JP2008198552A - Coin type electrochemical cell - Google Patents
Coin type electrochemical cell Download PDFInfo
- Publication number
- JP2008198552A JP2008198552A JP2007034618A JP2007034618A JP2008198552A JP 2008198552 A JP2008198552 A JP 2008198552A JP 2007034618 A JP2007034618 A JP 2007034618A JP 2007034618 A JP2007034618 A JP 2007034618A JP 2008198552 A JP2008198552 A JP 2008198552A
- Authority
- JP
- Japan
- Prior art keywords
- gasket
- positive electrode
- negative electrode
- resin
- electrochemical cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
Description
本発明は、コイン型電気化学セルに関するものである。 The present invention relates to a coin-type electrochemical cell.
コイン型二次電池、及びコイン型キャパシタを組み込む小型精密機器のさらなる小型化、あるいは回路基板のリフローはんだ付け化に伴って、コイン型二次電池、及びコイン型キャパシタ自体もより一層の小型化、薄型化、高容量化、及びリフローはんだ付け対応のための耐熱性を要求される。一般的に、コイン型二次電池、及びコイン型キャパシタは、電気化学要素を金属製の正極缶及び負極缶に収容し、樹脂製のガスケットを介して正極缶と負極缶とを組み合わせ、負極缶の折返し部に覆い被せて正極缶の開口部を湾曲させてかしめることで封止されるが、小型化に伴うかしめ強度の低下や、高容量化やリフローはんだ付け加熱に伴う内圧の上昇により、漏液しやすいという問題がある。 Along with the further miniaturization of coin-type secondary batteries and small precision devices incorporating coin-type capacitors, or the reflow soldering of circuit boards, the coin-type secondary batteries and the coin-type capacitors themselves are further miniaturized. Heat resistance for thinning, high capacity, and reflow soldering is required. Generally, a coin-type secondary battery and a coin-type capacitor contain an electrochemical element in a metal positive electrode can and a negative electrode can, and combine the positive electrode can and the negative electrode can through a resin gasket to form a negative electrode can. It is sealed by curving the opening of the positive electrode can by covering the folded part, but due to the decrease in caulking strength due to downsizing and the increase in internal pressure due to higher capacity and reflow soldering heating There is a problem that it is easy to leak.
従来、樹脂製のガスケットのストレスを分散させてガスケットを正極缶及び負極缶と十分に密着させるようにしたもの(例えば特許文献1参照)や、ガスケットが正極缶及び負極に及ぼす応力を考慮したもの(例えば特許文献2参照)が検討されてきた。 Conventionally, the stress of resin gaskets is dispersed so that the gasket is sufficiently adhered to the positive electrode can and the negative electrode can (see, for example, Patent Document 1), and the stress that the gasket exerts on the positive electrode can and the negative electrode is taken into consideration. (See, for example, Patent Document 2).
しかしながら、これらに記載されている封止構造においてもリフローはんだ付けの熱処理においては十分な封止性を得ることができない。それは、金属製である正極缶及び負極缶と、樹脂製であるガスケットの熱物性が大きく異なることによる。従来のコイン型電池化学セルの構造においては、リフローはんだ付けの加熱時において樹脂製のガスケットが金属正極缶、金属負極缶よりも熱膨張率が大きく、かつ加熱時に樹脂製のガスケットは流動特性を有することから、加熱時において樹脂製のガスケットは正極缶と負極缶の間から逃げ出すことになる。このため、加熱前に正極缶と負極缶の間に閉じ込められていたガスケットの体積は加熱後には減少するために、正極缶とガスケットあるいは負極缶とガスケットの間に隙間が出来たり、ガスケットの体積が減少するためにガスケットが正極缶および負極缶に及ぼす面圧が減少することにより、封止性が低下するためである。 However, even in the sealing structures described therein, sufficient sealing performance cannot be obtained in the heat treatment of reflow soldering. This is because the thermophysical properties of the positive and negative electrode cans made of metal and the gasket made of resin are greatly different. In the conventional coin-type battery chemical cell structure, the resin gasket has a larger coefficient of thermal expansion than the metal positive electrode can and the metal negative electrode can during reflow soldering heating, and the resin gasket exhibits flow characteristics during heating. Therefore, the resin gasket escapes from between the positive electrode can and the negative electrode can during heating. For this reason, the volume of the gasket that was confined between the positive electrode can and the negative electrode can before heating decreases after heating, so there is a gap between the positive electrode can and the gasket or the negative electrode can and the gasket, or the volume of the gasket This is because the surface pressure exerted by the gasket on the positive electrode can and the negative electrode can is reduced, so that the sealing performance is lowered.
本発明のコイン型電気化学セルは、正極缶と負極缶の内部に電気化学要素を収容し、前記正極缶の開口部を、ガスケットを介して封口したコイン型電気化学セルにおいて、前記正極缶と前記負極缶が金属製でありかつ前記ガスケットが樹脂製であって、前記ガスケットの熱変形により前記正極缶と前記負極缶との間から前記ガスケットが体積流動により逃げ出すことのできない封口形状であることを特徴とする。 The coin-type electrochemical cell of the present invention is a coin-type electrochemical cell in which an electrochemical element is accommodated inside a positive electrode can and a negative electrode can, and an opening of the positive electrode can is sealed through a gasket. The negative electrode can is made of metal and the gasket is made of resin, and the gasket cannot be escaped from the space between the positive electrode can and the negative electrode can by thermal deformation of the gasket. It is characterized by.
また本発明のコイン型電気化学セルは、前記正極缶の開口部先端が前記負極缶に接触している、あるいは前記ガスケットの熱変形により前記正極缶と前記負極缶との間より前記ガスケットが体積流動により逃げ出すことが出来ない程度に、前記正極缶の開口部先端が前記負極缶に近接している形状であることを特徴とする。 Further, in the coin-type electrochemical cell of the present invention, the opening tip of the positive electrode can is in contact with the negative electrode can, or the gasket has a volume from between the positive electrode can and the negative electrode can due to thermal deformation of the gasket. The opening tip of the positive electrode can has a shape close to the negative electrode can so as not to escape due to flow.
リフロー加熱の前後において正極缶と負極缶の間に閉じ込められているガスケットの逃げ出しを防ぐことで、リフロー加熱による電気化学セルの封止性の劣化を抑えるものである。 By preventing escape of the gasket confined between the positive electrode can and the negative electrode can before and after the reflow heating, the deterioration of the sealing performance of the electrochemical cell due to the reflow heating is suppressed.
これを実現するためには、ガスケットを挟んでいる正極缶内面と負極缶外面からなる空間体積と、ガスケットの正極缶と負極缶に間に位置してかしめることで圧縮されている部分の体積が同じであり、更にかしめている正極缶端部と最も近接する負極缶外面に隙間のないことが必要である。 In order to realize this, the volume of the space formed by the inner surface of the positive electrode can and the outer surface of the negative electrode can sandwiching the gasket, and the volume of the portion compressed by caulking located between the positive electrode can and the negative electrode can of the gasket Are the same, and it is necessary that there is no gap on the outer surface of the negative electrode can closest to the end of the positive electrode can that is caulked.
本発明を用いると、リフロー最高温度における樹脂製のガスケットの電池外への体積流動を抑えることが可能となり、リフロー熱処理後においても正極缶と負極缶の間に存在し、正極缶と負極缶に応力を与えているガスケットの体積を維持することで、リフロー前と同じ封止性を保つものである。 Using the present invention, it becomes possible to suppress the volume flow of the resin gasket to the outside of the battery at the maximum reflow temperature, and it exists between the positive electrode can and the negative electrode can even after the reflow heat treatment. By maintaining the volume of the gasket to which stress is applied, the same sealing performance as before reflowing is maintained.
コイン型の電気化学セルにおいて、正極缶および負極缶は、正極端子および負極端子を兼ねること、また缶をかしめることで封止ができることから、一般的に金属材料が用いられている。 In a coin-type electrochemical cell, since a positive electrode can and a negative electrode can serve both as a positive electrode terminal and a negative electrode terminal, and can be sealed by caulking the can, a metal material is generally used.
一方、かしめ構造でコイン型電気化学セル内部に液体を保持できるように正極缶と負極缶の間を十分に充填できること、また正極缶及び負極缶に十分な面圧を与え続けて漏液を起こさないことから、樹脂材料がガスケットに用いられている。 On the other hand, the space between the positive electrode can and the negative electrode can can be sufficiently filled so that the liquid can be held inside the coin-type electrochemical cell with a caulking structure, and a sufficient surface pressure is continuously applied to the positive electrode can and the negative electrode can to cause leakage Since there is no resin material, it is used for the gasket.
更に、リフロー対応のコイン型電気化学セルでは、リフロー加熱時の耐熱性が求められることから、PPS(ポリフェニレンサルファイド樹脂)、PEEK(ポリエーテルエーテルケトン樹脂)、LCP(液晶ポリマー)、PEN(ポリエーテルニトリル樹脂)、PA(ポリアミド樹脂)、PI(ポリイミド樹脂)などのエンジニアリングプラスチックがガスケットの樹脂材料として用いられている。 Furthermore, since reflow-compatible coin-type electrochemical cells are required to have heat resistance during reflow heating, PPS (polyphenylene sulfide resin), PEEK (polyether ether ketone resin), LCP (liquid crystal polymer), PEN (polyether) Engineering plastics such as nitrile resin (PA), polyamide (PA), and PI (polyimide resin) are used as the resin material for the gasket.
リフローはんだ付けを行なうためのリフロー炉による加熱は、最高温度で200〜260℃の高温にある。特に近年は鉛フリーのはんだが環境問題から求められていることから、250〜260℃の耐熱性がコイン型電気化学セルに求められている。 Heating by the reflow furnace for performing reflow soldering is at a high temperature of 200 to 260 ° C. at the maximum temperature. Particularly in recent years, since lead-free solder is required for environmental problems, heat resistance of 250 to 260 ° C. is required for coin-type electrochemical cells.
電池の封止構造は、一般的には図2に示すような構造が取られている。本構造は、電池内部の負極缶と外側の正極缶の間に樹脂製のガスケットを配し、このガスケットを圧縮することで、ガスケットと正極缶及び負極缶の間に面圧を発生させ、この面圧により電池内部の液体の流出と電池外部からの水分の浸入を防いでいる。特に正極缶端部と負極缶の間のガスケットを挟みつけることは重要であり、本箇所によりガスケット本体が正極缶と負極缶の間からクリープ現象などによりガスケット体積が流出することを防ぎ、電池の封止性を保っている。このため、正極缶端部の高さはガスケット外側端部の高さよりも低く、ガスケット外側に正極缶の端部が食い込むように封止されている。 The battery sealing structure generally has a structure as shown in FIG. In this structure, a resin gasket is disposed between the negative electrode can inside the battery and the outer positive electrode can, and by compressing this gasket, a surface pressure is generated between the gasket, the positive electrode can, and the negative electrode can. The surface pressure prevents the outflow of liquid inside the battery and the ingress of moisture from the outside of the battery. In particular, it is important to sandwich the gasket between the end of the positive electrode can and the negative electrode can. This location prevents the gasket body from flowing out of the gap between the positive electrode can and the negative electrode can due to the creep phenomenon. The sealing property is maintained. For this reason, the height of the end portion of the positive electrode can is lower than the height of the outer end portion of the gasket, and the end portion of the positive electrode can is sealed into the outside of the gasket.
室温で使用される従来のコイン型二次電池・キャパシタは本封止構造で問題ないが、この電池をリフローした際には本封止構造では封止性の劣化が起こる。このメカニズムは下記のように考えられる。コイン型電気化学セルをリフロー熱処理すると金属製である正極缶及び負極缶よりも、樹脂製であるガスケットの方が熱膨張率が大きいことから、樹脂製であるガスケットの熱膨張が起こる。また樹脂製のガスケットはリフロー熱処理の最高温度では柔らかくなっている。このため、リフロー熱処理によって樹脂製のガスケットは正極缶及び負極缶から圧力のかかっていない方向、すなわち正極缶と負極缶のすきまより電池の外側に向かって体積流動が起こる。このため、リフロー処理された電気化学セルの正極缶とガスケットの間のガスケット体積は、リフロー処理前のそれよりも小さいことになり、結果として正極缶と負極缶にガスケットが加える面圧がリフロー前よりも小さくなり、封止性の劣化が起きている。 The conventional coin-type secondary battery / capacitor used at room temperature has no problem with the present sealing structure, but when this battery is reflowed, the sealing performance deteriorates with the present sealing structure. This mechanism is considered as follows. When the coin-type electrochemical cell is subjected to reflow heat treatment, the resin-made gasket has a larger thermal expansion coefficient than the metal-made positive electrode can and negative electrode can, and therefore, the resin-made gasket is thermally expanded. Resin gaskets are soft at the maximum temperature of reflow heat treatment. For this reason, the reflow heat treatment causes volume flow of the resin gasket in the direction in which no pressure is applied from the positive electrode can and the negative electrode can, that is, from the gap between the positive electrode can and the negative electrode can toward the outside of the battery. For this reason, the gasket volume between the positive electrode can and the gasket of the reflowed electrochemical cell is smaller than that before the reflow treatment. As a result, the surface pressure applied by the gasket to the positive electrode can and the negative electrode can is reduced before the reflow. It is smaller than that, and sealing performance is deteriorated.
本メカニズムによる封止性の劣化を防ぐために、リフロー処理時におきるガスケットの体積移動を防げば良い。 In order to prevent deterioration of sealing performance due to this mechanism, it is only necessary to prevent the volume movement of the gasket that occurs during the reflow process.
例えば、正極缶端部の先端を負極缶に接触させて樹脂製のガスケットを正極缶と負極缶の間に隙間なく閉じ込めることにより、リフロー処理時のガスケットの体積移動を防いでやれば良い。 For example, the volume of the gasket during reflow treatment may be prevented by bringing the tip of the positive electrode can end into contact with the negative electrode can and confining the resin gasket between the positive electrode can and the negative electrode can without any gap.
このための封止後の電気化学セルの構造は、ガスケットを挟んでいる正極缶内面と負極缶外面からなる空間体積と、ガスケットの正極缶と負極缶に間に位置してかしめることで圧縮されている部分の体積が同じであり、更にかしめている正極缶端部と最も近接する負極缶外面に隙間がないことが必要である。 For this purpose, the structure of the sealed electrochemical cell is compressed by positioning the space between the inner surface of the positive electrode can and the outer surface of the negative electrode can sandwiching the gasket, and caulking between the positive electrode can and the negative electrode can of the gasket. It is necessary that the volume of the portion being the same is the same, and that there is no gap on the outer surface of the negative electrode can that is closest to the end portion of the positive electrode can that is being caulked.
本発明の封止構造を図1に示す。ステンレス製の外径4mmの正極缶101、及び負極缶102に、重量%でリチウムマンガン酸化物とカーボングラファイトの混合物98%、結着剤2%からなる合剤を直径2.5mm、厚さ1mmに成形した正極ペレット103、重量%で酸化ケイ素とカーボングラファイトの混合物98%、結着剤2%からなる合剤を直径2mm、厚さ0.5mmに成形したペレットにリチウムを貼り付けた負極ペレット104、ガラス繊維製のセパレータ105、ポリエーテルエーテルケトン製のガスケット106、及び電解液107を収容した。この時の電池組立時に正極缶先端に近い位置となる負極缶外側底部外周部には正極缶と負極缶の接触によりショートを起こすことのないように、耐熱性の絶縁塗料108を塗布した。封止は正極缶内にガスケットがほぼ隙間なく納まるように正極缶をかしめることで行なった。この時、正極缶の先端内側と負極缶との隙間は0.1mm以下であった。
(参考例1)
The sealing structure of the present invention is shown in FIG. Stainless steel positive electrode can 101 and negative electrode can 102 and negative electrode can 102 were mixed with a mixture of 98% lithium manganese oxide and carbon graphite by weight% and 2% binder, 2.5 mm in diameter and 1 mm in thickness. Positive electrode pellet 103 molded into a negative electrode pellet in which lithium is pasted on a pellet formed by mixing 98% by weight of a mixture of silicon oxide and carbon graphite and 2% in diameter and 0.5 mm in thickness. 104, a separator 105 made of glass fiber, a gasket 106 made of polyetheretherketone, and an electrolytic solution 107 were accommodated. A heat-resistant insulating paint 108 was applied to the outer periphery of the negative electrode can outer bottom portion, which was close to the tip of the positive electrode can at the time of battery assembly, so as not to cause a short circuit due to contact between the positive electrode can and the negative electrode can. Sealing was performed by caulking the positive electrode can so that the gasket fits in the positive electrode can with almost no gap. At this time, the gap between the tip inner side of the positive electrode can and the negative electrode can was 0.1 mm or less.
(Reference Example 1)
従来例の封止構造を図2に示す。組立直前までは実施例1と同様に作成し、負極缶と正極缶先端をショートしない程度の離し、上面の正極缶の先端と負極の間からガスケットが見える程度に封止したものを参考例1とした。 FIG. 2 shows a conventional sealing structure. The sample was prepared in the same manner as in Example 1 until immediately before assembly, separated so as not to short-circuit the negative electrode can and the positive electrode can, and sealed so that the gasket could be seen between the tip of the positive electrode can and the negative electrode on the upper surface. It was.
実施例1、参考例1の電池を所定期間エージング後、最高温度260度となるリフロー炉で加熱を行なった。室温冷却後に庫内温度60℃、庫内相対湿度90%の恒温恒湿槽に所定期間保管した後に電池を取り出し、室温冷却後に電池容量を測定した。測定後の容量を恒温恒湿に保管しない電池の容量で割り、容量の残存率を計算した。この時、正極缶の先端内側と負極缶との隙間は0.15mm以下であった。 The batteries of Example 1 and Reference Example 1 were aged for a predetermined period, and then heated in a reflow furnace having a maximum temperature of 260 degrees. After cooling at room temperature, the battery was taken out after being stored in a constant temperature and humidity chamber having a chamber temperature of 60 ° C. and a relative humidity of 90%, and the battery capacity was measured after cooling to room temperature. The capacity after measurement was divided by the capacity of the battery not stored at constant temperature and humidity, and the remaining capacity rate was calculated. At this time, the gap between the tip inner side of the positive electrode can and the negative electrode can was 0.15 mm or less.
測定結果を表1に示す。
表1に示すように実施例1は参考例1よりもリフロー後の封止性が向上しており、電池の外部の湿気に十分な対候性を有していることがわかる。 As shown in Table 1, it can be seen that Example 1 has improved sealing performance after reflowing as compared to Reference Example 1, and has sufficient weather resistance to moisture outside the battery.
実施例1において正極ペレットと負極ペレットを市販の活性炭シートを打抜き、電気二重層コンデンサ用の電解液を用いて作成した電気二重層コンデンサを実施例2とした。
(参考例2)
In Example 1, an electric double layer capacitor prepared by punching a commercially available activated carbon sheet from the positive electrode pellet and the negative electrode pellet and using an electrolytic solution for the electric double layer capacitor was set as Example 2.
(Reference Example 2)
また、実施例2において、かしめによる正極缶の先端を参考例1すなわち従来例と同様な封口をした電気二重層コンデンサを参考例2とした。
実施例2と参考例2も実施例1と同様に最高温度260℃のリフロー炉で熱処理を行い、室温冷却後に庫内温度60℃、庫内相対湿度90%の恒温恒湿槽に所定電圧を印加して所定期間保管した後に電池を取り出し、室温冷却後に電池容量を測定した。測定後の容量を恒温恒湿に保管しない電池の容量で割り、容量の残存率を計算した。結果を表2に示す。
Similarly to Example 1, Example 2 and Reference Example 2 were heat-treated in a reflow furnace having a maximum temperature of 260 ° C., and after cooling to room temperature, a predetermined voltage was applied to a constant temperature and humidity chamber having an internal temperature of 60 ° C. and an internal relative humidity of 90%. The battery was taken out after being applied and stored for a predetermined period, and the battery capacity was measured after cooling at room temperature. The capacity after measurement was divided by the capacity of the battery not stored at constant temperature and humidity, and the remaining capacity rate was calculated. The results are shown in Table 2.
表2に示すように実施例2は参考例2よりもリフロー後の封止性が向上しており、電池の外部の湿気に十分な対候性を有していることがわかる。 As shown in Table 2, it can be seen that Example 2 has improved sealing performance after reflowing compared to Reference Example 2, and has sufficient weather resistance to moisture outside the battery.
101 正極缶
102 負極缶
103 正極ペレット
104 負極ペレット
105 セパレータ
106 ガスケット
107 電解液
108 絶縁塗料
201 正極缶
202 負極缶
203 正極ペレット
204 負極ペレット
205 セパレータ
206 ガスケット
207 電解液
101 positive electrode can
102 negative electrode can
103 Positive electrode pellet
104 Negative electrode pellet
105 Separator
106 Gasket
107 electrolyte
108 Insulating paint
201 positive electrode can
202 negative electrode can
203 Positive electrode pellet
204 Negative electrode pellet
205 Separator
206 Gasket
207 electrolyte
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007034618A JP2008198552A (en) | 2007-02-15 | 2007-02-15 | Coin type electrochemical cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007034618A JP2008198552A (en) | 2007-02-15 | 2007-02-15 | Coin type electrochemical cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008198552A true JP2008198552A (en) | 2008-08-28 |
Family
ID=39757286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007034618A Pending JP2008198552A (en) | 2007-02-15 | 2007-02-15 | Coin type electrochemical cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008198552A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011111255A1 (en) * | 2010-03-09 | 2011-09-15 | 日立マクセルエナジー株式会社 | Flat battery |
JP2015103738A (en) * | 2013-11-27 | 2015-06-04 | セイコーインスツル株式会社 | Electrochemical cell |
CN105070534A (en) * | 2015-09-08 | 2015-11-18 | 上海空间电源研究所 | Polar column sealing device for spatial super capacitor |
US20200185755A1 (en) | 2009-02-09 | 2020-06-11 | Varta Microbattery Gmbh | Button cells and method of producing same |
US10804506B2 (en) | 2009-06-18 | 2020-10-13 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
-
2007
- 2007-02-15 JP JP2007034618A patent/JP2008198552A/en active Pending
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11233265B2 (en) | 2009-02-09 | 2022-01-25 | Varta Microbattery Gmbh | Button cells and method of producing same |
US20200185755A1 (en) | 2009-02-09 | 2020-06-11 | Varta Microbattery Gmbh | Button cells and method of producing same |
US11024869B2 (en) | 2009-02-09 | 2021-06-01 | Varta Microbattery Gmbh | Button cells and method of producing same |
US11791493B2 (en) | 2009-02-09 | 2023-10-17 | Varta Microbattery Gmbh | Button cells and method of producing same |
US11276875B2 (en) | 2009-02-09 | 2022-03-15 | Varta Microbattery Gmbh | Button cells and method of producing same |
US11258092B2 (en) | 2009-02-09 | 2022-02-22 | Varta Microbattery Gmbh | Button cells and method of producing same |
US11233264B2 (en) | 2009-02-09 | 2022-01-25 | Varta Microbattery Gmbh | Button cells and method of producing same |
US11024904B2 (en) | 2009-06-18 | 2021-06-01 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US11024905B2 (en) | 2009-06-18 | 2021-06-01 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US10971776B2 (en) | 2009-06-18 | 2021-04-06 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US11024906B2 (en) | 2009-06-18 | 2021-06-01 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US11024907B1 (en) | 2009-06-18 | 2021-06-01 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US11791512B2 (en) | 2009-06-18 | 2023-10-17 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US11362384B2 (en) | 2009-06-18 | 2022-06-14 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US11362385B2 (en) | 2009-06-18 | 2022-06-14 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US11158896B2 (en) | 2009-06-18 | 2021-10-26 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US11217844B2 (en) | 2009-06-18 | 2022-01-04 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
US10804506B2 (en) | 2009-06-18 | 2020-10-13 | Varta Microbattery Gmbh | Button cell having winding electrode and method for the production thereof |
WO2011111255A1 (en) * | 2010-03-09 | 2011-09-15 | 日立マクセルエナジー株式会社 | Flat battery |
EP2533324A1 (en) * | 2010-03-09 | 2012-12-12 | Hitachi Maxell Energy Ltd. | Flat battery |
EP2533324A4 (en) * | 2010-03-09 | 2014-03-26 | Hitachi Maxell Energy Ltd | Flat battery |
US8679672B2 (en) | 2010-03-09 | 2014-03-25 | Hitachi Maxell, Ltd. | Flat battery |
KR101290223B1 (en) * | 2010-03-09 | 2013-07-30 | 히다치 막셀 가부시키가이샤 | Flat battery |
JP2015103738A (en) * | 2013-11-27 | 2015-06-04 | セイコーインスツル株式会社 | Electrochemical cell |
CN105070534A (en) * | 2015-09-08 | 2015-11-18 | 上海空间电源研究所 | Polar column sealing device for spatial super capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5022035B2 (en) | Secondary battery with surface mount terminals | |
JP6044789B2 (en) | Coin battery | |
WO2016143543A1 (en) | Nonaqueous electrolyte secondary battery | |
JP2008198552A (en) | Coin type electrochemical cell | |
KR20150087132A (en) | Nonaqueos electrolyte secondary battery | |
KR20240024162A (en) | Nonaqueous electrolyte secondary battery | |
JP4200326B2 (en) | Non-aqueous electrolyte primary battery | |
JP2014179203A (en) | Electrochemical cell | |
JP2009135384A (en) | Surface-mounting rectangular power storage cell | |
JP2006228468A (en) | Electrolyte secondary battery | |
JP5864174B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4824271B2 (en) | Gasket for electrochemical cell and electrochemical cell | |
JP4976623B2 (en) | Reflow solderable electrochemical cell | |
JP4945074B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5114955B2 (en) | Coin-shaped electrochemical cell | |
JP2007059650A (en) | Coin-shaped storage cell | |
JP6587929B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5854776B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2004327427A (en) | Coin type electrochemical cell and its sealing method | |
KR20040019964A (en) | non-aqueous electrolyte secondary battery | |
JP2018018797A (en) | Coin type lithium primary battery | |
JP2005191507A (en) | Coin-shaped storage element | |
JP4281428B2 (en) | Electrochemical element | |
JP2007035829A (en) | Electrochemical cell and its manufacturing method | |
JP4899360B2 (en) | Flat electrochemical element |