JP6512921B2 - Aluminum negative electrode material for brine air battery, brine aluminum air battery, and method of manufacturing aluminum negative electrode material for brine air battery - Google Patents

Aluminum negative electrode material for brine air battery, brine aluminum air battery, and method of manufacturing aluminum negative electrode material for brine air battery Download PDF

Info

Publication number
JP6512921B2
JP6512921B2 JP2015088840A JP2015088840A JP6512921B2 JP 6512921 B2 JP6512921 B2 JP 6512921B2 JP 2015088840 A JP2015088840 A JP 2015088840A JP 2015088840 A JP2015088840 A JP 2015088840A JP 6512921 B2 JP6512921 B2 JP 6512921B2
Authority
JP
Japan
Prior art keywords
negative electrode
aluminum
mass
aluminum alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015088840A
Other languages
Japanese (ja)
Other versions
JP2016204712A (en
Inventor
大谷良行
小山高弘
田中宏樹
柴田格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
UACJ Corp
Original Assignee
Nissan Motor Co Ltd
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, UACJ Corp filed Critical Nissan Motor Co Ltd
Priority to JP2015088840A priority Critical patent/JP6512921B2/en
Publication of JP2016204712A publication Critical patent/JP2016204712A/en
Application granted granted Critical
Publication of JP6512921B2 publication Critical patent/JP6512921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、電解質として塩化ナトリウム(NaCl)や塩化カリウム(KCl)などを含む塩水を用いた空気電池用アルミニウム負極材、ならびに、これを用いた塩水アルミニウム空気電池、塩水空気電池用アルミニウム負極材の製造方法に関する。   The present invention relates to an aluminum negative electrode material for air battery using salt water containing sodium chloride (NaCl), potassium chloride (KCl) or the like as an electrolyte, and a salt water aluminum air battery using the same, and an aluminum negative electrode material for salt water air battery It relates to the manufacturing method.

塩水アルミニウム空気電池は、下記式(1)で示す負極におけるアルミニウム溶解反応と、下記式(2)で示す正極における空気中の酸素を活物質とした反応によって表される一次電池である。負極材に用いられる金属としては、アルミニウムの他、亜鉛、マグネシウム、リチウムなどが知られている。これらの金属のうち、加工性が良好であること、軽量であること、3価の軽金属元素なので単位重量当たりの電流効率が高いことから、アルミニウム材が注目されている。
(1)負極(アノード)反応:Al → Al3++3e
(2)正極(カソード)反応:O+2HO+4e → 4OH
A brine aluminum air battery is a primary battery represented by the aluminum dissolution reaction in the negative electrode shown by following formula (1), and the reaction which made the oxygen in the air in the positive electrode shown by following formula (2) active material. Other than aluminum, zinc, magnesium, lithium and the like are known as metals used for the negative electrode material. Among these metals, aluminum materials are drawing attention because they have good processability, light weight, and high current efficiency per unit weight because they are trivalent light metal elements.
(1) Negative electrode (anode) reaction: Al → Al 3+ + 3e
(2) Positive electrode (cathode) reaction: O 2 + 2H 2 O + 4e → 4OH

このように、塩水アルミニウム空気電池では、負極活物質としてアルミニウム又はアルミニウム合金を用い、正極活物質として空気中の酸素を用い、電解液としてはNaCl、KCl水溶液などが用いられる。   Thus, in the saltwater aluminum air battery, aluminum or an aluminum alloy is used as the negative electrode active material, oxygen in air is used as the positive electrode active material, and an aqueous solution of NaCl, KCl, etc. is used as the electrolytic solution.

このようなアルミニウム空気電池には、軽量且つ電気容量が高いことが求められる。塩水アルミニウム空気電池用の負極材として、これまでに種々のアルミニウム合金が開発されている。例えば、特許文献1には、Mn:0.01〜0.5%、Mg:0.1〜2.0%、Sn0.03〜1.0%を含有するアルミニウム合金が記載されている。また、特許文献2には、Mg:0〜0.1%、Zn:0.5〜1.0%、Sn:0.04〜1.0%、Ga:0.003〜1.0%、Bi:0.005〜1.0%を含有するアルミニウム合金が記載されている。更に、特許文献3には、Mn:0.01〜30%、Zn:0.01〜20%、Sn:0〜0.01%を含有するアルミニウム合金が記載されている。   Such an aluminum-air battery is required to be light in weight and high in electric capacity. Various aluminum alloys have been developed up to now as negative electrode materials for saline aluminum air batteries. For example, Patent Document 1 describes an aluminum alloy containing Mn: 0.01 to 0.5%, Mg: 0.1 to 2.0%, and Sn 0.03 to 1.0%. In addition, in Patent Document 2, Mg: 0 to 0.1%, Zn: 0.5 to 1.0%, Sn: 0.04 to 1.0%, Ga: 0.003 to 1.0%, An aluminum alloy containing Bi: 0.005 to 1.0% is described. Furthermore, Patent Document 3 describes an aluminum alloy containing Mn: 0.01 to 30%, Zn: 0.01 to 20%, and Sn: 0 to 0.01%.

:特開平6−179936号公報JP-A-6-179936 :特開昭54−26211号公報JP-A-54-26211 :特開2004−303459号公報Japanese Patent Application Laid-Open No. 2004-303459

上記各特許文献に記載されるアルミニウム合金は、常温での通電時における電流密度がいずれも10〜100mA/cm程度であり、電池としての出力が小さいという問題があった。これらのアルミニウム合金を用いて大きな電池出力を得るには、電池の使用温度を例えば60℃以上と高温にしたり、電池セルを大きくする必要があった。しかしながら、近年の輸送機向けなどの空気電池に対しては、小型且つ常温において使用可能であることが要求されている。そのためには、常温において高い電流密度が得られることが必要となる。 The aluminum alloys described in the above-mentioned patent documents all have a current density of about 10 to 100 mA / cm 2 at the time of energization at normal temperature, and there is a problem that the output as a battery is small. In order to obtain a large battery output using these aluminum alloys, it has been necessary to make the battery use temperature as high as, for example, 60 ° C. or more, or to enlarge the battery cell. However, air batteries for transport machines and the like in recent years are required to be compact and usable at normal temperature. For this purpose, it is necessary to obtain a high current density at normal temperature.

また、電池の電圧(起電力)とは正極と負極との電位差であり、この電位差が大きいほど電池性能が高くなる。通常、負極の電位については、電流を流さない状態で最も卑となり、電流を流す状態で貴に変化するという分極現象が発生する。このような分極現象が発生すると、正極と負極との電位差を大きく取れない。そのため、アルミニウム空気電池には、電流を流しても負極の電位が卑のままの状態が維持されるように、分極現象が発生し難い特性が要求される。   Further, the battery voltage (electromotive force) is a potential difference between the positive electrode and the negative electrode, and the larger the potential difference, the higher the battery performance. In general, the potential of the negative electrode is most negative in the absence of a current, and a polarization phenomenon occurs in which the potential changes to noble in the presence of a current. If such a polarization phenomenon occurs, a large potential difference between the positive electrode and the negative electrode can not be obtained. Therefore, the aluminum-air battery is required to have a characteristic that the polarization phenomenon is less likely to occur so that the potential of the negative electrode is maintained as it is even when current is supplied.

また、アルミニウム空気電池では、長時間通電すると、負極(アノード)反応によって生成したAl3+が水和酸化物を形成し電極間に蓄積されて電気抵抗となり、正極と負極との電位差が低減する。この現象は、塩水環境において起こる局所的なアノード反応の進行によって大きく影響を受け、アノード反応が局所的であるほどAl3+水和酸化物の形成が集中して正極と負極との電位差が著しく低下してしまう。このため、アルミニウム空気電池の負極用アルミニウム合金には、塩水環境においても均一にアノード反応が進行することも要求される。 Further, in the aluminum-air battery, when power is supplied for a long time, Al 3+ generated by the negative electrode (anode) reaction forms a hydrated oxide and is accumulated between the electrodes to become an electrical resistance, thereby reducing the potential difference between the positive electrode and the negative electrode. This phenomenon is greatly affected by the progress of the local anodic reaction that occurs in a saline environment, and the more localized the anodic reaction, the more concentrated the formation of Al 3 + hydrate oxide, and the remarkable the potential difference between the positive electrode and the negative electrode decreases. Resulting in. For this reason, the aluminum alloy for the negative electrode of the aluminum-air battery is also required to allow the anode reaction to proceed uniformly in a brine environment.

更に、アルミニウム合金の負極を電解質に晒すと自己腐食が発生する。このような自己腐食によるアルミニウム合金の消耗は、外部電流を得ることには寄与しない。従って、自己腐食量が多いと、負極の単位重量当たりに得られる電流、すなわち電流効率を低下させる。なお、電流効率とは、通電後に消耗したアルミニウム合金の質量減少に対する、得られた電気量から算出されるアルミニウム合金の溶解量の割合として定義される。従って、電流効率が高いほど、同じ質量のアルミニウム合金から取り出される電流が多いことになる。   Furthermore, when the aluminum alloy negative electrode is exposed to the electrolyte, self-corrosion occurs. The consumption of the aluminum alloy by such self-corrosion does not contribute to obtaining an external current. Therefore, a high self-corrosion amount reduces the current obtained per unit weight of the negative electrode, that is, the current efficiency. The current efficiency is defined as a ratio of the amount of dissolution of the aluminum alloy calculated from the obtained amount of electricity to the decrease in mass of the aluminum alloy consumed after the current flow. Thus, the higher the current efficiency, the more current will be drawn from an aluminum alloy of the same mass.

また、従来のアルミニウム合金では電池として作動させたときに所定電圧に到達するまでの応答時間が長く、電池として作用するまでにタイムラグが生じるという問題もあった。   In addition, in the conventional aluminum alloy, there is a problem that the response time to reach a predetermined voltage is long when operated as a battery, and a time lag occurs before the battery functions as a battery.

本発明は上記事情に鑑みてなされてものであり、常温でも電流密度が高く、通電を続けても負極の電位が卑のままの状態が維持され、塩水環境においても均一にアノード反応が進行し、自己腐食が少なく、更に、電池として作動させたときに所定電圧に到達するまでの応答時間が短い、負極用のアルミニウム合金および、これを用いたアルミニウム空気電池を提供することを目的とする。更に本発明は、上記負極用のアルミニウム合金の製造方法を提供することも目的とする。   The present invention has been made in view of the above-mentioned circumstances, and the current density is high even at normal temperature, and the potential of the negative electrode is maintained as it is even if electricity is continued. An object of the present invention is to provide an aluminum alloy for a negative electrode, which has low self-corrosion and short response time to reach a predetermined voltage when operated as a battery, and an aluminum-air battery using the same. Furthermore, another object of the present invention is to provide a method for producing an aluminum alloy for the above negative electrode.

発明者らは上記課題を解決すべく鋭意研究を重ねた結果、アルミニウム空気電池に用いる負極用のアルミニウム合金において、Si、Fe、Mg、Sn及びGaの含有量を特定範囲に規定し、このアルミニウム合金マトリックス中のSn系粒子の大きさ及びその存在量、ならびに、表面の酸化皮膜の厚さを調整することにより本発明を完成させるに至った。   As a result of extensive research to solve the above problems, the inventors have specified the contents of Si, Fe, Mg, Sn and Ga in a specific range in an aluminum alloy for a negative electrode used in an aluminum-air battery, and this aluminum The present invention has been accomplished by adjusting the size and the amount of Sn-based particles in the alloy matrix and the thickness of the oxide film on the surface.

すなわち、本発明は請求項1において、Si:0.0001〜0.0500mass%、Fe:0.0001〜0.0500mass%、Sn:0.01〜1.00mass%、Ga:0.005〜2.000mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金であって、マトリクス中において、2.0μm以上の円相当径を有するSn系粒子密度が10個/mm以下存在し、かつ、0.01〜0.5μmの円相当径を有するSn系粒子密度が10個/mm以上存在し、表面の酸化皮膜厚さが10nm以下であるアルミニウム合金を含むことを特徴とする塩水空気電池用アルミニウム負極材とした。 That is, in the present invention, in claim 1, Si: 0.0001 to 0.0500 mass%, Fe: 0.0001 to 0.0500 mass%, Sn: 0.01 to 1.00 mass%, Ga: 0.005 to 2 It is an aluminum alloy containing .000 mass% and containing the balance Al and unavoidable impurities, and in the matrix, Sn-based particle density having a circle equivalent diameter of 2.0 μm or more exists at 10 2 particles / mm 2 or less, And, it is characterized in that it contains an aluminum alloy in which Sn-based particle density having an equivalent circle diameter of 0.01 to 0.5 μm is 10 4 pieces / mm 2 or more and the oxide film thickness on the surface is 10 nm or less. It was used as an aluminum negative electrode material for brine air batteries.

本発明は請求項2において、Si:0.0001〜0.0500mass%、Fe:0.0001〜0.0500mass%、Mg:0.02〜2.00mass%、Sn:0.01〜1.00mass%、Ga:0.005〜2.000mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金であって、マトリクス中において、2.0μm以上の円相当径を有するSn系粒子密度が10個/mm以下存在し、かつ、0.01〜0.5μmの円相当径を有するSn系粒子密度が10個/mm以上存在し、表面の酸化皮膜厚さが10nm以下であるアルミニウム合金を含むことを特徴とする塩水空気電池用アルミニウム負極材とした。 In the present invention, in the second aspect, Si: 0.0001-0.0500 mass%, Fe: 0.0001-0.0500 mass%, Mg: 0.02-2.00 mass%, Sn: 0.01-1.00 mass. %, Ga: 0.005 to 2.000 mass%, an aluminum alloy comprising the balance Al and unavoidable impurities, and having a Sn-based particle density of 10 equivalent circle diameters of 2.0 μm or more in the matrix Sn-based particle density of 2 / mm 2 or less and having an equivalent circle diameter of 0.01 to 0.5 μm is 10 4 / mm 2 or more, and the thickness of the oxide film on the surface is 10 nm or less It was set as the aluminum negative electrode material for salt water air batteries characterized by including an aluminum alloy.

本発明は請求項3において、Si:0.0001〜0.0500mass%、Fe:0.0001〜0.0500mass%、Mg:0.05〜1.00mass%、Sn:0.01〜1.00mass%、Ga:0.005〜1.000mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金であって、マトリクス中において、2.0μm以上の円相当径を有するSn系粒子密度が10個/mm以下存在し、かつ、0.01〜0.5μmの円相当径を有するSn系粒子密度が10個/mm以上存在し、表面の酸化皮膜厚さが10nm以下であるアルミニウム合金を含むことを特徴とする塩水空気電池用アルミニウム負極材とした。 The present invention relates to claim 3, wherein Si: 0.0001 to 0.0500 mass%, Fe: 0.0001 to 0.0500 mass%, Mg: 0.05 to 1.00 mass%, Sn: 0.01 to 1.00 mass. %, Ga: 0.005 to 1.000 mass%, an aluminum alloy consisting of the balance Al and unavoidable impurities, and having a Sn-based particle density of 10 equivalent circle diameter of 2.0 μm or more in the matrix Sn-based particle density of 2 / mm 2 or less and having an equivalent circle diameter of 0.01 to 0.5 μm is 10 4 / mm 2 or more, and the thickness of the oxide film on the surface is 10 nm or less It was set as the aluminum negative electrode material for salt water air batteries characterized by including an aluminum alloy.

本発明は請求項4において、請求項1〜3のいずれか一項に記載の負極材を含む負極と、正極と、前記正極と負極との間に介在し塩水を含有する電解液とを備えることを特徴とする塩水アルミニウム空気電池とした。 The present invention according to claim 4 comprises a negative electrode including the negative electrode material according to any one of claims 1 to 3, a positive electrode, and an electrolytic solution interposed between the positive electrode and the negative electrode and containing brine. It was set as the salt water aluminum air battery characterized by the above.

本発明は請求項5において、請求項1〜3のいずれか一項に記載の塩水空気電池用アルミニウム負極材の製造方法であって、アルミニウム合金溶湯を鋳造する鋳造工程と、得られた鋳塊を500〜620℃で1時間以上熱処理する均質化処理工程と、均質化処理した鋳塊を熱間圧延する熱間圧延工程と、熱間圧延した圧延材を、500℃〜100℃までの冷却速度を0.5〜10℃/分として冷却する冷却工程と、冷却した圧延材を冷間圧延する冷間圧延工程と、冷間圧延した圧延材表面の酸化皮膜を10nm以下に除去する除去工程とを含むことを特徴とする塩水空気電池用アルミニウム負極材の製造方法とした。 The present invention according to claim 5 is the method for producing an aluminum negative electrode material for a brine air battery according to any one of claims 1 to 3 , wherein the casting step of casting a molten aluminum alloy, and the obtained ingot Heat treatment at 500 to 620 ° C. for 1 hour or more, a hot rolling step of hot rolling the ingot subjected to the homogenization treatment, and cooling the hot rolled material to 500 ° C. to 100 ° C. A cooling step of cooling at a speed of 0.5 to 10 ° C./min, a cold rolling step of cold rolling the cooled rolled material, and a removing step of removing the oxide film on the cold rolled surface of the rolled material to 10 nm or less And a method of producing an aluminum negative electrode material for a salt water air battery, characterized in that

本発明に係る塩水空気電池用アルミニウム負極材を用いた塩水アルミニウム空気電池は、常温でも電流密度が高く、通電を続けても負極の電位が卑のままの状態が維持され、塩水環境においても均一にアノード反応が進行し、自己腐食が少なく、ならびに、作動後に所定電圧に到達するまでの応答時間が短い。   The brine aluminum air battery using the aluminum negative electrode material for brine air battery according to the present invention has a high current density even at normal temperature, and the potential of the negative electrode is maintained as it is even when electricity is continued, and even in a brine environment The anodic reaction proceeds to a low degree, the self-corrosion is low, and the response time to reach a predetermined voltage after operation is short.

本発明に係る塩水アルミニウム空気電池は、空気極を含む正極と、アルミニウム合金を含む負極と、これら正極と負極との間に介在する電解液とを備える。これらについて、以下に詳細に説明する。   The saltwater aluminum air battery according to the present invention comprises a positive electrode including an air electrode, a negative electrode including an aluminum alloy, and an electrolytic solution interposed between the positive electrode and the negative electrode. These are described in detail below.

1.正極
本発明に係る塩水アルミニウム空気電池の正極は、酸素を正極活物質とする。そして、酸素の酸化還元触媒と、これを担持する導電性の触媒担体とから構成される。
1. Positive Electrode The positive electrode of the brine aluminum air battery according to the present invention uses oxygen as a positive electrode active material. And it is comprised from the oxidation reduction catalyst of oxygen and the electroconductive catalyst support | carrier which carry | supports this.

1−1.酸素の酸化還元触媒
酸素の酸化還元触媒としては、例えば、二酸化マンガンや四酸化三コバルトなどの金属酸化物;白金(Pt)、ルテニウム(Ru)、イリジウム(Ir)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、タングステン(W)、鉛(Pb)、鉄(Fe)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)、ガリウム(Ga)、アルミニウム(Al)等の金属及びこれらの合金;などから選択することができる。
1-1. Oxidation / Reduction Catalyst for Oxygen As the oxidation / reduction catalyst for oxygen, for example, metal oxides such as manganese dioxide and tricobalt tetraoxide; platinum (Pt), ruthenium (Ru), iridium (Ir), rhodium (Rh), palladium ( Pd), osmium (Os), tungsten (W), lead (Pb), iron (Fe), chromium (Cr), cobalt (Co), nickel (Ni), manganese (Mn), vanadium (V), molybdenum (m) It can be selected from metals such as Mo), gallium (Ga), aluminum (Al) and their alloys;

1−2.触媒担体
触媒担体は、上記還元触媒を担持するための担体として、また、還元触媒と他の部材との間での電子の授受に関与する電子伝導パスとしての機能を有する。触媒担体としては、触媒を所望の分散状態で担持するための比表面積を有し、十分な電子伝導性を有しているものが用いられる。このような触媒担体の材質としては、主成分がカーボンであるものが好ましい。具体的には、カーボンブラック、活性炭、コークス、天然黒鉛、人造黒鉛などからなるカーボン粒子が好適に用いられる。
1-2. Catalyst Support The catalyst support has a function as a support for supporting the reduction catalyst, and also as an electron conduction path involved in the exchange of electrons between the reduction catalyst and other members. As the catalyst carrier, one having a specific surface area for supporting the catalyst in a desired dispersed state and having sufficient electron conductivity is used. As a material of such a catalyst carrier, one whose main component is carbon is preferable. Specifically, carbon particles made of carbon black, activated carbon, coke, natural graphite, artificial graphite and the like are preferably used.

なお、上記の酸素還元触媒及び触媒担体については、上述のものに限定されるものではなく、空気電池に適用される従来公知の材料を適宜使用することができる。なお、正極の形態としては、例えば平板、ロッドのような形状のものが用いられる。   The above-mentioned oxygen reduction catalyst and catalyst support are not limited to those described above, and conventionally known materials applied to air batteries can be used as appropriate. In addition, as a form of a positive electrode, the thing of a shape like a flat plate and a rod is used, for example.

2.負極
本発明に係るアルミニウム空気電池の負極には、特定の組成、金属組織及び酸化皮膜厚さを有するアルミニウム合金が用いられる。
2. Negative electrode An aluminum alloy having a specific composition, metal structure and oxide film thickness is used for the negative electrode of the aluminum-air battery according to the present invention.

2−1.アルミニウム合金の組成
本発明で用いる負極用のアルミニウム合金の組成は、Si:0.0001〜0.0500mass%(以下、単に「%」と記す)、Fe:0.0001〜0.0500%、Sn:0.01〜1.00%、Ga:0.005〜2.000%を含有し、残部Al及び不可避的不純物からなる。以下に、各元素について説明する。
2-1. Composition of Aluminum Alloy The composition of the aluminum alloy for the negative electrode used in the present invention is Si: 0.0001-0.0500 mass% (hereinafter simply referred to as “%”), Fe: 0.0001-0.0500%, Sn It contains: 0.01 to 1.00%, Ga: 0.005 to 2.000%, and the balance consists of Al and unavoidable impurities. Each element will be described below.

Si、Fe:
Si及びFeはアルミニウム合金マトリクス中において、Al−Fe系金属間化合物、Al−Fe−Si系金属間化合物及び金属Si等からなるFeやSiを含有する粒子として晶出又は析出する。これらの粒子は、アルミニウム母相に対してカソード反応を生起し、自己腐食速度を増大させる。自己腐食速度が大きくなると、アルミニウムの消耗が速くなるだけでなく、同じ電流を取り出すためにはより多くのアノード反応が必要となる。その結果、負極の電位が貴化してしまい、正極との大きな電位差の確保が困難になる。そのためには、SiとFeはそれぞれ、0.05%以下とする必要がある。一方、Si及びFeは、アルミニウム材の不可避不純物として知られており、それぞれの含有量を0.0001%未満にすることは工業生産上困難である。このように、アルミニウム合金中のSi含有量及びFe含有量は共に、0.0001〜0.0500%と規定する。なお、好ましいSi含有量は0.0001〜0.0200%であり、好ましいFe含有量は0.0001〜0.0200%である。
Si, Fe:
Si and Fe are crystallized or precipitated in the aluminum alloy matrix as particles containing Fe or Si, which are composed of an Al-Fe based intermetallic compound, an Al-Fe-Si based intermetallic compound, metal Si and the like. These particles cause a cathode reaction on the aluminum matrix and increase the rate of self-corrosion. As the rate of self-corrosion increases, not only is the aluminum consumed faster, but more anode reaction is required to extract the same current. As a result, the potential of the negative electrode becomes noble, and it becomes difficult to secure a large potential difference with the positive electrode. For that purpose, it is necessary to make each of Si and Fe 0.05% or less. On the other hand, Si and Fe are known as unavoidable impurities of an aluminum material, and it is difficult on industrial production to make each content less than 0.0001%. Thus, the Si content and the Fe content in the aluminum alloy are both specified as 0.0001 to 0.0500%. In addition, preferable Si content is 0.0001 to 0.0200%, and preferable Fe content is 0.0001 to 0.0200%.

Sn:
Snはマトリクス中にSn系粒子として存在することにより、アルミニウムの酸化皮膜の破壊を促進させてアノード反応の分極を小さくする。このSn添加の効果を得るためには、0.01%以上のSnの含有が必要である。一方、過剰にSnが含有されれば、耐自己腐食性が低下するとともに、鋳造中に粗大なSn粒子が晶出してしまい、製造性を著しく損なう。この過剰なSnの含有による製造性や耐自己腐食性への悪影響を回避するためには、Sn量の上限は1.00%とする必要がある。このように、Sn含有量は0.01〜1.00%と規定する。なお、好ましいSn含有量は、0.05〜0.30%である。
Sn:
The presence of Sn as Sn-based particles in the matrix promotes the destruction of the aluminum oxide film and reduces the polarization of the anodic reaction. In order to acquire the effect of this Sn addition, 0.01% or more of Sn needs to be included. On the other hand, if Sn is contained excessively, the self-corrosion resistance is lowered and, at the same time, coarse Sn particles are crystallized during casting, which significantly impairs the productivity. In order to avoid the adverse effect on the manufacturability and the self-corrosion resistance due to the excess Sn content, the upper limit of the amount of Sn needs to be 1.00%. Thus, the Sn content is defined as 0.01 to 1.00%. In addition, preferable Sn content is 0.05 to 0.30%.

Ga:
Gaは結晶粒界やSn系粒子の周囲に存在し、アルミニウムの酸化皮膜の破壊を促進させ、アノード反応の分極を小さくする。このGa添加の効果を得るためには、後述するように0.01〜0.5μmの円相当径を有するSn系粒子密度を10個/mm以上とすると共に、0.005%以上のGaの含有が必要である。一方、過剰にGaが含有されれば、耐自己腐食性が低下する。この過剰なGaの含有による耐自己腐食性への悪影響を回避するためには、Ga量の上限は2.000%とする必要がある。このように、Ga含有量は0.005〜2.000%と規定する。なお、好ましいGa含有量は、0.005〜1.000%であり、さらに好ましいGa含有量は、0.01〜0.20%である。
Ga:
Ga is present at grain boundaries and around Sn-based particles, promotes the destruction of the oxide film of aluminum, and reduces the polarization of the anodic reaction. In order to obtain the effect of this Ga addition, as described later, the density of Sn-based particles having a circle equivalent diameter of 0.01 to 0.5 μm is set to 10 4 / mm 2 or more and 0.005% or more. It is necessary to contain Ga. On the other hand, if Ga is contained excessively, the self-corrosion resistance is lowered. In order to avoid the adverse effect on the self-corrosion resistance due to the excessive Ga content, the upper limit of the amount of Ga needs to be 2.000%. Thus, the Ga content is defined as 0.005 to 2.000%. In addition, preferable Ga content is 0.005 to 1.000%, and more preferable Ga content is 0.01 to 0.20%.

Mg:
MgはSn系粒子に固溶することでアルミニウムの酸化皮膜の破壊を促進させ、アノード反応の分極を小さくする。このような効果を得るためには、0.02%以上のMgを含有させることが好ましい。一方、過剰にMgが含有されれば、Mgを含有する酸化皮膜が形成されるため、アノード反応の分極が大きくなってしまう。この過剰Mgの含有によるアノード反応の分極の増大を回避するには、Mg含有量の上限は2.00%とすることが好ましい。このように、Mg含有量は0.02〜2.00%とするのが好ましい。なお、さらに好ましいMg含有量は、0.05〜1.00%である。
Mg:
Mg dissolves in Sn-based particles to promote destruction of the oxide film of aluminum and reduce the polarization of the anodic reaction. In order to obtain such an effect, it is preferable to contain 0.02% or more of Mg. On the other hand, if Mg is contained excessively, an oxide film containing Mg is formed, and the polarization of the anode reaction becomes large. The upper limit of the Mg content is preferably 2.00% in order to avoid the increase in the polarization of the anodic reaction due to the inclusion of the excess Mg. Thus, the Mg content is preferably 0.02 to 2.00%. Furthermore, more preferable Mg content is 0.05-1.00%.

Si及びFeの他の不可避的不純物として、Cu、Mn、Znなどを各々0.02%以下、全体で0.05%以下が含んでいても、本発明の効果を損なわないので許容される。   Even if Cu, Mn, Zn, etc. are each contained 0.02% or less and 0.05% or less in total as other unavoidable impurities of Si and Fe, the effects of the present invention are not impaired.

2−2.アルミニウム合金の金属組織(Sn系粒子密度)
本発明で用いるアルミニウム合金の金属組織は、そのマトリクスにおいては、2.0μm以上の円相当径(円相当直径)を有するSn系粒子密度を10個/mm以下とし、かつ、0.01〜0.5μmの円相当径を有するSn系粒子密度を10個/mm以上とする。
2-2. Metallographic structure of aluminum alloy (density of Sn-based particles)
In the metal structure of the aluminum alloy used in the present invention, in the matrix, the density of Sn-based particles having a circle equivalent diameter (circle equivalent diameter) of 2.0 μm or more is set at 10 2 particles / mm 2 or less, and 0.01 The density of Sn-based particles having an equivalent circle diameter of -0.5 μm is 10 4 / mm 2 or more.

2.0μm以上の円相当径を有するSn系粒子密度を10個/mm以下として、2.0μm以上の円相当径を有するSn系粒子に限定したのは、2.0μm以上の円相当径を有するSn系粒子は耐自己腐食性を低下させるためである。そして、その密度を10個/mm以下に限定したのは、10個/mmを超えると耐自己腐食性を著しく低下させるためである。なお、この密度は、好ましくは10個/mm以下である。また、この密度は小さければ小さいほど良く、0個/mmであるのが最も好ましい。 The Sn-based particle density having a circle equivalent diameter of more than 2.0 .mu.m as 10 2 / mm 2 or less, to that limited Sn-based particles having a circle equivalent diameter of more than 2.0 .mu.m is, 2.0 .mu.m or more equivalent circle It is for Sn type particle | grains which have a diameter to reduce self-corrosion resistance. And the reason for limiting the density to 10 2 pieces / mm 2 or less is to reduce the self-corrosion resistance remarkably when it exceeds 10 2 pieces / mm 2 . The density is preferably 10 / mm 2 or less. Also, the smaller the density, the better, and 0 piece / mm 2 is the most preferable.

更に、0.01〜0.5μmの円相当径を有するSn系粒子密度を10個/mm以上として、0.01〜0.5μmの円相当径を有するSn系粒子に限定したのは、0.5μm以下の円相当径を有するSn系粒子は、負極の電位を低くすることに寄与し、電池特性としての有効時間の向上に寄与するためである。下限の大きさを0.01μmとしたのはこれ以下の大きさではSEMで観察できず、効果が明確でないためである。そして、その密度を10個/mm以上に限定したのは、10個/mm未満では電池特性の向上への寄与が不十分なためである。なお、この密度は、好ましくは5×10個/mm以上である。また、この密度の上限は、アルミニウム合金の組成や製造条件に依存するものであるが、本発明の範囲では10個/mmである。 Further, the density of the Sn-based particles having a circle equivalent diameter of 0.01 to 0.5 μm is 10 4 pieces / mm 2 or more, and it is limited to the Sn-based particles having a circle equivalent diameter of 0.01 to 0.5 μm The Sn-based particles having a circle equivalent diameter of 0.5 μm or less contribute to lowering the potential of the negative electrode, and contribute to the improvement of the effective time as battery characteristics. The lower limit size is set to 0.01 μm because it can not be observed by SEM at a size smaller than this, and the effect is not clear. And the reason for limiting the density to 10 4 pieces / mm 2 or more is that if it is less than 10 4 pieces / mm 2 , the contribution to the improvement of the battery characteristics is insufficient. The density is preferably 5 × 10 5 pieces / mm 2 or more. Further, the upper limit of this density depends on the composition of the aluminum alloy and the manufacturing conditions, but in the range of the present invention, it is 10 6 pieces / mm 2 .

Sn係粒子密度は、厚さ方向に沿った試料断面のSEM像(倍率:5000倍)を一つの試料について任意に複数個所(5〜10箇所)撮影し、Sn系粒子の数を画像処理により測定し、測定面積で割ることで各測定箇所の密度を求めた。そして、複数個所の算術平均値をもって密度分布とした。   As for the Sn-containing particle density, an SEM image (magnification: 5000 times) of the cross section of the sample along the thickness direction is arbitrarily taken at a plurality of places (5-10 places) for one sample, and the number of Sn-based particles is image-processed The density of each measurement point was determined by measuring and dividing by the measurement area. And it was considered as density distribution with the arithmetic mean value of several places.

2−3.アルミニウム合金の酸化皮膜厚さ
アルミニウム合金表面の酸化皮膜厚さは、10nm以下とする。金属アルミニウムは非常に活性で、空気中の酸素と反応して表面には緻密な酸化皮膜が形成される。この酸化皮膜によって、アルミニウム材の耐食性が保たれる。しかしながら、空気電池用負極材としてアルミニウム合金を利用する場合には、この酸化皮膜が厚過ぎると、通電開始から所定の電位差を確保するまでの応答時間が遅くなってしまう。0〜10分、好ましくは0〜5分の適切な応答時間を得るためには、アルミニウム合金表面の酸化皮膜の厚さを10nm以下とする必要がある。なお、酸化皮膜の好ましい厚さは、2nm以下である。この厚さは薄いほど好ましいが、常温に保持されただけでも0.1nm程度の酸化皮膜は存在してしまう。従って、0.1nm程度の酸化皮膜の形成を回避することは通常は困難である。また、酸化皮膜の成長は温度が高いほど促進される。
2-3. Oxide film thickness of aluminum alloy The oxide film thickness of the aluminum alloy surface is 10 nm or less. Metallic aluminum is very active and reacts with oxygen in air to form a dense oxide film on the surface. The oxide film maintains the corrosion resistance of the aluminum material. However, in the case of using an aluminum alloy as a negative electrode material for an air battery, if this oxide film is too thick, the response time from the start of energization to securing a predetermined potential difference is delayed. In order to obtain an appropriate response time of 0 to 10 minutes, preferably 0 to 5 minutes, the thickness of the oxide film on the surface of the aluminum alloy needs to be 10 nm or less. The preferred thickness of the oxide film is 2 nm or less. This thickness is preferably as thin as possible, but an oxide film having a thickness of about 0.1 nm will be present even when held at ordinary temperature. Therefore, it is usually difficult to avoid the formation of an oxide film of about 0.1 nm. Also, the growth of the oxide film is promoted as the temperature is higher.

酸化皮膜の厚さは、例えば以下のようなX線光電子分光法による測定により決定される。X線光電子分光法による酸化皮膜厚の算出には、以下の関係式を用いた(P.Marcus et al.:Surface and Interface Analysis,Vol.20(1993),p.923)。
OX(nm)=2.0×cosθ×ln{1.15×(NOX/NAl)+1}
ここで、dOX(nm)は、はアルミニウム合金の酸化皮膜の厚さ、θは観測角(試料の法線からの角度)、NOX及びNAlは観測される酸化物及びアルミニウムの光電子数である。
The thickness of the oxide film is determined, for example, by measurement by X-ray photoelectron spectroscopy as follows. The following relationship was used for calculation of the oxide film thickness by X-ray photoelectron spectroscopy (P. Marcus et al .: Surface and Interface Analysis, Vol. 20 (1993), p. 923).
d OX (nm) = 2.0 × cos θ × ln {1.15 × (N OX / N Al ) +1}
Here, d OX (nm) is the thickness of the oxide film of the aluminum alloy, θ is the observation angle (angle from the normal to the sample), N OX and N Al are the photoelectron numbers of the observed oxide and aluminum It is.

なお、負極の形態としては、例えば平板、ロッドの形状のアルミニウム合金が用いられる。   In addition, as a form of a negative electrode, the aluminum alloy of the shape of a flat plate and a rod is used, for example.

3.電解液
本発明に係るアルミニウム空気電池の電解液は、1.0〜4.0mol/リットルのCl(塩化物イオン)を含有する。電解液は、例えば塩化ナトリウム(NaCl)や塩化カリウム(KCl)などの水溶液が用いられるが、これらに限定されるものではない。電解液中に含有されるClは、アルミニウム表面の不動態皮膜を破壊し、アルミニウムの溶解を引き起こす。負極が溶解するときの電位は、Cl濃度が低いほど貴になり正極との電位差が確保できなくなる。この効果を得るためには、1.0mol/リットル以上のCl濃度が必要である。一方、Cl濃度が高過ぎると、濃厚溶液となりアルミニウムの溶解が抑制されてしまう。この影響を避けるためには、Cl濃度は4.0mol/リットル以下とする必要がある。なお、好ましいCl濃度は2〜4mol/リットルである。電解液の電解質としては、NaCl(塩化ナトリウム)およびKCl(塩化カリウム)が好適に用いられる。また、電解液の溶媒としては、Clがイオン化可能なものであれば良く、水性溶媒、特に水が好適に用いられる。
3. Electrolyte The electrolyte of the aluminum-air battery according to the present invention contains 1.0 to 4.0 mol / l of Cl (chloride ion). The electrolytic solution may be, for example, an aqueous solution such as sodium chloride (NaCl) or potassium chloride (KCl), but is not limited thereto. Cl contained in the electrolytic solution destroys the passive film on the aluminum surface, causing the dissolution of the aluminum. The potential at which the negative electrode dissolves becomes noble as the concentration of Cl decreases, and the potential difference with the positive electrode can not be secured. In order to obtain this effect, a Cl concentration of 1.0 mol / liter or more is required. On the other hand, when the Cl concentration is too high, it becomes a concentrated solution and the dissolution of aluminum is suppressed. In order to avoid this effect, the Cl concentration needs to be 4.0 mol / liter or less. In addition, preferable Cl < - > density | concentration is 2-4 mol / l. NaCl (sodium chloride) and KCl (potassium chloride) are suitably used as the electrolyte of the electrolyte solution. As the solvent of the electrolyte solution, Cl - is good as long as it is ionized, an aqueous solvent, it is especially preferred water.

4.負極用のアルミニウム合金の製造方法
次に、負極用のアルミニウム合金の製造方法について説明する。
4. Method of Producing Aluminum Alloy for Negative Electrode Next, a method of producing an aluminum alloy for negative electrode will be described.

4−1.鋳造工程
まず、上記合金成分の合金溶湯を溶製し、これを鋳造する。鋳造工程での鋳造方法としては、半連続鋳造法(DC鋳造)が用いられる。
4-1. Casting Process First, a molten alloy of the above-mentioned alloy components is melted and cast. A semi-continuous casting method (DC casting) is used as a casting method in the casting process.

4−2.均質化処理工程
鋳造により得られた鋳塊は、必要に応じて面削を施してから、均質化処理工程にかけられる。均質化処理により、材料中のSn系粒子がマトリクス中に再固溶し、2.0μm以上の円相当径を有するSn系粒子を減少させることができる。均質化処理条件は、500〜620℃で1時間以上、好ましくは550〜620℃で5時間以上とする。処理温度が500℃未満又は処理時間が1時間未満では、2.0μm以上の円相当径を有するSn系粒子の密度減少の効果が十分に得られない。処理温度が620℃を超えると局所的に溶融が生じ健全な材料を得られなくなる。また、処理時間の上限は特に限定されるものではないが、15時間を超えると均質化効果が飽和して不経済となる。従って、この上限は好ましくは15時間とする。
4-2. Homogenization process step The ingot obtained by casting is subjected to a facing process as required, and then subjected to a homogenization process step. By the homogenization treatment, Sn-based particles in the material can be redissolved in the matrix, and Sn-based particles having a circle equivalent diameter of 2.0 μm or more can be reduced. The homogenization conditions are at 500 to 620 ° C. for 1 hour or more, preferably at 550 to 620 ° C. for 5 hours or more. When the treatment temperature is less than 500 ° C. or the treatment time is less than 1 hour, the effect of decreasing the density of Sn-based particles having a circle equivalent diameter of 2.0 μm or more can not be sufficiently obtained. If the processing temperature exceeds 620 ° C., melting occurs locally and a sound material can not be obtained. Further, the upper limit of the treatment time is not particularly limited, but if it exceeds 15 hours, the homogenization effect is saturated and it becomes uneconomical. Therefore, this upper limit is preferably 15 hours.

4−3.熱間圧延工程
均質化処理工程後に、鋳塊は熱間圧延工程にかけられる。熱間圧延工程は、圧延前の予備加熱段階を含む。予備加熱段階では、保持温度を500〜620℃、好ましくは550〜620℃とし、保持時間を0〜15時間、好ましくは0〜5時間とする。保持温度が500℃未満では圧延に大きな荷重が必要となり熱間圧延機の付加が大きくなり、620℃を超えると局所的に溶融が生じ健全な材料を得られなくなる。また、保持時間が15時間を超えると、飽和して不経済となる。ここで、保持時間が0時間とは、所定温度に到達後に直ちに熱間圧延工程に移行するものである。また、前記の均質化処理工程をこの予備加熱段階によって兼ねることも可能である。次に、予備加熱段階後の鋳塊は、所定の厚さまで熱間圧延される。
4-3. Hot rolling process After the homogenization process, the ingot is subjected to a hot rolling process. The hot rolling process includes a preheating stage before rolling. In the preheating stage, the holding temperature is 500 to 620 ° C., preferably 550 to 620 ° C., and the holding time is 0 to 15 hours, preferably 0 to 5 hours. If the holding temperature is less than 500 ° C., a large load is required for rolling and the addition of a hot rolling mill becomes large, and if it exceeds 620 ° C., local melting occurs and a sound material can not be obtained. If the holding time exceeds 15 hours, it becomes saturated and uneconomical. Here, the holding time of 0 hours means shifting to the hot rolling process immediately after reaching the predetermined temperature. It is also possible to combine the homogenization step with this preheating step. Next, the ingot after the preheating step is hot-rolled to a predetermined thickness.

4−4.冷却工程
熱間圧延にかけられた圧延板は冷却されるが、500℃〜100℃までの冷却速度を0.5〜10℃/分、好ましくは2〜10℃/分とする。これにより、0.01〜0.5μmの円相当径を有するSn系粒子が析出し、その密度が増大する。上記冷却速度が0.5℃/分未満では、0.01〜0.5μmの円相当径を有するSn系粒子の密度増加の効果が十分に得られない。一方、10℃/分を超えるとSn系粒子の析出が起こらなくなる。なお、冷却速度を規定する温度域を500〜100℃に規定するのは、この温度範囲でSn系粒子が析出するからである。
4-4. Cooling step The rolled sheet subjected to hot rolling is cooled, but the cooling rate to 500 ° C. to 100 ° C. is 0.5 to 10 ° C./min, preferably 2 to 10 ° C./min. As a result, Sn-based particles having an equivalent circle diameter of 0.01 to 0.5 μm are precipitated, and the density thereof is increased. When the cooling rate is less than 0.5 ° C./min, the effect of increasing the density of Sn-based particles having an equivalent circle diameter of 0.01 to 0.5 μm can not be sufficiently obtained. On the other hand, when the temperature exceeds 10 ° C./min, precipitation of Sn-based particles does not occur. In addition, it is because Sn-type particle | grains precipitate in this temperature range that the temperature range which defines a cooling rate is prescribed | regulated to 500-100 degreeC.

4−5.冷間圧延工程
熱間圧延工程の冷却工程後に、必要に応じて圧延板を冷間圧延工程にかけて所望の最終板厚とする。なお、最終冷間圧延率は、10〜80%とするのが好ましい。最終冷間圧延率とは、熱間圧延後の板厚と冷間圧延後の板厚から算出される冷間圧延率を指す。
4-5. Cold rolling process After the cooling process of the hot rolling process, the rolled sheet is subjected to a cold rolling process as required to obtain a desired final thickness. The final cold rolling reduction is preferably 10 to 80%. The final cold rolling rate refers to the cold rolling rate calculated from the plate thickness after hot rolling and the plate thickness after cold rolling.

4−6.酸化皮膜の除去工程
本発明では、電池として作動させたときに所定電圧に到達するまでの応答時間を短くするため、酸化皮膜の除去工程が設けられる。この酸化皮膜の除去は、機械的除去と化学的除去のいずれを採用してもよく、或いは、両方を組み合わせてもよい。機械的除去方法としては、切削、研磨などが挙げられる。化学的除去方法としでは、水酸化ナトリウム水溶液等のアルカリ溶液に浸漬し、又は、このアルカリ溶液によるスプレー処理などが挙げられる。アルカリ溶液は、濃度が1〜20%で、温度が10〜70℃のものが好ましい。処理時間は、30秒〜10分が好ましい。なお、アルカリ溶液処理後には水洗を行い、更に、アルカリ成分を中和除去するために酸処理を行い、水洗後に乾燥するのが好ましい。酸化皮膜を除去した後のアルミニウム合金材は、酸化皮膜の再成長を避けるために、直ちに乾燥して100℃以下の雰囲気に保管するのが好ましい。
4-6. Step of Removing Oxide Film In the present invention, a step of removing oxide film is provided in order to shorten the response time to reach a predetermined voltage when the battery is operated. The removal of the oxide film may be either mechanical removal or chemical removal, or a combination of both. Examples of mechanical removal methods include cutting and polishing. As a chemical removal method, it immerses in alkaline solutions, such as sodium hydroxide aqueous solution, or the spray process by this alkaline solution etc. are mentioned. The alkaline solution preferably has a concentration of 1 to 20% and a temperature of 10 to 70 ° C. The treatment time is preferably 30 seconds to 10 minutes. After the alkali solution treatment, it is preferable to perform water washing, and further acid treatment to neutralize and remove the alkali component, and then to dry after water washing. The aluminum alloy material after removing the oxide film is preferably dried immediately and stored in an atmosphere of 100 ° C. or less in order to avoid regrowth of the oxide film.

次に、本発明を実施例に基づいてさらに詳細に説明する。なお、これらの実施例は、本発明を説明するための例示に過ぎず、本発明の技術的範囲を限定するものでない。   The invention will now be described in more detail on the basis of examples. In addition, these Examples are only the illustration for demonstrating this invention, and do not limit the technical scope of this invention.

本発明例1〜22及び比較例1〜22
負極材用アルミニウム合金には、表1に示す組成の合金を用いた。これらの合金を半連続鋳造法により鋳造し面削を施した後に、表2、3に示す均質化処理を行った。次いで、鋳塊を熱間圧延工程にかけた。熱間圧延工程では、まず、鋳塊を580℃で0時間保持する予備加熱段階にかけ、更に、560℃で熱間圧延を開始した。次に、熱間圧延板を冷却工程にかけて冷却した。この冷却条件(500℃〜100℃の冷却速度)を、表2、3に示す。次に、冷却した圧延板を最終冷間圧延率30%で冷間圧延して、最終板厚1mm(幅:150cm、長さ:5m)の圧延板を得た。更に、圧延板を60℃の5%水酸化ナトリウム水溶液に30秒間浸漬した後に水洗した。次いで、室温の30%硝酸水溶液に60秒間浸漬した後に、水洗、乾燥を行なって負極材用のアルミニウム合金を得た。このようにして得た負極材用のアルミニウム合金を、幅15mm×長さ50mmに切断して試料片とした。また、上記試料片において、試験面として幅10mm×長さ10mmを露出させ、試験面以外をシリコン系の樹脂で被覆して樹脂被覆試験片を得た。
Invention Examples 1 to 22 and Comparative Examples 1 to 22
An alloy having the composition shown in Table 1 was used as the aluminum alloy for the negative electrode material. After casting and facing the alloys by a semi-continuous casting method, the homogenization treatment shown in Tables 2 and 3 was performed. The ingot was then subjected to a hot rolling process. In the hot rolling step, first, the ingot was subjected to a preheating step of holding at 580 ° C. for 0 hours, and then hot rolling was started at 560 ° C. Next, the hot-rolled sheet was cooled in the cooling step. The cooling conditions (cooling rate of 500 ° C. to 100 ° C.) are shown in Tables 2 and 3. Next, the cooled rolled sheet was cold rolled at a final cold rolling ratio of 30% to obtain a rolled sheet having a final thickness of 1 mm (width: 150 cm, length: 5 m). Further, the rolled plate was immersed in a 5% aqueous solution of sodium hydroxide at 60 ° C. for 30 seconds and then washed with water. Then, the substrate was immersed in a 30% nitric acid aqueous solution at room temperature for 60 seconds, then washed with water and dried to obtain an aluminum alloy for a negative electrode material. The aluminum alloy for the negative electrode material thus obtained was cut into a sample piece of 15 mm wide × 50 mm long. Further, in the above-mentioned sample piece, a width of 10 mm and a length of 10 mm was exposed as a test surface, and a resin-coated test piece was obtained by covering the other than the test surface with a silicone resin.

Figure 0006512921
Figure 0006512921

Figure 0006512921
Figure 0006512921

Figure 0006512921
Figure 0006512921

上記のようにして得た試料を用いて、以下の測定及び評価試験を行った。   The following measurement and evaluation tests were performed using the samples obtained as described above.

5.2.0μm以上と0.01〜0.5μmの円相当径を有するSn系粒子密度
これらのSn系粒子密度は、SEMを用いて以下のようにして測定した。上記試料片の厚さ方向に沿った断面のSEM像を、倍率5000倍で測定した。このような測定を、同じ試料について任意に複数個所8箇所撮影し、Sn系粒子の数を画像処理により測定した。次いで、測定したSn粒子数を測定面積で割ることで各測定箇所の密度を求めた。更に、8個所の算術平均値をもって密度分布とした。
5. Sn-Based Particle Density Having Circle Equivalent Diameter of 5.2.0 μm or More and 0.01-0.5 μm The Sn-based particle density of these was measured using SEM as follows. The SEM image of the cross section along the thickness direction of the sample piece was measured at a magnification of 5000. Such measurements were taken at a plurality of eight places in the same sample at arbitrary positions, and the number of Sn-based particles was measured by image processing. Next, the density of each measurement point was determined by dividing the measured number of Sn particles by the measurement area. Furthermore, the density distribution was obtained by using 8 arithmetic mean values.

6.酸化皮膜の厚さ
酸化皮膜の厚さは、下記のようにして測定した。上記試料片をX線光電子分光法によりスペクトルを測定した。酸化皮膜厚の算出には、以下の関係式を用いた(P.Marcus et al.:Surface and Interface Analysis,Vol.20(1993),p.923)。
OX(nm)=2.0×cosθ×ln{1.15×(NOX/NAl)+1}
ここで、dOX(nm)は、はアルミニウム合金の酸化皮膜の厚さ、θは観測角(試料の法線からの角度)、NOX及びNAlは観測される酸化物及びアルミニウムの光電子数である。なお、同一試料について、上記測定を5箇所行ない、得られた各dOX(nm)の算術平均値をもって酸化皮膜厚さとした。
6. Thickness of oxide film The thickness of the oxide film was measured as follows. The spectrum of the sample piece was measured by X-ray photoelectron spectroscopy. The following relational expression was used for calculation of oxide film thickness (P. Marcus et al .: Surface and Interface Analysis, Vol. 20 (1993), p. 923).
d OX (nm) = 2.0 × cos θ × ln {1.15 × (N OX / N Al ) +1}
Here, d OX (nm) is the thickness of the oxide film of the aluminum alloy, θ is the observation angle (angle from the normal to the sample), N OX and N Al are the photoelectron numbers of the observed oxide and aluminum It is. In addition, about the same sample, the said measurement was performed five places, and it was set as the oxide film thickness by having obtained the arithmetic mean value of each d OX (nm).

7.電池特性
25℃に保たれた2mol/リットルのNaCl水溶液中において、Pt板を正極に用い、上記で得た樹脂被覆試験片を負極に用いて、アルミニウム空気電池を作製した。この電池を用いて、100mA/cmのアノード電流を60分間流した。このときの電位を、Ag/AgCl電極を基準として測定した。電流付与から、負極材の電位が−1000mV以下となるまでの時間を応答時間(分)とし、−1000mV以下の電位に保持された時間を有効時間(分)とし、100mA/cmのアノード電流を60分間流したことから算出されるAlの溶解量を試験前後における負極の質量変化量(試験前−試験後)で除した値を電流効率とした。
7. Battery Characteristics In a 2 mol / liter aqueous solution of NaCl kept at 25 ° C., an aluminum air battery was produced using a Pt plate as a positive electrode and the resin-coated test piece obtained above as a negative electrode. An anode current of 100 mA / cm 2 was applied for 60 minutes using this battery. The potential at this time was measured based on the Ag / AgCl electrode. The response time (min) is the time until the potential of the negative electrode material falls below -1000 mV from the application of current, and the effective time (minute) is the time held at the potential below -1000 mV. An anode current of 100 mA / cm 2 The current efficiency is the value obtained by dividing the dissolution amount of Al calculated from the flow of 60 minutes for 60 minutes by the mass change amount of the negative electrode (before the test-after the test) before and after the test.

ここで、応答時間は、電池として作動させたときに所定電圧に到達するまでの時間を応答性として評価する項目であり、短時間である程好ましい。また、有効時間は、電池として作用できる時間を評価するための項目であり、得られる電流密度が高く、通電を続けても負極の電位が卑のままの状態が維持され、塩水環境においても均一にアノード反応が進行するほど、長い有効時間が得られる。電流効率は、自己腐食の程度の評価項目である。   Here, the response time is an item for evaluating the time until the predetermined voltage is reached when the battery is operated as a battery, and a shorter time is more preferable. In addition, the effective time is an item for evaluating the time when it can function as a battery, the obtained current density is high, and the potential of the negative electrode is maintained as it is even if current is continued, and even in a saline environment The longer the anodic reaction proceeds, the longer the effective time can be obtained. Current efficiency is a measure of the degree of self-corrosion.

評価基準は、次の通りである。応答時間については、15分以下を合格とし、それを超えるものを不合格とした。有効時間については、15分以上を合格とし、それ未満のものを不合格とした。電流効率については、5%以上を合格とし、それ未満のものを不合格とした。   Evaluation criteria are as follows. As for response time, 15 minutes or less was passed, and those exceeding it were rejected. As for the effective time, 15 minutes or more was passed, and less than that was rejected. With respect to current efficiency, 5% or more was passed, and less than that was rejected.

本発明例1〜22では、2.0μm以上と0.01〜0.5μmの円相当径を有するSn系粒子密度及び酸化皮膜の厚さが適切であり、電池特性としての応答時間、有効時間及び電流効率も合格であった。   In the invention examples 1 to 22, the Sn-based particle density and the thickness of the oxide film having an equivalent circle diameter of 2.0 μm or more and 0.01 to 0.5 μm are appropriate, and the response time as the battery characteristic, the effective time And the current efficiency also passed.

これに対して、比較例1では、アルミニウム合金のSi含有量が多過ぎたため、−1000mV以下の電位に保持されなかったため応答時間は「−」となり、有効時間が不合格となり、電流効率は測定しなかった。   On the other hand, in Comparative Example 1, since the Si content of the aluminum alloy was too high, the response time was "-" because the potential was not held at -1000 mV or less, the effective time was rejected, and the current efficiency was measured. I did not.

比較例2では、アルミニウム合金のFe含有量が多過ぎたため、−1000mV以下の電位に保持されなかったため応答時間は「−」となり、有効時間が不合格となり、電流効率は測定しなかった。   In Comparative Example 2, since the Fe content of the aluminum alloy was too high, the response time was "-" because it was not held at a potential of -1000 mV or less, the effective time was rejected, and the current efficiency was not measured.

比較例3では、アルミニウム合金のSn含有量が少な過ぎたため、0.01〜0.5μmの円相当径を有するSn系粒子密度が少な過ぎ、−1000mV以下の電位に保持されなかったため応答時間は「−」となり、有効時間が不合格となり、電流効率は測定しなかった。   In Comparative Example 3, since the Sn content of the aluminum alloy was too low, the Sn-based particle density having a circle equivalent diameter of 0.01 to 0.5 μm was too low, and was not held at a potential of -1000 mV or less. It became "-", the effective time was rejected, and the current efficiency was not measured.

比較例4では、アルミニウム合金のSn含有量が多過ぎたため、有効時間と電流効率が不合格となった。   In Comparative Example 4, since the Sn content of the aluminum alloy was too high, the effective time and the current efficiency were rejected.

比較例5では、アルミニウム合金のGa含有量が少な過ぎたため、−1000mV以下の電位に保持されなかったため応答時間は「−」となり、有効時間が不合格となり、電流効率は測定しなかった。   In Comparative Example 5, since the Ga content of the aluminum alloy was too low, the response time was "-" because the potential was not held at -1000 mV or less, the effective time was rejected, and the current efficiency was not measured.

比較例6では、アルミニウム合金の均質化処理温度が低かったため、2.0μm以上の円相当径を有するSn系粒子密度が多過ぎ、0.01〜0.5μmの円相当径を有するSn系粒子密度が少な過ぎて、有効時間が不合格となった。   In Comparative Example 6, since the homogenization treatment temperature of the aluminum alloy was low, the Sn-based particle density having a circle equivalent diameter of 2.0 μm or more was too large, and the Sn-based particle having a circle equivalent diameter of 0.01 to 0.5 μm. The density was too low and the effective time was rejected.

比較例7では、アルミニウム合金の均質化処理時間が短かったため、2.0μm以上の円相当径を有するSn系粒子密度が多過ぎて、有効時間が不合格となった。   In Comparative Example 7, the homogenization treatment time of the aluminum alloy was short, so the density of Sn-based particles having a circle equivalent diameter of 2.0 μm or more was too large, and the effective time was rejected.

比較例8では、均質化処理温度が高かったため、材料が溶解してしまいその後の評価を行えなかった(表3において「×」で示した)。   In Comparative Example 8, since the homogenization treatment temperature was high, the material melted and the subsequent evaluation could not be performed (indicated by “x” in Table 3).

比較例9では、熱間圧延した圧延材の500℃〜100℃までの冷却速度が遅かったため、0.01〜0.5μmの円相当径を有するSn系粒子密度が少な過ぎて、有効時間が不合格となった。   In Comparative Example 9, since the cooling rate to 500 ° C. to 100 ° C. of the hot-rolled rolled material was slow, the density of the Sn-based particles having the equivalent circle diameter of 0.01 to 0.5 μm was too small, and the effective time was It failed.

比較例10では、熱間圧延した圧延材の500℃〜100℃までの冷却速度が速かったため、0.01〜0.5μmの円相当径を有するSn系粒子密度が少な過ぎて、応答時間、有効時間及び電流効率が不合格となった。   In Comparative Example 10, since the cooling rate to 500 ° C. to 100 ° C. of the hot-rolled rolled material was fast, the density of the Sn-based particles having the equivalent circle diameter of 0.01 to 0.5 μm was too small, and the response time was The effective time and current efficiency have failed.

比較例11では、アルミニウム合金に酸化皮膜除去を施さなかったため、酸化皮膜が厚過ぎ、応答時間が不合格となった。   In Comparative Example 11, since the aluminum alloy was not subjected to the oxide film removal, the oxide film was too thick and the response time was rejected.

比較例12では、アルミニウム合金のSi含有量が多過ぎたため、−1000mV以下の電位に保持されなかったため応答時間は「−」となり、有効時間が不合格となり、電流効率は測定しなかった。   In Comparative Example 12, since the Si content of the aluminum alloy was too high, the response time was "-" because the potential was not held at -1000 mV or less, the effective time was rejected, and the current efficiency was not measured.

比較例13では、アルミニウム合金のFe含有量が多過ぎたため、−1000mV以下の電位に保持されなかったため応答時間は「−」となり、有効時間が不合格となり、電流効率は測定しなかった。   In Comparative Example 13, since the Fe content of the aluminum alloy was too high, the response time was "-" because the potential was not held at -1000 mV or less, the effective time was rejected, and the current efficiency was not measured.

比較例14では、アルミニウム合金のSn含有量が少な過ぎたため、0.01〜0.5μmの円相当径を有するSn系粒子密度が少な過ぎ、−1000mV以下の電位に保持されなかったため応答時間は「−」となり、有効時間が不合格となり、電流効率は測定しなかった。   In Comparative Example 14, since the Sn content of the aluminum alloy was too low, the Sn-based particle density having a circle equivalent diameter of 0.01 to 0.5 μm was too low, and the response time was not maintained at a potential of -1000 mV or less. It became "-", the effective time was rejected, and the current efficiency was not measured.

比較例15では、アルミニウム合金のGa含有量が少な過ぎたため、−1000mV以下の電位に保持されなかったため応答時間は「−」となり、有効時間が不合格となり、電流効率は測定しなかった。   In Comparative Example 15, since the Ga content of the aluminum alloy was too low, the response time was "-" because the potential was not held at -1000 mV or less, the effective time was rejected, and the current efficiency was not measured.

比較例16では、アルミニウム合金の均質化処理温度が低かったため、2.0μm以上の円相当径を有するSn系粒子密度が多過ぎ、0.01〜0.5μmの円相当径を有するSn系粒子密度が少な過ぎて、有効時間が不合格となった。   In Comparative Example 16, since the homogenization treatment temperature of the aluminum alloy was low, the Sn-based particle density having a circle equivalent diameter of 2.0 μm or more was too large, and the Sn-based particles having a circle equivalent diameter of 0.01 to 0.5 μm. The density was too low and the effective time was rejected.

比較例17では、アルミニウム合金の均質化処理時間が短かったため、2.0μm以上の円相当径を有するSn系粒子密度が多過ぎて、有効時間が不合格となった。   In Comparative Example 17, the homogenization treatment time of the aluminum alloy was short, so the density of Sn-based particles having a circle equivalent diameter of 2.0 μm or more was too large, and the effective time was rejected.

比較例18では、均質化処理温度が高かったため、材料が溶解してしまいその後の評価を行えなかった(表3において「×」で示した)。   In Comparative Example 18, since the homogenization treatment temperature was high, the material was dissolved, and the subsequent evaluation could not be performed (indicated by “x” in Table 3).

比較例19では、熱間圧延した圧延材の500℃〜100℃までの冷却速度が遅かったため、0.01〜0.5μmの円相当径を有するSn系粒子密度が少な過ぎて、有効時間が不合格となった。   In Comparative Example 19, since the cooling rate of the hot-rolled rolled material to 500 ° C. to 100 ° C. was slow, the density of the Sn-based particles having an equivalent circle diameter of 0.01 to 0.5 μm was too small, and the effective time was It failed.

比較例20では、熱間圧延した圧延材の500℃〜100℃までの冷却速度が速かったため、0.01〜0.5μmの円相当径を有するSn系粒子密度が少な過ぎて、応答時間、有効時間が不合格となった。   In Comparative Example 20, since the cooling rate to 500 ° C. to 100 ° C. of the hot-rolled rolled material was fast, the density of the Sn-based particles having a circle equivalent diameter of 0.01 to 0.5 μm was too small, and the response time was Valid time has been rejected.

比較例21では、アルミニウム合金のMg含有量が多過ぎたため、酸化皮膜が厚くなり、かつ、アルミニウム合金に酸化皮膜除去を施さなかったため、応答時間が不合格となった。   In Comparative Example 21, since the aluminum alloy contained too much Mg, the oxide film became thick, and the aluminum alloy was not subjected to oxide film removal, so the response time was rejected.

比較例22では、アルミニウム合金のSn含有量が多過ぎたため、有効時間と電流効率が不合格であった。   In Comparative Example 22, since the Sn content of the aluminum alloy was too high, the effective time and the current efficiency were not acceptable.

本発明に係る空気電池用アルミニウム負極材を備えるアルミニウム空気電池は、常温でも電流密度が高く、通電を続けても負極の電位が卑のままの状態が維持され、塩水環境においても均一にアノード反応が進行し、自己腐食が少なく、ならびに、作動後に所定電圧に到達するまでの応答時間が短いという産業上の利点を有する。   The aluminum-air battery provided with the aluminum negative electrode material for an air battery according to the present invention has a high current density even at normal temperature, and the potential of the negative electrode is maintained as it is even when electricity is continued. Progresses, has a low self-corrosion, and has an industrial advantage that the response time to reach a predetermined voltage after operation is short.

Claims (5)

Si:0.0001〜0.0500mass%、Fe:0.0001〜0.0500mass%、Sn:0.01〜1.00mass%、Ga:0.005〜2.000mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金であって、マトリクス中において、2.0μm以上の円相当径を有するSn系粒子密度が10個/mm以下存在し、かつ、0.01〜0.5μmの円相当径を有するSn系粒子密度が10個/mm以上存在し、表面の酸化皮膜厚さが10nm以下であるアルミニウム合金を含むことを特徴とする塩水空気電池用アルミニウム負極材。 Si: 0.0001-0.0500 mass%, Fe: 0.0001-0.0500 mass%, Sn: 0.01-1.00 mass%, Ga: 0.005-2.000 mass%, balance Al An aluminum alloy comprising unavoidable impurities, wherein Sn-based particle density having a circle equivalent diameter of 2.0 μm or more exists in a matrix at 10 2 particles / mm 2 or less and 0.01 to 0.5 μm in the matrix An aluminum negative electrode material for a brine air battery, comprising an aluminum alloy having a Sn-based particle density having an equivalent circle diameter of 10 4 pieces / mm 2 or more and having a surface oxide film thickness of 10 nm or less. Si:0.0001〜0.0500mass%、Fe:0.0001〜0.0500mass%、Mg:0.02〜2.00mass%、Sn:0.01〜1.00mass%、Ga:0.005〜2.000mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金であって、マトリクス中において、2.0μm以上の円相当径を有するSn系粒子密度が10個/mm以下存在し、かつ、0.01〜0.5μmの円相当径を有するSn系粒子密度が10個/mm以上存在し、表面の酸化皮膜厚さが10nm以下であるアルミニウム合金を含むことを特徴とする塩水空気電池用アルミニウム負極材。 Si: 0.0001-0.0500 mass%, Fe: 0.0001-0.0500 mass%, Mg: 0.02-2.00 mass%, Sn: 0.01-1.00 mass%, Ga: 0.005- An aluminum alloy containing 2.000 mass%, and the balance Al and unavoidable impurities, wherein Sn-based particle density having a circle equivalent diameter of 2.0 μm or more exists in the matrix at 10 2 particles / mm 2 or less And an aluminum alloy having a density of Sn-based particles having an equivalent circle diameter of 0.01 to 0.5 μm at 10 4 particles / mm 2 or more, and having a surface oxide film thickness of 10 nm or less Aluminum negative electrode material for salt water air batteries. Si:0.0001〜0.0500mass%、Fe:0.0001〜0.0500mass%、Mg:0.05〜1.00mass%、Sn:0.01〜1.00mass%、Ga:0.005〜1.000mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金であって、マトリクス中において、2.0μm以上の円相当径を有するSn系粒子密度が10個/mm以下存在し、かつ、0.01〜0.5μmの円相当径を有するSn系粒子密度が10個/mm以上存在し、表面の酸化皮膜厚さが10nm以下であるアルミニウム合金を含むことを特徴とする塩水空気電池用アルミニウム負極材。 Si: 0.0001-0.0500 mass%, Fe: 0.0001-0.0500 mass%, Mg: 0.05-1.00 mass%, Sn: 0.01-1.00 mass%, Ga: 0.005- An aluminum alloy containing 1.000 mass%, and the balance Al and unavoidable impurities, wherein Sn-based particle density having a circle equivalent diameter of 2.0 μm or more exists in the matrix at 10 2 particles / mm 2 or less And an aluminum alloy having a density of Sn-based particles having an equivalent circle diameter of 0.01 to 0.5 μm at 10 4 particles / mm 2 or more, and having a surface oxide film thickness of 10 nm or less Aluminum negative electrode material for salt water air batteries. 請求項1〜3のいずれか一項に記載の負極材を含む負極と、正極と、前記正極と負極との間に介在し塩水を含有する電解液とを備えることを特徴とする塩水アルミニウム空気電池。 A brine aluminum air comprising: a negative electrode including the negative electrode material according to any one of claims 1 to 3; a positive electrode; and an electrolyte solution interposed between the positive electrode and the negative electrode and containing brine. battery. 請求項1〜3のいずれか一項に記載の塩水空気電池用アルミニウム負極材の製造方法であって、アルミニウム合金溶湯を鋳造する鋳造工程と、得られた鋳塊を500〜620℃で1時間以上熱処理する均質化処理工程と、均質化処理した鋳塊を熱間圧延する熱間圧延工程と、熱間圧延した圧延材を、500℃〜100℃までの冷却速度を0.5〜10℃/分として冷却する冷却工程と、冷却した圧延材を冷間圧延する冷間圧延工程と、冷間圧延した圧延材表面の酸化皮膜を10nm以下に除去する除去工程とを含むことを特徴とする塩水空気電池用アルミニウム負極材の製造方法。 It is a manufacturing method of the aluminum negative electrode material for salt water air batteries according to any one of claims 1 to 3 , and the casting step of casting a molten aluminum alloy, and the obtained ingot at 500 to 620 ° C for 1 hour The homogenization treatment step of heat treatment, the hot rolling step of hot rolling the ingot subjected to the homogenization treatment, and the rolled material subjected to hot rolling at a cooling rate of 500 ° C. to 100 ° C. at 0.5 to 10 ° C. Characterized by including a cooling step of cooling as 1 / minute, a cold rolling step of cold rolling the cooled rolled material, and a removing step of removing the oxide film on the cold rolled surface of the rolled material to 10 nm or less The manufacturing method of the aluminum negative electrode material for salt water air batteries.
JP2015088840A 2015-04-24 2015-04-24 Aluminum negative electrode material for brine air battery, brine aluminum air battery, and method of manufacturing aluminum negative electrode material for brine air battery Active JP6512921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015088840A JP6512921B2 (en) 2015-04-24 2015-04-24 Aluminum negative electrode material for brine air battery, brine aluminum air battery, and method of manufacturing aluminum negative electrode material for brine air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015088840A JP6512921B2 (en) 2015-04-24 2015-04-24 Aluminum negative electrode material for brine air battery, brine aluminum air battery, and method of manufacturing aluminum negative electrode material for brine air battery

Publications (2)

Publication Number Publication Date
JP2016204712A JP2016204712A (en) 2016-12-08
JP6512921B2 true JP6512921B2 (en) 2019-05-15

Family

ID=57486826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015088840A Active JP6512921B2 (en) 2015-04-24 2015-04-24 Aluminum negative electrode material for brine air battery, brine aluminum air battery, and method of manufacturing aluminum negative electrode material for brine air battery

Country Status (1)

Country Link
JP (1) JP6512921B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220013769A1 (en) * 2018-11-22 2022-01-13 Sumitomo Chemical Company, Limited Anode active material for non-aqueous electrolyte secondary battery, anode, battery, and laminate
JPWO2022270483A1 (en) * 2021-06-22 2022-12-29

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3240688A (en) * 1964-04-21 1966-03-15 Olin Mathieson Aluminum alloy electrode
US4792430A (en) * 1987-07-24 1988-12-20 Aluminum Company Of America Aluminum anode alloy
US4808498A (en) * 1987-12-21 1989-02-28 Aluminum Company Of America Aluminum alloy and associated anode
JPH06179936A (en) * 1992-12-15 1994-06-28 Sumitomo Light Metal Ind Ltd Negative electrode material for aluminum battery
JP2015076221A (en) * 2013-10-08 2015-04-20 株式会社Uacj Aluminum alloy for negative electrode material of aluminum air battery, and aluminum air battery
JP2015076223A (en) * 2013-10-08 2015-04-20 株式会社Uacj Aluminum alloy for negative electrode material of aluminum air battery, and aluminum air battery

Also Published As

Publication number Publication date
JP2016204712A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP5201256B1 (en) Titanium material for polymer electrolyte fuel cell separator, production method thereof, and polymer electrolyte fuel cell using the same
Sikora et al. Corrosion behavior of nanocrystalline bulk Al-Mg-based alloys
JP5740052B2 (en) Electrolytic copper foil and method for producing the same
TWI261947B (en) Titanium system material for fuel cell separator, and manufacturing method therefor
JP2009064560A (en) Aluminum alloy foil for current collector
JP2008176988A (en) Titanium material for solid polymer fuel cell separator of low contact resistance and low ion elution property and its manufacturing method, separator made by using this titanium material, and solid polymer fuel cell made by using this separator
JP6512922B2 (en) Aluminum alloy for negative electrode material, method for producing the same, and brine aluminum battery provided with negative electrode containing the aluminum alloy
JP6512921B2 (en) Aluminum negative electrode material for brine air battery, brine aluminum air battery, and method of manufacturing aluminum negative electrode material for brine air battery
JP6228891B2 (en) Titanium alloy used for separator material for fuel cell and method for producing separator material
JP5758182B2 (en) Aluminum material
JP5460102B2 (en) Aluminum alloy foil for lithium ion secondary battery and method for producing the same
EP2444978A2 (en) Solar cell conductor and method of manufacturing the same
EP4130313A1 (en) Zinc foil, battery negative electrode active material using same, and zinc foil production method
JP2015076224A (en) Aluminum air battery
JP5740055B2 (en) Electrolytic copper foil, electrode for lithium ion secondary battery using the electrolytic copper foil, lithium ion secondary battery using the electrode
JP2009249668A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
WO2006022027A1 (en) Titanium based material for fuel cell separator and process for producing same
JP2012241232A (en) Rolled copper alloy foil and current collector for secondary battery using the same
US20200147675A1 (en) Aluminum alloys for use in electrochemical cells and methods of making and using the same
JP2015076223A (en) Aluminum alloy for negative electrode material of aluminum air battery, and aluminum air battery
JP2014015656A (en) Copper alloy rolled foil for secondary battery collector and its manufacturing method
Murai et al. Fundamental Study on the Corrosion Mechanism of Zr-0.2 Fe, Zr-0.2 Cr, and Zr-0.1 Fe-0.1 Cr Alloys
CN110380045A (en) A kind of magnesium-alloy anode material and its preparation method and application, magnesium air battery
JP7362164B2 (en) Mg-based alloy negative electrode material, manufacturing method thereof, and Mg secondary battery using the same
Čekerevac et al. The influence of tin and silver as microstructure modifiers on the corrosion rate of Pb–Ca alloys in sulfuric acid solutions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190409

R150 Certificate of patent or registration of utility model

Ref document number: 6512921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250