回路40は同期回路38に駆動信号を出力し、カメラ24から入力される画像データに基づいて、被測定物1の3次元形状、輪郭形状を算出する。   The shape measurement light source 2, the contour measurement light source 14, and the camera 24 are respectively connected to the synchronization circuit 38, and the shape measurement light source 2, the contour measurement light source 14, The camera 24 is configured to be driven simultaneously. The synchronization circuit 38 is connected to the control circuit 40, and the control circuit 40 outputs a drive signal to the synchronization circuit 38, and the three-dimensional shape and contour of the DUT 1 based on the image data input from the camera 24. Calculate the shape.

次に、3次元形状測定方法について、制御回路40において行われる形状算出処理と共に、図4に示すフローチャートによって説明する。
まず、被測定物1の3次元形状の測定に先だって、形状測定用撮像器26と輪郭測定用撮像器28との校正を図示しない基準ターゲットに基づいて行うか否かを判断する(ステップ100)。既に校正が終了している場合には、校正を行うことなく、次の処理に進む。校正が終了していない場合には、校正の処理を行う(ステップ110)。
Next, the three-dimensional shape measuring method will be described with reference to the flowchart shown in FIG.
First, prior to the measurement of the three-dimensional shape of the DUT 1, it is determined whether or not the calibration of the shape measuring image sensor 26 and the contour measuring image sensor 28 is performed based on a reference target (not shown) (step 100). . If calibration has already been completed, the process proceeds to the next process without performing calibration. If the calibration is not completed, a calibration process is performed (step 110).

校正処理では、輪郭の3次元形状が既知の基準ターゲットを参照平面P上に置き、形状測定用光源2を駆動して、格子縞板12の格子像を基準ターゲット上に投影する。そして、形状測定用撮像器26により変形した格子像を撮像して、制御回路40により、基準ターゲットの3次元形状を測定する。   In the calibration process, a standard target whose contour three-dimensional shape is known is placed on the reference plane P, and the shape measuring light source 2 is driven to project a lattice image of the checkered strip 12 onto the reference target. Then, the deformed lattice image is picked up by the shape measuring image pickup device 26 and the three-dimensional shape of the reference target is measured by the control circuit 40.

また、輪郭測定用光源14を駆動して、基準ターゲットを照射し、輪郭測定用撮像器28により基準ターゲットを撮像して、制御回路40により、基準ターゲットの輪郭の2次元形状を測定する。尚、校正のときには、形状測定用光源2と輪郭測定用光源14とを別々に駆動して、形状測定用撮像器26と輪郭測定用撮像器28とにより別々に撮像してもよい。あるいは、形状測定用光源2と輪郭測定用光源14とを同時に駆動して、形状測定用撮像器26と輪郭測定用撮像器28とにより同時に撮像してもよい。   Further, the contour measuring light source 14 is driven to irradiate the reference target, the reference target is imaged by the contour measuring imager 28, and the control circuit 40 measures the two-dimensional shape of the contour of the reference target. At the time of calibration, the shape measuring light source 2 and the contour measuring light source 14 may be driven separately, and the shape measuring image pickup device 26 and the contour measuring image pickup device 28 may be separately imaged. Alternatively, the shape measurement light source 2 and the contour measurement light source 14 may be simultaneously driven, and the shape measurement image pickup device 26 and the contour measurement image pickup device 28 may simultaneously capture images.

基準ターゲットの既知の形状寸法及び形状測定用撮像器26から得られる変形格子像と輪郭測定用撮像器28から得られる2次元輪郭像から、形状測定用撮像器26のCCD素子34上のピクセル位置と、輪郭測定用撮像器28のCCD素子36上のピクセル位置との対応関係を校正する。これにより、参照平面P、形状測定用撮像器26、輪郭測定用撮像器28、形状測定用光源2の位置関係が固定された関係にあれば、次回からは、校正の処理を行う必要はない。   The pixel position on the CCD element 34 of the shape measuring image sensor 26 is obtained from the known shape dimensions of the reference target and the deformed grid image obtained from the shape measuring image sensor 26 and the two-dimensional contour image obtained from the contour measuring image sensor 28. And the correspondence between the pixel position on the CCD element 36 of the image sensor 28 for contour measurement is calibrated. As a result, if the positional relationship among the reference plane P, the shape measurement image pickup device 26, the contour measurement image pickup device 28, and the shape measurement light source 2 is fixed, there is no need to perform calibration processing from the next time. .

校正が終了した後、基準ターゲットに代えて、被測定物1を参照平面P上に置き、同期回路38に駆動信号を出力し、同期回路38を介して、形状測定用光源2、輪郭測定用光源14、カメラ24を同時に駆動させる(ステップ120)。これにより、形状測定用光源2では、白色光源4が発光し、形状測定用透過フィルタ10が所定の波長の光を透過、例えば、赤色の光のみを透過させる。そして、この波長の光が格子縞板12を通過して、投影レンズ8により被測定物1上に格子像を投影する。   After the calibration is completed, instead of the standard target, the DUT 1 is placed on the reference plane P, a drive signal is output to the synchronization circuit 38, and the shape measurement light source 2 and contour measurement are output via the synchronization circuit 38. The light source 14 and the camera 24 are driven simultaneously (step 120). Thus, in the shape measurement light source 2, the white light source 4 emits light, and the shape measurement transmission filter 10 transmits light of a predetermined wavelength, for example, only red light. Then, the light of this wavelength passes through the grating strip 12 and a grating image is projected onto the DUT 1 by the projection lens 8.

また、輪郭測定用光源14では、白色光源16が発光し、輪郭測定用透過フィルタ22が所定の波長の光を透過、例えば、緑色の光のみを透過させる。そして、この波長の光が投影レンズ20により被測定物1上に照射される。   In the contour measurement light source 14, the white light source 16 emits light, and the contour measurement transmission filter 22 transmits light of a predetermined wavelength, for example, transmits only green light. Then, the light to be measured is irradiated onto the DUT 1 by the projection lens 20.

一方、カメラ24では、形状測定用光源2による格子像が結像レンズ30、波長分離プリズム32を介して形状測定用撮像器26のCCD素子34上に結像され、格子像に応じた画像データが制御回路40に入力される。また、輪郭測定用光源14からの光による被測定物の輪郭像が結像レンズ30、波長分離プリズム32を介して輪郭測定用撮像器28のCCD素子36上に結像され、輪郭像に応じた画像データが制御回路40に入力される。   On the other hand, in the camera 24, a lattice image from the shape measurement light source 2 is imaged on the CCD element 34 of the shape measurement image pickup device 26 through the imaging lens 30 and the wavelength separation prism 32, and image data corresponding to the lattice image is obtained. Is input to the control circuit 40. Further, a contour image of the object to be measured by the light from the contour measurement light source 14 is imaged on the CCD element 36 of the contour measurement image sensor 28 via the imaging lens 30 and the wavelength separation prism 32, and according to the contour image. The image data is input to the control circuit 40.

制御回路40では、格子像に応じた画像データ(図5参照)から、被測定物1の3次元形状を算出する(ステップ130)。また、制御回路40では、輪郭像に応じた画像データ(図6参照)から被測定物1の輪郭形状を算出する(ステップ140)。この輪郭形状は、2次元データであり、輪郭形状を3次元データとして得るために、ステップ110の処理による校正結果を用いて、ステップ130の処理により算出した3次元形状に基づいて、2次元の輪郭形状の測定値を3次元の輪郭形状の測定値として算出する(ステップ150)。   The control circuit 40 calculates the three-dimensional shape of the DUT 1 from the image data (see FIG. 5) corresponding to the lattice image (step 130). Further, the control circuit 40 calculates the contour shape of the DUT 1 from the image data (see FIG. 6) corresponding to the contour image (step 140). This contour shape is two-dimensional data. In order to obtain the contour shape as three-dimensional data, a calibration result obtained in step 110 is used to obtain a two-dimensional data based on the three-dimensional shape calculated in step 130. The contour shape measurement value is calculated as a three-dimensional contour shape measurement value (step 150).

即ち、格子像より得る3次元曲面を、2次元の輪郭線で切り取り、その曲面と輪郭線の交点を3次元輪郭線として認識する。カメラ24からの2次元の輪郭線上の1点はカメラ24の基準点からその画素への線分となり、輪郭線はカメラから、その画素への線分の連続を持った面となり、この面と測定された3次元曲面の交点が、3次元の輪郭線となる。   That is, a three-dimensional curved surface obtained from a lattice image is cut out with a two-dimensional contour line, and an intersection of the curved surface and the contour line is recognized as a three-dimensional contour line. One point on the two-dimensional contour line from the camera 24 is a line segment from the reference point of the camera 24 to the pixel, and the contour line is a surface having a continuous line segment from the camera to the pixel. The intersection of the measured three-dimensional curved surface becomes a three-dimensional contour line.

このように、形状測定用光源2と輪郭測定用光源14とを同時に発光させ、形状測定用撮像器26と輪郭測定用撮像器28とにより同時に撮像する。また、形状測定用撮像器26は形状測定用光源2からの波長の格子像を撮像し、輪郭測定用撮像器28は輪郭測定用光源14からの波長の照射像を撮像する。従って、同時に照射、撮像することができ、短時間で測定できると共に、手ぶれ等による測定誤差を招くことなく、精度よく測定できる。 In this way, the shape measurement light source 2 and the contour measurement light source 14 emit light simultaneously, and the shape measurement image pickup device 26 and the contour measurement image pickup device 28 simultaneously capture images. Further, the shape measurement image pickup device 26 picks up a wavelength lattice image from the shape measurement light source 2, and the contour measurement image pickup device 28 picks up a wavelength irradiation image from the contour measurement light source 14. Therefore, irradiation and imaging can be performed simultaneously, measurement can be performed in a short time, and measurement can be performed accurately without causing a measurement error due to camera shake or the like.

以上本発明はこの様な実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得る。   The present invention is not limited to such embodiments as described above, and can be implemented in various modes without departing from the gist of the present invention.

本発明の3次元形状測定方法を用いた装置の概略構成図である。It is a schematic block diagram of the apparatus using the three-dimensional shape measuring method of this invention. 本実施形態の一例としての被測定物の斜視図である。It is a perspective view of the to-be-measured object as an example of this embodiment. 本実施形態の3次元形状測定方法を用いた装置の概略回路図である。It is a schematic circuit diagram of the apparatus using the three-dimensional shape measuring method of this embodiment. 本実施形態の制御回路で行われる形状算出処理の一例を示すフローチャートである。It is a flowchart which shows an example of the shape calculation process performed with the control circuit of this embodiment. 本実施形態の被測定物の変形格子像を示す説明図である。It is explanatory drawing which shows the deformation | transformation lattice image of the to-be-measured object of this embodiment. 本実施形態の被測定物の輪郭像を示す説明図である。It is explanatory drawing which shows the outline image of the to-be-measured object of this embodiment.

符号の説明Explanation of symbols

1…被測定物 2…形状測定用光源
4,16…白色光源 6,18…反射鏡
8,20…投影レンズ 10…形状測定用透過フィルタ
12…格子縞板 14…輪郭測定用光源
22…輪郭測定用透過フィルタ
24…カメラ 26…形状測定用撮像器
28…輪郭測定用撮像器
30…結像レンズ 32…波長分離プリズム
33…光軸 34,36…CCD素子
38…同期回路 40…制御回路
DESCRIPTION OF SYMBOLS 1 ... Object to be measured 2 ... Shape measuring light source 4, 16 ... White light source 6, 18 ... Reflector 8, 20 ... Projection lens 10 ... Shape measuring transmission filter 12 ... Plaid plate 14 ... Contour measuring light source 22 ... Contour measurement Transmission filter 24 ... Camera 26 ... Image sensor 28 for shape measurement ... Image sensor 30 for contour measurement ... Imaging lens 32 ... Wavelength separation prism 33 ... Optical axis 34, 36 ... CCD element 38 ... Synchronous circuit 40 ... Control circuit

Claims (3)

3次元形状の被測定物に形状測定用光源から格子像を投影し、形状測定用撮像器により撮像した格子像から前記被測定物の3次元形状の測定値を得る3次元形状測定方法において、
前記形状測定用光源から前記格子像を参照平面上に置かれ輪郭の3次元形状が既知の基準ターゲットに投影し、また、前記形状測定用光源と異なる波長の輪郭測定用光源により前記基準ターゲットを照射して、前記形状測定用光源による前記格子像を撮像する前記形状測定用撮像器と前記輪郭測定用光源による照射像を撮像する輪郭測定用撮像器とにより前記基準ターゲットを撮像し、前記基準ターゲットの形状と、前記形状測定用撮像器により撮像した前記格子像から得られる前記基準ターゲットの3次元形状と、前記輪郭測定用撮像器により得られる前記基準ターゲットの2次元輪郭とに基づいて、前記形状測定用撮像器と前記輪郭測定用撮像器との位置関係を校正し、
次に、前記参照平面、前記形状測定用撮像器、前記輪郭測定用撮像器、前記形状測定用光源の位置関係が同じ状態で、前記形状測定用光源からの投影と同時に、前記輪郭測定用光源により前記基準ターゲットに代えて前記参照平面上に置かれた前記被測定物を照射して、前記形状測定用撮像器と前記輪郭測定用撮像器とにより前記被測定物を同時に撮像し、前記形状測定用撮像器により撮像した前記格子像から得られる前記被測定物の3次元形状と、前記輪郭測定用撮像器により得られる前記被測定物の2次元輪郭とに基づいて、前記被測定物の3次元輪郭の測定値を得ることを特徴とする3次元形状測定方法。
In a three-dimensional shape measurement method for projecting a lattice image from a shape measurement light source onto a three-dimensional shape measurement object and obtaining a measurement value of the three-dimensional shape of the measurement object from a lattice image captured by a shape measurement image pickup device,
The lattice image is placed on a reference plane from the shape measurement light source and projected onto a reference target whose contour three-dimensional shape is known, and the reference target is projected by a contour measurement light source having a wavelength different from that of the shape measurement light source. The reference target is imaged by the shape measurement imager that irradiates and captures the lattice image by the shape measurement light source and the contour measurement imager that captures an irradiation image by the contour measurement light source, and the reference Based on the shape of the target, the three-dimensional shape of the reference target obtained from the lattice image imaged by the shape-measuring imager, and the two-dimensional contour of the reference target obtained by the contour-measuring imager, Calibrate the positional relationship between the shape measurement imager and the contour measurement imager;
Next, with the same positional relationship among the reference plane, the shape measuring image pickup device, the contour measuring image pickup device, and the shape measuring light source , the contour measuring light source is projected simultaneously with the projection from the shape measuring light source. By irradiating the object to be measured placed on the reference plane instead of the standard target, the shape measuring image sensor and the contour measuring image sensor simultaneously image the object to be measured, and the shape Based on the three-dimensional shape of the measurement object obtained from the lattice image captured by the measurement imager and the two-dimensional contour of the measurement object obtained by the contour measurement imager, the measurement object A method for measuring a three-dimensional shape, comprising obtaining a measurement value of a three-dimensional contour.
前記形状測定用撮像器と前記輪郭測定用撮像器とは、共通の光軸を有し、波長分離プリズムによりそれぞれの波長に分離することを特徴とする請求項1に記載の3次元形状測定方法。 The three-dimensional shape measurement method according to claim 1, wherein the shape measurement image pickup device and the contour measurement image pickup device have a common optical axis and are separated into respective wavelengths by a wavelength separation prism. . 前記形状測定用光源と前記輪郭測定用光源とは、それぞれ白色光源から異なる波長の透過フィルタを通して照射することを特徴とする請求項1又は請求項2に記載の3次元形状測定方法。 3. The three-dimensional shape measurement method according to claim 1, wherein the shape measurement light source and the contour measurement light source are each irradiated from a white light source through transmission filters having different wavelengths. 4.
JP2005128271A 2005-04-26 2005-04-26 3D shape measurement method Active JP5122729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005128271A JP5122729B2 (en) 2005-04-26 2005-04-26 3D shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005128271A JP5122729B2 (en) 2005-04-26 2005-04-26 3D shape measurement method

Publications (2)

Publication Number Publication Date
JP2006308323A JP2006308323A (en) 2006-11-09
JP5122729B2 true JP5122729B2 (en) 2013-01-16

Family

ID=37475393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005128271A Active JP5122729B2 (en) 2005-04-26 2005-04-26 3D shape measurement method

Country Status (1)

Country Link
JP (1) JP5122729B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10018722B2 (en) 2015-03-09 2018-07-10 Canon Kabushiki Kaisha Measurement apparatus
US10060733B2 (en) 2015-09-03 2018-08-28 Canon Kabushiki Kaisha Measuring apparatus
JP2018163172A (en) * 2018-07-13 2018-10-18 キヤノン株式会社 Measurement device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6179366B2 (en) * 2013-11-18 2017-08-16 セイコーエプソン株式会社 Standard gauge, three-dimensional measuring apparatus, and calibration method for three-dimensional measuring apparatus
JP2015099048A (en) * 2013-11-18 2015-05-28 セイコーエプソン株式会社 Standard gauge, three-dimensional measuring device, and three-dimensional measuring device calibration method
KR101846949B1 (en) 2016-05-20 2018-04-09 주식회사 미르기술 Intergrated Inspection Apparatus Using Multi Optical System
JP7236680B2 (en) * 2018-02-09 2023-03-10 パナソニックIpマネジメント株式会社 projection system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3048107B2 (en) * 1994-03-17 2000-06-05 新日本製鐵株式会社 Method and apparatus for measuring object dimensions
JP2000193432A (en) * 1998-12-25 2000-07-14 Tani Denki Kogyo Kk Measuring method with image recognition and device
JP2000337823A (en) * 1999-05-27 2000-12-08 Mitsubishi Heavy Ind Ltd Surface inspection device and surface inspection method
JP2001133231A (en) * 1999-11-02 2001-05-18 Olympus Optical Co Ltd Three-dimensional image acquisition and generation apparatus
JP2001349713A (en) * 2000-06-06 2001-12-21 Asahi Hightech Kk Three-dimensional shape measuring device
JP3818028B2 (en) * 2000-07-10 2006-09-06 富士ゼロックス株式会社 3D image capturing apparatus and 3D image capturing method
JP2002213931A (en) * 2001-01-17 2002-07-31 Fuji Xerox Co Ltd Instrument and method for measuring three-dimensional shape

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10018722B2 (en) 2015-03-09 2018-07-10 Canon Kabushiki Kaisha Measurement apparatus
US10060733B2 (en) 2015-09-03 2018-08-28 Canon Kabushiki Kaisha Measuring apparatus
JP2018163172A (en) * 2018-07-13 2018-10-18 キヤノン株式会社 Measurement device

Also Published As

Publication number Publication date
JP2006308323A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
KR102073205B1 (en) 3D scanning method and scanner including multiple different wavelength lasers
TWI448681B (en) A method and an apparatus for simultaneous 2d and 3d optical inspection and acquisition of optical inspection data of an object
JP5122729B2 (en) 3D shape measurement method
US8243286B2 (en) Device and method for the contactless detection of a three-dimensional contour
US10782126B2 (en) Three-dimensional scanning method containing multiple lasers with different wavelengths and scanner
EP2175232A1 (en) Three-dimensional shape measuring device, three-dimensional shape measuring method, three-dimensional shape measuring program, and recording medium
KR101639227B1 (en) Three dimensional shape measurment apparatus
JP6296477B2 (en) Method and apparatus for determining the three-dimensional coordinates of an object
JP2002318109A (en) Three-dimensional shape measuring method
KR101659302B1 (en) Three-dimensional shape measurement apparatus
JP2002213931A (en) Instrument and method for measuring three-dimensional shape
TW201250201A (en) Tire surface shape measuring device and tire surface shape measuring method
JP2016217833A (en) Image processing system and image processing method
KR101766468B1 (en) Method for 3D shape measuring using of Triple Frequency Pattern
JP2002048523A (en) Three-dimensional measuring instrument
JP2005351871A (en) Object information input system and object information generating system
JP2005258622A (en) Three-dimensional information acquiring system and three-dimensional information acquiring method
KR100895856B1 (en) Apparatus for measurement of three-dimensional shape using polygon mirror and dual mirror, and method for measurement of three-dimensional shape using the same
KR100558325B1 (en) The method and device for 3D inspection by moire and stereo vision
JP2008170281A (en) Shape measuring device and shape measuring method
KR101750883B1 (en) Method for 3D Shape Measuring OF Vision Inspection System
WO2017134907A1 (en) Imaging system, imaging device and imaging method
JP2003004425A (en) Optical shape-measuring apparatus
JP2017049179A5 (en) Measuring device and acquisition method
JP3848586B2 (en) Surface inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5122729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250