JP5114955B2 - Coin-shaped electrochemical cell - Google Patents

Coin-shaped electrochemical cell Download PDF

Info

Publication number
JP5114955B2
JP5114955B2 JP2007014768A JP2007014768A JP5114955B2 JP 5114955 B2 JP5114955 B2 JP 5114955B2 JP 2007014768 A JP2007014768 A JP 2007014768A JP 2007014768 A JP2007014768 A JP 2007014768A JP 5114955 B2 JP5114955 B2 JP 5114955B2
Authority
JP
Japan
Prior art keywords
gasket
coin
electrochemical cell
positive electrode
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007014768A
Other languages
Japanese (ja)
Other versions
JP2007227366A (en
Inventor
英樹 福田
忠義 ▲高▼橋
幸秀 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007014768A priority Critical patent/JP5114955B2/en
Publication of JP2007227366A publication Critical patent/JP2007227366A/en
Application granted granted Critical
Publication of JP5114955B2 publication Critical patent/JP5114955B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は正極と負極と電解質からなる発電要素を内部に含み、封口板が樹脂製のガスケットを介して正極ケース内に挿入され、正極ケースをかしめることで封口する構造のコイン形電池及びコイン形電気二重層キャパシタ等の電気化学セルに関するものである。   The present invention includes a coin-type battery and a coin having a structure in which a power generation element including a positive electrode, a negative electrode, and an electrolyte is included, a sealing plate is inserted into the positive electrode case via a resin gasket, and the positive electrode case is sealed by caulking The present invention relates to an electrochemical cell such as an electric double layer capacitor.

近年、携帯電話やPDA等の小型情報携帯端末機器が急速に普及しており、これらの携帯機器の主電源としては、リチウムイオン二次電池等が多く用いられている。これらの携帯機器において、主電源からの電力供給が停止した場合でも機器内のメモリーや時計機能をバックアップする必要があり、そのためにメモリーバックアップ用電源としてコイン形のリチウム電池あるいは電気二重層コンデンサなどの電気化学セルが用いられるようになってきた。   In recent years, small information portable terminal devices such as mobile phones and PDAs are rapidly spreading, and lithium ion secondary batteries and the like are often used as the main power source of these portable devices. In these portable devices, even if the power supply from the main power supply stops, it is necessary to back up the memory and clock function in the device. For this reason, a coin-type lithium battery or an electric double layer capacitor is used as a memory backup power source. Electrochemical cells have been used.

特に近年、これらのメモリーバックアップ用電源に用いられるコイン形電気化学セルは基板に表面実装される際、リフロー時の耐熱性が要求されている。なお、リフロー時の耐熱性とは、クリーム半田が塗布された基板上に電子部品を乗せ、加熱された炉内を通過させて基板上の半田を溶融させ、電子部品を基板に表面実装させる際における耐熱性のことを言う。   Particularly in recent years, coin-type electrochemical cells used for these memory backup power sources are required to have heat resistance during reflow when they are surface-mounted on a substrate. Note that the heat resistance during reflow refers to when an electronic component is placed on a substrate coated with cream solder, passed through a heated furnace, and the solder on the substrate is melted so that the electronic component is surface-mounted on the substrate. Says the heat resistance.

リフロー時の耐熱性を満足するため、電池やキャパシタの電気化学セルの部材にも耐熱性のものが用いられ、特にガスケットに関しては、従来のポリプロピレン(PP)から耐熱性が高い硬質のエンジニアリングプラスチックが用いられるようになった。   In order to satisfy the heat resistance at the time of reflow, heat resistant materials are used for the members of electrochemical cells of batteries and capacitors. Especially for gaskets, hard engineering plastics with higher heat resistance are used than conventional polypropylene (PP). It came to be used.

その中でも耐熱樹脂としてポリフェニレンサルファイド(PPS)を用いた有機電解液二次電池が提案されており、高温環境下に晒されても形状を安定化させるためにガラス繊維等のフィラーを添加してもよいことが開示されている(例えば、特許文献1参照)。
また、ガスケットに耐熱樹脂と平均繊維長が10〜20μmの無機繊維とを一緒に含有する樹脂組成物によって構成することも開示され(例えば、特許文献2参照)、さらに耐熱樹脂と平均繊維長が3〜10μmの無機繊維とを一緒に含有する樹脂組成物によって構成されると繊維や樹脂密度にばらつきのないガスケットが成型でき、ガスケットの成型性や電池の耐漏液性が向上することも開示されている(例えば、特許文献3参照)。
特開2000−40525号公報 特開2002−75302号公報 特開2005−259578号公報
Among them, an organic electrolyte secondary battery using polyphenylene sulfide (PPS) as a heat-resistant resin has been proposed, and even if it is exposed to a high temperature environment, a filler such as glass fiber is added to stabilize the shape. It is disclosed that it is good (see, for example, Patent Document 1).
It is also disclosed that the gasket is constituted by a resin composition containing a heat resistant resin and an inorganic fiber having an average fiber length of 10 to 20 μm (see, for example, Patent Document 2). It is also disclosed that a gasket having no variation in fiber and resin density can be formed by a resin composition containing 3 to 10 μm inorganic fibers together, and that the gasket moldability and battery leakage resistance are improved. (For example, refer to Patent Document 3).
JP 2000-40525 A JP 2002-75302 A JP 2005-259578 A

しかしながら、上記技術を適用した樹脂組成物を用いてもガスケット形状に射出成型する際、樹脂組成物の溶融粘度によっては無機繊維の分散が悪くなり、樹脂密度にばらつきのあるガスケットができてしまうことがあった。   However, even when a resin composition to which the above technology is applied is used, when the resin composition is injection-molded into a gasket shape, dispersion of inorganic fibers may be deteriorated depending on the melt viscosity of the resin composition, resulting in a gasket having a variation in resin density. was there.

そして前記ガスケットを用いて作製した電気化学セルが、リフロー半田付けのための高温雰囲気に晒されると、ガスケットの樹脂密度が低い部分において、耐熱性が低下し、熱収縮による樹脂の変形が大きくなり、正極ケースとガスケットに隙間が生じ、そこから漏液が生じてしまうという課題を有していた。   When the electrochemical cell produced using the gasket is exposed to a high temperature atmosphere for reflow soldering, the heat resistance is lowered at a portion where the resin density of the gasket is low, and the deformation of the resin due to thermal shrinkage increases. In addition, there was a problem that a gap was generated between the positive electrode case and the gasket, and liquid leakage occurred therefrom.

前記課題を解決するために、本発明は、正極と負極と電解質とを有する発電素子を、封口板と正極ケースとガスケットとにより封口してなるコイン形電気化学セルにおいて、前記ガスケットが耐熱樹脂からなり、且つテトラポット形状の針状単結晶体となった酸化亜鉛を充填フィラーとして含有することを特徴とする。   In order to solve the above problems, the present invention provides a coin-type electrochemical cell in which a power generation element having a positive electrode, a negative electrode, and an electrolyte is sealed with a sealing plate, a positive electrode case, and a gasket. And zinc oxide formed into a tetrapot-shaped needle-like single crystal is contained as a filler.

本発明のコイン形電気化学セルでは、ガスケットを形成する際に、酸化亜鉛のテトラポット状の立体形状が互いに立体障害としてぶつかり合い、互いの配向を変化させ、ガスケット内でテトラポット形状の酸化亜鉛が均一に分散することにより、繊維や樹脂密度にばらつきのないガスケットができ、コイン形電気化学セルに組み立てられた場合にリフロー時の高温に晒された時の熱変形を緩和することにより、耐熱性を向上させるものである。   In the coin-shaped electrochemical cell of the present invention, when a gasket is formed, the tetrapod-shaped three-dimensional shape of zinc oxide collides with each other as a steric hindrance, the mutual orientation changes, and the tetrapot-shaped zinc oxide in the gasket By uniformly dispersing the resin, a gasket with no variation in fiber and resin density can be obtained, and when assembled in a coin-type electrochemical cell, it is heat resistant by mitigating thermal deformation when exposed to high temperatures during reflow. It improves the performance.

本発明は、正極と負極と電解質とを有する発電素子を、封口板と正極ケースとガスケットとにより封口してなるコイン形電気化学セルにおいて、前記ガスケットが耐熱樹脂からなり、且つテトラポット形状の針状単結晶体となった酸化亜鉛を充填フィラーとして含有することを特徴とするコイン形電気化学セルである。   The present invention relates to a coin-shaped electrochemical cell in which a power generating element having a positive electrode, a negative electrode, and an electrolyte is sealed with a sealing plate, a positive electrode case, and a gasket. It is a coin-type electrochemical cell characterized by containing zinc oxide in the form of a single crystal as a filler.

前記電気化学セルは、ガスケットを形成する際に、酸化亜鉛のテトラポット状の立体形状が互いに立体障害としてぶつかり合い、互いの配向を変化させ、ガスケット内でテトラポット形状の酸化亜鉛が均一に分散することにより、繊維や樹脂密度にばらつきのないガスケットができ、コイン形電気化学セルに組み立てられた場合にリフロー時の高温に晒された時の熱変形を緩和することにより、耐熱性を向上させることができる。   In the electrochemical cell, when the gasket is formed, the three-dimensional shape of the zinc pot tetrapot collides with each other as a steric hindrance and changes the orientation of each other, and the tetrapot-shaped zinc oxide is uniformly dispersed in the gasket. By doing this, a gasket with no variation in fiber and resin density can be created, and when assembled in a coin-type electrochemical cell, heat resistance is improved by mitigating thermal deformation when exposed to high temperatures during reflow be able to.

また同様に前記ガスケットの充填フィラーとして珪酸カルシウムとテトラポット形状の針状単結晶体となった酸化亜鉛を含有させた場合、酸化亜鉛のテトラポット形状が酸化亜鉛同士だけでなく、珪酸カルシウム繊維の立体障害ともなり、珪酸カルシウム繊維の配向を変化させ、ガスケット内で珪酸カルシウム繊維を乱流させ分散させることで、同様に繊維や樹脂密度にばらつきのないガスケットができ、コイン形電気化学セルに組み立てられた場合にリフロー時の高温に晒された時の熱変形を緩和することにより、耐熱性を向上させることができる。   Similarly, when calcium silicate and zinc oxide formed into a tetrapot-shaped needle-like single crystal are included as the filler for the gasket, the tetrapot shape of zinc oxide is not only between zinc oxides but also of calcium silicate fibers. This is also a steric hindrance, and by changing the orientation of the calcium silicate fibers and turbulently dispersing the calcium silicate fibers in the gasket, a gasket with no variation in fiber and resin density can be produced and assembled into a coin-type electrochemical cell. In such a case, the heat resistance can be improved by alleviating thermal deformation when exposed to high temperatures during reflow.

またその際、前記ガスケットの耐熱樹脂がPPSあるいはポリエーテルエーテルケトン(PEEK)を用いると、融点が高く耐熱性を向上させる点で特に好ましい。   At that time, it is particularly preferable that PPS or polyetheretherketone (PEEK) is used as the heat-resistant resin of the gasket because the melting point is high and the heat resistance is improved.

またその際、前記ガスケットに含有させる充填フィラーの量が4〜40wt%である場合に、ガスケットの成型性と耐熱性を維持させる点で特に好ましい。   Moreover, in that case, when the quantity of the filling filler contained in the said gasket is 4-40 wt%, it is especially preferable at the point which maintains the moldability and heat resistance of a gasket.

以下に、本発明の実施の形態を説明するが本発明は、下記の実施例に限定されるものではない。   Embodiments of the present invention will be described below, but the present invention is not limited to the following examples.

(実施例1)
実施例1のガスケットとして、耐熱樹脂にポリフェニレンサルファイド(PPS)を用い、これに充填フィラーとしてテトラポット形状の酸化亜鉛を20wt%含有させてなる樹脂組成物を用い作製させたガスケットをガスケットAとした。
Example 1
As a gasket of Example 1, a gasket prepared by using polyphenylene sulfide (PPS) as a heat-resistant resin and using a resin composition containing 20 wt% of tetrapot-shaped zinc oxide as a filling filler was designated as gasket A. .

(実施例2)
耐熱樹脂にポリエーテルエーテルケトン樹脂(PEEK)を用いる以外は、実施例1と同様に作成したガスケットをガスケットBとした。
(Example 2)
Gasket B was a gasket prepared in the same manner as in Example 1 except that polyether ether ketone resin (PEEK) was used as the heat resistant resin.

(実施例3)
実施例3のガスケットとして、耐熱樹脂にPPSを用い、これに充填フィラーとして珪酸カルシウムを10wt%、テトラポット形状の酸化亜鉛を10wt%含有させてなる樹脂組成物を用い作製したガスケットをガスケットCとした。
(Example 3)
As a gasket of Example 3, a gasket produced by using a resin composition containing PPS as a heat-resistant resin and containing 10 wt% of calcium silicate as a filler and 10 wt% of tetrapot-shaped zinc oxide as a filler is referred to as gasket C. did.

(実施例4)
耐熱樹脂にPEEKを用いる以外は、実施例4と同様にして作製したガスケットをガスケットDとした。
Example 4
A gasket produced in the same manner as in Example 4 except that PEEK was used as the heat resistant resin was designated as gasket D.

(実施例5)
実施例5のガスケットとして、耐熱樹脂にポリフェニレンサルファイド(PPS)を用い、これに充填フィラーとしてテトラポット形状の酸化亜鉛を4wt%含有させてなる樹脂組成物を用い作製させたガスケットをガスケットEとした。
(Example 5)
As gasket of Example 5, gasket E was prepared by using polyphenylene sulfide (PPS) as a heat-resistant resin and using a resin composition containing 4 wt% of tetrapot-shaped zinc oxide as a filling filler. .

(実施例6)
耐熱樹脂にポリエーテルエーテルケトン樹脂(PEEK)を用いる以外は、実施例5と同様に作成したガスケットをガスケットFとした。
(Example 6)
A gasket prepared in the same manner as in Example 5 was used as gasket F except that polyether ether ketone resin (PEEK) was used as the heat resistant resin.

(実施例7)
充填フィラーとして珪酸カルシウムを2wt%、テトラポット形状の酸化亜鉛を2wt%含有させたこと以外は、実施例3と同様に作成したガスケットをガスケットGとした。
(Example 7)
A gasket G was prepared in the same manner as in Example 3 except that 2 wt% of calcium silicate and 2 wt% of tetrapotted zinc oxide were contained as the filler.

(実施例8)
耐熱樹脂にポリエーテルエーテルケトン樹脂(PEEK)を用いる以外は、実施例7と同様に作成したガスケットをガスケットHとした。
(Example 8)
A gasket prepared in the same manner as in Example 7 was used as gasket H, except that polyether ether ketone resin (PEEK) was used as the heat resistant resin.

(比較例1)
比較例1として耐熱樹脂にポリフェニレンサルファイド(PPS)を用い、これに充填フィラーとして珪酸カルシウムを20wt%含有させてなる樹脂組成物を用い作製させたガスケットをガスケットIとした。
(Comparative Example 1)
As Comparative Example 1, gasket I was prepared by using polyphenylene sulfide (PPS) as a heat-resistant resin and using a resin composition containing 20 wt% calcium silicate as a filler.

(比較例2)
耐熱樹脂にポリエーテルエーテルケトン樹脂(PEEK)を用いる以外は、比較例1と同様に作成したガスケットをガスケットJとした。
(Comparative Example 2)
A gasket prepared in the same manner as in Comparative Example 1 except that a polyether ether ketone resin (PEEK) was used as the heat resistant resin was designated as gasket J.

(比較例3)
比較例3として耐熱樹脂にポリフェニレンサルファイド(PPS)を用い、これに充填フィラーとしてテトラポット形状の酸化亜鉛を2wt%含有させてなる樹脂組成物を用い作製させたガスケットをガスケットKとした。
(Comparative Example 3)
As Comparative Example 3, a gasket prepared by using polyphenylene sulfide (PPS) as a heat-resistant resin and using a resin composition containing 2 wt% of tetrapot-shaped zinc oxide as a filling filler was designated as gasket K.

(比較例4)
耐熱樹脂にポリエーテルエーテルケトン樹脂(PEEK)を用いる以外は、比較例3と同様に作成したガスケットをガスケットLとした。
(Comparative Example 4)
A gasket prepared in the same manner as in Comparative Example 3 except that a polyether ether ketone resin (PEEK) was used as the heat resistant resin was designated as gasket L.

(比較例5)
耐熱樹脂に充填フィラーとして珪酸カルシウムを0.5%、テトラポット形状の酸化亜鉛を0.5wt%含有させてなる樹脂組成物を用いたこと以外は実施例1と同様にして作製したガスケットをガスケットMとした。
(Comparative Example 5)
A gasket produced in the same manner as in Example 1 except that a resin composition containing 0.5% calcium silicate and 0.5 wt% tetrapotted zinc oxide as a filler in a heat resistant resin was used. M.

(比較例6)
耐熱樹脂にPEEKを用いたこと以外は、比較例5と同様にして作製したガスケットをガスケットNとした。
(Comparative Example 6)
A gasket produced in the same manner as in Comparative Example 5 except that PEEK was used as the heat resistant resin was designated as gasket N.

次にこれらのガスケットA〜Nを用いて、特にリフロー時の耐熱性が必要とされるメモリーバックアップ用途のコイン形リチウム二次電池の組立を実施した。   Next, using these gaskets A to N, an assembly of a coin-type lithium secondary battery for memory backup applications that required heat resistance during reflow was implemented.

今回、組立を実施した電池の断面図を図1に示す。正極活物質にはマンガン酸化物を用い、これに導電剤、及び結着剤を加え、正極合剤を調合し、この正極合剤をペレットに加圧成型したものを正極4に用いた。また、負極5の負極活物質にはリチウムアルミ合金、イオン導電性の有機電解質を含む電解液、そしてガスケット3と同じ材質であるポリフェニレンサルファイド(PPS)製のセパレータ6を用いており、電池の大きさとしては、外径4.4mm、厚さ1.4mmのものを作製した。   A cross-sectional view of the assembled battery is shown in FIG. Manganese oxide was used as the positive electrode active material, a conductive agent and a binder were added thereto, a positive electrode mixture was prepared, and this positive electrode mixture was pressure-molded into pellets and used for the positive electrode 4. Moreover, the negative electrode active material of the negative electrode 5 uses a lithium aluminum alloy, an electrolytic solution containing an ionic conductive organic electrolyte, and a separator 6 made of polyphenylene sulfide (PPS) which is the same material as the gasket 3. As an example, an outer diameter of 4.4 mm and a thickness of 1.4 mm were produced.

これらの電池をリフロー炉に通し、電池の漏液発生を確認した結果を表1に示す。   Table 1 shows the results of confirming the occurrence of battery leakage by passing these batteries through a reflow furnace.

尚、リフロー通過時の電池表面温度として予備加熱200℃以上60秒、230℃以上45秒、ピーク温度260℃(3秒以内)の温度条件で耐漏液試験を行った。   The leakage resistance test was conducted under the conditions of preheating 200 ° C. or more for 60 seconds, 230 ° C. or more for 45 seconds, and peak temperature 260 ° C. (within 3 seconds) as the battery surface temperature during reflow.

表1の結果より、ポリフェニレンスルフィド(PPS)を用いた実施例1、3、5、7の電池と比較例1の電池を比較した場合、充填フィラーとして酸化亜鉛のみを加えたもの、あるいは珪酸カルシウムと酸化亜鉛を両方加えたものは、珪酸カルシウムのみを加えたものより耐漏液性が向上することがわかる。   From the results in Table 1, when the batteries of Examples 1, 3, 5, and 7 using polyphenylene sulfide (PPS) were compared with the battery of Comparative Example 1, only zinc oxide was added as a filler, or calcium silicate It can be seen that the addition of both zinc oxide and zinc oxide improves the leakage resistance compared to the addition of calcium silicate alone.

また、比較例3、5より充填フィラーの量が少なすぎると同様に耐漏液性が低下することがわかった。   Further, it was found that the leakage resistance is similarly reduced when the amount of the filler is too small compared to Comparative Examples 3 and 5.

次にポリエーテルエーテルケトン樹脂(PEEK)を用いた場合の実施例2、4、6、8の電池と比較例2、4、6の電池の耐漏液性の差に違いがなかったために、加えてピーク温度270℃(3秒以内)の温度条件で耐漏液試験を行った。その結果を表2に示す。   Next, there was no difference in the leakage resistance between the batteries of Examples 2, 4, 6, and 8 and the batteries of Comparative Examples 2, 4, and 6 when the polyether ether ketone resin (PEEK) was used. The leakage resistance test was conducted at a peak temperature of 270 ° C. (within 3 seconds). The results are shown in Table 2.

表2の結果より、ポリエーテルエーテルケトン樹脂(PEEK)を用いた場合の実施例2、4、6、8の電池と比較例2の電池を比較した場合でも、ピーク温度270℃のリフロー下における耐漏液試験では、差が現れ、ここでも充填フィラーとして酸化亜鉛のみを加えたもの、あるいは珪酸カルシウムと酸化亜鉛を両方加えたものは珪酸カルシウムのみを加えたものより耐漏液性が向上することがわかる。   From the results in Table 2, even when the batteries of Examples 2, 4, 6 and 8 and the battery of Comparative Example 2 were compared using the polyetheretherketone resin (PEEK), the reflow under the peak temperature of 270 ° C. In the leak-proof test, a difference appears, and here again, the one with only zinc oxide added as a filler, or the one with both calcium silicate and zinc oxide added, has improved leak resistance compared to the one with only calcium silicate added. Recognize.

また、比較例4、6より充填フィラーの量が少なすぎるとポリフェニルスルフィド(PPS)を用いた場合と同様に耐漏液性が低下することもわかった。   Further, it was also found that when the amount of the filler filler is too small compared to Comparative Examples 4 and 6, the leakage resistance is lowered as in the case of using polyphenyl sulfide (PPS).

これより樹脂への充填フィラーの添加量の合計は、4wt%以上必要であり、また40wt%以上であるとガスケット成型時の射出成形が困難になってしまうため、充填フィラーの添加量の合計は、4〜40wt%以下とした。   Therefore, the total amount of filler added to the resin needs to be 4 wt% or more, and if it is 40 wt% or more, injection molding at the time of gasket molding becomes difficult. 4 to 40 wt% or less.

本発明にかかるコイン形電気化学セルは、ガスケットを形成する際に、酸化亜鉛のテトラポット状の立体形状が互いに立体障害としてぶつかり合い、互いの配向を変化させ、ガスケット内でテトラポット形状の酸化亜鉛が均一に分散させることにより、繊維や樹脂密度にばらつきのないガスケットができ、コイン形電気化学セルに組み立てられた場合にリフロー時の高温に晒された時の熱変形を緩和することにより耐熱性を大きく向上させるといった優れた効果を発揮し、高品質の電池を提供することが可能となる為、工業的利用価値は、極めて高い。   In the coin-shaped electrochemical cell according to the present invention, when a gasket is formed, the tetrapod-shaped three-dimensional shape of zinc oxide collides with each other as a steric hindrance and changes the orientation of each other, and the tetrapot-shaped oxidation in the gasket. By uniformly dispersing zinc, a gasket with no variation in fiber and resin density can be obtained. When assembled in a coin-type electrochemical cell, heat resistance is reduced by reducing thermal deformation when exposed to high temperatures during reflow. The industrial utility value is extremely high because it is possible to provide an excellent effect of greatly improving the performance and provide a high-quality battery.

本発明の実施例に係るコイン形リチウム二次電池の断面図Sectional drawing of the coin-type lithium secondary battery which concerns on the Example of this invention.

符号の説明Explanation of symbols

1 正極ケース
2 封口板
3 ガスケット
4 正極
5 負極
6 セパレータ
7 集電体
DESCRIPTION OF SYMBOLS 1 Positive electrode case 2 Sealing plate 3 Gasket 4 Positive electrode 5 Negative electrode 6 Separator 7 Current collector

Claims (3)

正極と負極と電解質とを有する発電素子を、封口板と正極ケースとガスケットとにより封口してなるコイン形電気化学セルにおいて、前記ガスケットが耐熱樹脂からなり、且つテトラポット形状の針状単結晶体となった酸化亜鉛を充填フィラーとして4〜20wt%含有することを特徴とするコイン形電気化学セル。 In a coin-shaped electrochemical cell in which a power generating element having a positive electrode, a negative electrode, and an electrolyte is sealed with a sealing plate, a positive electrode case, and a gasket, the gasket is made of a heat-resistant resin, and a needle-like single crystal having a tetrapot shape A coin-type electrochemical cell comprising 4 to 20 wt% of the zinc oxide as a filler. 正極と負極と電解質とを有する発電素子を、封口板と正極ケースとガスケットとにより封口してなるコイン形電気化学セルにおいて、前記ガスケットが耐熱樹脂からなり、且つ珪酸カルシウムとテトラポット形状の針状単結晶体となった酸化亜鉛を充填フィラーとして4〜20wt%含有することを特徴とするコイン形電気化学セル。 In a coin-shaped electrochemical cell in which a power generation element having a positive electrode, a negative electrode, and an electrolyte is sealed with a sealing plate, a positive electrode case, and a gasket, the gasket is made of a heat-resistant resin, and calcium silicate and a tetrapod-shaped needle shape A coin-type electrochemical cell comprising 4 to 20 wt% of zinc oxide formed as a single crystal as a filler. 前記耐熱樹脂がポリフェニレンサルファイド(PPS)あるいはポリエーテルエーテルケトン(PEEK)からなることを特徴とする請求項1、又は2記載のコイン形電気化学セル。   The coin-type electrochemical cell according to claim 1 or 2, wherein the heat resistant resin is made of polyphenylene sulfide (PPS) or polyether ether ketone (PEEK).
JP2007014768A 2006-01-26 2007-01-25 Coin-shaped electrochemical cell Expired - Fee Related JP5114955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014768A JP5114955B2 (en) 2006-01-26 2007-01-25 Coin-shaped electrochemical cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006017125 2006-01-26
JP2006017125 2006-01-26
JP2007014768A JP5114955B2 (en) 2006-01-26 2007-01-25 Coin-shaped electrochemical cell

Publications (2)

Publication Number Publication Date
JP2007227366A JP2007227366A (en) 2007-09-06
JP5114955B2 true JP5114955B2 (en) 2013-01-09

Family

ID=38548949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014768A Expired - Fee Related JP5114955B2 (en) 2006-01-26 2007-01-25 Coin-shaped electrochemical cell

Country Status (1)

Country Link
JP (1) JP5114955B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100962397B1 (en) 2007-11-28 2010-06-11 주식회사 이엠따블유에너지 Battery cell and method for producing the same
KR101134125B1 (en) * 2010-07-30 2012-04-09 캡솔루션 주식회사 Edlc and making method therefor
WO2023176311A1 (en) * 2022-03-17 2023-09-21 株式会社村田製作所 Secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205976A (en) * 1992-01-24 1993-08-13 Matsushita Electric Ind Co Ltd Aluminum electrolytic capacitor
JPH05205977A (en) * 1992-01-24 1993-08-13 Matsushita Electric Ind Co Ltd Aluminum electrolytic capacitor
JPH10208705A (en) * 1997-01-20 1998-08-07 Mitsubishi Eng Plast Kk Battery jar for sealed secondary battery and resin composition therefor
JP2000040525A (en) * 1998-07-23 2000-02-08 Matsushita Electric Ind Co Ltd Organic electrolyte secondary battery
JP4070395B2 (en) * 2000-08-31 2008-04-02 三洋電機株式会社 Sealed battery
JP3873029B2 (en) * 2003-02-13 2007-01-24 大塚化学株式会社 Sealed battery gasket and sealed battery
JP4281428B2 (en) * 2003-06-19 2009-06-17 パナソニック株式会社 Electrochemical element
JP4873838B2 (en) * 2004-03-12 2012-02-08 セイコーインスツル株式会社 Gasket, coin or button type electrochemical cell, and method for manufacturing gasket

Also Published As

Publication number Publication date
JP2007227366A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
JP6080284B1 (en) Nonaqueous electrolyte secondary battery
CN105977403B (en) Nonaqueous electrolyte secondary battery
JP5022035B2 (en) Secondary battery with surface mount terminals
JP6372821B2 (en) Nonaqueous electrolyte secondary battery
JP6425225B2 (en) Non-aqueous electrolyte secondary battery
JP2014170648A (en) Sealing structure of sealed battery, and sealed battery
JP2011216855A (en) Gasket for electrochemical cell, and electrochemical cell
JPWO2013046644A1 (en) Coin battery
JP5114955B2 (en) Coin-shaped electrochemical cell
CN105977413B (en) Nonaqueous electrolyte secondary battery
JP2017224430A (en) Nonaqueous electrolyte secondary battery
JP2008198552A (en) Coin type electrochemical cell
JP4976623B2 (en) Reflow solderable electrochemical cell
JP4824271B2 (en) Gasket for electrochemical cell and electrochemical cell
JP6587929B2 (en) Nonaqueous electrolyte secondary battery
JP5864174B2 (en) Nonaqueous electrolyte secondary battery
JP2009146800A (en) Flat nonaqueous electrolyte secondary battery
KR20040019964A (en) non-aqueous electrolyte secondary battery
JP4899360B2 (en) Flat electrochemical element
JP4281428B2 (en) Electrochemical element
JP2018170072A (en) Composite solid electrolyte, method for manufacturing the same, and all-solid battery
JP4873838B2 (en) Gasket, coin or button type electrochemical cell, and method for manufacturing gasket
JP2008177196A (en) Surface-mounting square power storage cell
JP2018147907A (en) Nonaqueous electrolyte secondary battery
JP4281427B2 (en) Electrochemical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100121

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees