JP5114371B2 - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP5114371B2
JP5114371B2 JP2008313632A JP2008313632A JP5114371B2 JP 5114371 B2 JP5114371 B2 JP 5114371B2 JP 2008313632 A JP2008313632 A JP 2008313632A JP 2008313632 A JP2008313632 A JP 2008313632A JP 5114371 B2 JP5114371 B2 JP 5114371B2
Authority
JP
Japan
Prior art keywords
coil
resonance
impedance
primary
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008313632A
Other languages
Japanese (ja)
Other versions
JP2010141976A (en
Inventor
慎平 迫田
定典 鈴木
和良 高田
健一 中田
幸宏 山本
真士 市川
哲浩 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2008313632A priority Critical patent/JP5114371B2/en
Priority to CN2009801487017A priority patent/CN102239622A/en
Priority to US13/133,328 priority patent/US20110241440A1/en
Priority to KR1020117012301A priority patent/KR101248453B1/en
Priority to PCT/JP2009/070416 priority patent/WO2010067763A1/en
Priority to EP09831867A priority patent/EP2357717A1/en
Publication of JP2010141976A publication Critical patent/JP2010141976A/en
Application granted granted Critical
Publication of JP5114371B2 publication Critical patent/JP5114371B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、非接触電力伝送装置に係り、詳しくは共鳴型の非接触電力伝送装置に関する。   The present invention relates to a contactless power transmission device, and more particularly to a resonance type contactless power transmission device.

非接触電力伝送装置として、例えば非特許文献1及び特許文献1に記載されたものが知られている。この非接触電力伝送装置は、図5に示すように、二つの銅線コイル51,52を離れた状態で配置し、一方の銅線コイル51から他方の銅線コイル52に電磁場の共鳴によって電力を伝送することが紹介されている。具体的には、交流電源53に接続された1次コイル54で発生した磁場を銅線コイル51,52による磁場共鳴により増強し、2次コイル55により増強された銅線コイル52付近の磁場から電磁誘導を利用して電力を取り出し、負荷56に供給する。そして、半径30cmの銅線コイル51,52を2m離して配置した場合に、負荷56としての60Wの電灯を点灯できることが確認されている。
NIKKEI ELECTRONICS 2007.12.3 117頁〜128頁 国際公開特許WO/2007/008646 A2
As a non-contact power transmission device, for example, those described in Non-Patent Literature 1 and Patent Literature 1 are known. As shown in FIG. 5, this non-contact power transmission device is arranged with two copper wire coils 51, 52 separated from each other, and power is transferred from one copper wire coil 51 to the other copper wire coil 52 by resonance of an electromagnetic field. Has been introduced. Specifically, the magnetic field generated by the primary coil 54 connected to the AC power source 53 is enhanced by magnetic field resonance by the copper wire coils 51 and 52, and the magnetic field near the copper wire coil 52 enhanced by the secondary coil 55 is used. Electric power is extracted using electromagnetic induction and supplied to the load 56. And when the copper wire coils 51 and 52 of radius 30cm are arrange | positioned 2 m apart, it has been confirmed that the 60W electric lamp as the load 56 can be lighted.
NIKKEI ELECTRONICS 2007.12.3 pages 117-128 International Patent Publication WO / 2007/008646 A2

この共鳴型非接触電力伝送装置において交流電源の電力を負荷に効率良く供給するには、交流電源から電力を効率良く共鳴系に供給することが必要になる。ところが、非特許文献1及び特許文献1にはこの非接触電力伝送装置を設計(製造)する際における、送信側(送電側)の銅線コイル51、受信側(受電側)の銅線コイル52の共鳴周波数と交流電源の出力交流の周波数との関係が明記されていない。   In this resonance type non-contact power transmission device, in order to efficiently supply the power of the AC power source to the load, it is necessary to efficiently supply the power from the AC power source to the resonance system. However, in Non-Patent Document 1 and Patent Document 1, when designing (manufacturing) this non-contact power transmission device, a copper wire coil 51 on the transmission side (power transmission side) and a copper wire coil 52 on the reception side (power reception side). The relationship between the resonance frequency of the AC and the output AC frequency of the AC power supply is not specified.

送電側と受電側との距離が一定で、かつ受電側に接続される負荷の抵抗が一定の状態で使用される非接触電力伝送装置の場合は、最初に共鳴系の共鳴周波数となる交流電源53の出力周波数を実験により求めて、その周波数で交流電源53から1次コイル54に交流電圧を出力すればよい。しかし、共鳴コイル間の距離、即ち2つの銅線コイル51,52間の距離や負荷56の抵抗値が変化すると、共鳴系の共鳴周波数における共鳴系の入力インピーダンスが変化する。そのため、交流電源53と共鳴系の入力インピーダンスとのマッチングが取れなくなり、交流電源53への反射電力が増えるため、電力を効率良く負荷56に供給することができない。ここで、「共鳴系の共鳴周波数」とは、電力伝送効率ηが最大になる周波数を意味する。   In the case of a non-contact power transmission device that is used in a state where the distance between the power transmission side and the power reception side is constant and the resistance of the load connected to the power reception side is constant, the AC power supply that first becomes the resonance frequency of the resonance What is necessary is just to obtain | require the output frequency of 53 by experiment, and to output an alternating voltage from the alternating current power supply 53 to the primary coil 54 with the frequency. However, when the distance between the resonance coils, that is, the distance between the two copper wire coils 51 and 52 and the resistance value of the load 56 change, the input impedance of the resonance system at the resonance frequency of the resonance system changes. Therefore, matching between the AC power supply 53 and the input impedance of the resonance system cannot be achieved, and the reflected power to the AC power supply 53 increases, so that the power cannot be efficiently supplied to the load 56. Here, the “resonance frequency of the resonance system” means a frequency at which the power transmission efficiency η is maximized.

本発明の目的は、共鳴系の状態である2つの共鳴コイル間の距離や負荷の少なくとも一方が変化しても、交流電源の交流出力電圧の周波数を変更せずに、交流電源から電力を効率良く負荷に供給することができる非接触電力伝送装置を提供することにある。   The object of the present invention is to efficiently use power from an AC power source without changing the frequency of the AC output voltage of the AC power source even if at least one of the distance between the two resonance coils and the load in the resonance system changes. An object of the present invention is to provide a non-contact power transmission device that can supply a load well.

前記の目的を達成するため、請求項1に記載の発明は、交流電源と、前記交流電源に接続された1次コイルと、1次側共鳴コイルと、2次側共鳴コイルと、2次コイルと、前記2次コイルに接続された負荷と、前記交流電源と前記1次コイルとの間に設けられたインピーダンス可変回路とを備える。前記1次コイル、前記1次側共鳴コイル、前記2次側共鳴コイル、前記2次コイル及び前記負荷は共鳴系を構成する。前記共鳴系の状態を検出する状態検出手段を備え、前記インピーダンス可変回路は、前記状態検出手段の検出結果に基づいて前記共鳴系の共鳴周波数における入力インピーダンスと、前記1次コイルより前記交流電源側のインピーダンスとが合うようにインピーダンスが調整される。   In order to achieve the above object, an invention according to claim 1 is an AC power supply, a primary coil connected to the AC power supply, a primary resonance coil, a secondary resonance coil, and a secondary coil. And a load connected to the secondary coil, and an impedance variable circuit provided between the AC power source and the primary coil. The primary coil, the primary resonance coil, the secondary resonance coil, the secondary coil, and the load constitute a resonance system. State detection means for detecting the state of the resonance system, and the impedance variable circuit includes an input impedance at a resonance frequency of the resonance system based on a detection result of the state detection means, and the AC power supply side from the primary coil. The impedance is adjusted so as to match the impedance.

ここで、「交流電源」とは、交流電圧を出力する電源を意味し、直流電源から入力された直流を交流に変換して出力するものも含む。また、「共鳴系の入力インピーダンス」とは、1次コイルの両端で測定した共鳴系全体のインピーダンスを指す。また、「共鳴系の状態」とは、1次側共鳴コイルと2次側共鳴コイルとの位置関係(例えば、両者の距離)や負荷の大きさのように、共鳴系の共鳴周波数における共鳴系の入力インピーダンスに影響を与えるものを意味する。また、「入力インピーダンスと、1次コイルより交流電源側のインピーダンスとが合う」とは、両インピーダンスの整合が完全にとれていることだけでなく、例えば、非接触電力伝送装置の電力伝送効率80%以上、又は交流電源への反射電力が5%以下等、所望の性能を達成する範囲内での差異は許容される。例えば、両インピーダンスの差が±10%の範囲内、好ましくは±5%の範囲内であることも意味する。   Here, the “AC power supply” means a power supply that outputs an AC voltage, and includes an output that converts a DC input from a DC power supply into an AC. The “resonance system input impedance” refers to the impedance of the entire resonance system measured at both ends of the primary coil. The “resonance system state” means the resonance system at the resonance frequency of the resonance system, such as the positional relationship between the primary resonance coil and the secondary resonance coil (for example, the distance between them) and the magnitude of the load. It means something that affects the input impedance. Further, “the input impedance matches the impedance on the AC power supply side from the primary coil” not only means that both impedances are perfectly matched, but also, for example, the power transmission efficiency 80 of the non-contact power transmission device. Difference within a range that achieves desired performance, such as at least% or reflected power to an AC power source of 5% or less, is allowed. For example, it also means that the difference between both impedances is within a range of ± 10%, preferably within a range of ± 5%.

この発明によれば、状態検出手段により共鳴系の状態、例えば、2つの共鳴コイル間の距離や負荷が検出され、共鳴系の状態が共鳴周波数を設定する際に基準とした状態から変化すると、インピーダンス可変回路のインピーダンスが、共鳴系の共鳴周波数における入力インピーダンスと、1次コイルより交流電源側のインピーダンスとが合うように調整される。そのため、2つの共鳴コイル間の距離や負荷が共鳴周波数を設定する際に基準とした値から変化した場合、交流電源の交流出力電圧の周波数を変更しなくても、交流電源への反射電力を低減して、交流電源から電力を効率良く負荷に供給することができる。   According to the present invention, the state of the resonance system, for example, the distance or load between the two resonance coils is detected by the state detection means, and when the state of the resonance system changes from the reference state when setting the resonance frequency, The impedance of the variable impedance circuit is adjusted so that the input impedance at the resonance frequency of the resonance system matches the impedance on the AC power supply side from the primary coil. Therefore, if the distance or load between the two resonance coils changes from the reference value when setting the resonance frequency, the reflected power to the AC power supply can be reduced without changing the frequency of the AC output voltage of the AC power supply. The power can be efficiently supplied from the AC power source to the load.

請求項2に記載の発明は、請求項1に記載の発明において、前記状態検出手段は、前記1次側共鳴コイルと前記2次側共鳴コイルとの距離を測定する距離測定手段であり、前記インピーダンス可変回路は、前記距離測定手段の測定結果に基づいてインピーダンスが調整される。   According to a second aspect of the present invention, in the first aspect of the invention, the state detection unit is a distance measurement unit that measures a distance between the primary resonance coil and the secondary resonance coil. The impedance variable circuit adjusts the impedance based on the measurement result of the distance measuring means.

この発明によれば、距離測定手段の測定結果に基づいて2つの共鳴コイルの距離が変化したことが確認されると、インピーダンス可変回路のインピーダンスが調整されて、1次コイルより交流電源側のインピーダンスと、共鳴系の共鳴周波数における入力インピーダンスとが合う状態に維持される。   According to the present invention, when it is confirmed that the distance between the two resonance coils has changed based on the measurement result of the distance measuring means, the impedance of the impedance variable circuit is adjusted, and the impedance on the AC power supply side from the primary coil is adjusted. And the input impedance at the resonance frequency of the resonance system are maintained in a matched state.

請求項3に記載の発明は、請求項1に記載の発明において、前記状態検出手段は、前記負荷の大きさを検出する負荷検出手段であり、前記インピーダンス可変回路は、前記負荷検出手段の検出結果に基づいてインピーダンスが調整される。この発明によれば、負荷検出手段の検出結果に基づいて負荷の変化が確認されると、インピーダンス可変回路のインピーダンスが調整されて、1次コイルより交流電源側のインピーダンスと、共鳴系の共鳴周波数における入力インピーダンスとが合う状態に維持される。   The invention according to claim 3 is the invention according to claim 1, wherein the state detecting means is load detecting means for detecting the magnitude of the load, and the variable impedance circuit is detected by the load detecting means. The impedance is adjusted based on the result. According to this invention, when a change in the load is confirmed based on the detection result of the load detection means, the impedance of the impedance variable circuit is adjusted, and the impedance on the AC power supply side from the primary coil and the resonance frequency of the resonance system Is maintained in a state that matches the input impedance.

本発明によれば、共鳴系の状態である2つの共鳴コイル間の距離や負荷の少なくとも一方が変化しても、交流電源の交流出力電圧の周波数を変更せずに、交流電源から電力を効率良く負荷に供給することができる。   According to the present invention, even if at least one of the distance between the two resonance coils and the load that are in the resonance system changes, the power from the AC power source is efficiently changed without changing the frequency of the AC output voltage of the AC power source. It can supply the load well.

(第1の実施形態)
以下、本発明を具体化した第1の実施形態を図面にしたがって説明する。
図1は、非接触電力伝送装置10の構成を模式的に示す。図1に示すように、非接触電力伝送装置10は、交流電源11と、交流電源11に接続された1次コイル12と、1次側共鳴コイル13と、2次側共鳴コイル14と、2次コイル15と、2次コイル15に接続された負荷16と、交流電源11と1次コイル12との間に設けられたインピーダンス可変回路17とを備えている。1次側共鳴コイル13及び2次側共鳴コイル14にはそれぞれコンデンサ18,19が並列に接続されている。1次コイル12、1次側共鳴コイル13、2次側共鳴コイル14、2次コイル15、負荷16及びコンデンサ18,19は共鳴系20を構成する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 schematically shows the configuration of the non-contact power transmission apparatus 10. As shown in FIG. 1, the non-contact power transmission device 10 includes an AC power supply 11, a primary coil 12 connected to the AC power supply 11, a primary resonance coil 13, a secondary resonance coil 14, 2 A secondary coil 15, a load 16 connected to the secondary coil 15, and an impedance variable circuit 17 provided between the AC power supply 11 and the primary coil 12 are provided. Capacitors 18 and 19 are connected in parallel to the primary resonance coil 13 and the secondary resonance coil 14, respectively. The primary coil 12, the primary resonance coil 13, the secondary resonance coil 14, the secondary coil 15, the load 16 and the capacitors 18 and 19 constitute a resonance system 20.

交流電源11は、交流電圧を出力する電源である。交流電源11の出力交流電圧の周波数は、共鳴系20の共鳴周波数に設定されている。
1次コイル12、1次側共鳴コイル13、2次側共鳴コイル14及び2次コイル15は電線により形成されている。コイルを構成する電線には、例えば、絶縁ビニル被覆線が使用される。コイルの巻径や巻数は、伝送しようとする電力の大きさ等に対応して適宜設定される。この実施形態では1次コイル12、1次側共鳴コイル13、2次側共鳴コイル14及び2次コイル15は、同じ巻径に形成されている。1次側共鳴コイル13及び2次側共鳴コイル14は同じに形成され、各コンデンサ18,19として同じコンデンサが使用されている。
The AC power supply 11 is a power supply that outputs an AC voltage. The frequency of the output AC voltage of the AC power supply 11 is set to the resonance frequency of the resonance system 20.
The primary coil 12, the primary side resonance coil 13, the secondary side resonance coil 14, and the secondary coil 15 are formed of electric wires. For the electric wire constituting the coil, for example, an insulated vinyl-coated wire is used. The winding diameter and the number of turns of the coil are appropriately set according to the magnitude of power to be transmitted. In this embodiment, the primary coil 12, the primary side resonance coil 13, the secondary side resonance coil 14, and the secondary coil 15 are formed in the same winding diameter. The primary resonance coil 13 and the secondary resonance coil 14 are formed in the same manner, and the same capacitors are used as the capacitors 18 and 19.

インピーダンス可変回路17は、2つの可変コンデンサ21,22とインダクタ23とから構成されている。一方の可変コンデンサ21は交流電源11に並列に接続され、他方の可変コンデンサ22は1次コイル12に並列に接続されている。インダクタ23は両可変コンデンサ21,22間に接続されている。インピーダンス可変回路17は、可変コンデンサ21,22の容量が変更されることでそのインピーダンスが変更される。インピーダンス可変回路17は、共鳴系20の共鳴周波数における入力インピーダンスZinと、1次コイル12より交流電源11側のインピーダンスとが合うようにインピーダンスが調整される。可変コンデンサ21,22は、例えば、図示しない回転軸がモータにより駆動される公知の構成で、モータが制御装置24からの駆動信号により駆動されるようになっている。   The impedance variable circuit 17 is composed of two variable capacitors 21 and 22 and an inductor 23. One variable capacitor 21 is connected to the AC power supply 11 in parallel, and the other variable capacitor 22 is connected to the primary coil 12 in parallel. The inductor 23 is connected between the variable capacitors 21 and 22. The impedance variable circuit 17 is changed in impedance by changing the capacitance of the variable capacitors 21 and 22. The impedance variable circuit 17 adjusts the impedance so that the input impedance Zin at the resonance frequency of the resonance system 20 matches the impedance on the AC power supply 11 side from the primary coil 12. The variable capacitors 21 and 22 have a known configuration in which, for example, a rotation shaft (not shown) is driven by a motor, and the motor is driven by a drive signal from the control device 24.

図2は、非接触電力伝送装置10を移動体(例えば、車両)30に搭載された2次電池31に対して非接触充電を行うシステムに適用した場合の充電装置32と移動体30とを模式的に示す。2次側共鳴コイル14、2次コイル15、整流回路34及び負荷16としての2次電池31が移動体30に搭載されている。交流電源11、1次コイル12、1次側共鳴コイル13、インピーダンス可変回路17及び制御装置24は、2次電池31に非接触状態で充電を行う充電装置32に装備されている。充電装置32は充電ステーションに設けられている。   FIG. 2 illustrates a charging device 32 and a moving body 30 when the non-contact power transmission device 10 is applied to a system that performs non-contact charging with respect to a secondary battery 31 mounted on a moving body (for example, a vehicle) 30. This is shown schematically. The secondary resonance coil 14, the secondary coil 15, the rectifier circuit 34, and the secondary battery 31 as the load 16 are mounted on the moving body 30. The AC power source 11, the primary coil 12, the primary side resonance coil 13, the impedance variable circuit 17, and the control device 24 are provided in a charging device 32 that charges the secondary battery 31 in a non-contact state. The charging device 32 is provided in the charging station.

充電装置32は、共鳴系20の状態を検出する状態検出手段として機能する距離測定手段としての距離センサ33を備えている。距離センサ33は、移動体30が充電位置に停止した状態において移動体30との距離を測定し、間接的に1次側共鳴コイル13と2次側共鳴コイル14との距離を測定する。   The charging device 32 includes a distance sensor 33 as a distance measuring unit that functions as a state detecting unit that detects the state of the resonance system 20. The distance sensor 33 measures the distance from the moving body 30 while the moving body 30 is stopped at the charging position, and indirectly measures the distance between the primary side resonance coil 13 and the secondary side resonance coil 14.

制御装置24はCPU35及びメモリ36を備えている。メモリ36には、1次側共鳴コイル13と2次側共鳴コイル14との距離と、共鳴系20の共鳴周波数における入力インピーダンスZinとの関係を示すデータがマップ又は関係式として記憶されている。このデータは予め試験により求められる。また、メモリ36には、交流電源11の出力周波数を変更せずに、入力インピーダンスZinと、1次コイル12より交流電源11側のインピーダンスとが合うように、インピーダンス可変回路17のインピーダンスを調整するための可変コンデンサ21,22の容量と入力インピーダンスZinとの関係を示すデータが記憶されている。「入力インピーダンスZinと、1次コイル12より交流電源11側のインピーダンスとが合う」とは、両インピーダンスの整合が完全にとれていることだけでなく、例えば、非接触電力伝送装置10の電力伝送効率80%以上、又は交流電源11への反射電力が5%以下等、所望の性能を達成する範囲内での差異は許容される。例えば、両インピーダンスの差が±10%の範囲内、好ましくは±5%の範囲内であることも意味する。   The control device 24 includes a CPU 35 and a memory 36. The memory 36 stores data indicating the relationship between the distance between the primary resonance coil 13 and the secondary resonance coil 14 and the input impedance Zin at the resonance frequency of the resonance system 20 as a map or a relational expression. This data is obtained in advance by testing. The memory 36 adjusts the impedance of the impedance variable circuit 17 so that the input impedance Zin matches the impedance on the AC power supply 11 side from the primary coil 12 without changing the output frequency of the AC power supply 11. Data indicating the relationship between the capacitance of the variable capacitors 21 and 22 and the input impedance Zin is stored. “The input impedance Zin matches the impedance on the AC power supply 11 side from the primary coil 12” not only means that both impedances are perfectly matched, but also, for example, power transmission of the non-contact power transmission device 10 Differences within a range that achieves desired performance, such as efficiency of 80% or more, or reflected power to the AC power supply 11 of 5% or less, are allowed. For example, it also means that the difference between both impedances is within a range of ± 10%, preferably within a range of ± 5%.

次に前記のように構成された非接触電力伝送装置10の作用を説明する。
2次電池31への充電時には、移動体30が充電装置32の近くの充電位置に停止した状態で充電が行われる。移動体30が充電位置に停止すると、距離センサ33が移動体30との距離を測定する。制御装置24は、距離センサ33の出力信号を入力して、距離センサ33の測定結果から1次側共鳴コイル13と2次側共鳴コイル14との距離を演算する。制御装置24は、演算された距離に適した可変コンデンサ21,22の容量をメモリ36に記憶されたデータから決定する。次に制御装置24は、可変コンデンサ21,22の容量を充電時における適切な容量に変更するように可変コンデンサ21,22に駆動信号を出力する。そして、可変コンデンサ21,22の容量が共鳴コイル間の距離に適した値に変更される。
Next, the operation of the non-contact power transmission apparatus 10 configured as described above will be described.
When charging the secondary battery 31, charging is performed in a state where the moving body 30 is stopped at the charging position near the charging device 32. When the moving body 30 stops at the charging position, the distance sensor 33 measures the distance from the moving body 30. The control device 24 inputs the output signal of the distance sensor 33 and calculates the distance between the primary resonance coil 13 and the secondary resonance coil 14 from the measurement result of the distance sensor 33. The control device 24 determines the capacity of the variable capacitors 21 and 22 suitable for the calculated distance from the data stored in the memory 36. Next, the control device 24 outputs a drive signal to the variable capacitors 21 and 22 so as to change the capacity of the variable capacitors 21 and 22 to an appropriate capacity at the time of charging. And the capacity | capacitance of the variable capacitors 21 and 22 is changed into the value suitable for the distance between resonance coils.

次に交流電源11から1次コイル12に共鳴系20の共鳴周波数で交流電圧が出力され、1次コイル12に磁場が発生する。この磁場が1次側共鳴コイル13と2次側共鳴コイル14とによる磁場共鳴により増強される。増強された2次側共鳴コイル14付近の磁場から2次コイル15により電磁誘導を利用して電力が取り出されて整流回路34を通して2次電池31に供給される。   Next, an AC voltage is output from the AC power source 11 to the primary coil 12 at the resonance frequency of the resonance system 20, and a magnetic field is generated in the primary coil 12. This magnetic field is enhanced by magnetic field resonance by the primary side resonance coil 13 and the secondary side resonance coil 14. Electric power is extracted from the magnetic field in the vicinity of the enhanced secondary resonance coil 14 by the secondary coil 15 using electromagnetic induction, and is supplied to the secondary battery 31 through the rectifier circuit 34.

図3は、共鳴コイル間の距離、即ち1次側共鳴コイル13と2次側共鳴コイル14との距離を変えて測定した場合における周波数と共鳴系の入力インピーダンスZinとの関係を示す。1次側共鳴コイル13と2次側共鳴コイル14との距離が変化すると、共鳴系20の共鳴周波数における入力インピーダンスZinの値も変化する。なお、図3は、1次コイル12、1次側共鳴コイル13、2次側共鳴コイル14、2次コイル15の巻径を300mm程度、交流電源11の出力インピーダンスを50Ω、負荷16の抵抗値を50Ωとした場合の入力インピーダンスZinと周波数との関係を示している。共鳴周波数がほぼ2.2MHzにおける入力インピーダンスZinの値は、1次側共鳴コイル13と2次側共鳴コイル14との距離が大きいほど大きくなった。   FIG. 3 shows a relationship between the frequency and the input impedance Zin of the resonance system when the distance between the resonance coils, that is, the distance between the primary resonance coil 13 and the secondary resonance coil 14 is changed. When the distance between the primary resonance coil 13 and the secondary resonance coil 14 changes, the value of the input impedance Zin at the resonance frequency of the resonance system 20 also changes. 3 shows that the primary coil 12, the primary side resonance coil 13, the secondary side resonance coil 14, and the secondary coil 15 have a winding diameter of about 300 mm, the output impedance of the AC power supply 11 is 50Ω, and the resistance value of the load 16. The relationship between the input impedance Zin and the frequency in the case where is set to 50Ω is shown. The value of the input impedance Zin at a resonance frequency of approximately 2.2 MHz increased as the distance between the primary resonance coil 13 and the secondary resonance coil 14 increased.

1次側共鳴コイル13及び2次側共鳴コイル14間の距離が変化すると、共鳴系20の共鳴周波数における入力インピーダンスZinの値も変化するため、充電時における移動体30の停止位置が変わることによって共鳴系20の共鳴周波数における入力インピーダンスZinの値が変化する。そのため、インピーダンス可変回路17がない構成では、充電時における移動体30の停止位置によっては、交流電源11の出力インピーダンスと共鳴系20の入力インピーダンスZinとのマッチングが取れずに、交流電源11への反射電力が生じる。   When the distance between the primary side resonance coil 13 and the secondary side resonance coil 14 changes, the value of the input impedance Zin at the resonance frequency of the resonance system 20 also changes, so that the stop position of the moving body 30 during charging changes. The value of the input impedance Zin at the resonance frequency of the resonance system 20 changes. Therefore, in the configuration without the impedance variable circuit 17, depending on the stop position of the moving body 30 at the time of charging, the output impedance of the AC power supply 11 and the input impedance Zin of the resonance system 20 cannot be matched, Reflected power is generated.

この実施形態の非接触電力伝送装置10ではインピーダンス可変回路17を備え、充電時に距離センサ33により1次側共鳴コイル13と2次側共鳴コイル14との距離が間接的に測定される。そして、その距離における共鳴系20の入力インピーダンスZinに1次コイル12より交流電源11側のインピーダンスが合うように、インピーダンス可変回路17のインピーダンスが調整される。そのため、交流電源11の交流出力電圧の周波数を変更しなくても、交流電源11への反射電力を低減して、交流電源11から電力が効率良く2次電池31に供給される。   The contactless power transmission device 10 of this embodiment includes an impedance variable circuit 17 and indirectly measures the distance between the primary resonance coil 13 and the secondary resonance coil 14 by the distance sensor 33 during charging. Then, the impedance of the variable impedance circuit 17 is adjusted so that the impedance on the AC power supply 11 side of the primary coil 12 matches the input impedance Zin of the resonance system 20 at that distance. Therefore, even if the frequency of the AC output voltage of the AC power supply 11 is not changed, the reflected power to the AC power supply 11 is reduced and the power is efficiently supplied from the AC power supply 11 to the secondary battery 31.

この実施形態によれば、以下に示す効果を得ることができる。
(1)非接触電力伝送装置10は、交流電源11と、交流電源11に接続された1次コイル12と、1次側共鳴コイル13と、2次側共鳴コイル14と、2次コイル15と、2次コイル15に接続された負荷16と、交流電源11と1次コイル12との間に設けられたインピーダンス可変回路17とを備える。1次コイル12、1次側共鳴コイル13、2次側共鳴コイル14、2次コイル15及び負荷16は共鳴系20を構成する。また、非接触電力伝送装置10は共鳴系20の状態を検出する状態検出手段(距離センサ33)を備え、インピーダンス可変回路17は、状態検出手段の検出結果に基づいて共鳴系20の共鳴周波数における入力インピーダンスZinと、1次コイル12より交流電源11側のインピーダンスとが合うようにインピーダンスが調整される。したがって、2つの共鳴コイル13,14間の距離や負荷16の少なくとも一方が共鳴周波数を設定する際に基準とした値から変化した場合、交流電源11の交流出力電圧の周波数を変更しなくても、交流電源への反射電力を低減して、交流電源11から電力を効率良く負荷16に供給することができる。
According to this embodiment, the following effects can be obtained.
(1) The non-contact power transmission apparatus 10 includes an AC power source 11, a primary coil 12 connected to the AC power source 11, a primary side resonance coil 13, a secondary side resonance coil 14, and a secondary coil 15. A load 16 connected to the secondary coil 15 and an impedance variable circuit 17 provided between the AC power supply 11 and the primary coil 12 are provided. The primary coil 12, the primary side resonance coil 13, the secondary side resonance coil 14, the secondary coil 15, and the load 16 constitute a resonance system 20. Further, the non-contact power transmission apparatus 10 includes a state detection unit (distance sensor 33) that detects the state of the resonance system 20, and the impedance variable circuit 17 is based on the detection result of the state detection unit at the resonance frequency of the resonance system 20. The impedance is adjusted so that the input impedance Zin matches the impedance on the AC power supply 11 side from the primary coil 12. Therefore, when at least one of the distance between the two resonance coils 13 and 14 or the load 16 is changed from a value that is used as a reference when setting the resonance frequency, the frequency of the AC output voltage of the AC power supply 11 does not need to be changed. The reflected power to the AC power supply can be reduced, and the power can be efficiently supplied from the AC power supply 11 to the load 16.

(2)非接触電力伝送装置10は、状態検出手段として1次側共鳴コイル13と2次側共鳴コイル14との距離を測定する距離測定手段(距離センサ33)を備え、インピーダンス可変回路17は、距離測定手段の測定結果に基づいてインピーダンスが調整される。したがって、1次側共鳴コイル13と2次側共鳴コイル14との距離が変化して入力インピーダンスZinが変化しても、インピーダンス可変回路17のインピーダンスが調整されて、1次コイル12より交流電源11側のインピーダンスと、共鳴系の共鳴周波数における入力インピーダンスZinとが合う状態に維持される。   (2) The non-contact power transmission device 10 includes distance measuring means (distance sensor 33) that measures the distance between the primary resonance coil 13 and the secondary resonance coil 14 as state detection means, and the impedance variable circuit 17 includes: The impedance is adjusted based on the measurement result of the distance measuring means. Therefore, even if the distance between the primary side resonance coil 13 and the secondary side resonance coil 14 changes and the input impedance Zin changes, the impedance of the impedance variable circuit 17 is adjusted, and the AC power supply 11 from the primary coil 12 is adjusted. The impedance on the side and the input impedance Zin at the resonance frequency of the resonance system are maintained in a matched state.

(3)非接触電力伝送装置10は、移動体30に搭載された2次電池31に対して非接触充電を行うシステムに適用され、充電ステーションに設けられた充電装置32が距離センサ33を備えている。そのため、充電時に移動体30が停止した状態において、移動体30と充電装置32との距離が充電時毎に異なっても、共鳴周波数を変えることなく共鳴系20の入力インピーダンスZinと、1次コイル12より交流電源11側のインピーダンスとのマッチングを取ることができ、2次電池31に効率良く充電することができる。また、距離センサ33を各移動体30に設ける必要がなく、距離センサ33を各移動体30に設ける場合に比べてシステムが簡単になる。また、移動体30を充電装置32との距離が決められた値となる所定位置に停止させなくてよいため、充電位置への停止時に、ハンドル操作やアクセル及びブレーキ操作が容易になる。   (3) The non-contact power transmission device 10 is applied to a system that performs non-contact charging on the secondary battery 31 mounted on the moving body 30, and the charging device 32 provided in the charging station includes the distance sensor 33. ing. Therefore, in a state where the moving body 30 is stopped at the time of charging, even if the distance between the moving body 30 and the charging device 32 is different for each charging time, the input impedance Zin of the resonance system 20 and the primary coil without changing the resonance frequency. 12 can match the impedance on the AC power supply 11 side, and the secondary battery 31 can be charged efficiently. Further, it is not necessary to provide the distance sensor 33 in each moving body 30, and the system becomes simpler than the case where the distance sensor 33 is provided in each moving body 30. In addition, since it is not necessary to stop the moving body 30 at a predetermined position where the distance from the charging device 32 is a predetermined value, the steering wheel operation, the accelerator operation, and the brake operation are facilitated when stopping at the charging position.

(4)1次側共鳴コイル13及び2次側共鳴コイル14にコンデンサ18,19が接続されている。そのため、1次側共鳴コイル13及び2次側共鳴コイル14のコイルの巻数を増やすことなく共鳴系20の共鳴周波数を下げることができる。また、共鳴周波数が同じであれば、1次側共鳴コイル13及び2次側共鳴コイル14を、コンデンサ18,19を接続しない場合に比べて小型化することができる。   (4) Capacitors 18 and 19 are connected to the primary resonance coil 13 and the secondary resonance coil 14. Therefore, the resonance frequency of the resonance system 20 can be lowered without increasing the number of turns of the primary resonance coil 13 and the secondary resonance coil 14. Further, if the resonance frequency is the same, the primary resonance coil 13 and the secondary resonance coil 14 can be reduced in size as compared with the case where the capacitors 18 and 19 are not connected.

(第2の実施形態)
次に第2の実施形態を図4にしたがって説明する。この実施形態では、充電時に移動体30は充電装置32との距離が決められた位置で停止し、1次側共鳴コイル13と2次側共鳴コイル14との距離は一定で、負荷16の大きさが変化することにより共鳴系20の入力インピーダンスZinが変化する場合に対応するように構成されている点が前記第1の実施形態と異なっている。即ち、状態検出手段として距離測定手段は備えず、負荷の大きさを検出する負荷検出手段を備えている。第1の実施形態と基本的に同一部分は同一符号を付して詳しい説明を省略する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG. In this embodiment, during charging, the moving body 30 stops at a position where the distance from the charging device 32 is determined, and the distance between the primary side resonance coil 13 and the secondary side resonance coil 14 is constant and the load 16 is large. This is different from the first embodiment in that it is configured to cope with a case where the input impedance Zin of the resonance system 20 changes due to the change in the length. In other words, the distance measuring means is not provided as the state detecting means, but the load detecting means for detecting the magnitude of the load is provided. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

移動体30は充電装置32との距離が決められた値となる所定位置に停止するようになっている。移動体30には、2次電池31の充電量を検出する負荷検出手段としての充電量センサ37が設けられている。充電量センサ37で検出された2次電池31の充電量のデータは、図示しない無線通信装置を介して充電装置32に送られるようになっている。   The moving body 30 stops at a predetermined position where the distance from the charging device 32 is a determined value. The moving body 30 is provided with a charge amount sensor 37 as load detecting means for detecting the charge amount of the secondary battery 31. The charge amount data of the secondary battery 31 detected by the charge amount sensor 37 is sent to the charging device 32 via a wireless communication device (not shown).

メモリ36には、2次電池31の充電量と、その充電量における共鳴系20の入力インピーダンスZinとの関係を示すデータがマップ又は関係式として記憶されている。このデータは予め試験により求められる。また、メモリ36には、交流電源11の出力周波数を変更せずに、入力インピーダンスZinと、1次コイル12より交流電源11側のインピーダンスとが合うように、インピーダンス可変回路17のインピーダンスを調整するための可変コンデンサ21,22の容量と入力インピーダンスZinとの関係を示すデータが記憶されている。   In the memory 36, data indicating the relationship between the charge amount of the secondary battery 31 and the input impedance Zin of the resonance system 20 at the charge amount is stored as a map or a relational expression. This data is obtained in advance by testing. The memory 36 adjusts the impedance of the impedance variable circuit 17 so that the input impedance Zin matches the impedance on the AC power supply 11 side from the primary coil 12 without changing the output frequency of the AC power supply 11. Data indicating the relationship between the capacitance of the variable capacitors 21 and 22 and the input impedance Zin is stored.

2次電池31への充電時には、移動体30が充電装置32との距離が一定となる所定の充電位置に停止した状態で充電が行われる。移動体30が充電位置に停止すると、充電量センサ37が2次電池31の充電量の検出を開始する。検出された充電量のデータは無線通信装置を介して充電装置32に送られる。制御装置24は、充電量のデータを入力して、充電量に対応する共鳴系20の入力インピーダンスZinをメモリ36に記憶されているデータから求め、その入力インピーダンスZinの値に適した可変コンデンサ21,22の容量をメモリ36に記憶されたデータから決定する。次に制御装置24は、可変コンデンサ21,22の容量を決定された容量に変更するように可変コンデンサ21,22に駆動信号を出力する。そして、可変コンデンサ21,22の容量が充電量に適した値に変更される。   When charging the secondary battery 31, charging is performed in a state where the moving body 30 is stopped at a predetermined charging position where the distance from the charging device 32 is constant. When the moving body 30 stops at the charging position, the charge amount sensor 37 starts detecting the charge amount of the secondary battery 31. The detected charge amount data is sent to the charging device 32 via the wireless communication device. The control device 24 inputs the charge amount data, obtains the input impedance Zin of the resonance system 20 corresponding to the charge amount from the data stored in the memory 36, and the variable capacitor 21 suitable for the value of the input impedance Zin. , 22 is determined from the data stored in the memory 36. Next, the control device 24 outputs a drive signal to the variable capacitors 21 and 22 so as to change the capacity of the variable capacitors 21 and 22 to the determined capacity. And the capacity | capacitance of the variable capacitors 21 and 22 is changed into the value suitable for charge amount.

そして、交流電源11から1次コイル12に共鳴系20の共鳴周波数で交流電圧が出力されて充電が開始される。充電中、充電量センサ37は2次電池31の充電量を検出し、その検出データを充電装置32に送る。また、制御装置24は、充電量のデータから充電量に適した可変コンデンサ21,22の容量を決定し、可変コンデンサ21,22の容量がその値になるように可変コンデンサ21,22の容量を調整する。そのため、充電中に2次電池31の充電量の変化に伴って共鳴系20の入力インピーダンスZinが変化しても、1次コイル12より交流電源11側のインピーダンスが共鳴系20の入力インピーダンスZinに合うようにインピーダンス可変回路17のインピーダンスが調整される。   Then, an AC voltage is output from the AC power source 11 to the primary coil 12 at the resonance frequency of the resonance system 20, and charging is started. During charging, the charge amount sensor 37 detects the charge amount of the secondary battery 31 and sends the detection data to the charging device 32. Further, the control device 24 determines the capacity of the variable capacitors 21 and 22 suitable for the charge amount from the charge amount data, and sets the capacity of the variable capacitors 21 and 22 so that the capacity of the variable capacitors 21 and 22 becomes the value. adjust. Therefore, even if the input impedance Zin of the resonance system 20 changes with the change in the charge amount of the secondary battery 31 during charging, the impedance on the AC power supply 11 side from the primary coil 12 becomes the input impedance Zin of the resonance system 20. The impedance of the variable impedance circuit 17 is adjusted so as to match.

この第2の実施形態によれば、第1の実施形態の(1)(4)の効果に加えて以下の効果を得ることができる。
(5)状態検出手段として負荷16の大きさを検出する負荷検出手段(充電量センサ37)を備え、インピーダンス可変回路17は、負荷検出手段の検出結果に基づいてインピーダンスが調整される。したがって、非接触で電力伝送中に負荷16の変化によって共鳴系20の入力インピーダンスZinが変化した場合でも、交流電源11の交流出力電圧の周波数を変更しなくても、交流電源11への反射電力を低減して、交流電源11から電力を効率良く負荷16に供給することができる。
According to the second embodiment, the following effects can be obtained in addition to the effects (1) and (4) of the first embodiment.
(5) Load detecting means (charge amount sensor 37) for detecting the size of the load 16 is provided as state detecting means, and the impedance variable circuit 17 adjusts the impedance based on the detection result of the load detecting means. Therefore, even when the input impedance Zin of the resonance system 20 changes due to the change of the load 16 during non-contact power transmission, the reflected power to the AC power supply 11 can be obtained without changing the frequency of the AC output voltage of the AC power supply 11. The power can be efficiently supplied from the AC power supply 11 to the load 16.

(6)非接触電力伝送装置10は、移動体30に搭載された2次電池31に対して非接触充電を行うシステムに適用され、移動体30は充電時に充電装置32から一定の距離となる停止位置に停止し、移動体30に2次電池31の充電量を検出する充電量センサ37が設けられている。制御装置24は、共鳴系20の入力インピーダンスZinが変化しても、その入力インピーダンスZinと、1次コイル12より交流電源11側のインピーダンスとが合うように、充電量センサ37の検出データに基づいてインピーダンス可変回路17の調整を行う。したがって、2次電池31への充電をより効率良く行うことができる。   (6) The non-contact power transmission device 10 is applied to a system that performs non-contact charging on the secondary battery 31 mounted on the moving body 30, and the moving body 30 is at a certain distance from the charging device 32 during charging. A charge amount sensor 37 that stops at the stop position and detects the charge amount of the secondary battery 31 is provided on the moving body 30. The control device 24 is based on the detection data of the charge amount sensor 37 so that even if the input impedance Zin of the resonance system 20 changes, the input impedance Zin matches the impedance on the AC power supply 11 side from the primary coil 12. Then, the impedance variable circuit 17 is adjusted. Therefore, the secondary battery 31 can be charged more efficiently.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 第2の実施形態において、充電装置32に距離センサ33を設け、充電時の移動体30の停止位置と、充電時における2次電池31の負荷の変化とを考慮してインピーダンス可変回路17のインピーダンスを調整する構成としてもよい。この構成では、第2の実施形態と異なり、充電時に移動体30を充電装置32との距離が一定となる所定の位置に停止しなくても、充電時に共鳴系20の入力インピーダンスZinが変化した場合に、充電が適正な条件で行われるようにインピーダンス可変回路17のインピーダンスが調整される。
The embodiment is not limited to the above, and may be embodied as follows, for example.
In the second embodiment, the distance sensor 33 is provided in the charging device 32, and the impedance variable circuit 17 takes into account the stop position of the moving body 30 during charging and the change in the load of the secondary battery 31 during charging. It is good also as a structure which adjusts an impedance. In this configuration, unlike the second embodiment, the input impedance Zin of the resonance system 20 changes during charging without stopping the mobile body 30 at a predetermined position where the distance from the charging device 32 is constant during charging. In this case, the impedance of the variable impedance circuit 17 is adjusted so that charging is performed under appropriate conditions.

○ インピーダンス可変回路17は2個の可変コンデンサ21,22と1個のインダクタ23とで構成されるものに限らない。例えば、インピーダンス可変回路17を構成する可変コンデンサ21,22のいずれか一方を省略して、インピーダンス可変回路17を1個の可変コンデンサと1個のインダクタ23とで構成してもよい。また、インピーダンス可変回路17を、固定容量のコンデンサと可変インダクタとで構成してもよい。   The variable impedance circuit 17 is not limited to one composed of two variable capacitors 21 and 22 and one inductor 23. For example, either one of the variable capacitors 21 and 22 constituting the impedance variable circuit 17 may be omitted, and the impedance variable circuit 17 may be configured by one variable capacitor and one inductor 23. The impedance variable circuit 17 may be configured with a fixed capacitor and a variable inductor.

○ 非接触電力伝送装置10を移動体30に搭載された2次電池31の充電システムに適用する場合、定格容量が同じ2次電池31にのみ充電を行う構成に代えて、定格容量が異なる2次電池31を搭載した移動体30の2次電池31に対しても充電を行う構成としてもよい。例えば、制御装置24のメモリ36に、定格容量が異なる2次電池31毎に、共鳴コイル間の距離と、その距離における共鳴系20の共鳴周波数での入力インピーダンスZinの値との関係や2次電池31の充電量とその充電量における共鳴系20の入力インピーダンスZinとの関係を示すデータを記憶させておく。そして、制御装置24は移動体30に搭載されている2次電池31の定格容量によって、充電時における共鳴系20の入力インピーダンスZinに対応する適切な可変コンデンサ21,22の容量を演算して、インピーダンス可変回路17のインピーダンスを調整する。   When the non-contact power transmission device 10 is applied to a charging system for the secondary battery 31 mounted on the moving body 30, the rated capacity is different from the configuration in which only the secondary battery 31 having the same rated capacity is charged. It is good also as a structure which charges also with respect to the secondary battery 31 of the moving body 30 carrying the secondary battery 31. FIG. For example, in the memory 36 of the control device 24, the relationship between the distance between the resonance coils and the value of the input impedance Zin at the resonance frequency of the resonance system 20 at the distance or the secondary battery 31 for each secondary battery 31 having a different rated capacity. Data indicating the relationship between the charge amount of the battery 31 and the input impedance Zin of the resonance system 20 at the charge amount is stored. And the control apparatus 24 calculates the capacity | capacitance of the suitable variable capacitor | condenser 21 and 22 corresponding to the input impedance Zin of the resonance system 20 at the time of charge with the rated capacity of the secondary battery 31 mounted in the mobile body 30, The impedance of the impedance variable circuit 17 is adjusted.

○ 充電時における2次電池31の負荷の変化を充電量の変化から間接的に検出する代わりに、負荷検出手段として負荷を直接検出する構成のセンサを使用してもよい。例えば、2次電池31に供給される電流量を検出する電流センサを負荷検出手段としてもよい。   O Instead of indirectly detecting the change in the load of the secondary battery 31 during charging from the change in the charge amount, a sensor configured to directly detect the load may be used as the load detection means. For example, a current sensor that detects the amount of current supplied to the secondary battery 31 may be used as the load detection means.

○ 非接触電力伝送装置10は充電装置32に限らず、使用中に段階的に負荷が変化する電気機器を負荷として使用する場合や負荷の値が異なる複数の電気機器に対して電力を供給する装置に適用してもよい。   The non-contact power transmission device 10 supplies power to not only the charging device 32 but also an electric device whose load changes stepwise during use as a load or a plurality of electric devices having different load values. You may apply to an apparatus.

○ 非接触電力伝送装置10が使用中に段階的に負荷が変化する電気機器を負荷16として使用する場合、負荷の変化する時期が予め決まっている場合、負荷16の駆動開始時(非接触電力伝送装置10の電力伝送開始時)からの経過時間で、インピーダンス可変回路17のインピーダンスを調整するようにしてもよい。   ○ When the non-contact power transmission device 10 uses an electric device whose load changes stepwise during use as the load 16, when the load change time is determined in advance, when the load 16 starts driving (non-contact power The impedance of the variable impedance circuit 17 may be adjusted based on the elapsed time from when the power transmission of the transmission apparatus 10 is started.

○ 1次側共鳴コイル13及び2次側共鳴コイル14に接続されたコンデンサ18,19を省略してもよい。しかし、コンデンサ18,19を接続した構成の方が、コンデンサ18,19を省略した場合に比べて、共鳴周波数を下げることができる。また、共鳴周波数が同じであれば、コンデンサ18,19を省略した場合に比べて、1次側共鳴コイル13及び2次側共鳴コイル14の小型化が可能になる。   The capacitors 18 and 19 connected to the primary resonance coil 13 and the secondary resonance coil 14 may be omitted. However, the configuration in which the capacitors 18 and 19 are connected can lower the resonance frequency compared to the case where the capacitors 18 and 19 are omitted. Further, if the resonance frequency is the same, the primary side resonance coil 13 and the secondary side resonance coil 14 can be downsized as compared with the case where the capacitors 18 and 19 are omitted.

○ 交流電源11は、出力交流電圧の周波数が変更可能でも変更不能でもよい。
○ 1次コイル12、1次側共鳴コイル13、2次側共鳴コイル14及び2次コイル15の外形は、円形に限らず、例えば、四角形や六角形や三角形等の多角形にしたり、あるいは楕円形にしたりしてもよい。
The AC power supply 11 may be capable of changing or not changing the frequency of the output AC voltage.
The outer shape of the primary coil 12, the primary side resonance coil 13, the secondary side resonance coil 14, and the secondary coil 15 is not limited to a circle, but may be, for example, a polygon such as a rectangle, a hexagon, or a triangle, or an ellipse. It may be shaped.

○ 1次コイル12、1次側共鳴コイル13、2次側共鳴コイル14及び2次コイル15の外形は、ほぼ左右対称な形状に限らず、非対称な形状であってもよい。
○ 電線は断面円形の一般的な銅線に限らず、矩形断面の板状の銅線であってもよい。
The outer shape of the primary coil 12, the primary side resonance coil 13, the secondary side resonance coil 14, and the secondary coil 15 is not limited to a substantially symmetric shape, but may be an asymmetric shape.
The electric wire is not limited to a general copper wire having a circular cross section, and may be a plate-like copper wire having a rectangular cross section.

○ 電線の材料は銅に限らず、例えば、アルミニウムや銀を用いてもよい。
○ 1次側共鳴コイル13及び2次側共鳴コイル14は、電線が筒状に巻回されたコイルに限らず、例えば、電線が一平面上に巻回された形状としてもよい。
○ The material of the electric wire is not limited to copper, and for example, aluminum or silver may be used.
(Circle) the primary side resonance coil 13 and the secondary side resonance coil 14 are good not only as the coil by which the electric wire was wound cylindrically but in the shape where the electric wire was wound on one plane.

○ 1次コイル12、1次側共鳴コイル13、2次側共鳴コイル14及び2次コイル15が全て同じ径に形成されている必要はない。例えば、1次側共鳴コイル13及び2次側共鳴コイル14は同じ径で、1次コイル12及び2次コイル15は異なる径としてもよい。   The primary coil 12, the primary side resonance coil 13, the secondary side resonance coil 14, and the secondary coil 15 do not have to be formed with the same diameter. For example, the primary resonance coil 13 and the secondary resonance coil 14 may have the same diameter, and the primary coil 12 and the secondary coil 15 may have different diameters.

○ 1次コイル12、1次側共鳴コイル13、2次側共鳴コイル14及び2次コイル15を電線で形成する代わりに、基板上に設けられた配線パターンで形成してもよい。
以下の技術的思想(発明)は前記実施形態から把握できる。
The primary coil 12, the primary side resonance coil 13, the secondary side resonance coil 14, and the secondary coil 15 may be formed with a wiring pattern provided on the substrate instead of being formed with electric wires.
The following technical idea (invention) can be understood from the embodiment.

(1)請求項1〜請求項3のいずれか一項に記載の発明において、前記インピーダンス可変回路は可変コンデンサとインダクタとで構成され、前記可変コンデンサは、共鳴系の共鳴周波数における入力インピーダンスと、前記1次コイルより前記交流電源側のインピーダンスとを合うようにする前記可変コンデンサの容量との関係を示すデータが記憶されたメモリを備えた制御装置からの駆動信号により適正な容量に調整される。   (1) In the invention according to any one of claims 1 to 3, the impedance variable circuit includes a variable capacitor and an inductor, and the variable capacitor includes an input impedance at a resonance frequency of a resonance system; The capacity is adjusted to an appropriate capacity by a drive signal from a control device having a memory in which data indicating the relationship with the capacity of the variable capacitor that matches the impedance on the AC power supply side with respect to the primary coil is stored. .

(2)請求項2に記載の発明の非接触電力伝送装置は移動体に搭載された2次電池への充電を行うシステムに適用され、前記移動体には前記2次側共鳴コイル、前記2次コイル及び負荷としての2次電池が搭載され、充電ステーションに設けられた充電装置には前記交流電源、前記1次コイル、前記1次側共鳴コイル、前記インピーダンス可変回路、前記距離測定手段及び制御装置が設けられ、前記制御装置は前記距離測定手段の測定結果と、メモリに記憶された前記共鳴系の共鳴周波数における入力インピーダンスと前記1次コイルより前記交流電源側のインピーダンスとを合うようにする前記可変コンデンサの容量との関係を示すデータとに基づいて、前記可変コンデンサの容量を調整する。   (2) A non-contact power transmission device according to a second aspect of the invention is applied to a system for charging a secondary battery mounted on a moving body, and the moving body includes the secondary resonance coil, the 2 A secondary battery as a load and a secondary battery as a load are mounted, and a charging device provided in a charging station includes the AC power source, the primary coil, the primary side resonance coil, the impedance variable circuit, the distance measuring means, and a control And the control device matches the measurement result of the distance measuring means, the input impedance at the resonance frequency of the resonance system stored in the memory, and the impedance on the AC power supply side from the primary coil. The capacitance of the variable capacitor is adjusted based on data indicating the relationship with the capacitance of the variable capacitor.

(3)請求項3に記載の発明の非接触電力伝送装置は移動体に搭載された2次電池への充電を行うシステムに適用され、前記移動体には前記2次側共鳴コイル、前記2次コイル、負荷としての2次電池及び負荷検出手段が搭載され、充電ステーションに設けられた充電装置には前記交流電源、前記1次コイル、前記1次側共鳴コイル、前記インピーダンス可変回路及び制御装置が設けられ、前記制御装置は前記負荷検出手段の検出結果と、メモリに記憶された前記共鳴系の共鳴周波数における入力インピーダンスと前記1次コイルより前記交流電源側のインピーダンスとを合うようにする前記可変コンデンサの容量との関係を示すデータとに基づいて、前記可変コンデンサの容量を調整する。   (3) A non-contact power transmission device according to a third aspect of the present invention is applied to a system for charging a secondary battery mounted on a moving body, and the moving body includes the secondary resonance coil, the 2 A secondary coil, a secondary battery as a load, and load detection means are mounted, and the charging device provided in the charging station includes the AC power source, the primary coil, the primary resonance coil, the impedance variable circuit, and the control device. The control device matches the detection result of the load detection means, the input impedance at the resonance frequency of the resonance system stored in the memory, and the impedance on the AC power supply side from the primary coil. The capacity of the variable capacitor is adjusted based on data indicating the relationship with the capacity of the variable capacitor.

第1の実施形態に係る非接触電力伝送装置の構成図。The block diagram of the non-contact electric power transmission apparatus which concerns on 1st Embodiment. 充電装置と移動体とを示す模式図。The schematic diagram which shows a charging device and a moving body. 共鳴コイル間の距離を変えた場合における共鳴系の入力インピーダンスと周波数との関係を示すグラフ。The graph which shows the relationship between the input impedance of a resonance system at the time of changing the distance between resonance coils, and a frequency. 第2の実施形態の充電装置と移動体とを示す模式図。The schematic diagram which shows the charging device and moving body of 2nd Embodiment. 従来技術の非接触電力伝送装置の構成図。The block diagram of the non-contact electric power transmission apparatus of a prior art.

符号の説明Explanation of symbols

11…交流電源、12…1次コイル、13…1次側共鳴コイル、14…2次側共鳴コイル、15…2次コイル、16…負荷、17…インピーダンス可変回路、20…共鳴系、33…距離測定手段としての距離センサ、37…負荷検出手段としての充電量センサ。   DESCRIPTION OF SYMBOLS 11 ... AC power source, 12 ... Primary coil, 13 ... Primary side resonance coil, 14 ... Secondary side resonance coil, 15 ... Secondary coil, 16 ... Load, 17 ... Impedance variable circuit, 20 ... Resonance system, 33 ... Distance sensor as distance measuring means, 37... Charge amount sensor as load detecting means.

Claims (3)

交流電源と、
前記交流電源に接続された1次コイルと、
1次側共鳴コイルと、
2次側共鳴コイルと、
2次コイルと、
前記2次コイルに接続された負荷と、
前記交流電源と前記1次コイルとの間に設けられたインピーダンス可変回路とを備え、
前記1次コイル、前記1次側共鳴コイル、前記2次側共鳴コイル、前記2次コイル及び前記負荷は共鳴系を構成し、
前記共鳴系の状態を検出する状態検出手段を備え、前記インピーダンス可変回路は、前記状態検出手段の検出結果に基づいて前記共鳴系の共鳴周波数における入力インピーダンスと、前記1次コイルより前記交流電源側のインピーダンスとが合うようにインピーダンスが調整されることを特徴とする非接触電力伝送装置。
AC power supply,
A primary coil connected to the AC power source;
A primary resonance coil;
A secondary resonance coil;
A secondary coil;
A load connected to the secondary coil;
An impedance variable circuit provided between the AC power source and the primary coil;
The primary coil, the primary resonance coil, the secondary resonance coil, the secondary coil, and the load constitute a resonance system,
State detection means for detecting the state of the resonance system, and the impedance variable circuit includes an input impedance at a resonance frequency of the resonance system based on a detection result of the state detection means, and the AC power supply side from the primary coil. A non-contact power transmission device, wherein the impedance is adjusted so as to match the impedance of the contactless power transmission device.
前記状態検出手段は、前記1次側共鳴コイルと前記2次側共鳴コイルとの距離を測定する距離測定手段であり、前記インピーダンス可変回路は、前記距離測定手段の測定結果に基づいてインピーダンスが調整される請求項1に記載の非接触電力伝送装置。   The state detection means is a distance measurement means for measuring a distance between the primary resonance coil and the secondary resonance coil, and the impedance variable circuit adjusts an impedance based on a measurement result of the distance measurement means. The contactless power transmission device according to claim 1. 前記状態検出手段は、前記負荷の大きさを検出する負荷検出手段であり、前記インピーダンス可変回路は、前記負荷検出手段の検出結果に基づいてインピーダンスが調整される請求項1に記載の非接触電力伝送装置。   2. The non-contact power according to claim 1, wherein the state detection unit is a load detection unit that detects a size of the load, and the impedance variable circuit adjusts an impedance based on a detection result of the load detection unit. Transmission equipment.
JP2008313632A 2008-12-09 2008-12-09 Non-contact power transmission device Expired - Fee Related JP5114371B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008313632A JP5114371B2 (en) 2008-12-09 2008-12-09 Non-contact power transmission device
CN2009801487017A CN102239622A (en) 2008-12-09 2009-12-04 Non-contact power transmission apparatus and power transmission method using a non-contact power transmission apparatus
US13/133,328 US20110241440A1 (en) 2008-12-09 2009-12-04 Non-contact power transmission apparatus and power transmission method using a non-contact power transmission apparatus
KR1020117012301A KR101248453B1 (en) 2008-12-09 2009-12-04 Non-contact power transmission apparatus and power transmission method using a non-contact power transmission apparatus
PCT/JP2009/070416 WO2010067763A1 (en) 2008-12-09 2009-12-04 Non-contact power transmission apparatus and power transmission method using a non-contact power transmission apparatus
EP09831867A EP2357717A1 (en) 2008-12-09 2009-12-04 Non-contact power transmission apparatus and power transmission method using a non-contact power transmission apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008313632A JP5114371B2 (en) 2008-12-09 2008-12-09 Non-contact power transmission device

Publications (2)

Publication Number Publication Date
JP2010141976A JP2010141976A (en) 2010-06-24
JP5114371B2 true JP5114371B2 (en) 2013-01-09

Family

ID=42351596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313632A Expired - Fee Related JP5114371B2 (en) 2008-12-09 2008-12-09 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP5114371B2 (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102209647B (en) 2008-11-07 2013-11-13 丰田自动车株式会社 Feeding system for vehicle, electric vehicle, and feeding facility for vehicle
KR101706616B1 (en) * 2009-11-09 2017-02-14 삼성전자주식회사 Load Impedance Selecting Device, Wireless Power Transmission Device and Wireless Power Transmission Method
WO2011086694A1 (en) 2010-01-18 2011-07-21 トヨタ自動車株式会社 Noncontact power-receiving device, noncontact power-transmitting device, noncontact power-feeding system, and vehicle
JP5051257B2 (en) 2010-03-16 2012-10-17 トヨタ自動車株式会社 vehicle
JP5457552B2 (en) * 2010-05-14 2014-04-02 株式会社豊田自動織機 Resonant non-contact power feeding system and method for adjusting matching unit during charging of resonant non-contact power feeding system
CN102893512B (en) 2010-06-15 2015-09-09 株式会社Ihi There is electric power saving drive unit and the method for the device of identical load pattern
JP5569182B2 (en) * 2010-06-28 2014-08-13 株式会社エクォス・リサーチ Non-contact power transmission system, non-contact power transmission device, and impedance adjustment method
DE112011102500T5 (en) 2010-07-28 2013-06-20 Semiconductor Energy Laboratory Co., Ltd. Wireless power supply system and wireless power supply method
JP5499186B2 (en) * 2010-07-29 2014-05-21 株式会社豊田自動織機 Resonant contactless power supply system
DE112011102539T5 (en) * 2010-07-29 2013-05-16 Kabushiki Kaisha Toyota Jidoshokki Non-contact energy supply system of resonance type
KR101726195B1 (en) * 2010-08-25 2017-04-13 삼성전자주식회사 Method and apparatus of tracking of resonance impedance in resonance power transfer system
KR101739283B1 (en) * 2010-08-31 2017-05-25 삼성전자주식회사 Apparatus for adaptive resonant power transmission
JP5126324B2 (en) * 2010-09-10 2013-01-23 トヨタ自動車株式会社 Power supply apparatus and control method of power supply system
JP5465640B2 (en) * 2010-09-13 2014-04-09 日本電信電話株式会社 Resonance type wireless power transmission apparatus and resonance type wireless power transmission method
JP5641053B2 (en) * 2010-11-12 2014-12-17 日産自動車株式会社 Non-contact power feeding device
US9536655B2 (en) * 2010-12-01 2017-01-03 Toyota Jidosha Kabushiki Kaisha Wireless power feeding apparatus, vehicle, and method of controlling wireless power feeding system
CN103250325B (en) * 2010-12-01 2015-04-08 丰田自动车株式会社 Non-contact power supply equipment
US9065302B2 (en) * 2010-12-24 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Wireless power feeding system
JP2012138976A (en) * 2010-12-24 2012-07-19 Equos Research Co Ltd Power transmission system
WO2012086051A1 (en) 2010-12-24 2012-06-28 トヨタ自動車株式会社 Contactless power supply system, vehicle, power supply facility, and contactless power supply system control method
JP5298116B2 (en) * 2010-12-28 2013-09-25 株式会社東芝 Wireless power transmission device and wireless power reception device
US9231412B2 (en) * 2010-12-29 2016-01-05 National Semiconductor Corporation Resonant system for wireless power transmission to multiple receivers
JP2012143117A (en) 2011-01-06 2012-07-26 Toyota Industries Corp Non-contact power transmission device
KR20120084659A (en) 2011-01-20 2012-07-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power feeding device and wireless power feeding system
US8922064B2 (en) 2011-03-01 2014-12-30 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system, and coil
US9035500B2 (en) 2011-03-01 2015-05-19 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system, and coil
JP5677875B2 (en) 2011-03-16 2015-02-25 日立マクセル株式会社 Non-contact power transmission system
KR101813131B1 (en) 2011-05-11 2017-12-28 삼성전자주식회사 Wireless power transmission system and method for controlling of resonance frequency and resonance impedance of wireless power transmission system
JP5712289B2 (en) 2011-06-07 2015-05-07 パイオニア株式会社 Impedance matching device and control method
JP5710759B2 (en) 2011-06-07 2015-04-30 パイオニア株式会社 Impedance matching device and control method
JP2012257374A (en) * 2011-06-08 2012-12-27 Toyota Industries Corp Non-contact power transmission device
JP2013005614A (en) * 2011-06-17 2013-01-07 Toyota Motor Corp Power transmission equipment, power incoming equipment, vehicle, and non-contact power supply system
KR20130007173A (en) * 2011-06-29 2013-01-18 엘지이노텍 주식회사 Wireless power transmission apparatus and method
JP2013013274A (en) * 2011-06-30 2013-01-17 Yazaki Corp Power supply system
EP2728711A1 (en) * 2011-06-30 2014-05-07 Yazaki Corporation Power feeding system design method and power feeding system
KR101239289B1 (en) * 2011-08-03 2013-03-06 한양대학교 산학협력단 Wireless power transfer system
JP5773817B2 (en) * 2011-09-13 2015-09-02 富士機械製造株式会社 Non-contact power feeding device
JP5678852B2 (en) * 2011-09-27 2015-03-04 トヨタ自動車株式会社 Power transmission device, power transmission system, and method for controlling power transmission system
JP2013074659A (en) * 2011-09-27 2013-04-22 Nagano Japan Radio Co Power transmission device and contactless power transmission system
US9673664B2 (en) 2011-10-27 2017-06-06 Toyota Jidosha Kabushiki Kaisha Wireless power reception apparatus, wireless power transmission apparatus, and wireless power transmission and reception system
US9697952B2 (en) 2011-10-27 2017-07-04 Toyota Jidosha Kabushiki Kaisha Non-contact electric power reception device, non-contact electric power transmission device, and non-contact electric power transmission and reception system
WO2013080285A1 (en) 2011-11-28 2013-06-06 富士通株式会社 Non-contact charging device and non-contact charging method
JP2013115932A (en) 2011-11-29 2013-06-10 Ihi Corp Non-contact power transmission apparatus and method
JP6002931B2 (en) 2011-12-07 2016-10-05 パナソニックIpマネジメント株式会社 Car charger
JP5885074B2 (en) 2012-03-26 2016-03-15 株式会社Ihi Non-contact power transmission apparatus and method
JP5811272B2 (en) 2012-03-28 2015-11-11 富士通株式会社 Power transmission equipment
JP2014017894A (en) * 2012-07-05 2014-01-30 Toyota Industries Corp Transmitting apparatus and contactless power transmission system
JP5962408B2 (en) * 2012-10-03 2016-08-03 株式会社豊田自動織機 Power receiving device and non-contact power transmission device
JP2014090632A (en) * 2012-10-31 2014-05-15 Toyota Industries Corp Power transmission apparatus and non-contact power transmission device
JP5942836B2 (en) * 2012-12-20 2016-06-29 株式会社豊田自動織機 Non-contact power transmission device and power transmission equipment
JP6178404B2 (en) * 2013-03-08 2017-08-09 パイオニア株式会社 Power receiving device
JP6540927B2 (en) * 2017-06-12 2019-07-10 中国電力株式会社 Wireless power feeder
CN109552086B (en) * 2018-12-18 2024-03-19 深圳市信维通信股份有限公司 Wireless charging system of electric automobile and control method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4093493A (en) * 1992-05-10 1993-12-13 Auckland Uniservices Limited A non-contact power distribution system
US7522878B2 (en) * 1999-06-21 2009-04-21 Access Business Group International Llc Adaptive inductive power supply with communication
AU2006269374C1 (en) * 2005-07-12 2010-03-25 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
JP4308858B2 (en) * 2007-02-16 2009-08-05 セイコーエプソン株式会社 Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic equipment
CN103633745B (en) * 2007-03-27 2015-09-09 麻省理工学院 For the method for wireless energy transfer
JP4453741B2 (en) * 2007-10-25 2010-04-21 トヨタ自動車株式会社 Electric vehicle and vehicle power supply device

Also Published As

Publication number Publication date
JP2010141976A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5114371B2 (en) Non-contact power transmission device
JP5114372B2 (en) Power transmission method and non-contact power transmission apparatus in non-contact power transmission apparatus
JP5459058B2 (en) Resonant contactless power transmission device
KR101248453B1 (en) Non-contact power transmission apparatus and power transmission method using a non-contact power transmission apparatus
JP5515659B2 (en) Non-contact power transmission device
JP5262785B2 (en) Non-contact power transmission device
JP5349069B2 (en) Non-contact power transmission device
KR101237300B1 (en) Non-contact power transmission apparatus and power transmission method therefor
JP5282068B2 (en) Receiving side equipment of resonance type non-contact power feeding system
JP5375032B2 (en) Non-contact power transmission device and design method of non-contact power transmission device
JP5499186B2 (en) Resonant contactless power supply system
EP2372870A1 (en) Non-contact power transmission apparatus and design method
JP2013539333A (en) Resonant contactless power supply system
JPWO2012172899A1 (en) Resonant contactless power supply system
JP6615575B2 (en) Power supply system
JP2014017893A (en) Non-contact power transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees