JP5117298B2 - Thermoplastic resin composition for injection molding and injection molded body - Google Patents

Thermoplastic resin composition for injection molding and injection molded body Download PDF

Info

Publication number
JP5117298B2
JP5117298B2 JP2008168189A JP2008168189A JP5117298B2 JP 5117298 B2 JP5117298 B2 JP 5117298B2 JP 2008168189 A JP2008168189 A JP 2008168189A JP 2008168189 A JP2008168189 A JP 2008168189A JP 5117298 B2 JP5117298 B2 JP 5117298B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
injection molding
resin composition
injection
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008168189A
Other languages
Japanese (ja)
Other versions
JP2010006959A (en
Inventor
拓嗣 葛谷
健太郎 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2008168189A priority Critical patent/JP5117298B2/en
Publication of JP2010006959A publication Critical patent/JP2010006959A/en
Application granted granted Critical
Publication of JP5117298B2 publication Critical patent/JP5117298B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、射出成形用熱可塑性樹脂組成物とそれを用いて成形された射出成形体に関する。   The present invention relates to a thermoplastic resin composition for injection molding and an injection-molded article molded using the same.

近年、電子電気機器においては、発熱源からの放熱(高熱伝導率)の必要性に加え、機器の小型化、薄型化要求が高まっていることから、電子電気機器用の放熱用部材には放熱(高熱伝導率)と共に、薄肉化の要求が強くなっている。また、電子電気機器用の放熱用部材には、基本的な物性として高い絶縁性が要求され、さらに、集積回路の高性能化により発熱量が増大すると共に、機器の小型化により熱が機器内に留まりやすく、温度上昇が大きくなってきているため、耐熱性も要求されている。それに加えて、複雑形状の求めに対応すると共に成形サイクルの短縮のため、射出成形可能な材料が求められている。   In recent years, in electronic and electrical equipment, in addition to the necessity of heat dissipation from a heat source (high thermal conductivity), there has been an increasing demand for downsizing and thinning of equipment, so heat dissipation members for electronic and electrical equipment can dissipate heat. Along with (high thermal conductivity), there is an increasing demand for thinning. In addition, heat dissipation members for electronic and electrical equipment are required to have high insulation as a basic physical property. Furthermore, the amount of heat generated increases due to the higher performance of the integrated circuit, and heat is also generated in the equipment due to the downsizing of the equipment. Therefore, heat resistance is also required. In addition, there is a need for materials that can be injection molded in order to meet the demand for complex shapes and shorten the molding cycle.

従来、電子電気機器用の放熱用部材に用いられている熱硬化性樹脂は、硬化反応が必要なため、成形サイクルが長い問題がある。一方、耐熱性の高い従来の熱可塑性樹脂組成物は、熱伝導率の向上やフィラー高含有時の物性保持を目的としており、射出時の流動性に乏しいため、薄肉成形品を射出成形しようとした場合、金型内での流動長が充分に確保できず、所望の薄肉成形品が得られない問題がある。なお、薄肉成形品は、全体が薄肉となっている場合の他に、部分的に薄肉となっている場合も含まれる。また、薄肉部分の厚みは、薄肉部分の大きさ(金型内での樹脂の流動長)にもよるが、通常は0.1〜1mm程度である。   Conventionally, thermosetting resins used for heat dissipation members for electronic and electrical equipment have a problem that the molding cycle is long because a curing reaction is required. On the other hand, conventional thermoplastic resin compositions with high heat resistance are intended to improve thermal conductivity and maintain physical properties when containing a high amount of filler, and have poor fluidity at the time of injection. In such a case, there is a problem that the flow length in the mold cannot be sufficiently secured and a desired thin molded product cannot be obtained. The thin molded product includes not only the case where the whole is thin, but also the case where it is partially thin. Moreover, although the thickness of a thin part is based also on the magnitude | size (flow length of resin in a metal mold | die) of a thin part, it is about 0.1-1 mm normally.

特開2006−328155号公報JP 2006-328155 A 特開2007−156633号公報JP 2007-156633 A

本発明は前記の点に鑑みなされたものであって、熱伝導率、絶縁性及び耐熱性が高く、且つ射出成形時の流動性に優れ、薄肉の射出成形体を得ることができる射出成形用熱可塑性樹脂組成物及び射出成形体の提供を目的とする。   The present invention has been made in view of the above points, and has high thermal conductivity, insulation and heat resistance, excellent fluidity at the time of injection molding, and can provide a thin injection molded body. An object is to provide a thermoplastic resin composition and an injection-molded article.

請求項1の発明は、ポリメチルペンテンとポリフェニレンエーテルよりなる熱可塑性樹脂成分と、酸化マグネシウムとを含み、前記ポリメチルペンテンとポリフェニレンエーテルの重量比率が95:5〜50:50、前記酸化マグネシウムの量が、前記熱可塑性樹脂成分100重量部に対して150〜450重量部であることを特徴とする射出成形用熱可塑性樹脂組成物に係る。 Invention of Claim 1 contains the thermoplastic resin component which consists of polymethylpentene and polyphenylene ether, and magnesium oxide, The weight ratio of the said polymethylpentene and polyphenylene ether is 95: 5-50: 50 , The said magnesium oxide of It relates to a thermoplastic resin composition for injection molding, characterized in that the amount is 150 to 450 parts by weight with respect to 100 parts by weight of the thermoplastic resin component .

請求項2の発明は、請求項1において、酸変性ポリオレフィンを含むことを特徴とする。   The invention of claim 2 is characterized in that in claim 1, it comprises an acid-modified polyolefin.

請求項3の発明は、請求項2において、前記酸変性ポリオレフィンが、無水マレイン酸で変性されたポリプロピレンであることを特徴とする。   The invention of claim 3 is characterized in that, in claim 2, the acid-modified polyolefin is a polypropylene modified with maleic anhydride.

請求項4の発明は、請求項1から3の何れか一項において、ガラス繊維を含むことを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the glass fiber is included.

請求項5の発明は、請求項1から4の何れか一項に記載の射出成形用熱可塑性樹脂組成物よりなる射出成形体に係る。   The invention of claim 5 relates to an injection-molded body comprising the thermoplastic resin composition for injection molding according to any one of claims 1 to 4.

請求項1の発明によれば、射出成形用熱可塑性樹脂組成物が、ポリメチルペンテンとポリフェニレンエーテルよりなる熱可塑性樹脂成分と酸化マグネシウムを含み、前記ポリメチルペンテンとポリフェニレンエーテルの重量比率が95:5〜50:50、前記酸化マグネシウムの量が、前記熱可塑性樹脂成分100重量部に対して150〜450重量部であるため、熱伝導率、絶縁性及び耐熱性が高く、射出成形時の流動性に優れ、薄肉の射出成形体を得ることができる。 According to invention of Claim 1, the thermoplastic resin composition for injection molding contains the thermoplastic resin component which consists of polymethylpentene and polyphenylene ether, and magnesium oxide, The weight ratio of the said polymethylpentene and polyphenylene ether is 95: 5 to 50:50, and the amount of magnesium oxide is 150 to 450 parts by weight with respect to 100 parts by weight of the thermoplastic resin component. Therefore , heat conductivity, insulation and heat resistance are high, and flow during injection molding And a thin injection molded body can be obtained.

請求項2の発明によれば、酸変性ポリオレフィンが相溶化剤として作用し、射出成形用熱可塑性樹脂組成物における耐熱性及び剛性の低下を生じることなく衝撃性を高めることができる。   According to the invention of claim 2, the acid-modified polyolefin acts as a compatibilizing agent, and the impact resistance can be enhanced without causing a decrease in heat resistance and rigidity in the thermoplastic resin composition for injection molding.

請求項3の発明によれば、酸変性ポリオレフィンが、無水マレイン酸で変性されたポリプロピレンであることにより、熱伝導率及び耐衝撃性を高めることができる。   According to the invention of claim 3, since the acid-modified polyolefin is a polypropylene modified with maleic anhydride, the thermal conductivity and impact resistance can be enhanced.

請求項4の発明によれば、射出成形用熱可塑性樹脂組成物にガラス繊維を含むため、耐熱性を一層高めることができる。   According to invention of Claim 4, since the glass fiber is contained in the thermoplastic resin composition for injection molding, heat resistance can be improved further.

請求項5の発明によれば、請求項1から4の何れか一項に記載の射出成形用熱可塑性樹脂組成物からなる射出成形体であるため、熱伝導率、絶縁性及び耐熱性が高く、薄肉のものとすることができる。   According to the invention of claim 5, since it is an injection-molded body comprising the thermoplastic resin composition for injection molding according to any one of claims 1 to 4, the thermal conductivity, insulation and heat resistance are high. Can be thin.

本発明の射出成形用熱可塑性樹脂組成物は、熱可塑性樹脂成分と酸化マグネシウムを含むものである。前記熱可塑性樹脂成分は、ポリメチルペンテンとポリフェニレンエーテルよりなる。   The thermoplastic resin composition for injection molding of the present invention contains a thermoplastic resin component and magnesium oxide. The thermoplastic resin component is composed of polymethylpentene and polyphenylene ether.

本発明では、熱可塑性樹脂成分にポリメチルペンテン(PMP)を含むことにより、射出成形時における流動性を高めて薄肉化を実現できると共に、射出成形体における絶縁性を向上させることができる。   In the present invention, by including polymethylpentene (PMP) in the thermoplastic resin component, the fluidity at the time of injection molding can be increased to realize thinning, and the insulation in the injection molded body can be improved.

熱可塑性樹脂成分がポリメチルペンテン(PMP)のみでは、耐熱性の不足を生じるが、ポリフェニレンエーテル(PPE)を熱可塑性樹脂成分に含ませたことにより耐熱性を向上させることができる。ポリフェニレンエーテル(PPE)の例として、ポリ(2,3−ジメチル−6−エチルフェニレン−1,4−エ−テル)、ポリ(2−メチル−6−クロロメチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−ヒドロキシジエチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−n−ブチル−1,4−フェニレン)エーテル、2,6−ジメチルフェニレンエーテルなど、公知のものを挙げることができる。   When the thermoplastic resin component is only polymethylpentene (PMP), heat resistance is insufficient. However, heat resistance can be improved by including polyphenylene ether (PPE) in the thermoplastic resin component. Examples of polyphenylene ether (PPE) include poly (2,3-dimethyl-6-ethylphenylene-1,4-ether), poly (2-methyl-6-chloromethyl-1,4-phenylene) ether, Poly (2-methyl-6-hydroxydiethyl-1,4-phenylene) ether, poly (2-methyl-6-n-butyl-1,4-phenylene) ether, 2,6-dimethylphenylene ether, etc. Things can be mentioned.

前記ポリメチルペンテンとポリフェニレンエーテルの重量比率は95:5〜50:50が好ましい。ポリメチルペンテンの重量比率が前記範囲よりも大きい場合には、熱可塑性樹脂成分中におけるポリフェニレンエーテルの含有比率が小さくなり過ぎて、ポリフェニレンエーテルによる耐熱性向上効果が得難くなる。一方、ポリメチルペンテンの重量比率が前記範囲よりも小さい場合には、熱可塑性樹脂成分中におけるポリメチルペンテンの含有比率が小さくなりすぎてポリメチルペンテンによる流動性向上効果が得難くなって薄肉の射出成形体を得るのが難しくなる。   The weight ratio of the polymethylpentene and polyphenylene ether is preferably 95: 5 to 50:50. When the weight ratio of polymethylpentene is larger than the above range, the content ratio of polyphenylene ether in the thermoplastic resin component becomes too small, and it becomes difficult to obtain the effect of improving heat resistance by polyphenylene ether. On the other hand, when the weight ratio of the polymethylpentene is smaller than the above range, the content ratio of the polymethylpentene in the thermoplastic resin component becomes too small, and it becomes difficult to obtain the fluidity improvement effect by the polymethylpentene. It becomes difficult to obtain an injection-molded body.

酸化マグネシウムは、無機フィラーとして用いられる。酸化マグネシウムはシリカより熱伝導率が高いため、射出成形体の熱伝導性を高めて放熱効果を向上させることができる。また、酸化マグネシウムは吸湿性が高いため、酸化マグネシウムに対して耐水性処理を施した耐水性酸化マグネシウムがより好ましい。耐水性処理としては、有機シラン化合物、リン酸エステル化合物による処理がある。前記酸化マグネシウム(耐水性の場合を含む)の平均粒径は、1〜50μmが好ましい。酸化マグネシウムの量は、前記熱可塑性樹脂成分100重量部に対して150〜450重量部が好ましい。   Magnesium oxide is used as an inorganic filler. Since magnesium oxide has a higher thermal conductivity than silica, the thermal conductivity of the injection molded body can be increased and the heat dissipation effect can be improved. Further, since magnesium oxide has high hygroscopicity, water-resistant magnesium oxide obtained by subjecting magnesium oxide to water resistance treatment is more preferable. Water resistance treatment includes treatment with an organosilane compound and a phosphate ester compound. The average particle diameter of the magnesium oxide (including the case of water resistance) is preferably 1 to 50 μm. The amount of magnesium oxide is preferably 150 to 450 parts by weight with respect to 100 parts by weight of the thermoplastic resin component.

さらに前記射出成形用熱可塑性樹脂組成物には、酸変性ポリオレフィンを含むのが好ましい。酸変性ポリオレフィンは、前記ポリメチルペンテンとポリフェニレンエーテルの相溶化剤として作用し、単純にポリメチルペンテンとポリフェニレンエーテルが混合された場合における耐衝撃性の低下を防止し、耐衝撃性を向上させる。本発明において使用可能な酸変性ポリオレフィンとしては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブテン(PB)、ポリペンテン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、スチレン−エチレン・ブテン−スチレン共重合体(SEBS)等を、不飽和カルボン酸またはその無水物の酸で変性したものを挙げることができる。   Furthermore, it is preferable that the thermoplastic resin composition for injection molding contains an acid-modified polyolefin. The acid-modified polyolefin acts as a compatibilizing agent for the polymethylpentene and polyphenylene ether, and prevents a decrease in impact resistance when the polymethylpentene and polyphenylene ether are simply mixed, thereby improving impact resistance. Examples of the acid-modified polyolefin that can be used in the present invention include polyethylene (PE), polypropylene (PP), polybutene (PB), polypentene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, styrene-ethylene butene- A styrene copolymer (SEBS) etc. modified with an unsaturated carboxylic acid or anhydride thereof can be used.

前記酸変性ポリオレフィンの中でも、無水マレイン酸で変性された酸変性ポリオレフィンが好ましい。無水マレイン酸で変性された酸変性ポリオレフィンとしては、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン−プロピレン共重合体等を挙げることができる。特に好ましくは、無水マレイン酸で変性されたポリプロピレン(無水マレイン酸変性ポリプロピレン)である。無水マレイン酸で変性されたポリプロピレン(無水マレイン酸変性ポリプロピレン)は、他の酸変性ポリオレフィンと比べて耐熱性が低下しない点から特に好ましい。前記酸変性ポリオレフィンの量は、前記熱可塑性樹脂成分100重量部に対して1〜20重量部が好ましい。前記範囲よりも少ないと耐衝撃性が改良されず、多いと耐熱性の低下を引き起こす。   Among the acid-modified polyolefins, acid-modified polyolefins modified with maleic anhydride are preferable. Examples of the acid-modified polyolefin modified with maleic anhydride include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene-propylene copolymer, and the like. Particularly preferred is polypropylene modified with maleic anhydride (maleic anhydride-modified polypropylene). Polypropylene modified with maleic anhydride (maleic anhydride-modified polypropylene) is particularly preferable from the viewpoint that heat resistance does not decrease as compared with other acid-modified polyolefins. The amount of the acid-modified polyolefin is preferably 1 to 20 parts by weight with respect to 100 parts by weight of the thermoplastic resin component. When the amount is less than the above range, the impact resistance is not improved.

また、前記射出成形用熱可塑性樹脂組成物には、補強剤としてガラス繊維を含むのが好ましい。本発明で使用されるガラス繊維としては、繊維長0.5〜5mmが好ましい。また、ガラス繊維は、表面がカップリング剤、例えばシラン系カップリング剤やチタン系カップリング剤で表面処理されたものが好ましい。さらに、ガラス繊維は、ウレタン系やアクリル系の収束剤で複数本、例えば、100〜5000本の範囲で束ねたものであってもよい。ガラス繊維の量は、前記熱可塑性樹脂成分100重量部に対して1〜50重量部が好ましい。前記範囲よりも少ないと充分な補強効果が得られず、多いと射出成形時の原料の流動性が妨げられる。   Moreover, it is preferable that the thermoplastic resin composition for injection molding contains glass fiber as a reinforcing agent. As glass fiber used by this invention, fiber length 0.5-5mm is preferable. The glass fiber is preferably one whose surface is surface-treated with a coupling agent such as a silane coupling agent or a titanium coupling agent. Further, the glass fiber may be bundled with a plurality of, for example, 100 to 5000, urethane-based or acrylic-based sizing agents. The amount of glass fiber is preferably 1 to 50 parts by weight with respect to 100 parts by weight of the thermoplastic resin component. When the amount is less than the above range, a sufficient reinforcing effect cannot be obtained, and when it is more than the above range, the fluidity of the raw material during injection molding is hindered.

前記射出成形用熱可塑性樹脂組成物の製造は、押出機で前記熱可塑性樹脂成分を加熱溶融混練し、さらに前記熱可塑性樹脂成分と酸化マグネシウムを加熱溶融混練し、さらに酸変性ポリオレフィン及びガラス繊維含む場合にはそれらを添加し、溶融混練して押出すことにより行われる。このようにして得られた射出成形用熱可塑性樹脂組成物はペレット状にされて射出成形に用いられる。射出成形では、公知の射出成形法に従って、前記ペレット状の射出成形用熱可塑性樹脂組成物が射出成形機に投入され、射出成形機から溶融状態で金型内に射出されて金型内で硬化し、所定形状の射出成形体とされる。本発明の射出成形用熱可塑性樹脂組成物は流動性が高いために、薄肉の射出成形体の成形が容易であり、また、金型温度を高くする必要がなく、脱型のための冷却時間が長くなることがない。さらに、本発明の射出成形用熱可塑性樹脂組成物は、流動性が高いために、射出圧力を下げることができ、金型装置の必要トン数を小さくすることができることから、射出成形装置を安価にすることができる。   The thermoplastic resin composition for injection molding is produced by heat-melting and kneading the thermoplastic resin component with an extruder, further heat-melt-kneading the thermoplastic resin component and magnesium oxide, and further comprising acid-modified polyolefin and glass fiber. In some cases, they are added, melt kneaded and extruded. The thermoplastic resin composition for injection molding thus obtained is formed into pellets and used for injection molding. In injection molding, according to a known injection molding method, the pellet-like thermoplastic resin composition for injection molding is put into an injection molding machine, injected from the injection molding machine into a mold in a molten state, and cured in the mold. Thus, an injection molded body having a predetermined shape is obtained. Since the thermoplastic resin composition for injection molding of the present invention has high fluidity, it is easy to mold a thin injection molded body, and it is not necessary to increase the mold temperature, and the cooling time for demolding Will not be long. Furthermore, since the thermoplastic resin composition for injection molding of the present invention has high fluidity, the injection pressure can be lowered, and the required tonnage of the mold apparatus can be reduced. Can be.

表1に示す射出成形用熱可塑性樹脂組成物の配合にしたがい実施例及び比較例の樹脂組成物を押出機により260℃で混練して樹脂組成物のストランドを製造し、そのストランドをカッターで切断して実施例及び比較例のペレットにした。このようにして得た実施例及び比較例のペレットを用いて、射出成形機により金型内に射出し、厚み1mm、平面寸法100×100mmの射出成形体を成形した。得られた射出成形体に対して、熱伝導率、絶縁破壊電圧(絶縁性)を測定した。また、JIS K 7139の多目的試験片A型の射出成形体を成形した。得られた射出成形体に対して切削加工を行って、厚み4mm、平面寸法80×10mmの試験片とし、この試験片にて荷重たわみ温度(耐熱性)、シャルピー衝撃性(耐衝撃性)を測定した。また、射出成形時の流動性を測定した。各測定方法は、表1の下部に示すとおりである。   According to the composition of the thermoplastic resin composition for injection molding shown in Table 1, the resin compositions of Examples and Comparative Examples were kneaded at 260 ° C. by an extruder to produce resin composition strands, and the strands were cut with a cutter. Thus, pellets of Examples and Comparative Examples were obtained. The pellets of Examples and Comparative Examples thus obtained were injected into a mold by an injection molding machine to form an injection molded body having a thickness of 1 mm and a plane size of 100 × 100 mm. The obtained injection molded body was measured for thermal conductivity and dielectric breakdown voltage (insulating property). Further, a multi-purpose test piece A type injection molded body of JIS K 7139 was molded. The obtained injection-molded body is cut to obtain a test piece having a thickness of 4 mm and a plane dimension of 80 × 10 mm. The deflection temperature under load (heat resistance) and Charpy impact resistance (impact resistance) are measured with this test piece. It was measured. Moreover, the fluidity at the time of injection molding was measured. Each measuring method is as shown in the lower part of Table 1.

Figure 0005117298
Figure 0005117298

各物性値の測定結果を表1に示す。表1から明らかなように、実施例1〜6は、熱伝導率、絶縁破壊電圧(絶縁性)、荷重たわみ温度(耐熱性)、シャルピー衝撃性(耐衝撃性)及び射出成形時の流動性について何れも高いものであった。なお、酸化マグネシウムの添加量が多い実施例3,5,6は、他の実施例や比較例と比べて熱伝導率が高くなっている。また、酸変性ポリオレフィンが無水マレイン酸変性ポリプロピレンの実施例3は、酸変性ポリオレフィンが無水マレイン酸変性SEBSの実施例5及び酸変性ポリオレフィンを含まない実施例1及び実施例2よりもシャルピー衝撃性(耐衝撃性)が著しく高くなっている。これらのことから、射出成形用熱可塑性樹脂組成物に無水マレイン酸変性ポリプロピレンを含むことにより、熱伝導率及びシャルピー衝撃性(耐衝撃性)を向上させる効果が得られることがわかる。一方、ガラス繊維を含む実施例4はガラス繊維を含まない実施例1及び実施例2よりも荷重たわみ温度(耐熱性)が高くなっている。このことから、射出成形用熱可塑性樹脂組成物にガラス繊維を含むことにより、耐熱性向上効果が得られることがわかる。   Table 1 shows the measurement results of each physical property value. As is clear from Table 1, Examples 1 to 6 are examples of thermal conductivity, dielectric breakdown voltage (insulation), deflection temperature under load (heat resistance), Charpy impact (impact resistance), and fluidity during injection molding. Both were high. In Examples 3, 5, and 6 in which the amount of magnesium oxide added is large, the thermal conductivity is higher than in other Examples and Comparative Examples. Further, Example 3 in which the acid-modified polyolefin is maleic anhydride-modified polypropylene is more Charpy impact than Example 5 in which the acid-modified polyolefin does not contain maleic anhydride-modified SEBS and Examples 1 and 2 in which the acid-modified polyolefin is not included. Impact resistance) is significantly higher. From these, it can be seen that the effect of improving the thermal conductivity and Charpy impact property (impact resistance) can be obtained by including maleic anhydride-modified polypropylene in the thermoplastic resin composition for injection molding. On the other hand, Example 4 containing glass fibers has a higher deflection temperature (heat resistance) than Examples 1 and 2 not containing glass fibers. From this, it can be seen that the effect of improving heat resistance can be obtained by including glass fiber in the thermoplastic resin composition for injection molding.

それに対して、熱可塑性樹脂成分がポリメチルペンテン(PMP)のみからなる比較例1は、実施例1〜6と比べ荷重たわみ温度(耐熱性)が低く、シャルピー衝撃性(耐衝撃性)も低いものであった。また、ポリメチルペンテン(PMP)の比率が本発明の範囲より小さい比較例2、及びポリメチルペンテン(PMP)とポリフェニレンエーテル(PPE)の何れも含まない比較例3は、射出成形時の流動性が実施例1〜6よりも低いものであった。一方、熱可塑性樹脂成分がポリメチルペンテン(PMP)とポリフェニレンスルフィド(PPS)からなる比較例4は実施例1〜6よりもシャルピー衝撃性(耐衝撃性)が低く、また、酸化マグネシウムに代えて、酸化亜鉛を含む比較例5は実施例1〜6よりも絶縁破壊電圧が低くなる。   In contrast, Comparative Example 1 in which the thermoplastic resin component is composed only of polymethylpentene (PMP) has a lower deflection temperature (heat resistance) and lower Charpy impact (impact resistance) than Examples 1-6. It was a thing. Further, Comparative Example 2 in which the ratio of polymethylpentene (PMP) is smaller than the range of the present invention, and Comparative Example 3 that does not include any of polymethylpentene (PMP) and polyphenylene ether (PPE) are fluidity during injection molding. Was lower than Examples 1-6. On the other hand, Comparative Example 4 in which the thermoplastic resin component is composed of polymethylpentene (PMP) and polyphenylene sulfide (PPS) has lower Charpy impact (impact resistance) than Examples 1 to 6, and instead of magnesium oxide, In Comparative Example 5 containing zinc oxide, the dielectric breakdown voltage is lower than in Examples 1-6.

このように、本発明の射出成形用熱可塑性樹脂組成物及びそれを用いた射出成形体によれば、熱伝導率、絶縁性及び耐熱性が高く、且つ射出成形時の流動性に優れ、薄肉の射出成形体を得ることができる。   As described above, according to the thermoplastic resin composition for injection molding of the present invention and the injection molded body using the same, the thermal conductivity, the insulating property and the heat resistance are high, and the fluidity at the time of injection molding is excellent. An injection molded body can be obtained.

Claims (5)

ポリメチルペンテンとポリフェニレンエーテルよりなる熱可塑性樹脂成分と、酸化マグネシウムとを含み、前記ポリメチルペンテンとポリフェニレンエーテルの重量比率が95:5〜50:50、前記酸化マグネシウムの量が、前記熱可塑性樹脂成分100重量部に対して150〜450重量部であることを特徴とする射出成形用熱可塑性樹脂組成物。 A thermoplastic resin component comprising polymethylpentene and polyphenylene ether and magnesium oxide, wherein the weight ratio of the polymethylpentene to polyphenylene ether is 95: 5 to 50:50 , and the amount of magnesium oxide is the thermoplastic resin. A thermoplastic resin composition for injection molding, which is 150 to 450 parts by weight with respect to 100 parts by weight of the component . 酸変性ポリオレフィンを含むことを特徴とする請求項1に記載の射出成形用熱可塑性樹脂組成物。   The thermoplastic resin composition for injection molding according to claim 1, comprising an acid-modified polyolefin. 前記酸変性ポリオレフィンが、無水マレイン酸で変性されたポリプロピレンであることを特徴とする請求項2に記載の射出成形用熱可塑性樹脂組成物。   The thermoplastic resin composition for injection molding according to claim 2, wherein the acid-modified polyolefin is polypropylene modified with maleic anhydride. ガラス繊維を含むことを特徴とする請求項1から3の何れか一項に記載の射出成形用熱可塑性樹脂組成物。   The thermoplastic resin composition for injection molding according to any one of claims 1 to 3, comprising glass fiber. 請求項1から4の何れか一項に記載の射出成形用熱可塑性樹脂組成物よりなる射出成形体。   An injection-molded article comprising the thermoplastic resin composition for injection molding according to any one of claims 1 to 4.
JP2008168189A 2008-06-27 2008-06-27 Thermoplastic resin composition for injection molding and injection molded body Expired - Fee Related JP5117298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008168189A JP5117298B2 (en) 2008-06-27 2008-06-27 Thermoplastic resin composition for injection molding and injection molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008168189A JP5117298B2 (en) 2008-06-27 2008-06-27 Thermoplastic resin composition for injection molding and injection molded body

Publications (2)

Publication Number Publication Date
JP2010006959A JP2010006959A (en) 2010-01-14
JP5117298B2 true JP5117298B2 (en) 2013-01-16

Family

ID=41587805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008168189A Expired - Fee Related JP5117298B2 (en) 2008-06-27 2008-06-27 Thermoplastic resin composition for injection molding and injection molded body

Country Status (1)

Country Link
JP (1) JP5117298B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109196057A (en) * 2016-05-31 2019-01-11 三井化学株式会社 Heat conductivity composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110125A (en) * 1988-10-19 1990-04-23 Mitsubishi Plastics Ind Ltd Resin composition with high thermal conductivity
JP4188036B2 (en) * 2002-09-03 2008-11-26 住友化学株式会社 Thermoplastic resin composition with improved photochromic properties
JP4391873B2 (en) * 2004-04-19 2009-12-24 三井化学株式会社 Laminated plate for high frequency circuit using resin composition
JP5180440B2 (en) * 2006-02-21 2013-04-10 三井化学株式会社 Heat dissipation material
JP4627071B2 (en) * 2007-07-25 2011-02-09 信越化学工業株式会社 Silicone rubber sheet for thermocompression bonding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109196057A (en) * 2016-05-31 2019-01-11 三井化学株式会社 Heat conductivity composition
CN109196057B (en) * 2016-05-31 2022-02-01 三井化学株式会社 Thermally conductive composition

Also Published As

Publication number Publication date
JP2010006959A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
KR102314405B1 (en) Polyolefin composition including hollow glass microspheres and method of using the same
JP6811637B2 (en) Resin molding materials for 3D modeling equipment and filaments for 3D modeling equipment
JPH02173047A (en) Fiber-reinforced thermoplastic resin composition
JP2010254883A (en) Non-halogen flame-retardant resin composition, method for producing the same, and electric wire and cable using the same
JP2019516831A5 (en)
JPWO2018079704A1 (en) Polyarylene sulfide-based resin composition and insert molded product
KR102258483B1 (en) A composite material composition having electromagnetic wave shielding function and a shaped product comprising the same
JP5117298B2 (en) Thermoplastic resin composition for injection molding and injection molded body
KR101355026B1 (en) Thermoplastic resin composition with excellent thermal conductivity and moldability
JP4777080B2 (en) Polyarylene sulfide resin composition for molded article having box shape and molded article having box shape
JP2010285581A (en) Insulating resin composition
CN106893269B (en) A kind of resin combination and preparation method thereof, metal-resin composite
CN104140669A (en) Toughened polyamide resin material for machining automobile sliding door line buckle
KR102192841B1 (en) Conductive polyamide resin composition, method for preparing the same and molding products comprising the same
KR101467683B1 (en) Polypropylene complex resin composition and Article prepared therefrom
WO2012086673A1 (en) Thermally conductive resin composition
CN106700264A (en) Low-after-contraction polypropylene composite and preparation method thereof
CN106893266A (en) A kind of resin combination and preparation method thereof, metal-resin composite
JPS59227936A (en) Compositely reinforced polypropylene resin
JP6850284B2 (en) PAS resin composition
JP5586111B2 (en) Injection molded body and manufacturing method thereof
JP6348363B2 (en) Polyamide resin composition pellets and molded products
WO2018193893A1 (en) Polyolefin resin composition and molded polyolefin resin composition
JP2020128469A (en) Monofilament for 3d printer and method for using the same, and molding method
KR102391576B1 (en) Polypropylene-based Resin Composition with Excellent Thermal Conductivity and Mechanical Properties and Article Molded Therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees