JP2015076223A - Aluminum alloy for negative electrode material of aluminum air battery, and aluminum air battery - Google Patents

Aluminum alloy for negative electrode material of aluminum air battery, and aluminum air battery Download PDF

Info

Publication number
JP2015076223A
JP2015076223A JP2013210812A JP2013210812A JP2015076223A JP 2015076223 A JP2015076223 A JP 2015076223A JP 2013210812 A JP2013210812 A JP 2013210812A JP 2013210812 A JP2013210812 A JP 2013210812A JP 2015076223 A JP2015076223 A JP 2015076223A
Authority
JP
Japan
Prior art keywords
aluminum
negative electrode
aluminum alloy
air battery
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013210812A
Other languages
Japanese (ja)
Inventor
涼子 藤村
Ryoko Fujimura
涼子 藤村
小山 高弘
Takahiro Koyama
高弘 小山
田中 宏樹
Hiroki Tanaka
宏樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2013210812A priority Critical patent/JP2015076223A/en
Publication of JP2015076223A publication Critical patent/JP2015076223A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy for a negative electrode material of an aluminum air battery which achieves a high current density at a normal temperature, allows a negative electrode to be kept at a lower potential even if the electricity supply thereto is continued, suffers a less self corrosion, achieves a high electric current efficiency even in the case of using an electrolytic solution high in alkali concentration, and is superior in hot rollability and cold rollability.SOLUTION: An aluminum alloy for a negative electrode material of an aluminum air battery comprises 0.8 to 2.0 mass% of Sn, over 0.1000 to 0.7000 mass% of Fe, and over 0.0500 to 0.5000 mass% of Si with the balance consisting of Al and inevitable impurities. The aluminum alloy includes particles of metallic Sn precipitate in the aluminum alloy matrix. Of the particles of metallic Sn precipitate observed in a section of the alloy, particles of metallic Sn precipitate of 0.1 to 100 μm in size have a particle-number density of 400/mmor more.

Description

本発明は、アルミニウム空気電池の負極材として用いられるアルミニウム合金及び該アルミニウム合金からなる負極材を有するアルミニウム空気電池に関する。   The present invention relates to an aluminum alloy used as a negative electrode material of an aluminum air battery and an aluminum air battery having a negative electrode material made of the aluminum alloy.

アルミニウム空気電池は、アルミニウム溶解反応を負極とした反応(1)及び空気中の酸素を活物質とした反応(2)によって表される一次電池である。負極材に用いられる金属としては、アルミニウムの他、亜鉛、マグネシウム、リチウムなどが知られているが、加工性が良好であること、軽量であること、3価の軽金属元素であることから単位重量当たりの電流効率が高いことから、アルミニウム材が注目されている。
(1)負極(アノード)反応:Al+2HO→AlO +4H+3e
(2)正極(カソード)反応:O+HO+4e→4OH
The aluminum-air battery is a primary battery represented by a reaction (1) using an aluminum dissolution reaction as a negative electrode and a reaction (2) using oxygen in the air as an active material. As the metal used for the negative electrode material, zinc, magnesium, lithium and the like are known in addition to aluminum, but unit weight because of good workability, light weight, and trivalent light metal element. Aluminum material has attracted attention because of its high current efficiency.
(1) Negative electrode (anode) reaction: Al + 2H 2 O → AlO 2 + 4H + + 3e
(2) Positive electrode (cathode) reaction: O 2 + H 2 O + 4e → 4OH

アルミニウム空気電池では、負極活物質にアルミニウム又はアルミニウム合金を用い、正極活物質には空気中の酸素を用い、電解液としてはNaCl水溶液やNaOH水溶液又はKOH水溶液が用いられる。   In an aluminum air battery, aluminum or an aluminum alloy is used for the negative electrode active material, oxygen in the air is used for the positive electrode active material, and an aqueous NaCl solution, an aqueous NaOH solution, or an aqueous KOH solution is used as the electrolyte.

このようなアルミニウム空気電池は、軽量且つ電気容量が高いことが求められる。   Such an aluminum air battery is required to be lightweight and have a high electric capacity.

アルミニウム空気電池用の負極材として、これまでに種々のアルミニウム合金が開発されており、例えば、Zn0.5〜10%、Sn0.04〜1.0%、Ga0.003〜1.0%を含有するアルミニウム合金(特許文献1、特許文献2)、Sn0.04〜0.5%を含有し、0.05%以下のSi、0.1%以下のFeを含有するアルミニウム合金を鋳造し、均質化熱処理によりアルミニウムとSnとの固溶体を急冷したアルミニウム合金(特許文献3)、Mg0.1〜2.0%、Sn0.03〜1.0%、Mn0.01〜0.5%を含有するアルミニウム合金(特許文献4)、Mg0.0001〜8%を含有し、Si、Feを規制したアルミニウム合金(特許文献5)が開示されている。   Various aluminum alloys have been developed so far as negative electrode materials for aluminum air batteries, including, for example, Zn 0.5 to 10%, Sn 0.04 to 1.0%, Ga 0.003 to 1.0% Cast aluminum alloy containing 0.04 to 0.5% Sn, 0.05% or less Si, 0.1% or less Fe, and homogeneous Aluminum alloy obtained by quenching a solid solution of aluminum and Sn by hydrothermal treatment (Patent Document 3), aluminum containing Mg 0.1 to 2.0%, Sn 0.03 to 1.0%, Mn 0.01 to 0.5% An alloy (Patent Document 4), an aluminum alloy containing 0.0001 to 8% Mg and regulating Si and Fe (Patent Document 5) is disclosed.

:特開昭54−25208号公報: JP-A-54-25208 :特開昭54−26211号公報: JP-A-54-26211 :特公昭49−10407号公報: Japanese Patent Publication No.49-10407 :特開平6−179936号公報: JP-A-6-179936 :特開2011−198752号公報: JP 2011-198752 A

上記の材料は、いずれも、常温での通電時の電流密度が10〜100mA/cm程度であり、電池としての出力が小さいという問題があった。これらの材料で大きい出力を得る場合には、電池の使用温度を60℃以上と高温にしたり、電池セルを大きくする必要があった。しかし、近年の輸送機向けなどの空気電池では、小型且つ常温でも使用可能な空気電池の要求が多い。そのため、常温において高い電流密度が得られることが課題である。 Each of the above materials has a problem that the current density when energized at room temperature is about 10 to 100 mA / cm 2 and the output as a battery is small. In order to obtain a large output with these materials, it was necessary to increase the use temperature of the battery to a high temperature of 60 ° C. or higher or to enlarge the battery cell. However, in recent air batteries for transportation equipment and the like, there are many demands for air batteries that are small and can be used at room temperature. Therefore, it is a problem that a high current density can be obtained at room temperature.

また、電池の電圧(起電力)とは正極と負極との電位差であり、この電位差が大きいほど、電池の性能としては高くなる。通常、負極の電位は、電流を流さない状態で最も卑であり、電流を流すと、電位が貴に変化する分極という現象が生じる。そのため、アルミニウム空気電池には、電流を流しても、負極の電位が卑のままの状態が維持されること、すなわち、分極し難いことが要求される。   The battery voltage (electromotive force) is a potential difference between the positive electrode and the negative electrode, and the larger the potential difference, the higher the performance of the battery. Usually, the potential of the negative electrode is the lowest when no current is passed, and when a current is passed, a phenomenon called polarization in which the potential changes preciously occurs. Therefore, the aluminum air battery is required to maintain a state in which the potential of the negative electrode remains low even when a current is passed, that is, it is difficult to be polarized.

また、アルミニウム合金負極材にアルカリ電解液が接触すると、両性金属であるアルミニウムでは自己腐食が発生するが、自己腐食によるアルミニウム合金の消耗は、電流を得ることには寄与しないため、自己腐食量が多いと、負極材の単位重量当たりに得られる電流、すなわち電流効率が低下してしまう。   In addition, when an alkaline electrolyte comes into contact with an aluminum alloy negative electrode material, self-corrosion occurs in aluminum, which is an amphoteric metal, but consumption of the aluminum alloy due to self-corrosion does not contribute to obtaining current, so the amount of self-corrosion is small. If the amount is large, the current obtained per unit weight of the negative electrode material, that is, the current efficiency is lowered.

また、電解液のアルカリ濃度を高くすると、アルミニウム合金のアノード反応速度が増大することや、電解液の抵抗が低下することから、電流密度を高くすることができる。しかし、アルカリ濃度が高くなると、自己腐食量も増大するため、電流効率が低くなる可能性がある。そのため、電解液のアルカリ濃度が高くても、自己腐食量が小さいことが要求される。   Further, when the alkaline concentration of the electrolytic solution is increased, the anode reaction rate of the aluminum alloy is increased and the resistance of the electrolytic solution is decreased, so that the current density can be increased. However, as the alkali concentration increases, the amount of self-corrosion also increases, which may reduce current efficiency. Therefore, even if the alkaline concentration of the electrolytic solution is high, the amount of self-corrosion is required to be small.

なお、電流効率とは、通電により消耗したアルミニウム合金の質量に対する、得られた電気量から計算されるアルミニウム合金の電気化学当量の質量の割合である。電流効率が高いほど、同じ質量のアルミニウム合金から取り出される電流が多いことを示す。   The current efficiency is a ratio of the mass of the electrochemical equivalent of the aluminum alloy calculated from the obtained electric quantity to the mass of the aluminum alloy consumed by energization. Higher current efficiency indicates more current drawn from the same mass of aluminum alloy.

また、製造効率及び製造コストの観点並びに負極材の形状への加工の観点からは、鋳造により、所定の化学成分含有量のアルミニウム合金の鋳塊を得、次いで、得られた鋳塊を、熱間及び冷間での圧延を経て、板材のアルミニウム合金にすることが、好ましい。アルミニウム空気電池は、長期間に亘って使い続けるというものではないため、電流効率が低くなり過ぎないのであれば、多少電流効率が低くなっても、板材の負極材用アルミニウム合金を製造するときの圧延性が高い方が良い。   Further, from the viewpoint of production efficiency and production cost and from the viewpoint of processing into the shape of the negative electrode material, an ingot of aluminum alloy having a predetermined chemical component content is obtained by casting, and then the obtained ingot is heated. It is preferable that the aluminum alloy of the plate material is obtained by rolling in between and cold. Since the aluminum-air battery is not intended to be used for a long period of time, if the current efficiency does not become too low, even when the current efficiency is somewhat lowered, the aluminum air battery can be used for producing an aluminum alloy for a negative electrode material. Higher rollability is better.

従って、本発明の目的は、常温でも電流密度が高く、通電を続けても負極の電位が卑のままの状態が維持され、自己腐食が少なく、且つ、アルカリ濃度が高い電解液を用いても電流効率が高いアルミニウム空気電池の負極材用アルミニウム合金であり、熱間及び冷間での圧延性に優れるアルミニウム空気電池の負極材用アルミニウム合金を提供することにある。   Therefore, the object of the present invention is to use an electrolytic solution that has a high current density even at room temperature, maintains a negative electrode potential even when energization is continued, reduces self-corrosion, and has a high alkali concentration. It is an aluminum alloy for a negative electrode material of an aluminum air battery having high current efficiency, and is to provide an aluminum alloy for a negative electrode material of an aluminum air battery that is excellent in hot and cold rollability.

発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、アルミニウム合金材のSn、Fe及びSiの含有量と、合金マトリックス中の金属Sn析出物粒子の大きさ及びその存在量と、を調節することにより、上記課題を解決することができることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the problems in the prior art, the inventors have studied the contents of Sn, Fe, and Si in the aluminum alloy material, the size of the metal Sn precipitate particles in the alloy matrix, and the content thereof. The inventors have found that the above problem can be solved by adjusting the abundance and have completed the present invention.

すなわち、本発明(1)は、0.8質量%以上2.0質量%以下のSnと、0.1000質量%を超え0.7000質量%以下のFeと、0.0500質量%を超え0.5000質量%以下のSiと、を含有し、残部がAl及び不可避不純物からなるアルミニウム合金であり、
アルミニウム合金マトリクス中に金属Sn析出物粒子を含有し、合金断面に観察される金属Sn析出物粒子のうち、0.1〜100μmの大きさの金属Sn析出物粒子の個数密度が、400個/mm以上であること、
を特徴とするアルミニウム空気電池の負極材用アルミニウム合金を提供するものである。
That is, the present invention (1) includes 0.8 mass% or more and 2.0 mass% or less of Sn, 0.1000 mass% or more and 0.7000 mass% or less of Fe, or 0.0500 mass% or more of 0 or less. An aluminum alloy containing 5000% by mass or less of Si, with the balance being Al and inevitable impurities;
The metal Sn precipitate particles are contained in the aluminum alloy matrix, and among the metal Sn precipitate particles observed in the cross section of the alloy, the number density of the metal Sn precipitate particles having a size of 0.1 to 100 μm is 400 / mm 2 or more,
An aluminum alloy for a negative electrode material of an aluminum-air battery is provided.

また、本発明(2)は、正極材と、電解液と、負極材と、を有する空気電池であって、
該電解液が、2〜10MのKOH又はNaOHを含有する水溶液であり、
該負極材が、請求項1記載の空気電池の負極材用アルミニウム合金からなること、
を特徴とするアルミニウム空気電池を提供するものである。
The present invention (2) is an air battery comprising a positive electrode material, an electrolytic solution, and a negative electrode material,
The electrolyte is an aqueous solution containing 2 to 10 M KOH or NaOH;
The negative electrode material is made of an aluminum alloy for a negative electrode material of an air battery according to claim 1,
An aluminum air battery characterized by the above is provided.

本発明によれば、常温でも電流密度が高く、通電を続けても負極の電位が卑のままの状態が維持され、自己腐食が少なく、且つ、アルカリ濃度が高い電解液を用いても電流効率が高いアルミニウム空気電池の負極材用アルミニウム合金であり、熱間及び冷間での圧延性に優れるアルミニウム空気電池の負極材用アルミニウム合金を提供することができる。   According to the present invention, the current density is high even at room temperature, the negative electrode potential is maintained even when energization is continued, the self-corrosion is small, and the current efficiency is high even when using an electrolyte with a high alkali concentration. The aluminum alloy for negative electrode materials of an aluminum air battery which is high and can provide an aluminum alloy for negative electrode materials of an aluminum air battery which is excellent in hot and cold rollability.

本発明のアルミニウム空気電池の負極材用アルミニウム合金は、0.8質量%以上2.0質量%以下のSnと、0.1000質量%を超え0.7000質量%以下のFeと、0.0500質量%を超え0.5000質量%以下のSiと、を含有し、残部がAl及び不可避不純物からなるアルミニウム合金であり、
アルミニウム合金マトリクス中に金属Sn析出物粒子を含有し、合金断面に観察される金属Sn析出物粒子のうち、0.1〜100μmの大きさの金属Sn析出物粒子の個数密度が、400個/mm以上であること、
を特徴とするアルミニウム空気電池の負極材用アルミニウム合金である。
The aluminum alloy for the negative electrode material of the aluminum-air battery of the present invention includes 0.8 mass% or more and 2.0 mass% or less of Sn, 0.1000 mass% or more and 0.7000 mass% or less of Fe, and 0.0500 mass%. Si alloy containing more than 0.5% by mass and not more than 0.5000% by mass, the balance being an aluminum alloy consisting of Al and inevitable impurities,
The metal Sn precipitate particles are contained in the aluminum alloy matrix, and among the metal Sn precipitate particles observed in the cross section of the alloy, the number density of the metal Sn precipitate particles having a size of 0.1 to 100 μm is 400 / mm 2 or more,
An aluminum alloy for a negative electrode material of an aluminum-air battery.

本発明のアルミニウム空気電池の負極材用アルミニウム合金は、アルミニウム空気電池の負極材に用いられるアルミニウム合金である。   The aluminum alloy for the negative electrode material of the aluminum air battery of the present invention is an aluminum alloy used for the negative electrode material of the aluminum air battery.

本発明のアルミニウム空気電池の負極材用アルミニウム合金は、Snと、Feと、Siと、を含有し、残部Al及び不可避不純物からなるアルミニウム合金である。   The aluminum alloy for the negative electrode material of the aluminum-air battery of the present invention is an aluminum alloy containing Sn, Fe, and Si, the balance being Al and inevitable impurities.

本発明のアルミニウム空気電池の負極材用アルミニウム合金は、Snを含有する。アルミニウム合金マトリクスから析出したSnは、アルカリ濃度が高い電解液中において、アルミニウム合金に酸化被膜が形成されるのを阻害するので、通電時のアルミニウム合金の電位を卑にさせる効果がある。そして、本発明のアルミニウム空気電池の負極材用アルミニウム合金のSn含有量は、0.8質量%以上2.0質量%以下、好ましくは0.9質量%以上1.5質量%以下である。Sn含有量が、上記範囲未満だと、通電時の電位が十分に卑にならず、また、上記範囲を超えると、圧延性が低くなる。   The aluminum alloy for the negative electrode material of the aluminum-air battery of the present invention contains Sn. Sn deposited from the aluminum alloy matrix inhibits the formation of an oxide film on the aluminum alloy in an electrolyte solution having a high alkali concentration, and therefore has the effect of lowering the potential of the aluminum alloy during energization. And Sn content of the aluminum alloy for negative electrode materials of the aluminum air battery of this invention is 0.8 mass% or more and 2.0 mass% or less, Preferably it is 0.9 mass% or more and 1.5 mass% or less. If the Sn content is less than the above range, the potential at the time of energization is not sufficiently low, and if it exceeds the above range, the rollability becomes low.

本発明のアルミニウム空気電池の負極材用アルミニウム合金は、アルミニウム合金マトリクス中に金属Sn析出物粒子を含有する。そして、アルミニウム合金断面に観察される金属Sn析出物粒子のうち、0.1〜100μmの大きさの金属Sn析出物粒子の個数密度は、400個/mm以上、好ましくは450個/mm以上2000個/mm以下である。0.1μm未満の金属Sn析出物粒子は、酸化被膜の形成を阻害する効果が低く、また、100μmを超える金属Sn析出物粒子の存在は、0.1〜100μmの大きさの金属Sn析出物粒子の個数密度を低くする要因となる。 The aluminum alloy for negative electrode material of the aluminum air battery of the present invention contains metal Sn precipitate particles in an aluminum alloy matrix. Of the metal Sn precipitate particles observed on the cross section of the aluminum alloy, the number density of the metal Sn precipitate particles having a size of 0.1 to 100 μm is 400 / mm 2 or more, preferably 450 / mm 2. The above is 2000 pieces / mm 2 or less. Metal Sn precipitate particles less than 0.1 μm have a low effect of inhibiting the formation of an oxide film, and the presence of metal Sn precipitate particles exceeding 100 μm is a metal Sn precipitate having a size of 0.1 to 100 μm. It becomes a factor to lower the number density of particles.

なお、本発明において、金属Sn析出物粒子の個数密度は、以下のようにして求められる。先ず、測定対象となるアルミニウム合金を切断して、その切断面を樹脂埋めして研磨し、研磨した表面を、EPMA面分析して、Snの分布を測定する。次いで、得られる分析結果から、一定の広さの範囲に存在する円相当径が0.1〜100μmの大きさの金属Sn析出物粒子を数え、1mm当たりに換算することにより、金属Sn析出物粒子の個数密度を求める。 In the present invention, the number density of the metal Sn precipitate particles is determined as follows. First, an aluminum alloy to be measured is cut, the cut surface is filled with resin and polished, and the polished surface is subjected to EPMA surface analysis to measure Sn distribution. Next, from the analysis results obtained, the number of metal Sn precipitate particles having an equivalent circle diameter of 0.1 to 100 μm existing in a certain range is counted and converted per 1 mm 2 , thereby obtaining metal Sn precipitation. The number density of the product particles is obtained.

本発明のアルミニウム空気電池の負極材用アルミニウム合金は、Fe及びSiを含有する。本発明のアルミニウム空気電池の負極材用アルミニウム合金のFe含有量は、0.1000質量%を超え0.7000質量%以下であり且つSiの含有量は、0.0500質量%を超え0.5000質量%以下である。Fe及びSiは、アルミニウム合金マトリクス中に、Al−Fe系、Al−Fe−Si系、金属Si等のFe又はSiを含有する粒子として析出する。そして、アルカリ濃度が高い電解液中においては、これらのFe又はSiを含有する析出物粒子の電位は、Snを含有するアルミニウム合金マトリクスより貴となる。すると、Fe又はSiを含有する析出物粒子とSnを含有するアルミニウム合金マトリクスとの間で、局部電池が形成されるため、自己腐食による負極材の消耗が生じ、その結果、電流効率が低くなる。自己腐食により消耗したアルミニウム合金が放出した電子は、Fe又はSiを含有する析出物粒子でのカソード反応で使われるため、このような電子を電流として取り出せないためである。これらのことから、Fe及びSiの含有量は、少ないほど好ましい。その一方で、Fe及びSiの含有量が少なくなると、圧延性が低くなるので、圧延性を高くするという観点からは、Fe及びSiをある程度含有していることが好ましい。そこで、本発明のアルミニウム空気電池の負極材用アルミニウム合金では、Snの含有量が0.8質量%以上2.0質量%以下、好ましくは0.9質量%以上1.5質量%以下であることと、Feの含有量が0.1000質量%を超え0.7000質量%以下であり且つSiの含有量が0.0500質量%を超え0.5000質量%以下であること、アルミニウム合金断面に観察される金属Sn析出物粒子のうち、0.1〜100μmの大きさの金属Sn析出物粒子の個数密度が、400個/mm以上、好ましくは450個/mm以上2000個/mm以下であること、との相互作用により、電流効率を下げ過ぎずに圧延性を高めることができる。 The aluminum alloy for negative electrode material of the aluminum air battery of the present invention contains Fe and Si. The Fe content of the aluminum alloy for the negative electrode material of the aluminum air battery of the present invention is more than 0.1000% by mass and 0.7000% by mass or less, and the Si content is more than 0.0500% by mass and 0.5000%. It is below mass%. Fe and Si are precipitated in the aluminum alloy matrix as particles containing Fe or Si such as Al—Fe, Al—Fe—Si, and metal Si. And in the electrolyte solution with a high alkali concentration, the electric potential of the deposit particle | grains containing these Fe or Si becomes nobler than the aluminum alloy matrix containing Sn. Then, since the local battery is formed between the precipitate particles containing Fe or Si and the aluminum alloy matrix containing Sn, the negative electrode material is consumed due to self-corrosion, and as a result, the current efficiency is lowered. . This is because the electrons emitted from the aluminum alloy consumed by self-corrosion are used in the cathode reaction with the precipitate particles containing Fe or Si, so that such electrons cannot be taken out as current. For these reasons, the Fe and Si contents are preferably as small as possible. On the other hand, if the Fe and Si contents are reduced, the rollability is lowered. Therefore, it is preferable that Fe and Si are contained to some extent from the viewpoint of improving the rollability. Therefore, in the aluminum alloy for the negative electrode material of the aluminum-air battery of the present invention, the Sn content is 0.8 mass% or more and 2.0 mass% or less, preferably 0.9 mass% or more and 1.5 mass% or less. That the Fe content is more than 0.1000% by mass and not more than 0.7000% by mass and the Si content is more than 0.0500% by mass and not more than 0.5000% by mass. Among the observed metal Sn precipitate particles, the number density of the metal Sn precipitate particles having a size of 0.1 to 100 μm is 400 / mm 2 or more, preferably 450 / mm 2 or more and 2000 / mm 2. Due to the interaction with the following, the rollability can be improved without reducing the current efficiency too much.

本発明のアルミニウム空気電池の負極材用アルミニウム合金は、例えば、所定の含有量となるようにSn、Fe及びSiの含有量を調整してアルミニウム合金の鋳塊を鋳造し、次いで、得られた鋳塊を、熱間での圧延及び冷間での圧延を行い、必要に応じて更に熱処理を行い、このときの圧延条件、加熱条件、冷却条件等を適宜選択することにより、アルミニウム合金中のSn、Fe及びSiの含有量と、アルミニウム合金マトリクス中に析出する金属Sn析出物粒子の大きさ及び数を調節して、製造される。なお、上記は、本発明のアルミニウム空気電池の負極材用アルミニウム合金の製造方法の一例であり、これに限定されるものではない。   The aluminum alloy for the negative electrode material of the aluminum-air battery of the present invention was obtained by, for example, adjusting the contents of Sn, Fe and Si so as to have a predetermined content, casting an ingot of aluminum alloy, and then obtained. The ingot is hot-rolled and cold-rolled, and further heat-treated as necessary. By appropriately selecting the rolling conditions, heating conditions, cooling conditions, etc. at this time, in the aluminum alloy It is manufactured by adjusting the content of Sn, Fe and Si and the size and number of metal Sn precipitate particles precipitated in the aluminum alloy matrix. In addition, the above is an example of the manufacturing method of the aluminum alloy for negative electrode materials of the aluminum air battery of this invention, It is not limited to this.

本発明のアルミニウム空気電池の負極材用アルミニウム合金は、アルミニウム空気電池の負極材に加工されて、アルミニウム空気電池の負極材として、好適に用いられる。そして、アルミニウム空気電池の負極材として、本発明のアルミニウム空気電池の負極材用アルミニウム合金からなる負極材を用いることにより、2〜10M、好ましくは4〜8MのKOH又はNaOHを含有する水溶液を、空気電池の電解液として用いる場合に、常温、例えば20〜30℃で、高い電流密度が得られ、通電を続けても負極の電位が卑のままの状態が維持され、すなわち、分極し難く、自己腐食が少なく、且つ、アルカリ濃度が高い電解液を用いても電流効率が高くなる。つまり、本発明のアルミニウム空気電池の負極材用アルミニウム合金は、高濃度アルカリ水溶液、すなわち、2〜10M、好ましくは4〜8MのKOH又はNaOHを含有する水溶液を電解液として用いるアルミニウム空気電池用の負極材として、優れた性能を発揮する。   The aluminum alloy for a negative electrode material of an aluminum air battery of the present invention is processed into a negative electrode material of an aluminum air battery and is suitably used as a negative electrode material of an aluminum air battery. And as a negative electrode material of an aluminum air battery, by using a negative electrode material made of an aluminum alloy for a negative electrode material of the present invention, an aqueous solution containing 2 to 10 M, preferably 4 to 8 M KOH or NaOH, When used as an electrolytic solution for an air battery, a high current density is obtained at room temperature, for example, 20 to 30 ° C., and the negative electrode potential is maintained even when energization is continued, that is, it is difficult to polarize, Even when an electrolytic solution having a low self-corrosion and a high alkali concentration is used, the current efficiency is increased. That is, the aluminum alloy for the negative electrode material of the aluminum-air battery of the present invention is a high-concentration alkaline aqueous solution, that is, an aluminum-air battery using an aqueous solution containing 2 to 10 M, preferably 4 to 8 M KOH or NaOH as an electrolyte. Excellent performance as a negative electrode material.

例えば、本発明のアルミニウム空気電池の負極材用アルミニウム合金は、8Mと高アルカリ濃度のKOH水溶液中、温度25℃で、負極表面における電流密度が300mAcmの定電流電解試験において、電極電位が−1.0V vs Hg/HgO以下であり、−1.0V vs Hg/HgO以下の電位を1時間以上維持でき、電流効率が80〜85%程度となり、十分使用に耐えうるものとなる。 For example, the aluminum alloy for the negative electrode material of the aluminum-air battery of the present invention has an electrode potential of −− in a constant current electrolysis test at a temperature of 25 ° C. and a current density of 300 mAcm 2 in a KOH aqueous solution with a high alkali concentration of 8M. The potential is 1.0 V vs Hg / HgO or less, and a potential of −1.0 V vs Hg / HgO or less can be maintained for 1 hour or more, and the current efficiency is about 80 to 85%, so that it can sufficiently withstand use.

そして、本発明のアルミニウム空気電池の負極材用アルミニウム合金は、Sn含有量が0.8質量%以上2.0質量%以下であり、アルミニウム合金断面に観察される金属Sn析出物粒子のうち、0.1〜100μmの大きさの金属Sn析出物粒子の個数密度が、400個/mm以上であるが、Fe含有量が0.1000質量%以下且つSi含有量が0.0500質量%以下である負極材用アルミニウム合金(以下、合金Xとも記載する。)に比べ、自己腐食は多くなるものの、そのことによる電流効率の低下は少なく留まっており、アルミニウム空気電池に用いられる負極材に使用可能であり、且つ、熱間及び冷間での圧延を経て板材として作製されるときの圧延性が、上記合金Xに比べ、格段に優れている。なお、本発明のアルミニウム空気電池の負極材用アルミニウム合金は、熱間及び冷間での圧延を経て作製されたものに限定されるものではない。 And the aluminum content for negative electrode materials of the aluminum air battery of the present invention has a Sn content of 0.8 mass% or more and 2.0 mass% or less, and among the metal Sn precipitate particles observed in the aluminum alloy cross section, The number density of the metal Sn precipitate particles having a size of 0.1 to 100 μm is 400 particles / mm 2 or more, but the Fe content is 0.1000 mass% or less and the Si content is 0.0500 mass% or less. Compared with the aluminum alloy for negative electrode material (hereinafter also referred to as alloy X), self-corrosion is increased, but the current efficiency is less reduced by this, and it is used for the negative electrode material used in aluminum-air batteries. It is possible, and the rollability when manufactured as a plate through hot and cold rolling is much better than that of the alloy X. In addition, the aluminum alloy for negative electrode materials of the aluminum-air battery of the present invention is not limited to one produced through hot and cold rolling.

本発明のアルミニウム空気電池は、正極材と、電解液と、負極材と、を有するアルミニウム空気電池であって、
該電解液が、2〜10MのKOH又はNaOHを含有する水溶液であり、
該負極材が、本発明のアルミニウム空気電池の負極材用アルミニウム合金からなること、
を特徴とするアルミニウム空気電池である。
The aluminum air battery of the present invention is an aluminum air battery having a positive electrode material, an electrolytic solution, and a negative electrode material,
The electrolyte is an aqueous solution containing 2 to 10 M KOH or NaOH;
The negative electrode material is made of an aluminum alloy for the negative electrode material of the aluminum-air battery of the present invention;
It is the aluminum air battery characterized by this.

本発明のアルミニウム空気電池に係る正極材は、特に制限されず、例えば、白金や二酸化マンガンなどの正極触媒を含むニッケル、ステンレス、チタンの多孔質板等が挙げられる。   The positive electrode material according to the aluminum air battery of the present invention is not particularly limited, and examples thereof include a nickel, stainless steel, titanium porous plate containing a positive electrode catalyst such as platinum or manganese dioxide.

本発明のアルミニウム空気電池に係る電解液は、2〜10M、好ましくは4〜8Mの濃度のKOH又はNaOHを含有する水溶液である。電解液のKOH又はNaOHの濃度が、上記範囲にあることにより、20〜30℃で、高い電流密度が得られる。一方、電解液のKOH又はNaOHの濃度が、上記範囲未満だと、電流密度が低くなり、また、上記範囲を超えると、自己腐食量が著しく増大する。   The electrolytic solution according to the aluminum air battery of the present invention is an aqueous solution containing KOH or NaOH having a concentration of 2 to 10M, preferably 4 to 8M. When the concentration of KOH or NaOH in the electrolytic solution is in the above range, a high current density can be obtained at 20 to 30 ° C. On the other hand, when the concentration of KOH or NaOH in the electrolytic solution is less than the above range, the current density becomes low, and when it exceeds the above range, the amount of self-corrosion increases remarkably.

本発明のアルミニウム空気電池に係る負極材は、本発明のアルミニウム空気電池の負極材用アルミニウム合金が、負極材の形状に加工されたものである。   The negative electrode material according to the aluminum air battery of the present invention is obtained by processing the aluminum alloy for the negative electrode material of the aluminum air battery of the present invention into the shape of the negative electrode material.

本発明のアルミニウム空気電池は、正極材、電解液及び負極材の他に、必要に応じて、集電板、樹脂容器、電解液への添加剤などを有してもよい。   In addition to the positive electrode material, the electrolytic solution, and the negative electrode material, the aluminum-air battery of the present invention may have a current collector plate, a resin container, an additive to the electrolytic solution, and the like as necessary.

(実施例及び比較例)
表1に示す化学成分含有量に調整したアルミニウム合金をブックモールドを用いて鋳造して、175mm長さ、175mm幅、30mm厚さの鋳塊を得た。次いで、得られた鋳塊を300℃で1時間の均質化処理を行った後、300℃のまま3mm厚さに熱間圧延し、次いで、1mm厚さに冷間圧延した。次いで、圧延により割れを起こした部分を除去して、厚さ1mmの負極材用アルミニウム合金を得た。このときの採取率を次式で求めた。その結果を表1に示す。なお、採取率が80%以上の場合を、圧延性に優れると判断した。
採取率(%)=(割れ部分を除去した後に残った部分の質量/圧延前の質量)×100
(Examples and Comparative Examples)
The aluminum alloy adjusted to the chemical component content shown in Table 1 was cast using a book mold to obtain an ingot having a length of 175 mm, a width of 175 mm, and a thickness of 30 mm. Next, the obtained ingot was homogenized at 300 ° C. for 1 hour, and then hot-rolled to 3 mm thickness at 300 ° C., and then cold-rolled to 1 mm thickness. Subsequently, the part which cracked by rolling was removed and the aluminum alloy for negative electrode materials of thickness 1mm was obtained. The collection rate at this time was determined by the following equation. The results are shown in Table 1. In addition, when the collection rate was 80% or more, it was judged that the rollability was excellent.
Sampling rate (%) = (mass of portion remaining after removing crack portion / mass before rolling) × 100

<分析>
(金属Sn析出物粒子の分析)
測定対象となるアルミニウム合金を切断して、その切断面を樹脂埋めして研磨し、研磨した表面を、EPMA面分析して、Snの分布を測定した。次いで、得られる分析結果から、一定の広さの範囲に存在する円相当径が0.1〜100μmの大きさの金属Sn析出物粒子を数え、1mm当たりに換算することにより、金属Sn析出物粒子の個数密度を求めた。その結果を表1に示す。
<Analysis>
(Analysis of metal Sn precipitate particles)
The aluminum alloy to be measured was cut, the cut surface was filled with resin and polished, and the polished surface was subjected to EPMA surface analysis to measure Sn distribution. Next, from the analysis results obtained, the number of metal Sn precipitate particles having an equivalent circle diameter of 0.1 to 100 μm existing in a certain range is counted and converted per 1 mm 2 , thereby obtaining metal Sn precipitation. The number density of physical particles was determined. The results are shown in Table 1.

<性能評価>
上記で得た負極材用アルミニウム合金を、15mm×50mmに切断し、試験片を得た。次いで、試験面として10mm×10mmを露出させ、試験面以外をシリコン系の樹脂で被覆し、樹脂被覆試験片を得た。
(平均電圧)
25℃に保たれた8M水酸化カリウム水溶液中において、Ptを正極に用い、上記で得た樹脂被覆試験片を負極に用い、300mA/cmのアノード電流を5分間流した。このときの電位を、Hg/HgO電極を基準として測定し、5分間の平均電圧を求めた。その結果を表1に示す。なお、5分間の平均電圧が−1.000V vs Hg/HgO以下のものを、電流密度が高く且つ分極し難い負極材と判断した。
<Performance evaluation>
The aluminum alloy for negative electrode materials obtained above was cut into 15 mm × 50 mm to obtain test pieces. Next, 10 mm × 10 mm was exposed as a test surface, and the other surfaces were covered with a silicon-based resin to obtain a resin-coated test piece.
(Average voltage)
In an 8M aqueous potassium hydroxide solution maintained at 25 ° C., Pt was used as the positive electrode, the resin-coated test piece obtained above was used as the negative electrode, and an anode current of 300 mA / cm 2 was passed for 5 minutes. The potential at this time was measured based on the Hg / HgO electrode, and an average voltage for 5 minutes was obtained. The results are shown in Table 1. In addition, the thing whose average voltage for 5 minutes is -1.000V vs Hg / HgO or less was judged to be a negative electrode material with a high current density and being hard to polarize.

(腐食試験)
上記と同様にして得た樹脂被覆負極材用アルミニウム合金試験片を、8MKOH水溶液中に、電流を流さずに20分浸漬した。20分間浸漬前後の質量変化を測定し、試験面の面積で除して、腐食量を求めた。その結果を表1に示す。なお、腐食量が0.200g/cm以下のものを合格とした。
(Corrosion test)
An aluminum alloy test piece for a resin-coated negative electrode material obtained in the same manner as described above was immersed in an 8M KOH aqueous solution for 20 minutes without passing an electric current. The change in mass before and after immersion for 20 minutes was measured and divided by the area of the test surface to determine the amount of corrosion. The results are shown in Table 1. In addition, the corrosion amount of 0.200 g / cm 2 or less was regarded as acceptable.

Figure 2015076223
1)0.1〜100μmの大きさの金属Sn析出物粒子の個数密度
2)300mA/cmのアノード電流5分間流したときの平均電位
Figure 2015076223
1) Number density of metal Sn precipitate particles having a size of 0.1 to 100 μm 2) Average potential when flowing anode current of 300 mA / cm 2 for 5 minutes

Claims (2)

0.8質量%以上2.0質量%以下のSnと、0.1000質量%を超え0.7000質量%以下のFeと、0.0500質量%を超え0.5000質量%以下のSiと、を含有し、残部がAl及び不可避不純物からなるアルミニウム合金であり、
アルミニウム合金マトリクス中に金属Sn析出物粒子を含有し、合金断面に観察される金属Sn析出物粒子のうち、0.1〜100μmの大きさの金属Sn析出物粒子の個数密度が、400個/mm以上であること、
を特徴とするアルミニウム空気電池の負極材用アルミニウム合金。
0.8 mass% or more and 2.0 mass% or less of Sn, Fe exceeding 0.1000 mass% and 0.7000 mass% or less, Si exceeding 0.0500 mass% and 0.5000 mass% or less, And the balance is an aluminum alloy consisting of Al and inevitable impurities,
The metal Sn precipitate particles are contained in the aluminum alloy matrix, and among the metal Sn precipitate particles observed in the cross section of the alloy, the number density of the metal Sn precipitate particles having a size of 0.1 to 100 μm is 400 / mm 2 or more,
An aluminum alloy for a negative electrode material of an aluminum air battery.
正極材と、電解液と、負極材と、を有する空気電池であって、
該電解液が、2〜10MのKOH又はNaOHを含有する水溶液であり、
該負極材が、請求項1記載の空気電池の負極材用アルミニウム合金からなること、
を特徴とするアルミニウム空気電池。
An air battery having a positive electrode material, an electrolytic solution, and a negative electrode material,
The electrolyte is an aqueous solution containing 2 to 10 M KOH or NaOH;
The negative electrode material is made of an aluminum alloy for a negative electrode material of an air battery according to claim 1,
Aluminum air battery characterized by.
JP2013210812A 2013-10-08 2013-10-08 Aluminum alloy for negative electrode material of aluminum air battery, and aluminum air battery Pending JP2015076223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013210812A JP2015076223A (en) 2013-10-08 2013-10-08 Aluminum alloy for negative electrode material of aluminum air battery, and aluminum air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013210812A JP2015076223A (en) 2013-10-08 2013-10-08 Aluminum alloy for negative electrode material of aluminum air battery, and aluminum air battery

Publications (1)

Publication Number Publication Date
JP2015076223A true JP2015076223A (en) 2015-04-20

Family

ID=53000932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013210812A Pending JP2015076223A (en) 2013-10-08 2013-10-08 Aluminum alloy for negative electrode material of aluminum air battery, and aluminum air battery

Country Status (1)

Country Link
JP (1) JP2015076223A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204712A (en) * 2015-04-24 2016-12-08 株式会社Uacj Aluminum anode material for brine air cell, brine aluminum air cell and manufacturing method of aluminum anode material for brine air cell
CN106435230A (en) * 2016-08-27 2017-02-22 安徽省宁国市海伟电子有限公司 Manufacturing method of metallized films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204712A (en) * 2015-04-24 2016-12-08 株式会社Uacj Aluminum anode material for brine air cell, brine aluminum air cell and manufacturing method of aluminum anode material for brine air cell
CN106435230A (en) * 2016-08-27 2017-02-22 安徽省宁国市海伟电子有限公司 Manufacturing method of metallized films

Similar Documents

Publication Publication Date Title
Wang et al. Discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery
JP5701627B2 (en) Negative electrode for aluminum air battery and aluminum air battery
JP6290520B1 (en) Magnesium-lithium alloy and magnesium-air battery
US20130213532A1 (en) Hydrogen storage alloy, electrode, nickel-metal hydride rechargeable battery and method for producing hydrogen storage alloy
JP2007291474A (en) Hydrogen storage alloy and nickel-hydride secondary battery
Ma et al. Effects of acidity and alkalinity on corrosion behaviour of Al–Zn–Mg based anode alloy
Mohammadi et al. Anodic behavior and corrosion resistance of the Pb-MnO2 composite anodes for metal electrowinning
JP2015076224A (en) Aluminum air battery
JP2015076223A (en) Aluminum alloy for negative electrode material of aluminum air battery, and aluminum air battery
JP5758182B2 (en) Aluminum material
Zou et al. Effects of Gd and Nd on microstructure, corrosion behavior, and electrochemical performance of Mg-Y-based anodes for magnesium air batteries
JP2015076221A (en) Aluminum alloy for negative electrode material of aluminum air battery, and aluminum air battery
JP2017088931A (en) Titanium alloy for solid polymer electrolyte fuel cell, titanium material using the same and solid polymer electrolyte fuel cell using the same
JP6512921B2 (en) Aluminum negative electrode material for brine air battery, brine aluminum air battery, and method of manufacturing aluminum negative electrode material for brine air battery
JP2015076222A (en) Aluminum alloy for negative electrode material of aluminum air battery, and aluminum air battery
JPH06179936A (en) Negative electrode material for aluminum battery
CN109244442A (en) A kind of porous anodized aluminum and aluminium-air cell
JP2021119262A (en) Corrosion resistant aluminum alloy electrode
CN110380045A (en) A kind of magnesium-alloy anode material and its preparation method and application, magnesium air battery
US2605297A (en) Electrode for electrical systems
JP5573083B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
Lv et al. The effect of NaF on the electrochemical behavior of the Mg–11Li–3.5 Al–1Zn–1Sn–1Ce–0.1 Mn electrode in NaCl solution
Zhang et al. Effect of silver content in Pb-Ag anodes on the performance of the anodes during zinc electrowinning
US4240887A (en) Process of water electrolyis
KR102208834B1 (en) Magnesium air battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170529