JP2013013274A - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
JP2013013274A
JP2013013274A JP2011145296A JP2011145296A JP2013013274A JP 2013013274 A JP2013013274 A JP 2013013274A JP 2011145296 A JP2011145296 A JP 2011145296A JP 2011145296 A JP2011145296 A JP 2011145296A JP 2013013274 A JP2013013274 A JP 2013013274A
Authority
JP
Japan
Prior art keywords
power
power supply
unit
helical coil
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011145296A
Other languages
Japanese (ja)
Other versions
JP2013013274A5 (en
Inventor
Kazuyoshi Kagami
和義 加々美
Shingo Tanaka
信吾 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2011145296A priority Critical patent/JP2013013274A/en
Priority to EP12804578.8A priority patent/EP2728711A1/en
Priority to PCT/JP2012/066332 priority patent/WO2013002240A1/en
Priority to CN201280042633.8A priority patent/CN103782483A/en
Publication of JP2013013274A publication Critical patent/JP2013013274A/en
Priority to US14/141,753 priority patent/US20140111023A1/en
Publication of JP2013013274A5 publication Critical patent/JP2013013274A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Abstract

PROBLEM TO BE SOLVED: To provide a power supply system capable of suppressing deterioration of transmission efficiency due to displacement between a power supply side coil and a power incoming side coil, and supplying power from a power supply part to a power incoming part with high efficiency.SOLUTION: Variable inductance L1 which varies impedance of a power supply part 3 is connected in parallel to a power supply side helical coil 33. A CPU 9 detects displacement d between central axes of the power supply side helical coil 33 and power incoming side helical coil 51 by using a position sensor 10, adjusts the variable inductance L1 according to the displacement d, and adjusts the impedance of the power supply part 3.

Description

本発明は、給電システムに係り、特に、給電側コイルから受電側コイルに非接触で電力を供給する給電システムに関するものである。   The present invention relates to a power feeding system, and more particularly to a power feeding system that supplies power from a power feeding side coil to a power receiving side coil in a contactless manner.

上述した給電システムとして、例えば図5に示すものが知られている(例えば非特許文献1、2)。同図に示すように、給電システム1は、給電手段としての給電部3と、受電手段としての受電部5と、を備えている。上記給電部3は、電力が供給される給電側ループアンテナ32と、給電側ループアンテナ32に対してその中心軸方向に対向するように離間して配置され、給電側ループアンテナ32に電磁結合された給電側コイルとしての給電側ヘリカルコイル33と、が設けられている。上記給電側ループアンテナ32に電力が供給されると、その電力が電磁誘導により給電側ヘリカルコイル33に送られる。   As the power feeding system described above, for example, the one shown in FIG. 5 is known (for example, Non-Patent Documents 1 and 2). As shown in the figure, the power feeding system 1 includes a power feeding unit 3 as a power feeding unit and a power receiving unit 5 as a power receiving unit. The power feeding unit 3 is arranged to be separated from the power feeding side loop antenna 32 to which power is supplied so as to face the power feeding side loop antenna 32 in the central axis direction, and is electromagnetically coupled to the power feeding side loop antenna 32. And a power supply side helical coil 33 as a power supply side coil. When power is supplied to the power supply side loop antenna 32, the power is sent to the power supply side helical coil 33 by electromagnetic induction.

上記受電部5は、給電側ヘリカルコイル33に対してその中心軸方向に対向するように離間して配置されると電磁共鳴する受電側コイルとしての受電側ヘリカルコイル51と、この受電側ヘリカルコイル51に対してその中心軸方向に対向するように離間して配置され当該受電側ヘリカルコイル51に電磁結合された受電側ループアンテナ52と、が設けられている。給電側ヘリカルコイル33に電力が送られると、その電力が磁界の共鳴によって受電側ヘリカルコイル51にワイヤレスで送られる。   The power receiving unit 5 includes a power receiving side helical coil 51 serving as a power receiving side coil that electromagnetically resonates when the power receiving unit 5 is disposed so as to face the power feeding side helical coil 33 in the direction of the central axis thereof, and the power receiving side helical coil. And a power receiving side loop antenna 52 that is disposed so as to be opposed to the power receiving side helical coil 51 and is electromagnetically coupled to the power receiving side helical coil 51. When electric power is sent to the power supply side helical coil 33, the electric power is wirelessly sent to the power reception side helical coil 51 by magnetic field resonance.

さらに、受電側ヘリカルコイル51に電力が送られると、その電力が電磁誘導によって受電側ループアンテナ52に送られ、この受電側ループアンテナ52に接続されたバッテリなどの負荷に供給される。上述した給電システム1によれば、給電側ヘリカルコイル33と受電側ヘリカルコイル51との電磁共鳴により非接触で給電側から受電側に電力を供給することができる。   Further, when power is sent to the power receiving side helical coil 51, the power is sent to the power receiving side loop antenna 52 by electromagnetic induction and supplied to a load such as a battery connected to the power receiving side loop antenna 52. According to the power supply system 1 described above, electric power can be supplied from the power supply side to the power reception side in a non-contact manner by electromagnetic resonance between the power supply side helical coil 33 and the power reception side helical coil 51.

そして、上述した受電部5を自動車4に設け、給電部3を道路2などに設けることにより、上述した給電システム1を利用してワイヤレスで自動車4に搭載されたバッテリに電力を供給することが考えられている。ところで、上述した給電システム1においては、給電側ヘリカルコイル33の中心軸Z1と、受電側ヘリカルコイル51の中心軸Z2と、が同軸となるように、自動車4を停車させることは難しく、図5に示すように、中心軸Z1、Z2の位置ずれdが生じることがある。   Then, by providing the power receiving unit 5 described above in the automobile 4 and providing the power supply unit 3 in the road 2 or the like, it is possible to supply power to the battery mounted on the vehicle 4 wirelessly using the power supply system 1 described above. It is considered. In the power supply system 1 described above, it is difficult to stop the automobile 4 so that the central axis Z1 of the power supply side helical coil 33 and the central axis Z2 of the power reception side helical coil 51 are coaxial. As shown in FIG. 4, there may be a positional deviation d between the central axes Z1 and Z2.

本発明者らは、上述した図5に示す給電システム1において、中心軸Z1、Z2の位置ずれd=0の場合、位置ずれd=0.375D(D=受電側ヘリカルコイル51の直径)の場合それぞれについて、周波数f0付近での受電側ループアンテナ52の伝送効率S212をシミュレーションした。結果を図3の鎖線、一点鎖線で示す。 In the power feeding system 1 shown in FIG. 5 described above, the present inventors have a positional deviation d = 0.375D (D = diameter of the power-receiving-side helical coil 51) when the positional deviation d = 0 of the central axes Z1, Z2. In each case, the transmission efficiency S21 2 of the power receiving side loop antenna 52 near the frequency f0 was simulated. A result is shown by the chain line of FIG.

同図に示すように、周波数f0での伝送効率S212は、位置ずれdが0のときは97%程度であるのに対して、位置ずれdが0.375Dのときは87%程度まで低下してしまう、という問題があった。 As shown in the figure, the transmission efficiency S21 2 at the frequency f0 is about 97% when the positional deviation d is 0, but decreases to about 87% when the positional deviation d is 0.375D. There was a problem that it would.

A.Kurs,A.Karalis,R.Moffatt,J.D.Joannopoulos,P.Fisher,M.Soljacic,"Wireless power transfer via strongly coupled magnetic resonances",Science,Vol.317,pp.83-86,July6,2007A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances", Science, Vol. 317, pp. 83-86, July 6, 2007 M.Soljacic,A.Karalis,J.Joannopoulos,A.Kurs,R.Moffatt,P.fisgeR,"電力を無線伝送する技術を開発 実験で60Wの電球を点灯“、日経エレクトロニクス,3Dec.2007M.Soljacic, A.Karalis, J.Joannopoulos, A.Kurs, R.Moffatt, P.fisgeR, "Development of technology to transmit power wirelessly, lighting 60W bulb in experiment", Nikkei Electronics, 3Dec.2007

そこで、本発明は、給電側コイルと受電側コイルとの位置ずれdに起因する伝送効率の低下を抑制し、給電手段から受電手段へ高効率で電力を供給することができる給電システムを提供することを課題とする。   Therefore, the present invention provides a power feeding system that can suppress a reduction in transmission efficiency due to the positional deviation d between the power feeding side coil and the power receiving side coil and can supply power from the power feeding means to the power receiving means with high efficiency. This is the issue.

上述した課題を解決するための請求項1記載の発明は、電力が供給される給電側コイルが設けられた給電手段と、前記給電側コイルと電磁共鳴して前記給電側コイルからの電力を受電する受電側コイルが設けられた受電手段と、を備えた給電システムにおいて、前記給電手段及び前記受電手段の少なくとも一方に設けられ、設けられた前記給電手段及び前記受電手段の少なくとも一方のインピーダンスを可変にする整合器と、前記給電側コイルと前記受電側コイルとの相対位置を検出する位置検出手段と、前記位置検出手段により検出された位置に応じて前記整合器を調整して、前記整合器が設けられた前記給電手段及び前記受電手段の少なくとも一方のインピーダンスを調整するインピーダンス調整手段と、を備えたことを特徴とする給電システムに存する。   The invention according to claim 1 for solving the above-described problem is a power supply means provided with a power supply side coil to which power is supplied, and receives power from the power supply side coil by electromagnetic resonance with the power supply side coil. A power receiving system provided with a power receiving side coil, wherein the impedance of at least one of the power feeding means and the power receiving means provided in at least one of the power feeding means and the power receiving means is variable. A matching unit, position detecting means for detecting a relative position between the power feeding side coil and the power receiving side coil, and adjusting the matching unit according to the position detected by the position detecting means, And an impedance adjusting unit that adjusts an impedance of at least one of the power feeding unit and the power receiving unit. It resides in the stem.

請求項2記載の発明は、前記位置検出手段は、前記給電側コイルの中心軸と前記受電側コイルの中心軸との位置ずれdを相対位置として検出することを特徴とする請求項1に記載の給電システムに存する。   The invention according to claim 2 is characterized in that the position detecting means detects a positional deviation d between the central axis of the power supply side coil and the central axis of the power reception side coil as a relative position. The power supply system.

以上説明したように請求項1記載の発明によれば、インピーダンス調整手段が、位置検出手段により検出された給電側コイルと受電側コイルとの相対位置に応じて整合器を調整して、整合器が設けられた給電手段及び受電手段の少なくとも一方のインピーダンスを調整するので、給電側コイルと受電側コイルとの位置ずれdに起因する伝送効率の低下を抑制し、給電手段から受電手段へ高効率で電力を供給することができる。   As described above, according to the first aspect of the present invention, the impedance adjusting unit adjusts the matching unit according to the relative position between the power feeding side coil and the power receiving side coil detected by the position detecting unit, and the matching unit The impedance of at least one of the power feeding means and the power receiving means provided with is adjusted, so that a decrease in transmission efficiency due to the positional deviation d between the power feeding side coil and the power receiving side coil is suppressed, and high efficiency is achieved from the power feeding means to the power receiving means. Can supply power.

請求項2記載の発明によれば、位置検出手段は、給電側コイルの中心軸と受電側コイルの中心軸との位置ずれdを相対位置として検出するので、中心軸の位置ずれdに起因する伝送効率の低下を抑制し、給電手段から受電手段へ高効率で電力を供給することができる。   According to the second aspect of the present invention, the position detecting means detects the positional deviation d between the central axis of the power feeding side coil and the central axis of the power receiving side coil as a relative position, and therefore is caused by the positional deviation d of the central axis. A reduction in transmission efficiency can be suppressed, and power can be supplied from the power supply unit to the power reception unit with high efficiency.

本発明の給電システムを示す図である。It is a figure which shows the electric power feeding system of this invention. 図1に示す給電システムを構成する給電側ループアンテナ、給電側ヘリカルコイル、受電側ヘリカルコイル及び受電側ループアンテナの斜視図である。It is a perspective view of the electric power feeding side loop antenna, electric power feeding side helical coil, electric power receiving side helical coil, and electric power receiving side loop antenna which comprise the electric power feeding system shown in FIG. 給電側、受電側ヘリカルコイルの巻数が2の給電システムにおいて、給電側、受電側ヘリカルコイルの中心軸の位置ずれd=0で整合がある場合、位置ずれd=0.375Dで整合がある場合、位置ずれd=0.375Dで整合がない場合、それぞれの周波数f0付近での伝送効率S212を示すグラフである。In a power feeding system in which the number of turns of the power supply side and power reception side helical coils is 2, when there is alignment when the positional deviation d = 0 of the central axis of the power supply side and power reception side helical coils, there is alignment when the positional deviation d = 0.375D When the positional deviation d = 0.375D and there is no matching, the transmission efficiency S21 2 near each frequency f0 is a graph. 給電側、受電側ヘリカルコイルの巻数が1の給電システムにおいて、給電側、受電側ヘリカルコイルの中心軸の位置ずれd=0で整合がある場合、位置ずれd=0.375Dで整合がある場合、位置ずれd=0.375Dで整合がない場合、それぞれの周波数f0付近での伝送効率S212を示すグラフである。In a power supply system in which the number of turns of the helical coil on the power supply side and the power reception side is 1, when there is a match at the positional deviation d = 0 of the central axis of the power supply side and the power reception side helical coil, When the positional deviation d = 0.375D and there is no matching, the transmission efficiency S21 2 near each frequency f0 is a graph. 従来の給電システムを示す図である。It is a figure which shows the conventional electric power feeding system.

以下、本発明の給電システムを図1及び図2に基づいて説明する。図1は、本発明の給電システムを示す図である。図2は、図1に示す給電システムを構成する給電側ループアンテナ、給電側ヘリカルコイル、受電側ヘリカルコイル及び受電側ループアンテナの斜視図である。同図に示すように、給電システム1は、道路2上などに設けられた給電手段としての給電部3と、自動車4の腹部分などに設けられた受電手段としての受電部5と、を備えている。   The power supply system of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram showing a power supply system of the present invention. FIG. 2 is a perspective view of a power feeding side loop antenna, a power feeding side helical coil, a power receiving side helical coil, and a power receiving side loop antenna constituting the power feeding system shown in FIG. As shown in the figure, the power supply system 1 includes a power supply unit 3 as a power supply unit provided on a road 2 and the like, and a power reception unit 5 as a power reception unit provided in an abdomen of an automobile 4 or the like. ing.

上記給電部3は、直流電源6から供給される直流電力を交流電力に変換するDC/AC変換器31と、DC/AC変換器31により変換された交流電力が供給される給電側ループアンテナ32と、給電側ループアンテナ32に対してその中心軸方向に対向するように離間して配置され、給電側ループアンテナ32に電磁結合された給電側ヘリカルコイル33と、給電側ヘリカルコイル33に並列接続されたキャパシタC1及び整合器としての可変インダクタL1と、が設けられている。   The power feeding unit 3 includes a DC / AC converter 31 that converts DC power supplied from the DC power source 6 into AC power, and a power-feed-side loop antenna 32 that is supplied with AC power converted by the DC / AC converter 31. And a feed-side helical coil 33 that is spaced apart from the feed-side loop antenna 32 in the central axis direction and electromagnetically coupled to the feed-side loop antenna 32, and is connected in parallel to the feed-side helical coil 33. A capacitor C1 and a variable inductor L1 as a matching unit are provided.

上記給電側ループアンテナ32は、円ループ状に設けられていて、その中心軸が道路2から自動車4の腹部分に向かう方向、即ち鉛直方向に沿うように配置されている。この給電側ループアンテナ32の両端には、DC/AC変換器31が接続されていて、上述したようにDC/AC変換器31により変換された交流電力が供給される。   The feeding-side loop antenna 32 is provided in a circular loop shape, and the central axis thereof is arranged along the direction from the road 2 toward the abdomen of the automobile 4, that is, the vertical direction. A DC / AC converter 31 is connected to both ends of the feeding-side loop antenna 32, and AC power converted by the DC / AC converter 31 as described above is supplied.

上記給電側ヘリカルコイル33は、例えば巻線をヘリカル状に巻いて構成されている。本実施形態においては、給電側ヘリカルコイル33は、その巻数が2巻に設けられている。また、給電側ヘリカルコイル33は、上記給電側ループアンテナ32の自動車4側に、給電側ループアンテナ32と同軸上に配置されている。上記給電側ループアンテナ32と給電側ヘリカルコイル33とは、互いに電磁結合できる範囲内、即ち、給電側ループアンテナ32に交流電力が供給され、交流電流が流れると給電側ヘリカルコイル33に電磁誘導が発生するような範囲内で、互いに離間して設けられている。   The power supply side helical coil 33 is constituted by winding a winding in a helical shape, for example. In the present embodiment, the power supply side helical coil 33 is provided with two turns. The power supply side helical coil 33 is disposed coaxially with the power supply side loop antenna 32 on the side of the power supply side loop antenna 32 on the vehicle 4 side. The power feeding side loop antenna 32 and the power feeding side helical coil 33 are within the range where they can be electromagnetically coupled to each other, that is, when AC power is supplied to the power feeding side loop antenna 32 and AC current flows, electromagnetic induction is generated in the power feeding side helical coil 33. They are provided apart from each other within a range where they occur.

上記コンデンサC1は、共鳴周波数を調整するために設けられている。上記可変インダクタンスL1は、後述するCPU9から出力される調整信号に応じてインダクタンスが変化するコイルである。   The capacitor C1 is provided to adjust the resonance frequency. The variable inductance L1 is a coil whose inductance changes according to an adjustment signal output from the CPU 9 described later.

上記受電部5は、給電側ヘリカルコイル33と電磁共鳴する受電側ヘリカルコイル51と、この受電側ヘリカルコイル51に対してその中心軸方向に対向するように配置され、受電側ヘリカルコイル51に電磁結合された受電側ループアンテナ52と、受電側ループアンテナ52が受電した交流電力を直流電力に変換するAC/DC変換器53と、受電側ヘリカル51に並列接続されたコンデンサC2と、が設けられている。   The power receiving unit 5 is disposed so as to face the power receiving side helical coil 51 in electromagnetic resonance with the power receiving side helical coil 33 and to face the power receiving side helical coil 51 in the central axis direction. A coupled power receiving side loop antenna 52, an AC / DC converter 53 that converts AC power received by the power receiving side loop antenna 52 into DC power, and a capacitor C2 connected in parallel to the power receiving side helical 51 are provided. ing.

上記受電側ループアンテナ52には、AC/DC変換器53を介して車載バッテリなどの負荷7が接続されている。また、受電側ループアンテナ52は、円形のループ状に設けられていて、その中心軸が自動車4の腹部分から道路2に向かう方向、即ち鉛直方向に沿うように配置されている。また、本実施形態においては、図2に示すように、上記受電側ループアンテナ52は、上述した給電側ループアンテナ32と同じ径に設けられているが、本発明はこれに限ったものではなく、例えば、受電側ループアンテナ52の径が、上述した給電側ループアンテナ32の径よりも小さく設けられていても良い。   A load 7 such as an in-vehicle battery is connected to the power receiving side loop antenna 52 via an AC / DC converter 53. Further, the power receiving side loop antenna 52 is provided in a circular loop shape, and is arranged so that its central axis is along the direction from the abdomen of the automobile 4 toward the road 2, that is, the vertical direction. Further, in the present embodiment, as shown in FIG. 2, the power receiving side loop antenna 52 is provided with the same diameter as the power feeding side loop antenna 32 described above, but the present invention is not limited to this. For example, the diameter of the power receiving side loop antenna 52 may be smaller than the diameter of the power feeding side loop antenna 32 described above.

上記受電側ヘリカルコイル51は、例えば巻線を円形のヘリカルコイル状に巻いて構成されている。本実施形態においては、受電側ヘリカルコイル51は、給電側ヘリカルコイル33と同様に、その巻数が2巻に設けられている。また、上記受電側ヘリカルコイル51は、上述した給電側ヘリカルコイル33と同じ径に設けられているが、本発明はこれに限ったものではなく、例えば、受電側ヘリカルコイル51の径が、上述した給電側ヘリカルコイル33の径よりも小さく設けられていてもよい。   The power receiving side helical coil 51 is configured, for example, by winding a winding in a circular helical coil shape. In the present embodiment, the power-receiving-side helical coil 51 is provided with two turns as in the case of the power-feeding-side helical coil 33. Moreover, although the said receiving side helical coil 51 is provided in the same diameter as the electric power feeding side helical coil 33 mentioned above, this invention is not limited to this, For example, the diameter of the receiving side helical coil 51 is the above-mentioned. The diameter of the feeding-side helical coil 33 may be smaller.

また、受電側ヘリカルコイル51は、上述した受電側ループアンテナ52の道路2側に、受電側ループアンテナ52と同軸上に配置されている。これにより、受電側ループアンテナ52と受電側ヘリカルコイル51とは、互いに電磁結合する範囲内、即ち、受電側ヘリカルコイル51に交流電流が流れると受電側ループアンテナ52に誘導電流が発生する範囲内に、互いに離間して設けられている。上記コンデンサC2は、コンデンサC1と同様に、共鳴周波数を調整するために設けられている。これらコンデンサC1、C2は、給電側ヘリカルコイル33及び受電側ヘリカルコイル51の共鳴周波数が所望の周波数f0(例えば10MHz)となるように容量が予め調整されている。   The power receiving side helical coil 51 is arranged on the road 2 side of the power receiving side loop antenna 52 and coaxially with the power receiving side loop antenna 52. As a result, the power receiving side loop antenna 52 and the power receiving side helical coil 51 are within a range where they are electromagnetically coupled to each other, that is, within a range where an induction current is generated in the power receiving side loop antenna 52 when an alternating current flows through the power receiving side helical coil 51. Are spaced apart from each other. The capacitor C2 is provided to adjust the resonance frequency, like the capacitor C1. The capacitors C1 and C2 have capacities adjusted in advance so that the resonance frequency of the power supply side helical coil 33 and the power reception side helical coil 51 is a desired frequency f0 (for example, 10 MHz).

上述した給電システム1によれば、自動車4の受電部5が道路2に設けた給電部3に近づいて給電側ヘリカルコイル33と受電側ヘリカルコイル51とが中心軸方向に互いに間隔を空けて対向したとき、給電側ヘリカルコイル33と受電側ヘリカルコイル51とが電磁共鳴して給電部3から受電部5に非接触で電力を供給できる。   According to the power feeding system 1 described above, the power receiving unit 5 of the automobile 4 approaches the power feeding unit 3 provided on the road 2, and the power feeding side helical coil 33 and the power receiving side helical coil 51 are opposed to each other with a space therebetween in the central axis direction. In this case, the power supply side helical coil 33 and the power reception side helical coil 51 can electromagnetically resonate to supply power from the power supply unit 3 to the power reception unit 5 in a non-contact manner.

詳しく説明すると、上記給電側ループアンテナ32に交流電力が供給されると、その電力が電磁誘導により給電側ヘリカルコイル33に送られる。即ち、給電側ヘリカルコイル33には、給電側ループアンテナ32を介して電力が供給される。給電側ヘリカルコイル33に電力が送られると、その電力が磁界の共鳴によって受電側ヘリカルコイル51にワイヤレスで送られる。さらに、受電側ヘリカルコイル51に電力が送られると、その電力が電磁誘導によって受電側ループアンテナ52に送られ、この受電側ループアンテナ52に接続された負荷7にAC/DC変換器53を介して供給される。   More specifically, when AC power is supplied to the power feeding side loop antenna 32, the power is sent to the power feeding side helical coil 33 by electromagnetic induction. That is, power is supplied to the power supply side helical coil 33 via the power supply side loop antenna 32. When electric power is sent to the power supply side helical coil 33, the electric power is wirelessly sent to the power reception side helical coil 51 by magnetic field resonance. Further, when power is sent to the power receiving side helical coil 51, the power is sent to the power receiving side loop antenna 52 by electromagnetic induction, and the load 7 connected to the power receiving side loop antenna 52 is passed through the AC / DC converter 53. Supplied.

また、上述した給電システム1は、さらに図1に示すように、直流電源6とDC/AC変換器31との間に設けられたスイッチ8と、給電部3全体の制御を司るCPU9と、給電側ヘリカルコイル33及び受電側ヘリカルコイル51の相対位置を検出するための位置センサ10と、を備えている。   Further, as shown in FIG. 1, the power supply system 1 described above includes a switch 8 provided between the DC power supply 6 and the DC / AC converter 31, a CPU 9 that controls the entire power supply unit 3, and a power supply. A position sensor 10 for detecting a relative position of the side helical coil 33 and the power receiving side helical coil 51.

上記CPU9は、スイッチ8と、後述する受信器10bとに接続されている。上記位置センサ10は、自動車4に搭載され、受電側ヘリカルコイル51の近傍に配置された送信器10aと、道路2側に配置され、給電側ヘリカルコイル33の近傍に配置された受信器10bと、を備えている。上記送信器10aは、受電側ヘリカルコイル51の近傍に配置されるように自動車4の腹部分に配置されている。この送信器10aは、例えば、スポット光を出射する発光素子と、これら発光素子の発光を制御する制御回路などから構成されていて、定期的に上記スポット光を鉛直下側に向けて照射している。   The CPU 9 is connected to the switch 8 and a receiver 10b described later. The position sensor 10 is mounted on the automobile 4 and is disposed in the vicinity of the power receiving side helical coil 51, and the receiver 10b is disposed on the road 2 side and is disposed in the vicinity of the power feeding side helical coil 33. It is equipped with. The transmitter 10 a is disposed in the abdomen of the automobile 4 so as to be disposed in the vicinity of the power receiving side helical coil 51. The transmitter 10a is composed of, for example, a light emitting element that emits spot light and a control circuit that controls light emission of these light emitting elements, and periodically irradiates the spot light downward vertically. Yes.

上記受信器10bは、給電側ヘリカルコイル33の近傍に配置されるように道路2上に配置されている。受信器10bは、スポット光を受光する受光面が形成された受光素子と、このスポット光が照射される受光面上の位置に応じた位置信号を出力する検出回路などから構成されていて、この検出回路からの位置信号をCPU9に対して出力している。   The receiver 10 b is disposed on the road 2 so as to be disposed in the vicinity of the power supply side helical coil 33. The receiver 10b is composed of a light receiving element on which a light receiving surface for receiving spot light is formed and a detection circuit for outputting a position signal corresponding to the position on the light receiving surface irradiated with the spot light. A position signal from the detection circuit is output to the CPU 9.

上記CPU9は、上記受信器10bからの位置信号に基づいて給電側ヘリカルコイル33と受電側ヘリカルコイル51との相対位置を検出する。具体的には、CPU9は、給電側ヘリカルコイル33の中心軸Z1(図2)と受電側ヘリカルコイル51の中心軸Z2(図2)との位置ずれd(図5)を相対位置として検出する。なお、本実施形態では、位置センサ10として、上述したように光学式のものを用いた例について説明するが、本発明はこれに限ったものではなく、他に超音波式や無線式など公知の位置センサ10を用いてもよい。また、以上のことから明らかなように、上記位置センサ10及びCPU9が、請求項中の位置検出手段を構成している。   The CPU 9 detects the relative position between the power supply side helical coil 33 and the power reception side helical coil 51 based on the position signal from the receiver 10b. Specifically, the CPU 9 detects a positional deviation d (FIG. 5) between the central axis Z1 (FIG. 2) of the power supply side helical coil 33 and the central axis Z2 (FIG. 2) of the power reception side helical coil 51 as a relative position. . In this embodiment, an example in which an optical sensor is used as the position sensor 10 as described above will be described. However, the present invention is not limited to this, and other ultrasonic sensors, wireless sensors, and the like are also known. The position sensor 10 may be used. Further, as is apparent from the above, the position sensor 10 and the CPU 9 constitute position detecting means in the claims.

次に、給電システム1の動作を説明する前に、本発明の原理について説明する。まず、本発明者らは、位置ずれd=0の場合に最も高効率になるように可変インダクタンスL1のインダクタンスを調整して給電部5のインピーダンスを調整し、周波数f0付近での受電側ループアンテナ52の伝送効率S212をシミュレーションした。結果を図3の鎖線で示す。同図に示すように、位置ずれd=0の場合は97%の伝送効率S212が実現できている。 Next, the principle of the present invention will be described before the operation of the power feeding system 1 is described. First, the inventors adjust the impedance of the variable inductance L1 to adjust the impedance of the power feeding unit 5 so as to obtain the highest efficiency in the case of the positional deviation d = 0, and adjust the impedance of the power feeding unit 5 near the frequency f0. 52 transmission efficiency S21 2 was simulated. The results are shown by the chain line in FIG. As shown in the figure, when the positional deviation d = 0, a transmission efficiency S21 2 of 97% can be realized.

次に、本発明者らは、位置ずれd=0.375D(D=受電側ヘリカルコイル51の直径)にして、周波数f0付近での受電側ループアンテナ52の伝送効率S212をシミュレーションした。結果を図3の一点鎖線で示す。なお、このときの可変インダクタンスL1のインダクタンスは位置ずれd=0のときに調整した値と同じである。同図に示すように、位置ずれdが発生すると伝送効率S212が87%程度まで低下してしまう。 Next, the inventors simulated the transmission efficiency S21 2 of the power receiving side loop antenna 52 in the vicinity of the frequency f0 with the positional deviation d = 0.375D (D = the diameter of the power receiving side helical coil 51). A result is shown with the dashed-dotted line of FIG. Note that the inductance of the variable inductance L1 at this time is the same as the value adjusted when the positional deviation d = 0. As shown in the figure, when the positional deviation d occurs, the transmission efficiency S21 2 decreases to about 87%.

このように伝送効率S212が低下してしまう原因は、位置ずれd=0のときに給電部3と受電部5とのインピーダンスが整合されていたとしても、位置ずれdが生じるとインピーダンスの整合がくずれ、給電部3から送信した電力が受電部5で反射されてしまうためと考えられる。そこで、本発明者らは、位置ずれd=0.375Dの場合に再び可変インダクタンスL1のインダクタンスを調整して、給電部3のインピーダンスを調整し、周波数f0付近での受電側ループアンテナ52の伝送効率S212をシミュレーションした。結果を図3の実線で示す。同図に示すように、インピーダンスを調整すると伝送効率S212は93%程度まで改善した。 The reason why the transmission efficiency S21 2 is reduced in this way is that when the positional deviation d = 0, even if the impedances of the power feeding unit 3 and the power receiving unit 5 are matched, if the positional deviation d occurs, impedance matching is performed. This is probably because the power transmitted from the power feeding unit 3 is reflected by the power receiving unit 5. Therefore, the inventors adjust the inductance of the variable inductance L1 again in the case of the positional deviation d = 0.375D, adjust the impedance of the power feeding unit 3, and transmit the power receiving side loop antenna 52 near the frequency f0. Efficiency S21 2 was simulated. The result is shown by the solid line in FIG. As shown in the figure, when the impedance is adjusted, the transmission efficiency S21 2 is improved to about 93%.

そこで、位置ずれdと、最も良い伝送効率S212が得られる可変インダクタンスL1のインダクタンスと、の関係をシミュレーションや実験などにより求め、求めた関係を表すテーブルなどを図示しないメモリに予め記憶させる。そして、CPU9は、受信器10bからの位置信号により検出された位置ずれdに対応するインダクタンスをメモリに記憶されたテーブルから求め、求めたインダクタンスとなるような調整信号を可変インダクタンスL1に対して出力する。 Therefore, the relationship between the positional deviation d and the inductance of the variable inductance L1 that provides the best transmission efficiency S21 2 is obtained by simulation or experiment, and a table representing the obtained relationship is stored in advance in a memory (not shown). Then, the CPU 9 obtains an inductance corresponding to the positional deviation d detected by the position signal from the receiver 10b from a table stored in the memory, and outputs an adjustment signal for obtaining the obtained inductance to the variable inductance L1. To do.

次に、上記概略で説明した給電システム1の詳細な動作について説明する。まず、CPU9は、受信器10bの位置信号を取り込んで、スポット光が受光されているか否かを判定する。スポット光が受光されていれば自動車2が近くにいると判定し、CPU9は、次に、受信器10bからの位置信号に基づいて中心軸Z1、Z2の位置ずれdを求める。   Next, a detailed operation of the power supply system 1 described in the above outline will be described. First, the CPU 9 takes in the position signal of the receiver 10b and determines whether spot light is received. If the spot light is received, it is determined that the vehicle 2 is nearby, and the CPU 9 next obtains the positional deviation d between the central axes Z1 and Z2 based on the position signal from the receiver 10b.

その後、CPU9は、インピーダンス調整手段として働き、求めた位置ずれdに対応するインダクタンスをメモリに記憶されたテーブルなどから求め、求めたインダクタンスになるような調整信号を可変インダクタンスL1に対して出力する。次に、CPU9は、スイッチ8をオンして、給電側ループアンテナ32の交流電力を供給する。これにより、高効率を保ったまま給電部3から受電部5へワイヤレスで電力が送信される。   Thereafter, the CPU 9 functions as an impedance adjusting means, obtains an inductance corresponding to the obtained positional deviation d from a table or the like stored in the memory, and outputs an adjustment signal for obtaining the obtained inductance to the variable inductance L1. Next, the CPU 9 turns on the switch 8 to supply the AC power of the power feeding side loop antenna 32. As a result, power is transmitted wirelessly from the power feeding unit 3 to the power receiving unit 5 while maintaining high efficiency.

その後、CPU9は、再び受信器10bの位置信号を取り込んで、スポット光が受光されなくなると、自動車2が離れたと判定し、スイッチ8をオフして、給電側ループアンテナ32に供給する交流電力を遮断する。   Thereafter, the CPU 9 captures the position signal of the receiver 10b again, and when the spot light is no longer received, the CPU 9 determines that the automobile 2 has left, turns off the switch 8, and supplies the AC power supplied to the feeding-side loop antenna 32. Cut off.

上述した給電システム1によれば、CPU9が、位置センサ10を用いて検出した給電側ヘリカルコイル33の中心軸Z1と受電側ヘリカルコイル51の中心軸Z2との位置ずれdに応じて可変インダクタンスL1を調整して、可変インダクタンスL1が設けられた給電部3のインピーダンスを調整するので、給電側ヘリカルコイル33と受電側ヘリカルコイル51との位置ずれdに起因する伝送効率の低下を抑制し、給電部3から受電部5へ高効率で電力を供給することができる。   According to the power feeding system 1 described above, the variable inductance L1 according to the positional deviation d between the central axis Z1 of the power supply side helical coil 33 and the central axis Z2 of the power reception side helical coil 51 detected by the CPU 9 using the position sensor 10. Is adjusted to adjust the impedance of the power feeding unit 3 provided with the variable inductance L1, so that a decrease in transmission efficiency due to the positional deviation d between the power feeding side helical coil 33 and the power receiving side helical coil 51 is suppressed. Power can be supplied from the unit 3 to the power receiving unit 5 with high efficiency.

上述した給電システム1によれば、CPU9は、位置センサ10を用いて、給電側ヘリカルコイル33の中心軸Z1と受電側ヘリカルコイル51の中心軸Z2との位置ずれdを相対位置として検出するので、中心軸Z1、Z2の位置ずれdに起因する伝送効率の低下を抑制し、給電部3から受電部5へ高効率で電力を供給することができる。   According to the power supply system 1 described above, the CPU 9 uses the position sensor 10 to detect the positional deviation d between the central axis Z1 of the power supply side helical coil 33 and the central axis Z2 of the power reception side helical coil 51 as a relative position. Further, it is possible to suppress a decrease in transmission efficiency due to the positional deviation d between the central axes Z1 and Z2, and to supply power from the power feeding unit 3 to the power receiving unit 5 with high efficiency.

なお、上述した実施形態では、2巻きの給電側、受電側ヘリカルコイル33、51について説明していたが、本発明はこれに限ったものではない。給電側、受電側ヘリカルコイル33、51の巻数としては、1巻きでも、3巻き以上であってもよい。本発明者らは、他の巻き数でも上記効果が得られることを検証すべく、給電側、受電側ヘリカルコイル33、51の巻数が1の給電システム1において、位置ずれd=0で整合がある場合、位置ずれd=0.375Dで整合がある場合、位置ずれd=0.375Dで整合がない場合、それぞれの周波数f0付近の伝送効率S212をシミュレーションした。結果を図4に示す。 In the above-described embodiment, the two power supply side and power reception side helical coils 33 and 51 have been described. However, the present invention is not limited to this. The number of turns of the power supply side and power reception side helical coils 33 and 51 may be one or three or more. In order to verify that the above-described effect can be obtained even with other numbers of turns, the inventors of the power supply system 1 in which the number of turns of the power supply side and power reception side helical coils 33 and 51 is 1, and the alignment is zero when the displacement is d = 0. In some cases, the transmission efficiency S21 2 near each frequency f0 was simulated when there was a match with a positional deviation d = 0.375D and when there was no matching with a positional deviation d = 0.375D. The results are shown in FIG.

同図に示すように、位置ずれd=0の場合、伝送効率S212は95%であった。これに対して、位置ずれd=0.375Dの場合に整合がないと伝送効率S212は73%に低下してしまう。可変インダクタンスL1を用いて整合を取った場合には伝送効率S212は85%にまで改善できることが分かった。 As shown in the figure, when the positional deviation d = 0, the transmission efficiency S21 2 was 95%. On the other hand, if there is no matching when the positional deviation d = 0.375D, the transmission efficiency S21 2 is reduced to 73%. It was found that the transmission efficiency S21 2 can be improved to 85% when matching is achieved using the variable inductance L1.

また、上述した実施形態では、給電部3にのみ整合器である可変インダクタンスL1を設けていたが、本発明はこれに限ったものではない。例えば、受電部5にのみ整合器を設けても良いし、給電部3と受電部5との両方に整合器を設けてもよい。   In the above-described embodiment, the variable inductance L1 that is a matching unit is provided only in the power feeding unit 3, but the present invention is not limited to this. For example, a matching unit may be provided only in the power receiving unit 5, or a matching unit may be provided in both the power feeding unit 3 and the power receiving unit 5.

また、上述した実施形態では、整合器として、可変インダクタンスL1を用いていたが、本発明はこれに限ったものではない。整合器としては、キャパシタや、キャパシタとインダクタンスとの組み合わせなど他に公知のものを用いても良い。   In the above-described embodiment, the variable inductance L1 is used as the matching device, but the present invention is not limited to this. As the matching device, a known device such as a capacitor or a combination of a capacitor and an inductance may be used.

また、上述した実施形態では、給電側ヘリカルコイル33に整合器としての可変インダクタンスL1を接続していたが、本発明はこれに限ったものではない。本発明は給電部3及び受電部5間のインピーダンスをマッチングさせていればよく、整合器を給電側、受電側ループアンテナ32、52に設けてもよいし、DC/AC変換器31やAC/DC変換器53に設けてもよい。   In the above-described embodiment, the variable inductance L1 as a matching unit is connected to the power supply side helical coil 33. However, the present invention is not limited to this. In the present invention, the impedance between the power feeding unit 3 and the power receiving unit 5 may be matched, and a matching unit may be provided in the power feeding side and power receiving side loop antennas 32 and 52, or the DC / AC converter 31 and AC / AC The DC converter 53 may be provided.

また、上述した実施例では、位置ずれdを検出して、その位置ずれdによる伝送効率低下を防止するように可変インダクタンスL1を調整してたいが、本発明はこれに限ったものではない。例えば、給電側ヘリカルコイル33と受電側ヘリカルコイル51との中心軸方向の距離X(図3)を検出して、その距離Xの変動による伝送効率低下を防止するように可変インダクタンスL1を調整してもよい。   In the above-described embodiment, it is desired to detect the positional deviation d and adjust the variable inductance L1 so as to prevent a reduction in transmission efficiency due to the positional deviation d, but the present invention is not limited to this. For example, the distance X (FIG. 3) between the feeding-side helical coil 33 and the receiving-side helical coil 51 in the central axis direction is detected, and the variable inductance L1 is adjusted so as to prevent a decrease in transmission efficiency due to fluctuations in the distance X. May be.

また、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   Further, the above-described embodiments are merely representative forms of the present invention, and the present invention is not limited to the embodiments. That is, various modifications can be made without departing from the scope of the present invention.

1 給電システム
3 給電部(給電手段)
5 受電部(受電手段)
9 CPU(インピーダンス調整手段、位置検出手段)
10 位置センサ(位置検出手段)
33 給電側ヘリカルコイル(給電側コイル)
51 受電側ヘリカルコイル(受電側コイル)
L1 可変インダクタンス(整合器)
1 Power Supply System 3 Power Supply Unit (Power Supply Means)
5 Power receiving unit (power receiving means)
9 CPU (impedance adjusting means, position detecting means)
10 Position sensor (position detection means)
33 Feeding side helical coil (feeding side coil)
51 Receiving side helical coil (Receiving side coil)
L1 Variable inductance (matching device)

Claims (2)

電力が供給される給電側コイルが設けられた給電手段と、前記給電側コイルと電磁共鳴して前記給電側コイルからの電力を受電する受電側コイルが設けられた受電手段と、を備えた給電システムにおいて、
前記給電手段及び前記受電手段の少なくとも一方に設けられ、設けられた前記給電手段及び前記受電手段の少なくとも一方のインピーダンスを可変にする整合器と、
前記給電側コイルと前記受電側コイルとの相対位置を検出する位置検出手段と、
前記位置検出手段により検出された位置に応じて前記整合器を調整して、前記整合器が設けられた前記給電手段及び前記受電手段の少なくとも一方のインピーダンスを調整するインピーダンス調整手段と、
を備えたことを特徴とする給電システム。
Power supply comprising: a power supply means provided with a power supply side coil to which power is supplied; and a power reception means provided with a power reception side coil that electromagnetically resonates with the power supply side coil to receive power from the power supply side coil. In the system,
A matching unit that is provided in at least one of the power supply unit and the power reception unit, and makes the impedance of at least one of the power supply unit and the power reception unit provided variable;
Position detecting means for detecting a relative position between the power feeding side coil and the power receiving side coil;
An impedance adjusting unit that adjusts the matching unit according to the position detected by the position detecting unit and adjusts the impedance of at least one of the power feeding unit and the power receiving unit provided with the matching unit;
A power supply system comprising:
前記位置検出手段は、前記給電側コイルの中心軸と前記受電側コイルの中心軸との位置ずれを相対位置として検出する
ことを特徴とする請求項1に記載の給電システム。
The power supply system according to claim 1, wherein the position detection unit detects a positional shift between a central axis of the power supply side coil and a central axis of the power reception side coil as a relative position.
JP2011145296A 2011-06-30 2011-06-30 Power supply system Pending JP2013013274A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011145296A JP2013013274A (en) 2011-06-30 2011-06-30 Power supply system
EP12804578.8A EP2728711A1 (en) 2011-06-30 2012-06-27 Power feeding system design method and power feeding system
PCT/JP2012/066332 WO2013002240A1 (en) 2011-06-30 2012-06-27 Power feeding system design method and power feeding system
CN201280042633.8A CN103782483A (en) 2011-06-30 2012-06-27 Power feeding system design method and power feeding system
US14/141,753 US20140111023A1 (en) 2011-06-30 2013-12-27 Method of designing power feeding system and power feeding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011145296A JP2013013274A (en) 2011-06-30 2011-06-30 Power supply system

Publications (2)

Publication Number Publication Date
JP2013013274A true JP2013013274A (en) 2013-01-17
JP2013013274A5 JP2013013274A5 (en) 2014-04-10

Family

ID=47686635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011145296A Pending JP2013013274A (en) 2011-06-30 2011-06-30 Power supply system

Country Status (1)

Country Link
JP (1) JP2013013274A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666206U (en) * 1993-02-23 1994-09-16 株式会社椿本チエイン Mobile charging device
JPH07236204A (en) * 1994-02-22 1995-09-05 Hitachi Ltd Method and system for charging electric automobile
JPH09215211A (en) * 1996-02-02 1997-08-15 Sumitomo Wiring Syst Ltd Charging system for electric vehicle
JP2010141976A (en) * 2008-12-09 2010-06-24 Toyota Industries Corp Non-contact power transmission apparatus
JP2011050140A (en) * 2009-08-26 2011-03-10 Sony Corp Non-contact electric power feeding apparatus, non-contact power electric receiver receiving apparatus, non-contact electric power feeding method, non-contact electric power receiving method and non-contact electric power feeding system
WO2012073349A1 (en) * 2010-12-01 2012-06-07 トヨタ自動車株式会社 Wireless power-transfer equipment and method for controlling vehicle and wireless power-transfer system
JP2012138976A (en) * 2010-12-24 2012-07-19 Equos Research Co Ltd Power transmission system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666206U (en) * 1993-02-23 1994-09-16 株式会社椿本チエイン Mobile charging device
JPH07236204A (en) * 1994-02-22 1995-09-05 Hitachi Ltd Method and system for charging electric automobile
JPH09215211A (en) * 1996-02-02 1997-08-15 Sumitomo Wiring Syst Ltd Charging system for electric vehicle
JP2010141976A (en) * 2008-12-09 2010-06-24 Toyota Industries Corp Non-contact power transmission apparatus
JP2011050140A (en) * 2009-08-26 2011-03-10 Sony Corp Non-contact electric power feeding apparatus, non-contact power electric receiver receiving apparatus, non-contact electric power feeding method, non-contact electric power receiving method and non-contact electric power feeding system
WO2012073349A1 (en) * 2010-12-01 2012-06-07 トヨタ自動車株式会社 Wireless power-transfer equipment and method for controlling vehicle and wireless power-transfer system
JP2012138976A (en) * 2010-12-24 2012-07-19 Equos Research Co Ltd Power transmission system

Similar Documents

Publication Publication Date Title
WO2013002240A1 (en) Power feeding system design method and power feeding system
JP5804052B2 (en) Wireless power receiving and receiving device and wireless power transmission system
CN107848434B (en) System, apparatus, and method for optimizing wireless charging alignment
US9412513B2 (en) Wireless power transmission system
US9983300B2 (en) Systems, methods, and apparatus for living object protection in wireless power transfer applications
US9984814B2 (en) Wireless power transmitter, wireless power relay apparatus, and wireless power receiver
JP5211088B2 (en) Power feeding device and vehicle power feeding system
US20110163609A1 (en) Wireless power feed system
WO2011122249A1 (en) Contactless power feeding apparatus and contactless power feeding method
WO2012128093A1 (en) Power supply system
JP6001355B2 (en) Non-contact power feeding device
JP5773693B2 (en) Power supply system
JP2011167036A (en) Electric power feed device for vehicle, and electric power reception device
JP2011120443A (en) Resonance type non-contact power transmission apparatus
JP2011130614A (en) Noncontact power supply
JP5767469B2 (en) Power supply system
US9893566B2 (en) Power supply system
WO2014136737A1 (en) Power supplying unit, power receiving unit, and power supplying system
EP2728710B1 (en) Electrical supply system
JP2013013274A (en) Power supply system
JP5825882B2 (en) Power supply system
JP6615575B2 (en) Power supply system
JP5847468B2 (en) Power supply system design method
KR20130009645A (en) Wireless power receiver
CN110521081B (en) Wireless power transfer system and method using non-resonant power receiver

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160830