JP4976623B2 - Reflow solderable electrochemical cell - Google Patents

Reflow solderable electrochemical cell Download PDF

Info

Publication number
JP4976623B2
JP4976623B2 JP2001227593A JP2001227593A JP4976623B2 JP 4976623 B2 JP4976623 B2 JP 4976623B2 JP 2001227593 A JP2001227593 A JP 2001227593A JP 2001227593 A JP2001227593 A JP 2001227593A JP 4976623 B2 JP4976623 B2 JP 4976623B2
Authority
JP
Japan
Prior art keywords
gasket
negative electrode
thickness
electrochemical cell
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001227593A
Other languages
Japanese (ja)
Other versions
JP2003045382A (en
Inventor
俊二 渡邊
佳実 菅野
次夫 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2001227593A priority Critical patent/JP4976623B2/en
Publication of JP2003045382A publication Critical patent/JP2003045382A/en
Application granted granted Critical
Publication of JP4976623B2 publication Critical patent/JP4976623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムを吸蔵放出可能な物質、リチウム金属または合金負極を負極活物質とし、リチウムを吸蔵放出可能な物質を正極の活物質とし、リチウムイオン導電性の非水電解質を用いるコイン型(ボタン型)非水電解質二次電池のなかでリフローはんだ付け実装可能な非水電解質二次電池、または、活性炭等を電極活物質とするリフローはんだ付け実装可能な電気二重層キャパシタ等の電気化学セルに関するものである。
【0002】
【従来の技術】
従来よりコイン型(ボタン型)非水電解質二次電池または電気二重層キャパシタは、高エネルギー密度、軽量であるといった特徴により、機器のバックアップ用の電源としての用途が増加している。
【0003】
該電池またはキャパシタは、主にメモリーバックアップ電源として用いる場合、該電池またはキャパシタにハンダ付用の端子を溶接した後、メモリー素子とともにプリント基板上にハンダ付け実装されることが多い。従来、プリント基板上へのハンダ付は、ハンダこてを用いて行なわれていたが、機器の小型化あるいは高機能化にともない、プリント基板の同一面積内に搭載される電子部品を多くする必要が生じハンダ付のためにハンダこてを挿入する隙間を確保することが困難となってきた。また、ハンダ付け作業もコストダウンのため自動化が求められていた。
【0004】
そこであらかじめプリント基板上のハンダ付を行なう部分にハンダクリーム等を塗布しておきその部分に部品を載置するか、あるいは、部品を載置後ハンダ小球をハンダ付部分に供給し、ハンダ付部分がハンダの融点以上、例えば、200〜260℃となるように設定された高温雰囲気の炉内に部品を搭載したプリント基板を通過させることにより、ハンダを溶融させてハンダ付を行なう方法が用いられている(以下リフローハンダ付という)。
【0005】
リフローハンダ付けを行うためには、電池またはキャパシタ部材も耐熱性のものを用いなければならない。とりわけ、ガスケットは、ポリプロピレン(PP)から、耐熱性が高く硬質のエンジニアリングプラスチックが用いられるようになった。
【0006】
【発明が解決しようとする課題】
コイン型(ボタン型)でリフローハンダ付け実装可能な非水電解質二次電池または電気二重層キャパシタを製造する場合、内容積を大きくするため、ガスケットの立ち上がり部の厚さはできる限り薄く設計されてきた。
【0007】
フローハンダ付け実装可能な非水電解質二次電池のガスケットは、硬くてもろいエンジニアリングプラスチックを用いているため、PP製のガスケットに比べ、かしめ封口の衝撃で、切れやすくなっている。また、リフロー時においても、正負極缶の金属の熱膨張とエンジニアリングプラスチックの熱膨張が違うため切れやすくなっている。
【0008】
そのため、封口の適正条件を求めるのが非常に困難であった。負極缶の折り返しの寸法がばらつくと切れが発生し製造歩留まりを低下させたり、切れないように封口をあまくすると気密が低下し、電池性能が劣化することがあった。特にガスケットの負極缶折り返し頂点と正極缶で圧縮される部分は、非常に切れやすい構造となっている。かしめ封口やリフローはんだ付けにより、ガスケットが切れると、電池がショートしたり、ガスケットの気密性が低下し漏液(電解液が電池またはキャパシタ外部に漏れること)することがあった。
【0009】
【課題を解決するための手段】
図1に本発明のエンジニアリングプラスチック製ガスケットを用いたリフローハンダ付け実装可能な非水電解質二次電池のかしめ封口前における断面図を示した。
【0010】
ガスケット106に肉厚部205を設けた。肉厚開始部202は、負極缶折り返し頂点206より下になるようにした。また、ガスケットに肉厚部を設けても、負極が組み込みにくくならないよう、ガスケット立ち上がり上端に傾斜部を設けた。
【0011】
【発明の実施の形態】
図2に本発明のエンジニアリングプラスチック製ガスケットを用いたリフローハンダ付け実装可能な非水電解質二次電池のかしめ封口後における断面図を示した。
【0012】
ガスケット立ち上がり部を全体的に肉厚にすればかしめ封口時に、ガスケットが切れにくくなる。しかし、寸法規格の決まった電池やキャパシタにおいては、ガスケットを厚くするとその分負極缶を小さくしなければならず、結果として電池内容積が小さくなり、電池容量も小さくなってしまう。そこで本発明においては、ガスケット上部を、ガスケット内径方向に厚くすることを試みた。
【0013】
ガスケット106に肉厚部205を設けたことにより、ガスケット最大圧縮部208が締めすぎにより切れにくい構造となった。ガスケット最大圧縮部208の肉厚を増加するには、肉厚開始部202を負極缶折り返し頂点206より下にすることが重要である。封口時に負極缶が多少ガスケット106底面に沈み込むため、その分を考慮し肉厚開始部202を決める必要がある。
【0014】
また、肉厚部205を設けることにより負極缶くぼみ207に隙間がでにくくなり、電解液が隙間にたまりリフロー時にでてきたり、使用中に電解液で缶を腐食することがなくなった。
【0015】
肉厚部205の厚さB203は、なるべく厚い方がよいが、厚すぎると負極缶101を組み込めなくなる。ガスケット立ち上がりの厚さB203である肉厚部205の内径は、組み込まれる負極缶外径の95%以上の比率がよい。この内径が小さいと負極缶が組み込めない。内径が大きいと厚さB203を厚くすることができず効果が出ない。組み込み性および、ガスケットの肉厚の観点から、前記比率は97±1.5%が良好であった。
【0016】
組み込み性を向上させるため、ガスケット106上端に傾斜部204を設けることは有効である。この場合、ガスケット106立ち上がり上端の傾斜開始部の径は、組み込まれる負極缶101の外径より大きいこ方が、組み込みを容易にできるため、より肉厚部205を厚く設定できる。
【0017】
本発明は、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ポリエーテルエーテルケトン樹脂(PEEK)、ポリエーテルニトリル樹脂(PEN)等の高耐熱、硬質エンジニアリングプラスチックを用いたガスケットにおいて有効である。
【0018】
また、この材料に30重量%程度以下の添加量でガラス繊維、マイカウイスカー、セラミック微粉末等を添加したものであっても、本実験と同様の効果を発揮することが実験によって判明している。ガスケットの製造方法としては、射出成型法、熱圧縮法等がある。
【0019】
一般に、リフローはんだ付けを行うために、電池にはあらかじめ端子が取り付けられる。電極端子は、金属製で主に0.1〜0.3mm程度の板状のステンレス鋼が加工して用いられる。端子の回路基板とハンダ付けされる部分には、金めっき、ニッケルめっき、ハンダめっき等が施されることが多い。電池への溶接は、抵抗溶接法、レーザー溶接法などが用いられる。
以下、実施例により本発明を更に詳細に説明する。
【0020】
【実施例】
本実施例は、正極活物質としてMoO3、負極活物質としSiOを用いた場合である。下記のようにして作製した正極、負極及び電解液を用いた。また、電池の大きさは外径4.8mm、厚さ1.4mmであった。
【0021】
実施例1〜4として、正極は次の様にして作製した。 市販のMoO3を粉砕したものに導電剤としてグラファイトを、結着剤としてポリアクリル酸を重量比MoO3:グラファイト:ポリアクリル酸=53:45:2の割合で混合して正極合剤とし、次にこの正極合剤5mgを2ton/cm2で直径2.4mmのペレットに加圧成形した。その後、この様にして得られた正極ペレット104を炭素を含む導電性樹脂接着剤からなる電極集電体を用いて正極ケース105に接着し一体化した(正極ユニット化)後、250℃で8時間減圧加熱乾燥した。
【0022】
塗布する液体シール剤は、市販のブチルゴム系接着剤(ブチルゴム30重量%、残りトルエン)とブローンアスファルトをトルエンに溶かしたものを正極缶の内側に注射器により塗布し、ドライルーム内で120℃乾燥して用いた。
【0023】
負極は、次の様にして作製した。市販のSiOを粉砕したものを作用極の活物質として用いた。この活物質に導電剤としてグラファイトを、結着剤としてポリアクリル酸をそれぞれ重量比45:40:15の割合で混合して負極合剤とした。合剤1.1mgを2ton/cm2で直径2.1mmのペレットに加圧成形したものを用いた。その後、この様にして得られた負極ペレット102を炭素を導電性フィラーとする導電性樹脂接着剤からなる電極集電体を用いて負極缶101に接着し一体化した(負極ユニット化)後、250℃で8時間減圧加熱乾燥した。さらに、ペレット上にリチウムフォイルを直径2mm、厚さ0.2mmに打ち抜いたものを圧着し、リチウム−負極ペレット積層電極とした。厚さ0.2mmのガラス繊維からなる不織布を乾燥後φ3mmに打ち抜きセパレータ103とした。負極缶101の外径は4.21mmで折り返し頂点の高さは0.56のものを用いた。
【0024】
ガスケット106は、外径4.54mmで、肉厚部205の厚さB203は、0.20mm、厚さA201は0.165mmとした。肉厚部205の内径は、負極缶101外径の98.3%の比率であった。ガスケット101立ち上がり上端にガスケット中心方向に向かう傾斜は45度とした。立ち上がり上端の傾斜開始部の径は、4.34mmとした。
【0025】
比較例1〜4として、ガスケットの立ち上がり部の厚さが0.165mmで他の構成は同じ電池を作製した。ガスケット立ち上がり上端の中心方向に向かう傾斜は、設けなかった。ガスケット材質については表1に示した。
【0026】
【表1】

Figure 0004976623
【0027】
塗布する液体シール剤は、市販のブチルゴム系接着剤(ブチルゴム30重量%、残りトルエン)とブローンアスファルトをトルエンに溶かしたものをガスケットの溝に注射器により塗布し、ドライルーム内で120℃乾燥して用いた。
【0028】
電解液は、エチレンカーボネート(EC):γ−ブチロラクトン(γBL)の体積比1:1混合溶媒にホウフッ化リチウム(LiBF4)を1モル/l溶解したもの6μL、電池缶内に入れた。正極ユニットと負極ユニットを重ねかしめ封口することにより電池を作製した。電池は実施例も比較例もそれぞれ500個作製した。
作製した電池は、予備加熱180℃、3分、到達温度240℃のリフロー炉を通過させ、漏液とガスケット切れを評価した。
【0029】
結果を表1に示した。肉厚部を設けることにより、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ポリエーテルエーテルケトン樹脂(PEEK)、ポリエーテルニトリル樹脂(PEN)を用いたガスケットで漏液、ガスケット切れがなくなることがわかった。特に切れやすい液晶ポリマーを用いたガスケットの場合は、多少肉厚部を厚くすることが好ましい。
【0030】
本実施例では、リフローはんだ付け実装可能な非水電解質二次電池についてのみ説明したが、実施例同様の正極缶、負極缶、ガスケットを用いた電気二重層キャパシタにおいても同様の効果が確認できた。
【0031】
【発明の効果】
コイン型(ボタン型)でリフローハンダ付け実装可能な非水電解質二次電池または電気二重層キャパシタのガスケットにエンジニアリングプラスチックを用いた場合、かしめ封口やリフローはんだ付けにより、ガスケットが切れやすいという問題があったが、ガスケットに肉厚部を設けることにより切れにくくすることができた。また、ガスケットに肉厚部を設けても、負極が組み込みにくくならないよう、ガスケット立ち上がり上端に傾斜部を設け、より肉厚にできるようにした。
【0032】
これにより、かしめ封口やリフローはんだ付けで、ガスケットが切れて、電池がショートしたり、ガスケットの気密性が低下し漏液(電解液が電池外部に漏れること)することがなくなった。また、負極缶の製造による寸法ばらつきや、かしめ条件のばらつきも吸収できることになり、製造歩留まりが格段に向上した。
【図面の簡単な説明】
【図1】本発明のリフローはんだ付け実装可能な電気化学セルの封口前断面図
【図2】本発明のリフローはんだ付け実装可能な電気化学セルの封口後断面図
【符号の説明】
101 負極缶
102 負極ペレット
103 セパレータ
104 正極ペレット
105 正極缶
106 ガスケット
201 厚さA
202 肉厚開始部
203 厚さB
204 傾斜部
205 肉厚部
206 折り返し頂点
207 負極缶くぼみ
208 ガスケット最大圧縮部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coin type using a lithium ion conductive non-aqueous electrolyte as a material capable of occluding and releasing lithium, a lithium metal or alloy negative electrode as a negative electrode active material, a material capable of occluding and releasing lithium as a positive electrode active material. Electrochemical cells such as non-aqueous electrolyte secondary batteries that can be reflow soldered and mounted in non-aqueous electrolyte secondary batteries or electric double-layer capacitors that can be reflow soldered and mounted using activated carbon as an electrode active material. It is about.
[0002]
[Prior art]
Conventionally, a coin-type (button-type) non-aqueous electrolyte secondary battery or an electric double layer capacitor has been increasingly used as a power source for equipment backup due to its high energy density and light weight.
[0003]
When the battery or capacitor is mainly used as a memory backup power source, the battery or capacitor is often soldered and mounted on a printed circuit board together with a memory element after welding a soldering terminal to the battery or capacitor. Conventionally, soldering on a printed circuit board has been performed using a soldering iron. However, as equipment becomes smaller and more functional, more electronic components must be mounted within the same area of the printed circuit board. It has become difficult to secure a gap for inserting a soldering iron for soldering. Also, soldering work has been required to be automated for cost reduction.
[0004]
Therefore, solder cream or the like is applied in advance to the part to be soldered on the printed circuit board, and the part is placed on that part, or after placing the part, the solder balls are supplied to the soldered part and soldered. A method is used in which the solder is melted and soldered by passing the printed circuit board on which the component is mounted in a furnace in a high temperature atmosphere set so that the part is equal to or higher than the melting point of the solder, for example, 200 to 260 ° C. (Hereinafter referred to as reflow soldering).
[0005]
In order to perform reflow soldering, the battery or capacitor member must also be heat resistant. In particular, gaskets are made of hard engineering plastics having high heat resistance from polypropylene (PP).
[0006]
[Problems to be solved by the invention]
When manufacturing non-aqueous electrolyte secondary batteries or electric double layer capacitors that can be mounted with coin-type (button-type) reflow soldering, the thickness of the rising part of the gasket has been designed to be as thin as possible in order to increase the internal volume. It was.
[0007]
Since non-aqueous electrolyte secondary battery gaskets that can be mounted by flow soldering use hard and brittle engineering plastics, they are easier to cut by the impact of caulking seals than PP gaskets. In addition, even during reflow, the thermal expansion of the metal of the positive and negative electrode cans and the thermal expansion of the engineering plastic are different, so that they are easily cut.
[0008]
For this reason, it has been very difficult to obtain appropriate conditions for sealing. When the folded size of the negative electrode can varies, cutting may occur and the manufacturing yield may be reduced, or if the sealing is performed so that the negative electrode can not be cut, airtightness may be reduced, and battery performance may be deteriorated. In particular, the negative electrode can folded vertex of the gasket and the portion compressed by the positive electrode can have a structure that is very easy to cut. If the gasket is cut by caulking or reflow soldering, the battery may be short-circuited or the gasket may become less airtight and leak (electrolyte may leak outside the battery or capacitor).
[0009]
[Means for Solving the Problems]
FIG. 1 shows a cross-sectional view of a non-aqueous electrolyte secondary battery that can be mounted by reflow soldering using the engineering plastic gasket of the present invention before caulking and sealing.
[0010]
A thick part 205 was provided on the gasket 106. The wall thickness start part 202 was set to be lower than the negative electrode can folding vertex 206. Moreover, even if a thick part was provided in the gasket, an inclined part was provided at the upper end of the gasket so as not to make it difficult to incorporate the negative electrode.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 2 shows a cross-sectional view of a non-aqueous electrolyte secondary battery that can be mounted by reflow soldering using the engineering plastic gasket of the present invention after caulking and sealing.
[0012]
If the gasket rising portion is made thick as a whole, the gasket is difficult to cut at the time of caulking and sealing. However, in a battery or a capacitor with a fixed dimensional standard, if the gasket is thickened, the negative electrode can must be made smaller accordingly, resulting in a smaller battery internal volume and a smaller battery capacity. Therefore, in the present invention, an attempt was made to thicken the upper portion of the gasket in the gasket inner diameter direction.
[0013]
By providing the thick portion 205 in the gasket 106, the gasket maximum compression portion 208 has a structure that is difficult to cut due to overtightening. In order to increase the thickness of the gasket maximum compression portion 208, it is important to make the thickness start portion 202 below the negative electrode can folding vertex 206. Since the negative electrode can slightly sinks to the bottom surface of the gasket 106 at the time of sealing, it is necessary to determine the thickness start portion 202 in consideration of that amount.
[0014]
Further, by providing the thick portion 205, it becomes difficult to form a gap in the negative electrode can recess 207, so that the electrolyte does not accumulate in the gap and does not come out during reflow or corrodes the can with the electrolyte during use.
[0015]
The thickness B203 of the thick portion 205 is preferably as thick as possible, but if it is too thick, the negative electrode can 101 cannot be incorporated. The inner diameter of the thick portion 205, which is the gasket rising thickness B203, is preferably 95% or more of the outer diameter of the incorporated negative electrode can. If this inner diameter is small, the negative electrode can cannot be assembled. If the inner diameter is large, the thickness B203 cannot be increased, resulting in no effect. From the viewpoint of assemblability and the thickness of the gasket, the ratio was 97 ± 1.5%.
[0016]
In order to improve the assemblability, it is effective to provide the inclined portion 204 at the upper end of the gasket 106. In this case, the thicker portion 205 can be set thicker because the diameter of the tilt start portion at the upper end of the gasket 106 is larger than the outer diameter of the negative electrode can 101 to be incorporated, so that the incorporation can be facilitated.
[0017]
INDUSTRIAL APPLICABILITY The present invention is effective in a gasket using a high heat resistance and hard engineering plastic such as polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polyether ether ketone resin (PEEK), polyether nitrile resin (PEN).
[0018]
Further, it has been found by experiments that the same effect as this experiment is exhibited even when glass fiber, My Cowisker, ceramic fine powder or the like is added to this material at an addition amount of about 30% by weight or less. . As a method for manufacturing the gasket, there are an injection molding method, a thermal compression method, and the like.
[0019]
Generally, in order to perform reflow soldering, a terminal is previously attached to the battery. The electrode terminal is made of metal and is mainly processed from plate-shaped stainless steel of about 0.1 to 0.3 mm. Gold plating, nickel plating, solder plating, or the like is often applied to the portion of the terminal to be soldered with the circuit board. For welding to the battery, resistance welding, laser welding, or the like is used.
Hereinafter, the present invention will be described in more detail with reference to examples.
[0020]
【Example】
In this example, MoO3 is used as the positive electrode active material and SiO is used as the negative electrode active material. A positive electrode, a negative electrode and an electrolytic solution prepared as described below were used. The size of the battery was 4.8 mm in outer diameter and 1.4 mm in thickness.
[0021]
As Examples 1-4, the positive electrode was produced as follows. Commercially available MoO3 is pulverized and mixed with graphite as a conductive agent and polyacrylic acid as a binder in a weight ratio of MoO3: graphite: polyacrylic acid = 53: 45: 2 to obtain a positive electrode mixture, 5 mg of this positive electrode mixture was press-molded into pellets having a diameter of 2.4 mm at 2 ton / cm 2. Thereafter, the positive electrode pellet 104 obtained in this way was bonded and integrated with the positive electrode case 105 by using an electrode current collector made of a conductive resin adhesive containing carbon (made into a positive electrode unit), and then 8 ° C. at 250 ° C. It was dried by heating under reduced pressure for an hour.
[0022]
The liquid sealant to be applied is a commercially available butyl rubber adhesive (butyl rubber 30% by weight, the remaining toluene) and blown asphalt dissolved in toluene, applied to the inside of the positive electrode can with a syringe, and dried in a dry room at 120 ° C. Used.
[0023]
The negative electrode was produced as follows. A commercially available SiO pulverized material was used as the active electrode active material. This active material was mixed with graphite as a conductive agent and polyacrylic acid as a binder at a weight ratio of 45:40:15 to obtain a negative electrode mixture. 1.1 mg of the mixture was pressure-molded into pellets having a diameter of 2.1 mm at 2 ton / cm 2. Then, the negative electrode pellet 102 obtained in this way was bonded and integrated to the negative electrode can 101 using an electrode current collector made of a conductive resin adhesive containing carbon as a conductive filler (negative electrode unitization). The mixture was dried under reduced pressure at 250 ° C. for 8 hours. Further, a lithium foil punched out to a diameter of 2 mm and a thickness of 0.2 mm on the pellet was pressure-bonded to obtain a lithium-negative electrode pellet laminated electrode. A non-woven fabric made of glass fiber having a thickness of 0.2 mm was dried and punched out to 3 mm to obtain a separator 103. The negative electrode can 101 had an outer diameter of 4.21 mm and a folded vertex height of 0.56.
[0024]
The gasket 106 had an outer diameter of 4.54 mm, the thickness B203 of the thick portion 205 was 0.20 mm, and the thickness A201 was 0.165 mm. The inner diameter of the thick part 205 was 98.3% of the outer diameter of the negative electrode can 101. The inclination toward the gasket center direction at the upper end of the gasket 101 was 45 degrees. The diameter of the slope start part at the top of the rising edge was 4.34 mm.
[0025]
As Comparative Examples 1 to 4, batteries having the same rising configuration thickness of 0.165 mm and other configurations were fabricated. An inclination toward the center of the upper end of the gasket was not provided. The gasket material is shown in Table 1.
[0026]
[Table 1]
Figure 0004976623
[0027]
The liquid sealant to be applied is a commercially available butyl rubber adhesive (butyl rubber 30% by weight, remaining toluene) and blown asphalt dissolved in toluene, applied to the groove of the gasket with a syringe, and dried in a dry room at 120 ° C. Using.
[0028]
6 μL of an electrolytic solution prepared by dissolving 1 mol / l of lithium borofluoride (LiBF 4) in a 1: 1 mixed solvent of ethylene carbonate (EC): γ-butyrolactone (γBL) was placed in a battery can. A positive electrode unit and a negative electrode unit were overlapped and sealed to produce a battery. 500 batteries were prepared for each of the examples and comparative examples.
The produced battery was passed through a reflow furnace having a preheating of 180 ° C. for 3 minutes and an ultimate temperature of 240 ° C., and leakage and gasket breakage were evaluated.
[0029]
The results are shown in Table 1. By providing a thick part, leakage and gasket breakage can be eliminated with gaskets using polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polyetheretherketone resin (PEEK), and polyethernitrile resin (PEN). all right. In particular, in the case of a gasket using a liquid crystal polymer that is easy to cut, it is preferable to increase the thickness part somewhat.
[0030]
In this example, only the non-aqueous electrolyte secondary battery that can be mounted by reflow soldering was described, but the same effect could be confirmed even in an electric double layer capacitor using the same positive electrode can, negative electrode can, and gasket as in the example. .
[0031]
【Effect of the invention】
When engineering plastic is used for a gasket of a non-aqueous electrolyte secondary battery or electric double layer capacitor that can be mounted with coin-type (button-type) reflow soldering, there is a problem that the gasket is easily cut by caulking or reflow soldering. However, it was possible to make the gasket difficult to cut by providing a thick portion on the gasket. Moreover, even if a thick part is provided in the gasket, an inclined part is provided at the upper end of the gasket so that the negative electrode is not easily incorporated, so that it can be made thicker.
[0032]
As a result, the gasket is not cut and the battery is short-circuited by the caulking sealing or reflow soldering, and the gas tightness of the gasket is not lowered and the liquid is not leaked (the electrolyte is leaked to the outside of the battery). In addition, dimensional variations due to the manufacture of negative electrode cans and variations in caulking conditions can be absorbed, and the manufacturing yield is greatly improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an electrochemical cell that can be mounted by reflow soldering according to the present invention before sealing. FIG. 2 is a cross-sectional view of the electrochemical cell that can be mounted by reflow soldering after sealing.
101 Negative electrode can 102 Negative electrode pellet 103 Separator 104 Positive electrode pellet 105 Positive electrode can 106 Gasket 201 Thickness A
202 Thickness start portion 203 Thickness B
204 Inclined part 205 Thick part 206 Folding vertex 207 Negative electrode can recess 208 Gasket maximum compression part

Claims (5)

正極と負極と非水溶媒、支持塩を含む電解液とセパレータ等を内部に含み、エンジニアリングプラスチック製のガスケットを介し正極缶と負極缶でかしめ封口してなる電気化学セルにおいて
前記ガスケットは、負極缶の内面の段部分に接し、
記ガスケットの外側立ち上がり上部の厚さBが、立ち上がり下部の厚さAより厚いことを特徴とする電気化学セル。
In an electrochemical cell comprising a positive electrode, a negative electrode, a nonaqueous solvent, an electrolyte containing a supporting salt, a separator, and the like, and caulked and sealed with a positive electrode can and a negative electrode can through an engineering plastic gasket ,
The gasket is in contact with the step portion on the inner surface of the negative electrode can,
The thickness B of the outer rising top before Symbol gasket, an electrochemical cell, wherein the thicker than the rising lower thickness A.
前記ガスケットの前記厚さBである肉厚部の内径が、前記負極缶外径の97±1.5%であることを特徴とする請求項1に記載の電気化学セル。2. The electrochemical cell according to claim 1, wherein an inner diameter of the thick portion which is the thickness B of the gasket is 97 ± 1.5% of an outer diameter of the negative electrode can. 前記ガスケット立ち上がりの前記厚さBである肉厚部の肉厚開始部が、組み込まれる負極缶の折り返し頂点より下であることを特徴とする請求項1または2に記載の電気化学セル。 3. The electrochemical cell according to claim 1, wherein a thickness start portion of the thick portion, which is the thickness B of the gasket rising, is below a folded vertex of the negative electrode can to be incorporated. 前記ガスケット立ち上がり上端にガスケット中心方向に向かう傾斜を有することを特徴とする請求項1から3のいずれか一項に記載の電気化学セル。The electrochemical cell according to any one of claims 1 to 3, wherein the upper end of the gasket has an inclination toward the center of the gasket. 前記ガスケット立ち上がり上端の傾斜開始部の径が、組み込まれる負極缶外径より大きいことを特徴とする請求項4記載の電気化学セル。  The electrochemical cell according to claim 4, wherein a diameter of the inclined start portion at the upper end of the gasket is larger than an outer diameter of the negative electrode can to be incorporated.
JP2001227593A 2001-07-27 2001-07-27 Reflow solderable electrochemical cell Expired - Lifetime JP4976623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001227593A JP4976623B2 (en) 2001-07-27 2001-07-27 Reflow solderable electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001227593A JP4976623B2 (en) 2001-07-27 2001-07-27 Reflow solderable electrochemical cell

Publications (2)

Publication Number Publication Date
JP2003045382A JP2003045382A (en) 2003-02-14
JP4976623B2 true JP4976623B2 (en) 2012-07-18

Family

ID=19060230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001227593A Expired - Lifetime JP4976623B2 (en) 2001-07-27 2001-07-27 Reflow solderable electrochemical cell

Country Status (1)

Country Link
JP (1) JP4976623B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4824271B2 (en) * 2003-10-16 2011-11-30 セイコーインスツル株式会社 Gasket for electrochemical cell and electrochemical cell
JP5039884B2 (en) * 2006-08-29 2012-10-03 セイコーインスツル株式会社 Electrochemical cell
US8003251B2 (en) * 2006-12-07 2011-08-23 Rovcal, Inc. Electrochemical cell grommet having a sidewall with a nonuniform thickness
JP5839802B2 (en) * 2010-03-15 2016-01-06 セイコーインスツル株式会社 Gasket for electrochemical cell and electrochemical cell
JP5681005B2 (en) * 2011-03-14 2015-03-04 日立マクセル株式会社 Flat battery
CN109585721A (en) * 2019-01-17 2019-04-05 潍坊裕元电子有限公司 A kind of miniature rechargeable lithium battery structure therein component of button
WO2023119793A1 (en) * 2021-12-24 2023-06-29 パナソニックIpマネジメント株式会社 Coin-shaped battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729250Y2 (en) * 1977-04-08 1982-06-25
JP4318800B2 (en) * 1998-12-24 2009-08-26 セイコーインスツル株式会社 Non-aqueous electrolyte secondary battery for reflow soldering
JP2000251935A (en) * 1999-03-04 2000-09-14 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2003007270A (en) * 2001-06-21 2003-01-10 Nok Corp Gasket for battery

Also Published As

Publication number Publication date
JP2003045382A (en) 2003-02-14

Similar Documents

Publication Publication Date Title
JP4550519B2 (en) Electrochemical cell and method for producing the same
US6445566B2 (en) Power source element
US6713215B2 (en) Non-aqueous electrolyte rechargeable batteries
JP5022035B2 (en) Secondary battery with surface mount terminals
JP4817778B2 (en) Battery case and battery, and electric double layer capacitor case and electric double layer capacitor
JP6274388B2 (en) Electrochemical cell and method for producing the same
JP2000195494A (en) Non-aqueous electrolyte secondary battery
US7031140B2 (en) Electric double layer capacitor, electrolytic cell and process for fabricating same
JP2004356009A (en) Electrochemical cell
KR20150087131A (en) Nonaqueos electrolyte secondary battery
US20040219424A1 (en) Non-aqueous electrolyte secondary battery
JP2006236699A (en) Electrochemical cell
JP4976623B2 (en) Reflow solderable electrochemical cell
JP4149349B2 (en) Secondary battery and manufacturing method thereof
JP4392189B2 (en) Coin-type non-aqueous electrolyte secondary battery for reflow soldering
JP2007035431A (en) Nonaqueous electrolyte secondary battery
JP5588539B2 (en) Electrochemical cell
KR20140106391A (en) Nonaqueous electrolytic secondary battery
JP4824271B2 (en) Gasket for electrochemical cell and electrochemical cell
JP4824279B2 (en) Electrochemical cell
JP6362063B2 (en) Electrochemical cell
JP4909470B2 (en) Nonaqueous electrolyte secondary battery
JP5854776B2 (en) Nonaqueous electrolyte secondary battery
JP5341960B2 (en) Electrochemical cell
JP5813821B2 (en) Electrochemical cell

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4976623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250