JP5102670B2 - Method for producing lead alloy electrode having β-PbO2 coating - Google Patents
Method for producing lead alloy electrode having β-PbO2 coating Download PDFInfo
- Publication number
- JP5102670B2 JP5102670B2 JP2008078433A JP2008078433A JP5102670B2 JP 5102670 B2 JP5102670 B2 JP 5102670B2 JP 2008078433 A JP2008078433 A JP 2008078433A JP 2008078433 A JP2008078433 A JP 2008078433A JP 5102670 B2 JP5102670 B2 JP 5102670B2
- Authority
- JP
- Japan
- Prior art keywords
- electrolysis
- pbo
- electrode
- anode
- lead alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electrolytic Production Of Metals (AREA)
Description
本発明は亜鉛電解採取における鉛合金電極表面の耐食性向上、電解電圧の低減による省電力化および製品品質の向上を目的とした鉛合金電極の改善に関する。 The present invention relates to the improvement of lead alloy electrodes for the purpose of improving the corrosion resistance of the surface of lead alloy electrodes in zinc electrowinning, saving power by reducing the electrolysis voltage, and improving product quality.
亜鉛製錬の電解採取工程において使用する鉛合金電極はその表面に酸化物皮膜が生成することで耐食性を有している。二酸化鉛の形態としてα-PbO2とβ-PbO2があるが、通常、アノード表面に生成される主要酸化物はα-PbO2である。
α-PbO2を主要酸化物とする鉛酸化物皮膜が生成されると電解電圧が高くなり、電力消費量が多くなる。また、α-PbO2を主要酸化物とする皮膜が脱落し、脱落した皮膜が製品純度を下げるといった問題点がある。
The lead alloy electrode used in the electrolytic extraction process of zinc smelting has corrosion resistance by forming an oxide film on its surface. There are alpha-PbO 2 and beta-PbO 2 in the form of lead dioxide, but usually, the major oxides generated on the anode surface is alpha-PbO 2.
When a lead oxide film having α-PbO 2 as a main oxide is produced, the electrolysis voltage increases and the power consumption increases. In addition, there is a problem in that a film containing α-PbO 2 as a main oxide falls off and the dropped film lowers the product purity.
Pb−Ag合金にCaを添加することで電解電圧が低下することが知られているため、Pb−Ag−Ca合金の電極を作製し、電解試験が行われた。電解は500A/m2で20日間行った。その結果、Pb−Ag合金よりPb−Ag−Ca合金の方が電解電圧は低下した。また、電解終了後、アノード表面のX線回折を行ったところ、Pb−Ag合金の表面にはα-PbO2、Pb−Ag−Ca合金の表面にはβ-PbO2が生成した。つまり、Caを添加することで表面にβ-PbO2を主要酸化物とする皮膜ができやすい。その一方で、Caの添加量が多すぎると酸化物皮膜に亀裂が多くなるといった問題点がある。亀裂が多いと酸化物皮膜の密着性が悪くなり、酸化物皮膜脱落の要因となる。短期間であれば問題はないかもしれないが、長期間の電解にはCaを添加した電極は不向きといえる。 Since it is known that the electrolysis voltage is reduced by adding Ca to the Pb—Ag alloy, an electrode of a Pb—Ag—Ca alloy was produced and an electrolysis test was performed. Electrolysis was performed at 500 A / m 2 for 20 days. As a result, the electrolysis voltage of the Pb—Ag—Ca alloy was lower than that of the Pb—Ag alloy. Moreover, when the X-ray diffraction of the anode surface was performed after the completion of electrolysis, α-PbO 2 was formed on the surface of the Pb—Ag alloy and β-PbO 2 was formed on the surface of the Pb—Ag—Ca alloy. That is, it is easy to form a film having β-PbO 2 as a main oxide on the surface by adding Ca. On the other hand, when there is too much addition amount of Ca, there exists a problem that a crack will increase in an oxide film. If there are many cracks, the adhesion of the oxide film will deteriorate, causing the oxide film to fall off. Although it may not be a problem for a short period, it can be said that an electrode to which Ca is added is not suitable for long-term electrolysis.
β-PbO2はα-PbO2よりも構造が緻密であるため脱落しにくい。また、結晶粒も大きいため浮遊スライムになりにくいと考えられるため、製品純度に悪影響を与えにくい。したがって、α-PbO2よりもβ-PbO2を主要酸化物とした皮膜を生成することで電解電圧は低くなるため電力コストの削減、製品品質の向上が期待できる。 Since β-PbO 2 has a denser structure than α-PbO 2, it is difficult to drop off. Moreover, since it is thought that it is hard to become a floating slime because the crystal grain is large, it is difficult to adversely affect the product purity. Therefore, by forming a film having β-PbO 2 as a main oxide rather than α-PbO 2 , the electrolysis voltage is lowered, so that reduction in power cost and improvement in product quality can be expected.
β-PbO2は硫酸鉛からの酸化反応により生成されることが一般に知られているが、その生成には時間を要する。また、実際の電解工程液にはMnが含まれている。Mnを含有した硫酸溶液中では酸化物皮膜は生成されにくいという問題点があった。
また、下記の文献1に、酸化鉛を電極表面に没入させる技術が開示されているが、電極表面に上記のようなβ-PbO2を生成する技術は限られ、この文献1の電極では、電極表面に鉛が露出しているため、上記α-PbO2が生成されてしまう。また、この方法では、別にβ-PbO2粉末を作製し、表面に没入するための製造工程があり、コストがかかる。また、電極からのβ-PbO2の脱落を防止するためさらなる改善を要する。
Further, the following document 1 discloses a technique for immersing lead oxide in the electrode surface, but the technique for generating β-PbO 2 as described above on the electrode surface is limited. Since lead is exposed on the electrode surface, the α-PbO 2 is produced. In addition, in this method, there is a manufacturing process for separately producing β-PbO 2 powder and immersing it on the surface, which is expensive. Further improvement is required to prevent β-PbO 2 from falling off the electrode.
α-PbO2を主要酸化物とする酸化物皮膜の生成により、電解電圧の上昇や酸化物皮膜の脱落による製品品位の低下が問題であったため、β-PbO2を主要酸化物とする酸化物皮膜を優先的に生成することで電解電圧の抑制、皮膜脱落防止を行い、操業における電力コスト削減、製品品質の向上を目的とする。
また、脱離が少なく、かつ電解電圧の上昇を抑制するβ-PbO2を電極表面に生成する簡便な技術が求められていた。
The product of the oxide film to the alpha-PbO 2 and the main oxide, the decrease in product quality due to dropping of the increase and the oxide film of the electrolytic voltage has been a problem, oxides of beta-PbO 2 and the main oxide By preferentially generating the film, the purpose is to suppress the electrolysis voltage and prevent the film from falling off, thereby reducing the power cost and improving the product quality in operation.
In addition, there has been a demand for a simple technique for generating β-PbO 2 on the electrode surface with little desorption and suppressing an increase in electrolytic voltage.
本発明は、鉛合金電極のアノードを電解液中に配設し、該液中に配設されたカソードとの間で電流の通電と遮断とを繰り返す操作により前記電極の表面にβ−PbO2皮膜を生成する電極製造方法である。
これまで、電極表面への酸化物生成は定電流で行っていたが、通電と遮断(通電流0 A、通電圧0 Vの無通電を言う。)を繰り返し行うことで定電流電解を行い酸化物を生成した時よりもβ-PbO2の生成を促進することができる。
According to the present invention, an anode of a lead alloy electrode is disposed in an electrolytic solution, and β-PbO 2 is formed on the surface of the electrode by an operation of repeatedly energizing and interrupting current with a cathode disposed in the solution. It is an electrode manufacturing method which produces | generates a membrane | film | coat.
Until now, oxide generation on the electrode surface has been performed at a constant current. However, constant current electrolysis is performed by repeatedly conducting and shutting off (referring to non-energization at a current of 0 A and a voltage of 0 V). The production of β-PbO 2 can be promoted more than when the product is produced.
通電と遮断を繰り返すことによりβ-PbO2の生成を促進することが可能となった。また、β-PbO2はα-PbO2よりも電解電圧が低く電力コストを削減することができる。さらに、β-PbO2はその構造が緻密であるため、電極表面から脱落しにくく、脱落しても結晶粒が大きいため浮遊スライムになりにくいのでα-PbO2と比較しても製品の品位は高いと考えられる。 It has become possible to promote the production of β-PbO 2 by repeating energization and interruption. In addition, β-PbO 2 has a lower electrolysis voltage than α-PbO 2 and can reduce power costs. Furthermore, beta-PbO 2 because its structure is dense, hard to fall off from the electrode surface, quality of the products as compared to the alpha-PbO 2 so less likely to float slime for even fall off large crystal grains It is considered high.
なお、本発明において、鉛合金電極は亜鉛電解採取用の鉛合金電極とすることができ、鉛合金は銀を含有する鉛合金が、カソードはアルミニウム製カソードが、電解液は硫酸溶液が、それぞれ好ましい。
また、本発明は硫酸溶液だけでなくMnを含有する工程液にも応用可能と考えられる。今回Mnを添加した硫酸溶液を用いて通電と遮断を繰り返す酸化物生成のための電解を24時間行ったところ、β-PbO2の皮膜を生成することができた。
上記の酸溶液中に鉛合金電極をアノードとし、アルミニウム製カソードをカソードとして配設して、通電と遮断の操作を行う。通電と遮断の操作は、手動でも良いし、電流制御をプログラム等により行っても良い。
In the present invention, the lead alloy electrode may be a lead alloy electrode for zinc electrowinning, the lead alloy is a lead alloy containing silver, the cathode is an aluminum cathode, the electrolyte is a sulfuric acid solution, respectively. preferable.
Moreover, it is thought that this invention is applicable not only to a sulfuric acid solution but to the process liquid containing Mn. This time, when electrolysis was performed for 24 hours using an sulfuric acid solution containing Mn to repeatedly turn on and off, a β-PbO 2 film could be formed.
In the above acid solution, a lead alloy electrode is used as an anode and an aluminum cathode is used as a cathode, and energization and shut-off operations are performed. The energization and interruption operations may be performed manually or current control may be performed by a program or the like.
[共通]図1に示す鉛合金電極の作製方法に従って、Pb−1%Ag合金を作製する。すなわち、Agが1質量%となるように純鉛と純銀を精秤し、電気炉を用いて溶解(850〜900℃)する。鋳型(10mm×10mm×100mmの金型)は予め予熱(約300℃)しておく。鋳込み後に、室温で放冷する。ICPで合金の組成を確認し、Agが1質量%となっているもののみ配線、樹脂埋めを行い、図2に示す電極の形状に加工する。次いで、耐水研磨紙で表面を研磨後、酢酸:過酸化水素水=3:1(体積比)の混合液でエッチングを行い、蒸留水で2分間超音波洗浄してアノード電極として使用する。カソードには純Alを使用し、アノードと同形状に作製する。 [Common] A Pb-1% Ag alloy is produced in accordance with the method for producing a lead alloy electrode shown in FIG. That is, pure lead and pure silver are precisely weighed so that Ag is 1% by mass and melted (850 to 900 ° C.) using an electric furnace. The mold (10 mm × 10 mm × 100 mm mold) is preheated (about 300 ° C.) in advance. Allow to cool at room temperature after casting. The composition of the alloy is confirmed by ICP, and wiring and resin filling are carried out only for those with an Ag content of 1% by mass, and processed into the electrode shape shown in FIG. Next, after polishing the surface with water-resistant abrasive paper, etching is performed with a mixed solution of acetic acid: hydrogen peroxide solution = 3: 1 (volume ratio), and ultrasonic cleaning is performed with distilled water for 2 minutes to use as an anode electrode. Pure Al is used for the cathode, and it is made in the same shape as the anode.
電解装置の概略を図3に示す。すなわち、アノードにPb−1.0質量%Ag合金、カソードに純アルミニウムを用い、電極間距離は30mmとする。また、電解液量は500mlとし、40℃に保温する。定電流電源にはガルバノスタットを使用し、電流密度は500A/m2とする。 An outline of the electrolysis apparatus is shown in FIG. That is, Pb-1.0 mass% Ag alloy is used for the anode, pure aluminum is used for the cathode, and the distance between the electrodes is 30 mm. The amount of the electrolyte is 500 ml and kept at 40 ° C. A galvanostat is used for the constant current power source, and the current density is 500 A / m 2 .
[実施例1]表1に試験条件、表2に各種通電条件および結果を示す。表2に示した通電条件で24時間電解を行い、アノード表面に酸化物皮膜を生成させる。その後、酸化物皮膜を生成させたそれぞれのアノードを用いて電流密度500A/m2で1週間の定電流電解を行い、電解電圧を測定する。電解終了後、アノードを電解液中から取り出し、アノードを蒸留水で洗浄し、乾燥させた後、アノード表面のX線回折、SEM観察および電解液中に脱落した物質の質量測定を行った。 [Example 1] Table 1 shows test conditions, and Table 2 shows various energization conditions and results. Electrolysis is performed for 24 hours under the energization conditions shown in Table 2 to form an oxide film on the anode surface. Thereafter, constant current electrolysis is performed for 1 week at a current density of 500 A / m 2 using each anode on which an oxide film is formed, and the electrolysis voltage is measured. After the completion of electrolysis, the anode was taken out from the electrolyte solution, washed with distilled water and dried, and then subjected to X-ray diffraction on the anode surface, SEM observation, and mass measurement of the substance dropped into the electrolyte solution.
図4に各種通電条件で24時間の電解を行い、酸化物を生成させたアノード表面のSEM像を示す。24時間定電流で電解を行ったアノード表面にはα-PbO2が生成し、通電と遮断を繰り返す電解を行ったアノード表面にはβ-PbO2が生成した。この電極を使用して電流密度500A/m2で1週間の定電流電解を行った。 FIG. 4 shows SEM images of the anode surface on which oxide was generated by electrolysis for 24 hours under various energization conditions. Α-PbO 2 was generated on the surface of the anode subjected to electrolysis at a constant current for 24 hours, and β-PbO 2 was generated on the surface of the anode subjected to electrolysis that was repeatedly turned on and off. Using this electrode, constant current electrolysis was performed at a current density of 500 A / m 2 for one week.
図5に1週間の定電流電解後のアノード表面のX線回折結果、図6にSEM観察結果を示す。すなわち、α-PbO2が生成されたアノードを用いて1週間の定電流電解を行ったアノードの表面の主要酸化物はα-PbO2であり、通電と遮断を繰り返す電解方法で酸化物を生成したアノード表面の主要酸化物はβ-PbO2である。 FIG. 5 shows the result of X-ray diffraction on the anode surface after constant-current electrolysis for one week, and FIG. 6 shows the result of SEM observation. That is, the main oxide on the surface of the anode subjected to constant-current electrolysis for one week using the anode in which α-PbO 2 was generated is α-PbO 2 , and the oxide is generated by an electrolytic method in which energization and interruption are repeated. The main oxide on the anode surface is β-PbO 2 .
図7に1週間定電流電解を行った際の電解電圧の推移を示す。24時間定電流で酸化物皮膜の生成を行ったアノードよりも通電と遮断を繰り返す電解方法で酸化物を生成させたアノードで電解電圧は低くなる傾向がある。すなわち、アノード表面に生成された主要酸化物がβ-PbO2であることで電解電圧が低くなる。 FIG. 7 shows the transition of the electrolysis voltage when performing constant-current electrolysis for one week. Electrolysis voltage tends to be lower in an anode in which oxide is generated by an electrolytic method in which energization and interruption are repeated than in an anode in which an oxide film is generated at a constant current for 24 hours. That is, the electrolysis voltage is lowered because the main oxide produced on the anode surface is β-PbO 2 .
電解液中の脱落物の質量測定については、通電と遮断を繰り返す電解を24時間行い酸化物皮膜を生成し、1週間の定電流電解を行った試験での脱落物の量は0.0023gである(β-PbO2生成時)。一方、定電流で酸化物を生成した後、1週間の定電流電解を行った条件の脱落物の重量は0.0179gである(α-PbO2生成時)。つまり、β-PbO2が生成された方が脱落物量が少ないことが明確である。脱落物量が多いとカソードの品位が低下するためβ-PbO2を主要酸化物とする皮膜を生成し脱落物量を減らすことでカソード品位の向上につながる。 Regarding the measurement of the mass of the fallout in the electrolyte, the amount of fallout in the test in which the electrolysis was repeated for 24 hours to produce an oxide film and the constant current electrolysis for 1 week was 0.0027 g. Yes (when producing β-PbO 2 ). On the other hand, after the oxide was generated at a constant current, the weight of the fallout under the condition of performing constant-current electrolysis for 1 week was 0.0179 g (when α-PbO 2 was generated). That is, it is clear that β-PbO 2 is produced with a smaller amount of fallout. When the amount of fallen substances is large, the quality of the cathode is lowered, so that a film containing β-PbO 2 as a main oxide is formed and the amount of fallen substances is reduced, thereby improving the cathode quality.
[補足例1]
表3に示す条件で電極表面に酸化物皮膜を生成させるための電解を24時間行った。また試験条件は表4の通りである。電解終了後、電極を電解液中から取り上げ、蒸留水で洗浄・乾燥させた後、アノード表面のX線回折とSEM観察を行った。
[Supplementary example 1]
Electrolysis for generating an oxide film on the electrode surface was performed for 24 hours under the conditions shown in Table 3. The test conditions are as shown in Table 4. After completion of electrolysis, the electrode was taken out from the electrolyte, washed with distilled water and dried, and then the anode surface was subjected to X-ray diffraction and SEM observation.
図8に24時間の電解を行ったアノード表面のX線回折結果を示す。すなわち、電流の通電と遮断を行わずに24時間定電流で電解を行ったアノード表面はα-PbO2、電流の通電と遮断を行ったアノード表面はβ-PbO2が生成した。
また、通電、遮断の間隔が等間隔でなくてもβ-PbO2は生成される。ただし、1−11のように電流の遮断時間が長すぎるとPbSO4が生成されてしまうためOFF(電流遮断)の時間が長すぎるのはよくないと考えられる。
なお、今回、電解時間を24時間としたが電流の通電と遮断を行った場合、24時間未満でもβ-PbO2が生成される。
FIG. 8 shows an X-ray diffraction result of the anode surface subjected to electrolysis for 24 hours. That is, the anode surface is alpha-PbO 2 which was electrolytically at 24 hours constant current without interrupting the energization of the current, the anode surface was carried out and blocking conduction of current is generated by β-PbO 2.
Further, β-PbO 2 is generated even if the intervals between energization and interruption are not equal. However, if the current cut-off time is too long as in 1-11, PbSO 4 is generated, so it is considered not good that the OFF (current cut-off) time is too long.
In this case, the electrolysis time is 24 hours. However, when current is applied and cut off, β-PbO 2 is generated even in less than 24 hours.
図9に電解後のアノード表面のSEM像を示す。すなわち、α-PbO2は微細な結晶であるのに対し、β-PbO2は結晶粒である。
酸化物皮膜生成のための電解を行う際、電流の通電と遮断を繰り返す電解方法を行うことでアノード表面にβ-PbO2を主要酸化物とする皮膜の生成を促進できる。
本補足例により、電流の通電、遮断時間を変更することで、酸化膜の生成に影響を与えることがわかったが、この時間の調整は、液特性、電極面積、組成等によって考慮すればよい。
FIG. 9 shows an SEM image of the anode surface after electrolysis. That is, α-PbO 2 is a fine crystal while β-PbO 2 is a crystal grain.
When performing electrolysis for producing an oxide film, the production of a film containing β-PbO 2 as a main oxide on the anode surface can be promoted by performing an electrolysis method in which current is repeatedly turned on and off.
According to this supplementary example, it was found that changing the current application and interruption time affects the generation of the oxide film. However, the adjustment of this time may be considered according to the liquid characteristics, electrode area, composition, etc. .
[補足例2]
硫酸溶液にMnを添加(Mn添加量:2 g/L)し、表5、6に示す条件で酸化物を生成するための電解を24時間行った。
図10に24時間電解を行い酸化物を生成させたアノード表面のX線回折結果を示す。通電と遮断の電解方法を行って生成した酸化物皮膜はβ-PbO2であったが、酸化物皮膜の厚みは無い。そのためアノードの母材である金属Pbが同定されたと考えられる。
図11に24時間電解を行い酸化物を生成させたアノード表面のSEM像を示す。PbO2の他にMnO2が存在することが確認できた(EDS)。すなわち、Mnが溶液中に存在しても、電極表面にβ-PbO2が生成されることは確認できた。
[Supplementary example 2]
Mn was added to the sulfuric acid solution (Mn addition amount: 2 g / L), and electrolysis was performed for 24 hours to generate an oxide under the conditions shown in Tables 5 and 6.
FIG. 10 shows the result of X-ray diffraction of the anode surface on which oxide was generated by electrolysis for 24 hours. Although the oxide film formed by conducting the energization and interruption electrolysis methods was β-PbO 2 , the oxide film was not thick. Therefore, it is considered that the metal Pb that is the base material of the anode has been identified.
FIG. 11 shows an SEM image of the anode surface on which oxide was generated by electrolysis for 24 hours. It was confirmed that MnO 2 was present in addition to PbO 2 (EDS). That is, it was confirmed that β-PbO 2 was generated on the electrode surface even when Mn was present in the solution.
[補足例3]
硫酸溶液にMnを添加(Mn添加量:2 g/L)し、表7、8に示す通電条件で酸化物を生成するための電解を24時間行った。その後、酸化物を生成させたアノードを用いて500A/m2で1週間の定電流電解を行った。
図12に1週間定電流で電解を行った際の電解電圧の推移を示す。硫酸溶液の試験と同様に、24時間定電流で酸化物生成の電解を行ったアノードより、電流の通電と遮断の電解方法を行ったアノードにおいて低い電解電圧を示した。
なお、図12において途中電圧が極端に下降、上昇している箇所は電解液の交換点である。
[Supplementary Example 3]
Mn was added to the sulfuric acid solution (Mn addition amount: 2 g / L), and electrolysis was performed for 24 hours to generate oxides under the energizing conditions shown in Tables 7 and 8. Thereafter, constant current electrolysis was performed at 500 A / m 2 for 1 week using the anode in which the oxide was generated.
FIG. 12 shows the transition of the electrolysis voltage when electrolysis is performed at a constant current for 1 week. Similar to the sulfuric acid solution test, the electrolysis voltage was lower in the anode subjected to the current energization and interruption electrolysis than the anode subjected to the electrolysis of oxide generation at a constant current for 24 hours.
In FIG. 12, the place where the voltage is extremely lowered or increased is the electrolyte exchange point.
実施例1及び補足例1〜3に示すように、通電と遮断を繰り返すことにより鉛合金電極の表面に効率的にβ-PbO2の生成を促進することが可能となった。β-PbO2はα-PbO2よりも電解電圧が低く電力コストを削減することができる。さらに、β-PbO2はその構造が緻密であるため、電極表面から脱落しにくく、脱落しても結晶粒が大きいため浮遊スライムになりにくいのでα-PbO2と比較しても製品の品位は高いと考えられる。 As shown in Example 1 and Supplementary Examples 1 to 3, it was possible to efficiently promote the production of β-PbO 2 on the surface of the lead alloy electrode by repeating energization and interruption. β-PbO 2 has a lower electrolysis voltage than α-PbO 2 and can reduce power costs. Furthermore, beta-PbO 2 because its structure is dense, hard to fall off from the electrode surface, quality of the products as compared to the alpha-PbO 2 so less likely to float slime for even fall off large crystal grains It is considered high.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008078433A JP5102670B2 (en) | 2008-03-25 | 2008-03-25 | Method for producing lead alloy electrode having β-PbO2 coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008078433A JP5102670B2 (en) | 2008-03-25 | 2008-03-25 | Method for producing lead alloy electrode having β-PbO2 coating |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009228112A JP2009228112A (en) | 2009-10-08 |
JP5102670B2 true JP5102670B2 (en) | 2012-12-19 |
Family
ID=41243831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008078433A Expired - Fee Related JP5102670B2 (en) | 2008-03-25 | 2008-03-25 | Method for producing lead alloy electrode having β-PbO2 coating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5102670B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6077884B2 (en) * | 2012-04-13 | 2017-02-08 | Dowaホールディングス株式会社 | Nonferrous metal electrowinning method and anode manufacturing method used therefor |
CN108149280A (en) * | 2017-12-20 | 2018-06-12 | 西安泰金工业电化学技术有限公司 | A kind of swirl electrolysis device compound lead anode of titanium-based pipe network and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5219230A (en) * | 1975-08-07 | 1977-02-14 | Kogyo Gijutsuin | New model lead dioxide plate |
JPH0633286A (en) * | 1992-07-17 | 1994-02-08 | Permelec Electrode Ltd | Electrode for electrolysis and its production |
JP3537255B2 (en) * | 1996-02-20 | 2004-06-14 | 新日本製鐵株式会社 | Electrode for electrolysis |
-
2008
- 2008-03-25 JP JP2008078433A patent/JP5102670B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009228112A (en) | 2009-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101538724B (en) | Method for preparing energy-saving metal-based ceramic inert anode material for nonferrous metal electrowinning | |
JP5686456B2 (en) | Method for producing oxygen generating anode | |
JP4864101B2 (en) | Improved alloys and anodes for use in electrowinning metals | |
WO2013143247A1 (en) | Aluminum-based lead or lead alloy composite anode and manufacturing method therefor | |
CN103898354A (en) | Lead alloy anode material for zinc electrodeposition and rolling method thereof | |
Li et al. | Electrochemical properties of powder-pressed Pb–Ag–PbO2 anodes | |
JP5102670B2 (en) | Method for producing lead alloy electrode having β-PbO2 coating | |
JP2017048438A (en) | Copper electrolytic refining device and electrolytic refining method | |
JP5686457B2 (en) | Method for producing oxygen generating anode | |
EA030951B1 (en) | Inert alloy anode used for aluminum electrolysis and preparation method therefor | |
CN105132980B (en) | A kind of lead silver alloy anode surface recombination ceramic film film build method | |
JP6985678B2 (en) | Electrorefining method for low-grade copper anodes and electrolytes used for them | |
JP2011046973A (en) | Copper electroplating method and copper electroplated product | |
CN105177632B (en) | It is rare earth modified to prepare copper aluminium rare earth intermediate alloy molten salt electrolysis method and alloy | |
JP4323297B2 (en) | Method for producing electrolytic copper powder | |
CN105220024B (en) | A kind of electrowinning zinc negative electrode aluminium alloy and preparation method thereof | |
JP5561201B2 (en) | Method for producing electric cobalt or electric nickel | |
WO2013143245A1 (en) | Aluminum-based lead or lead alloy composite material and manufacturing method therefor | |
JP3983785B2 (en) | Aluminum foil for electrolytic capacitors | |
CN107630233A (en) | A kind of method using rare earth-iron-boron Electrowinning rare earth metal | |
CN104962954A (en) | Method for preparing rare earth-aluminum-copper interalloy by fused salt electrolysis and alloy thereof | |
JP2015076223A (en) | Aluminum alloy for negative electrode material of aluminum air battery, and aluminum air battery | |
JP2013049877A (en) | Electrowinning method for non-ferrous metal | |
CN115110122B (en) | Columnar Pb-based pseudoshape stable anode for hydrometallurgy and preparation method thereof | |
JP5206502B2 (en) | Method for producing cobalt with excellent acid solubility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120904 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120928 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151005 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5102670 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |