JP5561201B2 - Method for producing electric cobalt or electric nickel - Google Patents

Method for producing electric cobalt or electric nickel Download PDF

Info

Publication number
JP5561201B2
JP5561201B2 JP2011034910A JP2011034910A JP5561201B2 JP 5561201 B2 JP5561201 B2 JP 5561201B2 JP 2011034910 A JP2011034910 A JP 2011034910A JP 2011034910 A JP2011034910 A JP 2011034910A JP 5561201 B2 JP5561201 B2 JP 5561201B2
Authority
JP
Japan
Prior art keywords
cobalt
energization
electric
electrolytic
electrocobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011034910A
Other languages
Japanese (ja)
Other versions
JP2012172193A (en
Inventor
敬司 工藤
達也 檜垣
宙 小林
孝治 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2011034910A priority Critical patent/JP5561201B2/en
Publication of JP2012172193A publication Critical patent/JP2012172193A/en
Application granted granted Critical
Publication of JP5561201B2 publication Critical patent/JP5561201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明は、酸溶解性に優れた電気コバルト又は電気ニッケルの製造方法に関する。   The present invention relates to a method for producing electrocobalt or electronickel excellent in acid solubility.

コバルトは、携帯電話やノートパソコン等に使用されるリチウムイオン電池の電極材、航空機やプラント等に使用される特殊鋼の材料、磁性材料、石油精製時の触媒等としての用途を有している。   Cobalt is used as an electrode material for lithium-ion batteries used in mobile phones and laptop computers, special steel materials used in aircraft and plants, magnetic materials, and catalysts used in petroleum refining. .

コバルトの精製方法としては、以下の方法が広く用いられている。まず、コバルトを含む鉱物等を選鉱し、精鉱を得る。次に、硫酸や塩酸を用いて、精鉱に含まれるコバルトを硫酸又は塩酸の溶液中に浸出させた後、溶媒抽出等の方法により浸出液からニッケル、鉄、亜鉛等の不純物を分離除去し、コバルト純液を得る。そして、この硫酸酸性又は塩酸酸性のコバルト純液を電解液に用い、コバルトを電解採取し、電気コバルトとして得る。   The following methods are widely used as a method for purifying cobalt. First, minerals containing cobalt are selected to obtain concentrate. Next, using sulfuric acid or hydrochloric acid, cobalt contained in the concentrate is leached into a sulfuric acid or hydrochloric acid solution, and then impurities such as nickel, iron, and zinc are separated and removed from the leachate by a method such as solvent extraction. A pure cobalt solution is obtained. Then, this sulfuric acid acidic or hydrochloric acid acidic pure solution is used as an electrolytic solution, and cobalt is electrolyzed to obtain electric cobalt.

このうち、塩酸酸性の電解液を用いた電解は、硫酸酸性の電解液を用いた電解に比べて電解時の電槽電圧が低いので、電力コストを低減できるという利点を有するが、また同時に、電気コバルトの電着組織が非常に緻密で硬くなるという特徴を有する。このような特徴は、例えば、特殊鋼である耐熱合金の添加元素や磁性材料として用いる場合には、その特性に影響を及ぼすことはない。すなわち、上記用途では、電気コバルトを融点以上で熔融して使用するため、電気コバルトの電着組織が熔融に伴い解消されて均一な熔融体となるからである。   Among these, electrolysis using an acidic solution of hydrochloric acid has the advantage that the battery cost during electrolysis is lower than electrolysis using an acidic solution of sulfuric acid. The electrodeposited structure of electrocobalt is very dense and hard. Such characteristics do not affect the characteristics when used as an additive element or magnetic material of a heat-resistant alloy, which is special steel, for example. That is, in the above application, since the electric cobalt is melted at a melting point or higher, the electrodeposited structure of the electric cobalt is eliminated along with the melting and becomes a uniform melt.

電気コバルトを用いて硫酸コバルトや塩化コバルト等のコバルト化成品を製造する場合には、電着組織が非常に緻密で硬いという特徴が電気コバルトの酸に対する溶解速度、すなわち、酸溶解性の良し悪しに影響を与え、結果として製品の生産性に影響を与え得る。しかしながら、上記のように一度融点以上に加熱して熔解し、次いで徐冷して均一且つ粗大な組織のメタルとし、これを酸溶解することは、設備投資やエネルギーコストがかかり工業的に著しく不利となる。   When producing cobalt chemical products such as cobalt sulfate and cobalt chloride using electrocobalt, the characteristic of electrodeposited structure being very dense and hard is that dissolution rate of electrocobalt in acid, that is, acid solubility is good or bad. Can affect product productivity as a result. However, once it is melted by heating it to the melting point or higher as described above, it is then gradually cooled to obtain a metal with a uniform and coarse structure. It becomes.

コバルト化成品の製造工程では、電気コバルトを硫酸や塩酸等の酸を満たした反応槽の中に入れ、60〜90℃の温度を保持しつつ、空気を吹き込みながら酸化し、化学的に溶解させて、硫酸コバルト溶液や塩化コバルト溶液を得る。次に、これらの溶液を濃縮して、硫酸コバルトや塩化コバルトの結晶を晶析させたり、これらの溶液に水酸化ナトリウム等のアルカリを加えて中和し、水酸化コバルトの沈殿を生成させたりすることで、目的とするコバルト化成品を製造する。この工程において、電気コバルトの酸溶解性が低いと、所定量の溶解液を得るためには溶解に長時間を要することになり、空気の吹き込み量を増加して酸化力を高める必要が生じ、結果として、設備規模の拡大や工程管理の手間の増大につながる。   In the manufacturing process of cobalt chemical products, electrolytic cobalt is put in a reaction tank filled with an acid such as sulfuric acid or hydrochloric acid, and is oxidized and chemically dissolved while blowing air while maintaining a temperature of 60 to 90 ° C. To obtain a cobalt sulfate solution and a cobalt chloride solution. Next, these solutions are concentrated to crystallize cobalt sulfate or cobalt chloride crystals, or neutralize by adding an alkali such as sodium hydroxide to these solutions to produce cobalt hydroxide precipitates. By doing so, the target cobalt chemical product is manufactured. In this step, if the acid solubility of electrocobalt is low, it takes a long time to dissolve in order to obtain a predetermined amount of solution, and it is necessary to increase the amount of air blown to increase the oxidizing power, As a result, it leads to an increase in facility scale and time and effort for process management.

酸溶解性に優れた金属を得る方法としては、コバルトと化学的性質の似たニッケルに関していくつかの報告がある。例えば、特許文献1には、ニッケルマット又は粗ニッケルの陽極と、金属ニッケル板陰極とを用い、硫黄含有化合物を含む硫酸塩−塩化物混合物又は単一塩化物の電解浴を用いる硫黄含有電解ニッケルの製造方法において、添加する硫黄含有化合物として四チオン酸塩を用い、且つ、電解に先立って短時間、逆電流を流すことで、ニッケルを溶解性の良い形態で電析させる方法が開示されている。また、特許文献2には、硫酸ニッケル溶液を電解して表面積の大きい粉末状の電着を得る方法が開示されている。   As a method for obtaining a metal having excellent acid solubility, there have been several reports regarding nickel having chemical properties similar to cobalt. For example, Patent Document 1 discloses a sulfur-containing electrolytic nickel using a nickel matte or crude nickel anode and a metal nickel plate cathode, and using a sulfate-chloride mixture containing a sulfur-containing compound or a single chloride electrolytic bath. In this manufacturing method, a method is disclosed in which tetrathionate is used as a sulfur-containing compound to be added, and nickel is electrodeposited in a highly soluble form by applying a reverse current for a short time prior to electrolysis. Yes. Patent Document 2 discloses a method for obtaining powder electrodeposition having a large surface area by electrolyzing a nickel sulfate solution.

しかしながら、特許文献1に開示された方法では、電解ニッケル中に硫黄が含有されるため、電解ニッケルの溶解後に硫黄を主成分とする未溶解残渣が発生するという問題があった。そのため、溶解後の後処理に手間を要したり、含有された微細な硫黄分等の未溶解残渣が液中に浮遊し、化成品を製造する際に巻き込まれて不純物の原因となったりする懸念があった。また、特許文献2に開示された方法により得られる電気ニッケルによれば、比表面積が大きいので、酸溶液に対する溶解性は向上するが、粉末の形状では、その隙間に電解液が巻き込まれ易くなる。電解液が巻き込まれると、電気ニッケルを熔解する等して製品に加工する際に、電解液中の不純物や電解液自体の成分も製品に含有される可能性があった。   However, in the method disclosed in Patent Document 1, there is a problem that an undissolved residue mainly containing sulfur is generated after electrolytic nickel is dissolved because sulfur is contained in electrolytic nickel. Therefore, it takes time for the post-treatment after dissolution, or undissolved residues such as fine sulfur contained in the liquid float in the liquid, which may be involved in producing chemical products and cause impurities. There was concern. Moreover, according to the electric nickel obtained by the method disclosed in Patent Document 2, since the specific surface area is large, the solubility in an acid solution is improved. However, in the form of powder, the electrolytic solution is easily caught in the gap. . When the electrolytic solution is involved, impurities in the electrolytic solution and components of the electrolytic solution itself may be contained in the product when the electrolytic nickel is processed into a product.

特公平3−59145号公報Japanese Patent Publication No. 3-59145 特許第3381793号公報Japanese Patent No. 3381793

本発明は、上記問題に鑑みてなされたものであり、酸溶解性に優れるとともに、酸溶解時に未溶解残渣が生じ難く、表面が平滑で、且つ、高純度な電気コバルト及びその製造方法、並びに電気ニッケルの製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and is excellent in acid solubility, hardly causes an undissolved residue at the time of acid dissolution, has a smooth surface, and high-purity electrocobalt, and a method for producing the same, and It aims at providing the manufacturing method of electro nickel.

本発明者らは、上記課題を解決するために、鋭意研究を重ねたところ、電気コバルトの酸溶解性と、電気コバルト中に含まれる水素の濃度との間に一定の傾向があることを確認した。そして、本発明者らが、さらに研究を進めたところ、電解精製又は電解採取によってコバルトを電析させる際にある特定の方法の通電を行うことで、電気コバルト中に含まれる水素濃度が制御可能であることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have conducted extensive research and confirmed that there is a certain tendency between the acid solubility of electric cobalt and the concentration of hydrogen contained in electric cobalt. did. And when the present inventors have further researched, the concentration of hydrogen contained in the electric cobalt can be controlled by energizing a specific method when depositing cobalt by electrolytic purification or electrowinning. As a result, the present invention has been completed.

具体的には、本発明では、以下のようなものを提供する。   Specifically, the present invention provides the following.

(1) コバルト又はニッケルを含有する酸性溶液からなる電解液を用いて、電解採取又は電解精製により電気コバルト又は電気ニッケルを製造する方法であって、上記電解採取又は電解精製では、上記電解液に対して停電と通電とを反復する間欠通電を行うことを特徴とする電気コバルト又は電気ニッケルの製造方法。   (1) A method of producing electrolytic cobalt or electrolytic nickel by electrolytic collection or electrolytic purification using an electrolytic solution comprising an acidic solution containing cobalt or nickel, and in the electrolytic collection or electrolytic purification, On the other hand, a method for producing electric cobalt or electric nickel, characterized by performing intermittent energization that repeats power outage and energization.

(2) 上記間欠通電では、反復する停電時間が30〜60秒である(1)に記載の電気コバルト又は電気ニッケルの製造方法。   (2) The method for producing electric cobalt or electric nickel according to (1), wherein in the intermittent energization, the repeated power failure time is 30 to 60 seconds.

(3) 上記電解液のpHは、1.0〜3.5である(1)又は(2)に記載の電気コバルト又は電気ニッケルの製造方法。   (3) The method for producing electric cobalt or electric nickel according to (1) or (2), wherein the pH of the electrolytic solution is 1.0 to 3.5.

(4) 水素濃度が20ppm以上であって、且つ硫黄濃度が1ppm以下であることを特徴とする電気コバルト。   (4) The electric cobalt characterized by having a hydrogen concentration of 20 ppm or more and a sulfur concentration of 1 ppm or less.

本発明の電気コバルトによれば、酸溶解性に優れ、且つ、不純物である硫黄をほとんど含有しないので、品質の良い製品を効率良く生産することができる。
また、本発明の電気コバルト又は電気ニッケルの製造方法によれば、酸溶解性に優れるとともに、酸溶解時に未溶解残渣が生じ難く、表面が平滑で、且つ、高純度な電気コバルト又は電気ニッケルを得ることができる。
According to the electrocobalt of the present invention, it is excellent in acid solubility and contains almost no sulfur as an impurity, so that a high-quality product can be efficiently produced.
Further, according to the method for producing electrocobalt or electronickel of the present invention, it is excellent in acid solubility, hardly causes undissolved residue during acid dissolution, has a smooth surface, and has high purity electrocobalt or electronickel. Can be obtained.

電気コバルトの溶解速度比と、該電気コバルト中の水素濃度(ppm)との関係を示す図である。It is a figure which shows the relationship between the dissolution rate ratio of electric cobalt, and the hydrogen concentration (ppm) in this electric cobalt. 電気コバルト中の水素濃度(ppm)と、間欠通電にて反復する停電時間(分)との関係を示す図である。It is a figure which shows the relationship between the hydrogen concentration (ppm) in electric cobalt, and the power failure time (minute) repeated by intermittent electricity supply. 電気コバルトの溶解速度比と、間欠通電にて反復する停電時間(分)との関係を示す図である。It is a figure which shows the relationship between the dissolution rate ratio of electric cobalt, and the power failure time (minute) repeated by intermittent electricity supply. 電気コバルトの溶解速度比と、電気コバルト中の水素濃度(ppm)との関係を示す図である。It is a figure which shows the relationship between the dissolution rate ratio of electric cobalt, and the hydrogen concentration (ppm) in electric cobalt. 電解採取時の電流効率(%)と、電気コバルト中の水素濃度(ppm)との関係を示す図である。It is a figure which shows the relationship between the current efficiency (%) at the time of electrowinning, and the hydrogen concentration (ppm) in electric cobalt. 電解採取時の電流効率(%)と、電気コバルトの溶解速度比との関係を示す図である。It is a figure which shows the relationship between the current efficiency (%) at the time of electrowinning, and the dissolution rate ratio of electric cobalt.

以下、本発明の具体的な実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。   Hereinafter, specific embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and may be implemented with appropriate modifications within the scope of the object of the present invention. be able to.

本発明の電気コバルトは、水素濃度が20ppm以上であって、且つ硫黄濃度が1ppm以下であることを特徴とする。本発明では、電気コバルト中の水素濃度と、該電気コバルトの酸に対する溶解性との間に、一定の傾向があることを初めて見出した点に意義がある。本発明の電気コバルトによれば、酸に対して優れた溶解性を示すので、コバルト含有製品を効率良く生産することができる。なお、本明細書では、電気コバルト等とは、電解採取又は電解精製により得られたコバルトメタル等を意味する。   The electric cobalt of the present invention is characterized in that the hydrogen concentration is 20 ppm or more and the sulfur concentration is 1 ppm or less. The present invention is significant in that it has been found for the first time that there is a certain tendency between the concentration of hydrogen in electrolytic cobalt and the solubility of the electrolytic cobalt in acid. According to the electrocobalt of the present invention, since it exhibits excellent solubility in acids, a cobalt-containing product can be produced efficiently. In the present specification, the electric cobalt or the like means cobalt metal or the like obtained by electrolytic collection or electrolytic purification.

本発明の電気コバルトは、好ましくは、水素濃度が40ppm以上であり、より好ましくは60ppm以上である。電気コバルト中の水素濃度が高くなると、相対的に酸に対する溶解性は向上する。水素濃度が20ppm以上になると、電気コバルトの酸に対する溶解性が顕著に向上し、40ppm以上になると更に溶解し易くなり、60ppm以上では従来の2倍の溶解速度を示す。なお、上限は、特に限定されるものではない。しかし、60ppmを超えても溶解性はほとんど向上せず、そのまま維持される。   The electric cobalt of the present invention preferably has a hydrogen concentration of 40 ppm or more, more preferably 60 ppm or more. As the hydrogen concentration in the electrocobalt increases, the acid solubility is relatively improved. When the hydrogen concentration is 20 ppm or more, the solubility of electrocobalt in an acid is remarkably improved. When the hydrogen concentration is 40 ppm or more, it is more easily dissolved, and when it is 60 ppm or more, the dissolution rate is double that of the conventional one. The upper limit is not particularly limited. However, even if it exceeds 60 ppm, the solubility is hardly improved and is maintained as it is.

電気コバルト中の水素濃度が高くなると、電気コバルトの酸への溶解が促進される機構は明らかではないが、酸溶液中では、電気コバルト中に含有された水素原子とコバルト原子とが隣接する部分で電池反応が生じ、イオン化傾向の小さな水素がカソードとして、イオン化傾向の大きなコバルトがアノードとして働き、酸溶液中に溶出するのではないかと推測される。なお、電気コバルトが溶出した後の水素ガスは、気泡として気相に抜けるため、従来のように未溶解残渣を生じることで、製品が汚染されるおそれはないと考えられる。   Although the mechanism by which dissolution of electrocobalt in an acid is promoted when the hydrogen concentration in electrocobalt is increased is not clear, in the acid solution, the hydrogen atom contained in electrocobalt and the cobalt atom are adjacent to each other. Thus, it is presumed that a battery reaction occurs, hydrogen having a small ionization tendency acts as a cathode, and cobalt having a large ionization tendency acts as an anode and is eluted in an acid solution. In addition, since the hydrogen gas after elution of electrocobalt escapes to the gas phase as bubbles, it is considered that there is no possibility that the product is contaminated by generating an undissolved residue as in the conventional case.

本発明の電気コバルトは、好ましくは、硫黄濃度が0.5ppm以下であり、より好ましくは0.1ppm以下である。本発明の電気コバルトによれば、酸溶解時の未溶解残渣の要因となる硫黄をほとんど含有しないので、酸溶解後の後処理に手間を要したり、含有された微細な硫黄分が未溶解残渣となり液中に浮遊し、化成品を製造する際に巻き込まれて不純物の混入原因となったりする懸念がない。   The electrocobalt of the present invention preferably has a sulfur concentration of 0.5 ppm or less, more preferably 0.1 ppm or less. According to the electrocobalt of the present invention, since it hardly contains sulfur that causes undissolved residue during acid dissolution, it takes time for post-treatment after acid dissolution, or the contained fine sulfur content is not dissolved. There is no concern of becoming a residue, floating in the liquid, and being involved in the production of a chemical product to cause contamination of impurities.

本発明の電気コバルトは、酸に対する良好な溶解性を示すので、例えば、硫酸コバルトや塩化コバルト等のコバルト化成品の製造に用いた場合であっても、従来のように、所定量の溶解液を得るために長い時間を要したり、空気の吹き込み量を増加する等の酸化力を高めたりする必要がなく、設備規模の拡大や工程管理の手間も不要となる。   Since the electrocobalt of the present invention exhibits good solubility in acid, for example, even when it is used for the production of cobalt chemical products such as cobalt sulfate and cobalt chloride, a predetermined amount of solution is used as in the prior art. Therefore, it is not necessary to increase the oxidizing power, such as increasing the amount of air blown, and the need to expand the equipment scale and process management.

本発明の電気コバルトを製造する方法は、特に限定されるものではないが、コバルトを含有する酸性溶液からなる電解液に対して停電と通電とを反復する間欠通電を行う、電解採取又は電解精製により製造することが好ましい。この方法は、コバルトを電解によって製造する際に一般的に行われる通電方法、すなわち、連続的な通電を行う方法とは異なり、通電と停電とを繰り返す通電方法である。なお、本明細書では、一般的に行われる連続した通電を一方向通電というのに対して、停電と通電とを反復する通電を間欠通電ということとする。   The method for producing electrocobalt according to the present invention is not particularly limited. Electrolytic extraction or electrolytic purification is performed by intermittently energizing and repeating power failure and energization with respect to an electrolytic solution composed of an acidic solution containing cobalt. It is preferable to manufacture by. This method is an energization method in which energization and power failure are repeated, unlike an energization method generally performed when cobalt is produced by electrolysis, that is, a method of continuous energization. In this specification, continuous energization that is generally performed is referred to as unidirectional energization, whereas energization that repeats power outage and energization is referred to as intermittent energization.

水素濃度の高い電気コバルトを得る方法としては、例えば、一方向通電の電解において、電解液に水素ガスを吹き込むことにより、機械的に水素ガスをコバルト中に巻き込ませる方法が考えられるが、水素ガスを多量に吹き込んだとしても、コバルト中に水素ガスが巻き込まれる効率は極めて低く、実用的とはいえない。また、電解槽に水素ガスを吹き込むことは、電極のショートによる引火の可能性もあり、安全性の点で問題がある。さらに、水素ガスの吹き込みにより生じる大きな気泡では、電着物の表面が粗くなり、電解液も同時にコバルト中に巻き込まれる可能性が高い。電解液には、亜鉛や銅等の不純物、電解液自体の成分である硫黄や塩素が含まれているため、これらが電気コバルト中に含有されることは、製品の品質低下につながり、好ましくない。   As a method of obtaining electric cobalt having a high hydrogen concentration, for example, in one-way electrolysis, a method of mechanically entraining hydrogen gas in cobalt by blowing hydrogen gas into the electrolyte may be considered. Even if a large amount of gas is blown, the efficiency with which hydrogen gas is entrained in cobalt is extremely low, which is not practical. In addition, blowing hydrogen gas into the electrolytic cell may cause ignition due to a short circuit of the electrode, which is problematic in terms of safety. Furthermore, in the case of large bubbles generated by blowing hydrogen gas, the surface of the electrodeposit becomes rough, and there is a high possibility that the electrolytic solution is simultaneously involved in cobalt. Since the electrolytic solution contains impurities such as zinc and copper, and sulfur and chlorine, which are components of the electrolytic solution itself, the inclusion of these in the electric cobalt leads to a decrease in product quality, which is not preferable. .

本発明者らは、電解採取又は電解精製により電気コバルトを製造する際に、コバルトを含有する酸性溶液からなる電解液に対して、停電と通電とを反復する間欠通電を行うことで、コバルト中に効率良く水素を含有させ得ることを見出した。電解によって発生する初期の水素は、微細且つ化学的に極めて活性であることが知られている。通電と停電とを繰り返すと、初期の活性な水素が頻繁に発生することになるため、これが電着したコバルトの内部に拡散するものと考えられる。   When the present inventors produce electrolytic cobalt by electrowinning or electrolytic refining, the electrolytic solution consisting of an acidic solution containing cobalt is subjected to intermittent energization that repeats power outage and energization. It was found that hydrogen can be efficiently contained in It is known that the initial hydrogen generated by electrolysis is extremely active finely and chemically. When energization and power outage are repeated, initial active hydrogen is frequently generated, and this is considered to diffuse into the electrodeposited cobalt.

本発明の製造方法では、コバルトを含有する酸性溶液を電解液として用いる。電解液として用いるコバルトを含有する酸性溶液は、塩酸浴であっても、硫酸浴であってもよく、特に限定されない。また、酸性溶液のpHは、好ましくは1.0〜3.5の範囲内であり、より好ましくは1.2〜3.0の範囲内である。電解液のpHが上記範囲内であれば、より酸溶解性の高い電気コバルトを得ることができる。なお、電解液のpHが1.0未満であると、電着した電気コバルトが直ちに再溶解したり、水素が過剰に発生したりする結果、カソードの電流効率が50%程度にまで著しく低下し、生産性に大きな影響を与える可能性がある。また、電解液のpHが3.5を超えると、電解中のカソード表面において、局部的にpHが更に上昇し、コバルトイオンが金属と水酸化物の不均一な混合物を生成し、純粋な電気コバルトが得られない場合がある。   In the production method of the present invention, an acidic solution containing cobalt is used as the electrolytic solution. The acidic solution containing cobalt used as the electrolytic solution may be a hydrochloric acid bath or a sulfuric acid bath, and is not particularly limited. The pH of the acidic solution is preferably in the range of 1.0 to 3.5, more preferably in the range of 1.2 to 3.0. If the pH of the electrolytic solution is within the above range, electrocobalt with higher acid solubility can be obtained. When the pH of the electrolyte is less than 1.0, the electrodeposited electrocobalt is immediately redissolved or excessive hydrogen is generated, resulting in a significant reduction in cathode current efficiency to about 50%. Could have a significant impact on productivity. In addition, when the pH of the electrolytic solution exceeds 3.5, the pH further rises locally on the cathode surface during electrolysis, and cobalt ions form a heterogeneous mixture of metal and hydroxide, resulting in pure electricity. Cobalt may not be obtained.

電解液のpHを調整する方法としては、特に限定されるものではなく、例えば、市販のpH計にて電解液のpHを測定しながら、リサイクルした電気コバルトを添加して電解液中の遊離酸を中和してpHを上げたり、塩酸等の酸を添加してpHを下げたりするとよい。   The method for adjusting the pH of the electrolytic solution is not particularly limited. For example, while measuring the pH of the electrolytic solution using a commercially available pH meter, the recycled acid is added to the free acid in the electrolytic solution. The pH may be neutralized to raise the pH, or an acid such as hydrochloric acid may be added to lower the pH.

本発明の製造方法において好ましい電解液のコバルト濃度は、上記pHや後述する停電と通電との反復周期によって異なるため、一概に規定することはできない。例えば、pHとコバルト濃度の両方が低い場合には、水素が過剰に発生し、カソードの電流効率が低下するため好ましくなく、一方、pHとコバルト濃度の両方が高い場合には、水素の発生量が減少し、その結果、溶解性が低下するため好ましくない。好ましい一例としては、電解液のpHが1〜1.5の範囲内であれば、コバルト濃度は50g/l程度である。   In the production method of the present invention, the preferable cobalt concentration of the electrolytic solution varies depending on the pH and the repetition period of power failure and energization described later, and thus cannot be specified unconditionally. For example, when both the pH and the cobalt concentration are low, hydrogen is excessively generated, which is not preferable because the current efficiency of the cathode decreases. On the other hand, when both the pH and the cobalt concentration are high, the amount of hydrogen generated Is decreased, and as a result, the solubility is lowered, which is not preferable. As a preferred example, if the pH of the electrolyte is in the range of 1 to 1.5, the cobalt concentration is about 50 g / l.

本発明の製造方法では、コバルトを含有する酸性溶液からなる電解液に対して、停電と通電とを1つのサイクルとして反復する間欠通電を行う。この間欠通電では、反復する停電時間が1サイクルにつき30〜60秒の範囲内であるか、或いは6〜12分の範囲内であることが好ましく、30〜60秒の範囲内であることがより好ましい。反復する停電時間が上記範囲内であれば、従来の一方向通電の電解により得られる電気コバルトよりも酸に対する溶解性の良い電気コバルトを得ることができる。   In the manufacturing method of this invention, intermittent electricity supply which repeats a power failure and electricity supply as one cycle with respect to the electrolyte solution which consists of an acidic solution containing cobalt is performed. In this intermittent energization, the repeated power failure time is preferably in the range of 30 to 60 seconds per cycle, or preferably in the range of 6 to 12 minutes, more preferably in the range of 30 to 60 seconds. preferable. If the repeated power failure time is within the above range, it is possible to obtain electric cobalt having better solubility in acid than electric cobalt obtained by conventional one-way electrolysis.

反復する停電時間を上記範囲内とすることで、酸に対する溶解性の良い電気コバルトが得られる理由は明らかではないが、例えば、以下のように推測することができる。コバルトの電解時には、析出の電位から若干の水素がカソード上で発生する。カソードの表面では、電解槽への電解液の通液や通電に伴う磁場や電極での反応により、電解槽内の電解液が上昇流として流れている。この上昇流は通電に伴って生じるため、停電すると消滅する。上述のように、電解によって発生する初期の水素は、微細且つ化学的に極めて活性であるため、発生と同時にコバルト内に拡散しようとする傾向があり、その結果、水素原子とコバルト原子とが隣接する電池反応の生じ易い合金が形成したのではないかと考えられる。これに対して、従来の一般的な一方向通電では、発生した水素は上昇流によって液面に運ばれるため、コバルト内に拡散することは難しいと考えられる。   The reason why the electric cobalt having good solubility in acid can be obtained by setting the repeated power failure time within the above range is not clear, but can be estimated as follows, for example. During the electrolysis of cobalt, some hydrogen is generated on the cathode from the deposition potential. On the surface of the cathode, the electrolyte in the electrolytic cell flows as an upward flow due to the reaction of the electrolytic solution through the electrolytic cell, the magnetic field accompanying the energization, and the reaction at the electrode. Since this upward flow occurs with energization, it disappears when a power failure occurs. As mentioned above, the initial hydrogen generated by electrolysis is finely and chemically extremely active, and therefore tends to diffuse into cobalt at the same time as the generation. As a result, the hydrogen atom and the cobalt atom are adjacent to each other. It is thought that an alloy that easily causes a battery reaction is formed. On the other hand, in the conventional general one-way energization, the generated hydrogen is transported to the liquid surface by the upward flow, so it is considered difficult to diffuse into cobalt.

また、1サイクルの長さを短くして短い時間の停電を繰り返す通電を行った場合、活性な水素がカソード上で次々と発生するので、電着したコバルトの内部に拡散する量が多くなり、水素濃度が高まり、酸溶解性が向上すると考えられる。一方、通電する電気量が同じであっても、1サイクルの長さを長くしてその中で長い時間の停電を繰り返す通電を行った場合、長時間の停電によりカソード表面の上昇流が止まり、カソード表面に析出して付着した水素が液面に運ばれることも少なくなり、付着時間が長くなるため、コバルト内に入り易くなり、拡散するのではないかと考えられる。このような理由で、停電時間の短い場合と長い場合において、水素濃度が高く、酸溶解性が良好な電気コバルトが得られるものと推測される。   In addition, when energization is performed by shortening the length of one cycle and repeating a power failure for a short time, active hydrogen is generated one after another on the cathode, so that the amount of diffusion into the electrodeposited cobalt increases. It is considered that the hydrogen concentration is increased and the acid solubility is improved. On the other hand, even if the amount of electricity to be energized is the same, if the energization is repeated for a long period of time and the power of the cycle is extended for a long time, the upward flow on the cathode surface stops due to the long-time power outage. The hydrogen deposited and deposited on the cathode surface is less likely to be transported to the liquid surface and the deposition time becomes longer, so that it is likely to enter the cobalt and diffuse. For this reason, it is presumed that an electric cobalt having a high hydrogen concentration and good acid solubility can be obtained when the power failure time is short and long.

本発明の製造方法では、電解に用いる電流密度は、特に規定されるものではないが、電析表面が平滑となる範囲であることが好ましい。電析表面が平滑となる電流密度の範囲は、他の電解条件の影響もあるため、一概に定めることはできないが、一般には200〜1500A/mの範囲内となる。なお、電流密度が高すぎると、カソード表面での限界電流密度を超え、水素の発生が過度に優先され、電力コストが著しく増加するので好ましくない。一方、電流密度が低すぎると、生産性が低下するので好ましくない。 In the production method of the present invention, the current density used for electrolysis is not particularly defined, but is preferably in a range where the electrodeposition surface is smooth. The range of the current density at which the electrodeposition surface becomes smooth cannot be determined unconditionally because of the influence of other electrolysis conditions, but is generally in the range of 200 to 1500 A / m 2 . If the current density is too high, it is not preferable because it exceeds the limit current density on the cathode surface, generation of hydrogen is excessively prioritized, and the power cost is remarkably increased. On the other hand, if the current density is too low, productivity is lowered, which is not preferable.

電析表面が平滑でないと、電解中に不純物や電解液を巻き込み易く、その結果、純度の低い電気コバルトとなったり、電析表面のデンドライトが長く伸び、ショートが発生したりする場合があるため、好ましくない。また、最終的に得られる電気コバルトの表面が平滑でないと、製品に加工する際のハンドリング性が低下するため、やはり好ましくない。最終的に得られる電気コバルトの表面粗さは、接触式表面粗さ計を用い、JIS B0601(2001)に準拠した方法により測定した最大高さ(Rmax)が30μm以下であることが好ましい。   If the surface of the electrodeposition is not smooth, impurities and electrolytes can easily be entrained during electrolysis, resulting in low-purity electrocobalt, long dendrites on the electrodeposition surface, and short-circuiting. It is not preferable. In addition, if the surface of the electrocobalt finally obtained is not smooth, handling properties when processing into a product are lowered, which is also not preferable. The surface roughness of the finally obtained electrocobalt preferably has a maximum height (Rmax) of 30 μm or less measured by a method based on JIS B0601 (2001) using a contact surface roughness meter.

本発明の製造方法では、カソードの電流効率は、70〜95%の範囲内であることが好ましい。ここで、電流効率とは、通過した電流のうち、目的とする電極反応に使用された電流の割合を意味し、一般に、通電電気量から算出される理論電着量に対する実際の電着量の割合を百分率で表す。カソードの電流効率が上記範囲内であれば、水素濃度が20ppm以上の電気コバルトを得ることができる。一方、カソード電流効率が95%を超えると、電気コバルト中の水素濃度は20ppm未満となる。このことから、電気コバルトを製造する際の電流効率を測定することで、得られる電気コバルトの酸溶解性の良否を判断することができると考えられる。この手法によれば、最終的に得られた電気コバルト中の水素濃度を測定しなくても、製造時の電流効率を測定するだけで、簡単にその電気コバルトの酸溶解性の良否を判断することができる。なお、カソード電流効率が低い場合には、水素濃度が高い電気コバルトが得られることが予想されるが、同時に生産性が著しく低下するおそれがあるため、70%以上であることが望ましい。   In the production method of the present invention, the current efficiency of the cathode is preferably in the range of 70 to 95%. Here, the current efficiency means the ratio of the current used for the target electrode reaction out of the passed current, and in general, the actual electrodeposition amount with respect to the theoretical electrodeposition amount calculated from the energized electricity amount. The percentage is expressed as a percentage. If the current efficiency of the cathode is within the above range, electric cobalt having a hydrogen concentration of 20 ppm or more can be obtained. On the other hand, when the cathode current efficiency exceeds 95%, the hydrogen concentration in the electric cobalt is less than 20 ppm. From this, it is considered that the acid solubility of the obtained electric cobalt can be judged by measuring the current efficiency when producing the electric cobalt. According to this method, even if the hydrogen concentration in the finally obtained electric cobalt is not measured, it is possible to easily determine whether the acid solubility of the electric cobalt is good or not simply by measuring the current efficiency during production. be able to. In addition, when the cathode current efficiency is low, it is expected that electrocobalt with a high hydrogen concentration can be obtained, but at the same time, the productivity may be remarkably lowered, so 70% or more is desirable.

なお、本明細書では、コバルトについて詳細に述べたが、本発明の製造方法は、コバルトと化学的性質の似たニッケルについても容易に応用することができる。   In the present specification, although cobalt was described in detail, the production method of the present invention can be easily applied to nickel having chemical properties similar to cobalt.

以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention does not receive a restriction | limiting at all in these description.

[酸溶解性の評価]
酸溶解性の良否は、電気コバルトの単位面積あたりの溶解速度を指標として判断した。なお、従来から工業的に生産されている電気コバルトの単位面積あたりの溶解速度を評価の基準(1倍)とした。
[Evaluation of acid solubility]
The acid solubility was judged by using the dissolution rate per unit area of electrolytic cobalt as an index. The dissolution rate per unit area of electrocobalt that has been produced industrially in the past was used as the evaluation standard (1 time).

(1)評価基準品の製造
厚さ8mmのコバルト板を縦60mm×横60mmのサイズに切断し、電極面積が片面のみ20cm(縦40mm×横50mm)となるように、その他の部分をめっき用マスキングテープでマスキングしたものをアノードとした。また、厚さ0.5mmのチタン板を縦60mm×横60mmのサイズに切断し、電極面積が片面のみ20cm(縦40mm×横50mm)となるように、その他の部分をめっき用マスキングテープでマスキングしたものをカソードとした。電解液は、試薬の塩化コバルトを純水に溶解して、液中のコバルト濃度が55g/Lとなるように調整した後、さらに、塩酸を用いてpHが1.2となるように調整したものを用いた。次に、上記アノードと上記カソードとを各1枚、容量2リットルの塩化ビニール製の容器(電解槽)に入れ、対面したアノードカソード間の極板間距離が60mmとなるように配置した。そして、この電解槽に50℃に加温した上記電解液を1.8リットル入れ、温度を維持した状態でスターラーと撹拌子とを用いて、自然に停止しない程度の回転数(10〜20回転/分間)でゆっくりと撹拌した。カソードの電流密度が270A/mとなるように、0.54Aの電流を48時間通電した。48時間の通電後、通電を停止してカソードを引きあげ、チタン板の表面に電着したコバルトをハンマーで衝撃を与えてチタン板から剥離した。剥離したコバルトは、純水で洗浄した後、さらにアルコールで洗浄し、ドライヤーの冷風で乾燥させて、評価基準品である電気コバルトを得た。
(1) Manufacture of evaluation standard products A 8 mm thick cobalt plate is cut into a size of 60 mm long × 60 mm wide, and other portions are plated so that the electrode area is 20 cm 2 only on one side (40 mm long × 50 mm wide). The material masked with the masking tape for use was used as the anode. Moreover, a 0.5 mm thick titanium plate is cut into a size of 60 mm long × 60 mm wide, and the other area is covered with a masking tape for plating so that the electrode area is 20 cm 2 only on one side (40 mm long × 50 mm wide). The masked one was used as the cathode. The electrolytic solution was prepared by dissolving cobalt chloride as a reagent in pure water and adjusting the cobalt concentration in the solution to 55 g / L, and then adjusting the pH to 1.2 using hydrochloric acid. A thing was used. Next, the anode and the cathode were placed in a vinyl chloride container (electrolyzer) having a capacity of 2 liters, respectively, and arranged such that the distance between the electrode plates facing each other was 60 mm. Then, 1.8 liters of the electrolytic solution heated to 50 ° C. is put in this electrolytic cell, and the rotation speed (10 to 20 rotations) is set so as not to stop naturally using a stirrer and a stirrer while maintaining the temperature. (Min / min). A current of 0.54 A was applied for 48 hours so that the cathode current density was 270 A / m 2 . After energization for 48 hours, the energization was stopped, the cathode was pulled up, and the cobalt electrodeposited on the surface of the titanium plate was impacted with a hammer and peeled off from the titanium plate. The peeled cobalt was washed with pure water, then further washed with alcohol, and dried with cold air from a dryer to obtain electric cobalt as an evaluation standard product.

(2)溶解速度測定用試料の調製
電気コバルトを、面積が1.0〜3.0cmの範囲となるように切断機を用いて切断した。次いで、切断した電気コバルトを、カソードに接した面が研磨面となるようにプラスチック製のホルダーの底に入れ、室温硬化型のエポキシ樹脂を充填して型埋めした。24時間静置して固結させた後、型抜きして固結サンプルを得た。得られた固結サンプルを自動研磨機(製品名:エコメット,ビューラー社製)にセットし、粗さ320番の耐水性研磨紙を利用して、水とアルミナとのスラリーを用いて回転させながら湿式研磨した。粗さ320番の研磨紙で研磨した固結サンプルは、次に、粗さ1000番の研磨紙に交換した自動研磨機で、同様に傷が見えなくなるまで湿式研磨した。そしてさらに、粗さ2400番の研磨紙に交換した自動研磨機で、目視で傷が確認できなくなるまで研磨した後、研磨により露出した部分の寸法を測定し、表面積を算出した。研磨後の固結サンプルは、その表面を純水で十分に洗浄し、さらにエタノールで洗浄して脱脂した後、ドライヤーの冷風で乾燥させ、これを溶解速度測定用サンプルとした。
(2) Preparation of Sample for Dissolution Rate Measurement Electrocobalt was cut using a cutting machine so that the area was in the range of 1.0 to 3.0 cm 2 . Next, the cut electrocobalt was placed in the bottom of a plastic holder so that the surface in contact with the cathode was a polished surface, and filled with a room temperature curing type epoxy resin. After allowing to stand for 24 hours for consolidation, the mold was removed to obtain a consolidated sample. The obtained consolidated sample is set in an automatic polishing machine (product name: Ecomet, manufactured by Buehler), and is rotated with a slurry of water and alumina using a water-resistant abrasive paper having a roughness of 320. Wet polished. The consolidated sample polished with the # 320 abrasive paper was then wet-polished with an automatic polishing machine replaced with a # 1000 abrasive paper until no scratches were visible. Further, after polishing with an automatic polishing machine replaced with polishing paper having a roughness of No. 2400 until scratches could not be visually confirmed, the size of the portion exposed by polishing was measured, and the surface area was calculated. The ground sample after polishing was thoroughly washed with pure water, further washed with ethanol and degreased, and then dried with cold air from a dryer, and this was used as a sample for dissolution rate measurement.

(3)溶解速度の測定
溶解速度の測定には、22質量%濃度の硫酸200mlを用いた。なお、この硫酸の濃度は、電気コバルトが完全に溶解した場合であっても硫酸コバルトが飽和濃度に達しないように考慮し、設定したものである。90℃に加温した上記硫酸に、上記溶解速度測定用サンプルを入れ、温度を維持した状態でスターラーと撹拌子とで撹拌しながら、3時間浸漬させた。その後、サンプルを取り出し、その表面を純水で洗浄した。次いで、この洗浄液と、上記サンプルを取り出した後の溶液とを回収し、総量を測定するとともに、これらの溶液中の電気コバルト濃度を誘導結合プラズマ発光分光分析(ICP−AES)法により測定した。そして、上記サンプルから溶出した電気コバルトの量から、単位面積あたりの電気コバルトの溶解速度を算出した。
(3) Measurement of dissolution rate For the measurement of the dissolution rate, 200 ml of 22 mass% sulfuric acid was used. The concentration of the sulfuric acid is set in consideration of the cobalt sulfate not reaching the saturation concentration even when the electric cobalt is completely dissolved. The sample for dissolution rate measurement was put into the sulfuric acid heated to 90 ° C. and immersed for 3 hours while stirring with a stirrer and a stirrer while maintaining the temperature. Then, the sample was taken out and the surface was washed with pure water. Next, the cleaning solution and the solution after the sample was taken out were collected, the total amount was measured, and the electric cobalt concentration in these solutions was measured by an inductively coupled plasma emission spectroscopy (ICP-AES) method. And the dissolution rate of the electric cobalt per unit area was computed from the quantity of the electric cobalt eluted from the said sample.

(4)水素濃度の測定
電気コバルト中の水素濃度は、株式会社堀場製作所製の水素分析装置(EMGA−921)を用いて測定した。なお、水素濃度測定用サンプルには、上記(2)にて切断した電気コバルトの残りの部分を用いた。
(4) Measurement of hydrogen concentration The hydrogen concentration in the electric cobalt was measured using a hydrogen analyzer (EMGA-921) manufactured by Horiba, Ltd. In addition, the remaining part of the electrocobalt cut | disconnected by said (2) was used for the sample for a hydrogen concentration measurement.

(5)硫黄濃度の測定
電気コバルト中の硫黄濃度は、グロー放電質量分析(GD−MS)法により測定した。なお、硫黄濃度測定用サンプルには、上記(2)にて切断した電気コバルトの残りの部分を用いた。
(5) Measurement of sulfur concentration The sulfur concentration in electrocobalt was measured by glow discharge mass spectrometry (GD-MS). In addition, the remaining part of the electrocobalt cut | disconnected by said (2) was used for the sample for sulfur concentration measurement.

<試験例1>
電気コバルトの酸溶解性と、該電気コバルト中の水素濃度との関係について検討した。
<Test Example 1>
The relationship between the acid solubility of electrocobalt and the hydrogen concentration in the electrocobalt was examined.

試験には、電流密度や電解液のコバルト濃度、通電方法等の電解条件を変えることにより製造した5種類の電気コバルト、及びめっき陽極用として市販されている電気コバルトを用いた。これらの電気コバルトは、上記方法により溶解速度を測定した後、上記(1)に記載の従来法、すなわち一方向通電を行うことにより工業的に電解採取して製造した電気コバルト(水素濃度:3ppm)を評価基準品に用い、該評価基準品の硫酸に対する溶解速度(90g/m/hr)を1とした場合の溶解速度比を算出し、その値をもって酸溶解性の良否を判断した。また、上記方法により電気コバルト中の水素濃度についても測定した。従来の電気コバルトを基準とした電気コバルトの酸に対する溶解速度比と、電気コバルト中の水素濃度(ppm)との関係を図1に示す。 In the test, five types of electric cobalt produced by changing electrolysis conditions such as current density, cobalt concentration of the electrolytic solution, and energization method, and electric cobalt commercially available for plating anodes were used. After measuring the dissolution rate by the above method, these electrocobalts were produced by electrolytic extraction (hydrogen concentration: 3 ppm) industrially by the conventional method described in the above (1), that is, by conducting unidirectional energization. ) Was used as an evaluation standard product, and a dissolution rate ratio was calculated when the dissolution rate (90 g / m 2 / hr) of the evaluation standard product with respect to sulfuric acid was 1, and the quality of the acid solubility was determined based on this value. Further, the hydrogen concentration in the electric cobalt was also measured by the above method. FIG. 1 shows the relationship between the dissolution rate ratio of electrocobalt to acid based on conventional electrocobalt and the hydrogen concentration (ppm) in electrocobalt.

図1に示すように、電気コバルトの酸溶解性は、該電気コバルト中の水素濃度が高くなるにしたがって向上した。特に、水素濃度が20ppmを超えると溶解性が顕著に向上し、40ppmを超えると更に溶解し易くなり、60ppm付近では従来の電気コバルトの2倍以上の溶解性を示した。そして、水素濃度が60ppmを超えると、それ以降は水素濃度が高くても溶解性に変化は認められなかった。なお、市販の電気コバルト中の水素濃度は、5ppmであり、その酸溶解性は、上記(1)に記載の従来法により電解採取して製造した電気コバルトと同程度であった。   As shown in FIG. 1, the acid solubility of electric cobalt improved as the hydrogen concentration in the electric cobalt increased. In particular, when the hydrogen concentration exceeded 20 ppm, the solubility was remarkably improved, and when it exceeded 40 ppm, it was more easily dissolved, and at around 60 ppm, the solubility was more than twice that of conventional electric cobalt. And when hydrogen concentration exceeded 60 ppm, even if hydrogen concentration was high after that, the change was not recognized by solubility. In addition, the hydrogen concentration in commercially available electric cobalt was 5 ppm, and the acid solubility was comparable to the electric cobalt produced by electrowinning according to the conventional method described in (1) above.

このことから、電気コバルトの酸溶解性と、該電気コバルト中の水素濃度との間には、ある一定の傾向があり、電気コバルト中の水素濃度を高めることで、電気コバルトの酸溶解性を向上できることが明らかとなった。   From this, there is a certain tendency between the acid solubility of the electric cobalt and the hydrogen concentration in the electric cobalt. By increasing the hydrogen concentration in the electric cobalt, the acid solubility of the electric cobalt is increased. It became clear that it could be improved.

<試験例2>
一方向通電を行う従来法により工業的に電解採取して製造した電気コバルトと、停電と通電とを反復する間欠通電を行い電解採取して製造した方法により得られた電気コバルトとを用いて、間欠通電が電気コバルト中の水素濃度に及ぼす効果を検討した。
<Test Example 2>
Using electric cobalt produced by electrolytic extraction industrially by the conventional method of conducting unidirectional energization, and electric cobalt obtained by the method of electrolytic collection produced by intermittent energization that repeats power outage and energization, The effect of intermittent energization on the hydrogen concentration in electrolytic cobalt was investigated.

電解液は、試薬の塩化コバルトを用いて液中のコバルト濃度が55g/Lとなるように調整した後、さらに、塩酸を用いてpHが1.2となるように調整したものを用いた。次に、上記(1)の評価基準品の製造と同様の方法にて調製したアノードとカソードとを各1枚、容量1.5リットルの塩化ビニール製の容器(電解槽)に入れ、対面したアノードカソード間の極板間距離が60mmとなるように配置し、通電中は、タイマーを介して自動的に所定の時間、停電と通電とを繰り返すように配線した。なお、全電解時間に占める通電時間の割合は80〜90%となるように調整した。そして、この電解槽に50℃に加温した上記電解液を1リットル入れ、温度を維持した状態でスターラーと撹拌子とを用いて、自然に停止しない程度の回転数(10〜20回転/分間)でゆっくりと撹拌させながら、カソードの電流密度が270A/mとなるように、0.54Aの電流を48時間通電した。なお、電解の途中、液量を観察し、蒸発により減少した場合には、その都度純水を補給し、一定の液量を維持するようにした。 The electrolytic solution was adjusted so that the cobalt concentration in the solution was 55 g / L using cobalt chloride as a reagent, and then adjusted to a pH of 1.2 using hydrochloric acid. Next, an anode and a cathode prepared in the same manner as in the production of the evaluation standard product in (1) above were put in a vinyl chloride container (electrolyzer) having a capacity of 1.5 liters and faced each other. The electrodes were arranged so that the distance between the anode and the cathode was 60 mm, and during energization, wiring was performed so as to automatically repeat the power outage and energization for a predetermined time via a timer. The ratio of the energization time to the total electrolysis time was adjusted to be 80 to 90%. Then, 1 liter of the above electrolytic solution heated to 50 ° C. is put into this electrolytic cell, and the number of revolutions (10 to 20 revolutions / minute) that does not stop spontaneously using a stirrer and a stirrer while maintaining the temperature. ), A current of 0.54 A was applied for 48 hours so that the current density of the cathode was 270 A / m 2 . During the electrolysis, the amount of liquid was observed, and when it decreased due to evaporation, pure water was replenished each time to maintain a constant amount of liquid.

48時間の通電後、通電を停止してカソードを引きあげ、チタン板の表面に電着したコバルトをハンマーで衝撃を与えてチタン板から剥離した。剥離したコバルトは、純水で洗浄した後、さらにアルコールで洗浄し、ドライヤーの冷風で乾燥させて、電気コバルトを得た。このようにして得た電気コバルト中の水素濃度を上記方法により測定した。電気コバルト中の水素濃度(ppm)と、間欠通電にて反復する停電時間(分)との関係を図2に示す。なお、比較対照として使用した、一方向通電を行う従来法により工業的に電解採取して製造した電気コバルト中の水素濃度は、3ppmであった。   After energization for 48 hours, the energization was stopped, the cathode was pulled up, and the cobalt electrodeposited on the surface of the titanium plate was impacted with a hammer and peeled off from the titanium plate. The peeled cobalt was washed with pure water, further washed with alcohol, and dried with cold air from a dryer to obtain electric cobalt. The hydrogen concentration in the electric cobalt thus obtained was measured by the above method. FIG. 2 shows the relationship between the hydrogen concentration (ppm) in the electric cobalt and the power failure time (minutes) repeated by intermittent energization. In addition, the hydrogen concentration in the electrocobalt produced by electrolytically collecting and manufacturing industrially by a conventional method using unidirectional energization used as a comparative control was 3 ppm.

図2に示すように、停電と通電とを反復する間欠通電を行うことにより得られた電気コバルト中の水素濃度は、一方向通電を行う従来法により得られた電気コバルト中の水素濃度に比べて高かった。また、電気コバルト中の水素濃度は、停電時間の長さ、すなわち、通電と停電との繰り返し周期により異なり、特に、停電時間が0.5〜1分前後、また、6分を超えて10〜12分前後とすることで、水素濃度の高い電気コバルトが得られた。   As shown in FIG. 2, the hydrogen concentration in the electrical cobalt obtained by intermittent energization that repeats power outage and energization is compared with the hydrogen concentration in the electrical cobalt obtained by the conventional method in which unidirectional energization is performed. It was expensive. Further, the hydrogen concentration in the electric cobalt varies depending on the length of the power failure time, that is, the repetition cycle between the energization and the power failure, and in particular, the power failure time is around 0.5 to 1 minute, more than 6 minutes and 10 to 10 minutes. By setting the time around 12 minutes, electrocobalt with a high hydrogen concentration was obtained.

このことから、コバルトを含有する酸性溶液からなる電解液に対して停電と通電とを反復する間欠通電を行うことで、水素濃度の高い電気コバルトが得られることが明らかとなった。また、通電と停電との繰り返し周期の長さを調整することで、より高い水素濃度の電気コバルトが得られることも明らかとなった。   From this, it has been clarified that electric cobalt having a high hydrogen concentration can be obtained by intermittently energizing an electrolytic solution composed of an acidic solution containing cobalt by repeating power interruption and energization. It has also been clarified that electric cobalt having a higher hydrogen concentration can be obtained by adjusting the length of the cycle of energization and power failure.

<試験例3>
一方向通電を行う従来法により工業的に電解採取して製造した電気コバルトと、コバルトを含有する酸性溶液からなる電解液に対して停電と通電とを反復する間欠通電を行い電解採取して製造した電気コバルトとを用いて、間欠通電が電気コバルトの酸溶解性に及ぼす効果を検討した。
<Test Example 3>
Electrocobalt manufactured by electrolytic extraction industrially by the conventional method of conducting unidirectional energization, and manufactured by electrolytic extraction by performing intermittent energization that repeats power outage and energization for an electrolytic solution consisting of an acidic solution containing cobalt The effect of intermittent energization on the acid solubility of electrocobalt was investigated using electrocobalt.

電解液は、試薬の塩化コバルトを用いて液中のコバルト濃度が55g/Lとなるように調整した後、さらに、塩酸を用いてpHが1.2となるように調整したものを用いた。次に、上記(1)の評価基準品の製造と同様の方法にて調製したアノードとカソードとを各1枚、容量1.5リットルの塩化ビニール製の容器(電解槽)に入れ、対面したアノードカソード間の極板間距離が60mmとなるように配置し、通電中は、タイマーを介して自動的に所定の時間、停電と通電とを繰り返すように配線した。なお、全電解時間に占める通電時間の割合は80〜90%となるように調整した。そして、この電解槽に50℃に加温した上記電解始液を1リットル入れ、温度を維持した状態でスターラーと撹拌子とを用いて、自然に停止しない程度の回転数(10〜20回転/分間)でゆっくりと撹拌させながら、カソードの電流密度が270A/mとなるように、0.54Aの電流を48時間通電した。なお、電解の途中、液量を観察し、蒸発により減少した場合には、その都度純水を補給し、一定の液量を維持するようにした。 The electrolytic solution was adjusted so that the cobalt concentration in the solution was 55 g / L using cobalt chloride as a reagent, and then adjusted to a pH of 1.2 using hydrochloric acid. Next, an anode and a cathode prepared in the same manner as in the production of the evaluation standard product in (1) above were put in a vinyl chloride container (electrolyzer) having a capacity of 1.5 liters and faced each other. The electrodes were arranged so that the distance between the anode and the cathode was 60 mm, and during energization, wiring was performed so as to automatically repeat the power outage and energization for a predetermined time via a timer. The ratio of the energization time to the total electrolysis time was adjusted to be 80 to 90%. Then, 1 liter of the electrolysis starting solution heated to 50 ° C. is put in this electrolytic cell, and the rotation speed (10 to 20 rotations / degree) that does not stop spontaneously using a stirrer and a stirrer while maintaining the temperature. The current of 0.54 A was applied for 48 hours so that the cathode current density was 270 A / m 2 . During the electrolysis, the amount of liquid was observed, and when it decreased due to evaporation, pure water was replenished each time to maintain a constant amount of liquid.

48時間の通電後、通電を停止してカソードを引きあげ、チタン板の表面に電着したコバルトをハンマーで衝撃を与えてチタン板から剥離した。剥離したコバルトは、純水で洗浄した後、さらにアルコールで洗浄し、ドライヤーの冷風で乾燥させて、電気コバルトを得た。このようにして得た電気コバルトは、上記方法により溶解速度を測定し、上記(1)に記載の一方向通電を行うことにより工業的に電解採取して製造した電気コバルトを評価基準品に用い、該評価基準品の硫酸に対する溶解速度(90g/m/hr)を1とした場合の溶解速度比を算出し、その値をもって酸溶解性の良否を判断した。従来の電気コバルトを基準とした電気コバルトの酸に対する溶解速度比と、間欠通電にて反復する停電時間(分)との関係を図3に示す。 After energization for 48 hours, the energization was stopped, the cathode was pulled up, and the cobalt electrodeposited on the surface of the titanium plate was impacted with a hammer and peeled off from the titanium plate. The peeled cobalt was washed with pure water, further washed with alcohol, and dried with cold air from a dryer to obtain electric cobalt. The electrolytic cobalt thus obtained was measured for dissolution rate by the above method, and the electrolytic cobalt produced by electrolytic extraction industrially by conducting the unidirectional energization described in (1) above was used as an evaluation standard product. The dissolution rate ratio when the dissolution rate (90 g / m 2 / hr) in sulfuric acid of the evaluation standard product was 1 was calculated, and the quality of acid solubility was judged based on the calculated value. FIG. 3 shows the relationship between the dissolution rate ratio of electric cobalt to acid based on conventional electric cobalt and the power failure time (minutes) repeated by intermittent energization.

図3に示すように、停電と通電とを反復する間欠通電を行うことにより得られた電気コバルトは、一方向通電を行うことにより得られた従来の電気コバルトに比べて、酸に対する溶解性が優れていた。また、停電時間が0.5分程度と短い場合には、非常に高い溶解性を示す電気コバルトが得られ、停電時間が3分程度になるとその溶解性は低下する傾向を示した。そして、停電時間が10分程度まで長くなると、再び溶解性の高い電気コバルトが得られるようになった。   As shown in FIG. 3, the electric cobalt obtained by performing intermittent energization that repeats power outage and energization is more soluble in acid than conventional electric cobalt obtained by performing unidirectional energization. It was excellent. In addition, when the power failure time was as short as about 0.5 minutes, electrocobalt having very high solubility was obtained, and when the power failure time was about 3 minutes, the solubility tended to decrease. And when power failure time became long to about 10 minutes, highly soluble electrocobalt came to be obtained again.

このことから、コバルトを含有する酸性溶液からなる電解液に対して、停電と通電とを反復する間欠通電を行うことにより、酸溶解性に優れた電気コバルトが得られることが明らかとなった。また、停電時間をある特定の短い時間とするか、或いは、ある特定の長い時間とすることで、より優れた酸溶解性を示す電気コバルトが得られることも明らかとなった。   From this, it has been clarified that an electrolytic cobalt excellent in acid solubility can be obtained by performing intermittent energization that repeats power failure and energization on an electrolytic solution made of an acidic solution containing cobalt. It has also been clarified that by setting the power outage time to a specific short time or a specific long time, it is possible to obtain electrocobalt exhibiting better acid solubility.

<試験例4>
一方向通電を行う従来法により工業的に電解採取して製造した電気コバルトと、コバルトを含有する酸性溶液からなる電解液に対して停電と通電とを反復する間欠通電を行い電解採取して製造した電気コバルトとを用いて、電解時の電流効率が電気コバルト中の水素濃度、及び電気コバルトの酸溶解性に及ぼす効果を検討した。また、得られた電気コバルトについて、表面の平滑性を評価した。
<Test Example 4>
Electrocobalt manufactured by electrolytic extraction industrially by the conventional method of conducting unidirectional energization, and manufactured by electrolytic extraction by performing intermittent energization that repeats power outage and energization for an electrolytic solution consisting of an acidic solution containing cobalt The effect of the current efficiency during electrolysis on the hydrogen concentration in electrocobalt and the acid solubility of electrocobalt was examined using the electrocobalt. Moreover, the smoothness of the surface was evaluated about the obtained electric cobalt.

電解液は、試薬の塩化コバルトを用いて液中のコバルト濃度が55g/Lとなるように調整した後、さらに、塩酸を用いてpHが1.2となるように調整したものを用いた。次に、上記(1)の評価基準品の製造と同様の方法にて調製したアノードとカソードとを各1枚、容量1.5リットルの塩化ビニール製の容器(電解槽)に入れ、対面したアノードカソード間の極板間距離が60mmとなるように配置し、通電中は、タイマーを介して自動的に所定の時間、停電と通電とを繰り返すように配線した。なお、全電解時間に占める通電時間の割合は85〜100%となるように調整した。そして、この電解槽に50℃に加温した上記電解始液を1リットル入れ、温度を維持した状態でスターラーと撹拌子とを用いて、自然に停止しない程度の回転数(10〜20回転/分間)でゆっくりと撹拌させながら、カソードの電流密度が270A/mとなるように、0.54Aの電流を48時間通電した。なお、電解の途中、液量を観察し、蒸発により減少した場合には、その都度純水を補給し、一定の液量を維持するようにした。 The electrolytic solution was adjusted so that the cobalt concentration in the solution was 55 g / L using cobalt chloride as a reagent, and then adjusted to a pH of 1.2 using hydrochloric acid. Next, an anode and a cathode prepared in the same manner as in the production of the evaluation standard product in (1) above were put in a vinyl chloride container (electrolyzer) having a capacity of 1.5 liters and faced each other. The electrodes were arranged so that the distance between the anode and the cathode was 60 mm, and during energization, wiring was performed so as to automatically repeat the power outage and energization for a predetermined time via a timer. In addition, the ratio of the energization time to the total electrolysis time was adjusted to be 85 to 100%. Then, 1 liter of the electrolysis starting solution heated to 50 ° C. is put in this electrolytic cell, and the rotation speed (10 to 20 rotations / degree) that does not stop spontaneously using a stirrer and a stirrer while maintaining the temperature. The current of 0.54 A was applied for 48 hours so that the cathode current density was 270 A / m 2 . During the electrolysis, the amount of liquid was observed, and when it decreased due to evaporation, pure water was replenished each time to maintain a constant amount of liquid.

48時間の通電後、通電を停止してカソードを引きあげ、チタン板の表面に電着したコバルトをハンマーで衝撃を与えてチタン板から剥離した。剥離したコバルトは、純水で洗浄した後、さらにアルコールで洗浄し、ドライヤーの冷風で乾燥させて、電気コバルトを得た。このようにして得られた電気コバルト中の水素濃度を上記方法により測定した。また、上記方法により電気コバルトの溶解速度を測定し、上記(1)に記載の一方向通電を行うことにより工業的に電解採取して製造した電気コバルトを評価基準品に用い、該評価基準品の硫酸に対する溶解速度(90g/m/hr)を1とした場合の溶解速度比を算出した。さらに、得られた電気コバルト表面の平滑性を評価した。なお、平滑であるか否かは、以下の方法により評価した。まず、目視にて2mm以上の直径を有する粒が表面に認められた場合には×と評価し、2mm以上の直径を有する粒が認められなかったものについて、測定装置に接触式表面粗さ計を用い、JIS B0601(2001)に準拠して測定した最大高さ(Rmax)が30μm以下であるものを○と評価し、最大高さが30μmを超えたものを△と評価した。 After energization for 48 hours, the energization was stopped, the cathode was pulled up, and the cobalt electrodeposited on the surface of the titanium plate was impacted with a hammer and peeled off from the titanium plate. The peeled cobalt was washed with pure water, further washed with alcohol, and dried with cold air from a dryer to obtain electric cobalt. The hydrogen concentration in the electrocobalt thus obtained was measured by the above method. Moreover, the dissolution rate of electric cobalt is measured by the above method, and the electric cobalt produced by industrially electrolytically collecting by performing the unidirectional energization described in the above (1) is used as the evaluation reference product. The dissolution rate ratio when the dissolution rate of sulfuric acid in sulfuric acid (90 g / m 2 / hr) was 1 was calculated. Furthermore, the smoothness of the obtained electric cobalt surface was evaluated. In addition, it was evaluated by the following method whether it was smooth. First, when a particle having a diameter of 2 mm or more was visually observed on the surface, it was evaluated as x, and for a particle having a diameter of 2 mm or more not recognized, a contact type surface roughness meter was installed in the measuring device. A sample having a maximum height (Rmax) measured in accordance with JIS B0601 (2001) of 30 μm or less was evaluated as “◯”, and a sample having a maximum height exceeding 30 μm was evaluated as “Δ”.

そして、従来の電気コバルトを基準とした電気コバルトの酸に対する溶解速度比と、電気コバルト中の水素濃度(ppm)との関係を図4に、電解時の電流効率と、電気コバルト中の水素濃度(ppm)との関係を図5に、電解時の電流効率と、従来の電気コバルトを基準とした電気コバルトの酸に対する溶解速度比との関係を図6に、電気コバルト表面の平滑性の評価結果を表1に示す。   FIG. 4 shows the relationship between the dissolution rate ratio of electrocobalt to acid based on conventional electrocobalt and the hydrogen concentration (ppm) in electrocobalt. FIG. 4 shows the current efficiency during electrolysis and the hydrogen concentration in electrocobalt. Fig. 5 shows the relationship with (ppm), Fig. 6 shows the relationship between the current efficiency during electrolysis and the dissolution rate ratio of electric cobalt to acid based on conventional electric cobalt, and the evaluation of the smoothness of the surface of electric cobalt. The results are shown in Table 1.

Figure 0005561201
Figure 0005561201

図4に示すように、電気コバルトの酸溶解性は該電気コバルト中の水素濃度が高くなるにしたがって向上した。図5,6に示すように、電流効率と、電気コバルト中の水素濃度及び電気コバルトの酸溶解性との間には、一定の関係性が認められた。このことから、電気コバルトを製造する際に電流効率を測定することで、得られる電気コバルトの酸溶解性の良否を判断することができるものと考えられる。   As shown in FIG. 4, the acid solubility of electric cobalt improved as the hydrogen concentration in the electric cobalt increased. As shown in FIGS. 5 and 6, a certain relationship was recognized between the current efficiency, the hydrogen concentration in the electric cobalt, and the acid solubility of the electric cobalt. From this, it is considered that the acid solubility of the obtained electric cobalt can be judged by measuring the current efficiency when producing the electric cobalt.

また、表1に示すように、本発明の製造方法によれば、表面が平滑な電気コバルトが得られることが確認された。   Moreover, as shown in Table 1, according to the manufacturing method of this invention, it was confirmed that the electric cobalt with the smooth surface is obtained.

<参考試験例1>
電解液のpHが、電気コバルトの酸溶解性に及ぼす効果について検討した。
<Reference Test Example 1>
The effect of the pH of the electrolytic solution on the acid solubility of electrocobalt was examined.

電解槽、アノード、及びカソードは、上記(1)の評価基準品の製造と同様の方法にて調製したものを使用した。また、電解液は、試薬の塩化コバルトを用いて液中のコバルト濃度が55g/Lとなるように調整した後、さらに、塩酸を用いてpHが0.5、1.2、2.0、3.0、又は3.8となるように調整したものを用いた。   As the electrolytic cell, the anode, and the cathode, those prepared by the same method as the production of the evaluation standard product of (1) above were used. In addition, the electrolytic solution was adjusted so that the cobalt concentration in the solution became 55 g / L using the reagent cobalt chloride, and then the pH was adjusted to 0.5, 1.2, 2.0, using hydrochloric acid. What was adjusted so that it might be set to 3.0 or 3.8 was used.

上記アノードと上記カソードとを各1枚、容量1.5リットルの塩化ビニール製の容器(電解槽)に入れ、対面したアノードカソード間の極板間距離が60mmとなるように配置した。そして、この電解槽に50℃に加温した上記電解液を1リットル入れ、温度を維持した状態でスターラーと撹拌子とを用いて、自然に停止しない程度の回転数(10〜20回転/分間)でゆっくりと撹拌した。カソードの電流密度が270A/mとなるように、0.54Aの電流を一方向に48時間通電した。 Each of the anode and the cathode was placed in a 1.5 liter vinyl chloride container (electrolyzer), and the electrodes were arranged so that the distance between the anode and cathode facing each other was 60 mm. Then, 1 liter of the above electrolytic solution heated to 50 ° C. is put into this electrolytic cell, and the number of revolutions (10 to 20 revolutions / minute) that does not stop spontaneously using a stirrer and a stirrer while maintaining the temperature. ). A current of 0.54 A was applied in one direction for 48 hours so that the cathode current density was 270 A / m 2 .

48時間の通電後、通電を停止してカソードを引きあげ、チタン板の表面に電着したコバルトをハンマーで衝撃を与えてチタン板から剥離した。剥離したコバルトは、純水で洗浄した後、さらにアルコールで洗浄し、ドライヤーの冷風で乾燥させて、電気コバルトを得た。このようにして得た電気コバルトは、上記方法により溶解速度を測定し、一方向通電を行う従来法により工業的に電解採取して製造した電気コバルト(水素濃度:3ppm)の硫酸に対する溶解速度(90g/m/hr)を1とした場合の溶解速度比を算出し、その値をもって酸溶解性の良否を判断した。結果を表2に示す。 After energization for 48 hours, the energization was stopped, the cathode was pulled up, and the cobalt electrodeposited on the surface of the titanium plate was impacted with a hammer and peeled off from the titanium plate. The peeled cobalt was washed with pure water, further washed with alcohol, and dried with cold air from a dryer to obtain electric cobalt. The electrolytic cobalt thus obtained was measured for the dissolution rate by the above-mentioned method, and the dissolution rate of sulfuric acid in sulfuric acid for the electrical cobalt (hydrogen concentration: 3 ppm) produced by industrial electrolytic extraction by the conventional method in which unidirectional energization is performed ( The dissolution rate ratio when 90 g / m 2 / hr) was set to 1 was calculated, and the acid solubility was judged based on the calculated value. The results are shown in Table 2.

Figure 0005561201
Figure 0005561201

pH0.5の電解液を用いて電解採取したところ、電着よりも水素の発生が優先し、電着物をほとんど得ることができなかった。また、pH3.8の電解液を用いて電解採取したところ、水酸化物が生成し始め、溶解速度比及びカソードの電流効率が低下した。これに対して、pH2.0及び3.0の電解液では、酸溶解性が良好な電気コバルトが得られた。pH1.2の電解液では、酸溶解性に変化はなかったが、水素濃度は高くなった。これらの結果は、一方向通電の場合のものであるが、間欠通電においても問題なく適用できると考えられる。したがって、間欠通電において、pH1.2〜3.0付近の電解液を用いることで、酸溶解性が良好な電気コバルトの製造が可能であると推測される。   When electrolytic collection was performed using an electrolyte solution having a pH of 0.5, generation of hydrogen was prioritized over electrodeposition, and almost no electrodeposits could be obtained. Moreover, when electrolytic extraction was performed using an electrolyte solution having a pH of 3.8, hydroxide began to be generated, and the dissolution rate ratio and cathode current efficiency were reduced. On the other hand, in the electrolytic solutions of pH 2.0 and 3.0, electrocobalt with good acid solubility was obtained. The electrolyte solution with pH 1.2 did not change the acid solubility, but the hydrogen concentration increased. These results are for the case of unidirectional energization, but it is considered that the present invention can be applied without problems even in intermittent energization. Therefore, it is presumed that by using an electrolytic solution having a pH of about 1.2 to 3.0 in intermittent energization, it is possible to produce electrocobalt with good acid solubility.

<参考試験例2>
電解液への添加剤の有無が、電気コバルトの酸溶解性及びに及ぼす効果について検討した。
<Reference Test Example 2>
The effect of the presence or absence of additives in the electrolytic solution on the acid solubility and electric cobalt was investigated.

電解槽、アノード、及びカソードは、上記(1)の評価基準品の製造と同様の方法にて調製したものを使用した。また、電解液は、試薬の塩化コバルトを用いて液中のコバルト濃度が55g/Lとなるように調整した後、さらに、塩酸を用いてpHが1.2となるように調整したものに、チオ硫酸ナトリウムを適量添加したものを用いた。   As the electrolytic cell, the anode, and the cathode, those prepared by the same method as the production of the evaluation standard product of (1) above were used. In addition, the electrolytic solution was adjusted so that the cobalt concentration in the solution was 55 g / L using the reagent cobalt chloride, and further adjusted to a pH of 1.2 using hydrochloric acid. A solution to which an appropriate amount of sodium thiosulfate was added was used.

そして、上記アノードと上記カソードとを各1枚、容量2リットルの塩化ビニール製の容器(電解槽)に入れ、対面したアノードカソード間の極板間距離が60mmとなるように配置した。そして、この電解槽に50℃に加温した上記電解液を1リットル入れ、温度を維持した状態でスターラーと撹拌子とを用いて、自然に停止しない程度の回転数(10〜20回転/分間)でゆっくりと撹拌した。カソードの電流密度が270A/mとなるように、0.54Aの電流を1時間通電した。 Then, each of the anode and the cathode was put into a container (electrolysis cell) made of vinyl chloride having a capacity of 2 liters, and arranged so that the distance between the electrode plates facing each other was 60 mm. Then, 1 liter of the above electrolytic solution heated to 50 ° C. is put into this electrolytic cell, and the number of revolutions (10 to 20 revolutions / minute) that does not stop spontaneously using a stirrer and a stirrer while maintaining the temperature. ). A current of 0.54 A was applied for 1 hour so that the current density of the cathode was 270 A / m 2 .

1時間の通電後、通電を停止してカソードを引きあげ、チタン板の表面に電着したコバルトをハンマーで衝撃を与えてチタン板から剥離した。剥離したコバルトは、純水で洗浄した後、さらにアルコールで洗浄し、ドライヤーの冷風で乾燥させて、電気コバルトCを得た。このようにして得た電気コバルトCは、上記方法により溶解速度を測定し、一方向通電を行う従来法により工業的に電解採取して製造した電気コバルトB(水素濃度:3ppm)の硫酸に対する溶解速度(90g/m/hr)を1とした場合の溶解速度比を算出し、その値をもって酸溶解性の良否を判断した。また、上記方法により水素濃度及び硫黄濃度を測定した。さらに、得られた電気コバルト表面の平滑性を評価した。なお、平滑であるか否かは、以下の方法により評価した。まず、目視にて2mm以上の直径を有する粒が表面に認められた場合には×と評価し、2mm以上の直径を有する粒が認められなかったものについて、測定装置に接触式表面粗さ計を用い、JIS B0601(2001)に準拠して測定した最大高さ(Rmax)が30μm以下であるものを○と評価し、最大高さが30μmを超えたものを△と評価した。結果を表3に示す。 After energization for 1 hour, the energization was stopped, the cathode was pulled up, and cobalt electrodeposited on the surface of the titanium plate was impacted with a hammer and peeled off from the titanium plate. The peeled cobalt was washed with pure water, further washed with alcohol, and dried with cold air from a dryer to obtain electric cobalt C. Electrocobalt C thus obtained was measured for dissolution rate by the above method, and dissolved in sulfuric acid by electrocobalt B (hydrogen concentration: 3 ppm) produced by industrial electrowinning by a conventional method in which unidirectional energization was performed. The dissolution rate ratio when the rate (90 g / m 2 / hr) was 1 was calculated, and the quality of acid solubility was judged from the value. Further, the hydrogen concentration and sulfur concentration were measured by the above methods. Furthermore, the smoothness of the obtained electric cobalt surface was evaluated. In addition, it was evaluated by the following method whether it was smooth. First, when a particle having a diameter of 2 mm or more was visually observed on the surface, it was evaluated as x, and for a particle having a diameter of 2 mm or more not recognized, a contact type surface roughness meter was installed in the measuring device. A sample having a maximum height (Rmax) measured in accordance with JIS B0601 (2001) of 30 μm or less was evaluated as “◯”, and a sample having a maximum height exceeding 30 μm was evaluated as “Δ”. The results are shown in Table 3.

Figure 0005561201
Figure 0005561201

表3には、比較のために、試験例2において停電と通電とを反復する間欠通電を行うことにより得られた電気コバルトA(停電時間:0.5分)の結果を合わせて示した。電解液にチオ硫酸ナトリウムを添加した電気コバルトCの溶解速度は、添加しなかった電気コバルトBの1.7倍(157g/m/hr)と良好な結果を示した。しかしながら、硫黄濃度が160ppmと高く、硫酸への溶解後には、硫黄を主成分とする溶解残渣が発生したため、後処理に手間を要した。これに対して、チオ硫酸ナトリウムを含まない電解液を用いて、停電と通電とを反復する間欠通電を行って得られた電気コバルトAは、その表面が平滑であり、また、同じくチオ硫酸ナトリウムを含まない電解液を用いて、一方向通電を行って得られた電気コバルトBの1.5倍(135g/m/hr)の溶解速度を示し、さらに、不純物である硫黄濃度も0.1ppm未満と、非常に高純度であった。 For comparison, Table 3 also shows the results of the electric cobalt A (power failure time: 0.5 minutes) obtained by performing intermittent energization in which the power failure and the energization are repeated in Test Example 2. The dissolution rate of electrocobalt C in which sodium thiosulfate was added to the electrolytic solution was 1.7 times (157 g / m 2 / hr) of electrocobalt B that was not added. However, since the sulfur concentration is as high as 160 ppm and a dissolution residue containing sulfur as a main component is generated after dissolution in sulfuric acid, it takes time for post-treatment. On the other hand, electrocobalt A obtained by performing intermittent energization that repeats power outage and energization using an electrolyte solution that does not contain sodium thiosulfate has a smooth surface and is also sodium thiosulfate. It shows a dissolution rate 1.5 times (135 g / m 2 / hr) of electric cobalt B obtained by conducting unidirectional energization using an electrolyte solution containing no oxygen, and the sulfur concentration as an impurity is also 0. The purity was very high, less than 1 ppm.

Claims (4)

コバルト又はニッケルを含有する酸性溶液からなる電解液を用いて、電解採取又は電解精製により電気コバルト又は電気ニッケルを製造する方法であって、
前記電解採取又は電解精製では、全電解時間に占める通電時間の割合を80〜90%として、前記電解液に対して停電と通電とを反復する間欠通電を行うことを特徴とする電気コバルト又は電気ニッケルの製造方法。
A method of producing electrolytic cobalt or electrolytic nickel by electrolytic collection or electrolytic purification using an electrolytic solution comprising an acidic solution containing cobalt or nickel,
In the electrowinning or electrolytic refining, the ratio of the energization time to the total electrolysis time is set to 80 to 90%, and the electrolytic solution is subjected to intermittent energization that repeats power failure and energization. Nickel manufacturing method.
前記間欠通電では、反復する停電時間が30〜60秒である請求項1に記載の電気コバルト又は電気ニッケルの製造方法。   The method for producing electric cobalt or electric nickel according to claim 1, wherein in the intermittent energization, the repeated power failure time is 30 to 60 seconds. 前記電解液のpHは、1.0〜3.5である請求項1又は2に記載の電気コバルト又は電気ニッケルの製造方法。   The method for producing electric cobalt or electric nickel according to claim 1 or 2, wherein the pH of the electrolytic solution is 1.0 to 3.5. 水素濃度が20ppm以上であって、且つ硫黄濃度が1ppm以下であることを特徴とする電気コバルト。
An electric cobalt having a hydrogen concentration of 20 ppm or more and a sulfur concentration of 1 ppm or less.
JP2011034910A 2011-02-21 2011-02-21 Method for producing electric cobalt or electric nickel Active JP5561201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011034910A JP5561201B2 (en) 2011-02-21 2011-02-21 Method for producing electric cobalt or electric nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011034910A JP5561201B2 (en) 2011-02-21 2011-02-21 Method for producing electric cobalt or electric nickel

Publications (2)

Publication Number Publication Date
JP2012172193A JP2012172193A (en) 2012-09-10
JP5561201B2 true JP5561201B2 (en) 2014-07-30

Family

ID=46975388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011034910A Active JP5561201B2 (en) 2011-02-21 2011-02-21 Method for producing electric cobalt or electric nickel

Country Status (1)

Country Link
JP (1) JP5561201B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6473102B2 (en) * 2016-06-09 2019-02-20 Jx金属株式会社 Cobalt electrowinning method
CN109592822A (en) * 2018-12-01 2019-04-09 六盘水中联工贸实业有限公司 One kind is based on magnetic field electrolysis processing iron content cobalt method for waste water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797128B2 (en) * 2001-07-11 2011-10-19 ティーエムシー株式会社 Method for electrolytic production of cobalt
JP2003138322A (en) * 2001-10-31 2003-05-14 Nikko Materials Co Ltd Method of manufacturing high-purity metal, high-purity metal, sputtering target consisting of this high-purity metal and thin film formed by this sputtering target
JP5206502B2 (en) * 2009-03-02 2013-06-12 住友金属鉱山株式会社 Method for producing cobalt with excellent acid solubility

Also Published As

Publication number Publication date
JP2012172193A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP5008043B1 (en) Anode for chlorine generation
WO2009151044A1 (en) Anodes for electrolytic winning of zinc and cobalt and method for electrolytic winning
JP2012201925A (en) Anode for electrowinning and electrowinning method using the anode
JP2014501850A (en) Electrical recovery of gold and silver from thiosulfate solutions
CN106430320A (en) Method for recycling rhenium from tungsten-rhenium alloy waste
JP2009293117A (en) Anode for use in electrowinning zinc, and electrowinning method
JP7259389B2 (en) Method for producing sulfuric acid solution
JP5561201B2 (en) Method for producing electric cobalt or electric nickel
KR102611287B1 (en) Method for producing sulfuric acid solution, and electrolytic cell used in this production method
CA1064856A (en) Purification of nickel electrolyte by electrolytic oxidation
Kekesi Electrorefining in aqueous chloride media for recovering tin from waste materials
CN105671598A (en) Method for directly preparing aluminum foil through low temperature electrolysis
JP7211143B2 (en) Method for producing sulfuric acid solution
JP2019052329A (en) Electrorefining method of low-grade copper anode, and electrolytic solution used therefor
Lu et al. Effects of current density and nickel as an impurity on zinc electrowinning
JP6868375B2 (en) Electrolytic aluminum foil and its manufacturing method
JP2011219785A (en) Method for removing tin and thallium, and method for refining indium
RU2361967C1 (en) Method of compacted nickel electro-extraction
US6569310B2 (en) Electrochemical process for preparation of zinc powder
JP7211144B2 (en) Method for producing sulfuric acid solution
JP7042641B2 (en) Aluminum foil manufacturing method and manufacturing equipment
JP2003105581A (en) Method and apparatus for electrolytic deposition of tin alloy
JP7207024B2 (en) Method for producing sulfuric acid solution
TIAN et al. Purification of crude indium by two-stage cyclone electrowinning
WO2019220858A1 (en) Sulfuric acid solution production method, and electrolysis vessel which can be used in said production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R150 Certificate of patent or registration of utility model

Ref document number: 5561201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150