JP5740055B2 - Electrolytic copper foil, electrode for lithium ion secondary battery using the electrolytic copper foil, lithium ion secondary battery using the electrode - Google Patents

Electrolytic copper foil, electrode for lithium ion secondary battery using the electrolytic copper foil, lithium ion secondary battery using the electrode Download PDF

Info

Publication number
JP5740055B2
JP5740055B2 JP2014524192A JP2014524192A JP5740055B2 JP 5740055 B2 JP5740055 B2 JP 5740055B2 JP 2014524192 A JP2014524192 A JP 2014524192A JP 2014524192 A JP2014524192 A JP 2014524192A JP 5740055 B2 JP5740055 B2 JP 5740055B2
Authority
JP
Japan
Prior art keywords
copper foil
electrolytic copper
foil
electrolytic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014524192A
Other languages
Japanese (ja)
Other versions
JPWO2014119582A1 (en
Inventor
季実子 藤澤
季実子 藤澤
鈴木 昭利
昭利 鈴木
健作 篠崎
健作 篠崎
政登 胡木
政登 胡木
健 繪面
健 繪面
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2014524192A priority Critical patent/JP5740055B2/en
Application granted granted Critical
Publication of JP5740055B2 publication Critical patent/JP5740055B2/en
Publication of JPWO2014119582A1 publication Critical patent/JPWO2014119582A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電解析出面が低プロファイルであり、且つ、大きな機械的強度を備え、高温で加熱しても機械的強度が変化し難い電解銅箔に関するものである。
本発明は、前記電解銅箔を二次電池用集電体とし、該集電体に活物質を堆積して二次電池用電極とし、該電極を組み込んだ二次電池に関するものである。
本発明の電解銅箔は、該電解銅箔を導電材としたリジッドプリント配線板、フレキシブルプリント配線板、電磁波シールド材料等に好適に採用することができる。
The present invention relates to an electrolytic copper foil having a low profile electrolytic deposition surface, high mechanical strength, and hardly changing mechanical strength even when heated at a high temperature.
The present invention relates to a secondary battery in which the electrolytic copper foil is used as a secondary battery current collector, an active material is deposited on the current collector to form a secondary battery electrode, and the electrode is incorporated.
The electrolytic copper foil of the present invention can be suitably used for rigid printed wiring boards, flexible printed wiring boards, electromagnetic wave shielding materials, and the like using the electrolytic copper foil as a conductive material.

なお、本明細書では、電解銅箔、電解銅合金箔(箔中に銅と第三金属との合金を含む箔、箔中に第三金属を固溶状態で含む箔)を区別して表現する必要がない時は「電解銅箔」と表現し、また、機械的強度とは引張強度を指す。   In this specification, electrolytic copper foil and electrolytic copper alloy foil (a foil containing an alloy of copper and a third metal in the foil, a foil containing the third metal in a solid solution state in the foil) are distinguished and expressed. When it is not necessary, it is expressed as “electrolytic copper foil”, and mechanical strength indicates tensile strength.

銅箔は、リジッドプリント配線板、フレキシブルプリント配線板、電磁波シールド材料、電池の集電体等々、種々の分野で使用されている。   Copper foil is used in various fields such as rigid printed wiring boards, flexible printed wiring boards, electromagnetic wave shielding materials, battery current collectors, and the like.

これらの分野の内、ポリイミドフィルムと張り合わせるプリント配線板(フレキシブル配線板、以下「FPC」と称する。)の分野において、ハードディスク(以下、「HDD」と称する。)サスペンション材料、或いはテープ・オートメーティド・ボンディング(以下、「TAB」と称する。)材料は、銅箔の強度向上を要求してきている。   Among these fields, in the field of printed wiring boards (flexible wiring boards, hereinafter referred to as “FPC”) bonded to polyimide films, hard disk (hereinafter referred to as “HDD”) suspension materials or tape automation. The bonding (hereinafter referred to as “TAB”) material has been required to improve the strength of the copper foil.

HDDに搭載されているサスペンションは、HDDの高容量化が進むに従い従来使用されてきたワイヤタイプのサスペンションから、記憶媒体であるディスクに対しフライングヘッドの浮力と位置精度が安定した配線一体型のサスペンションへ大半が置き換わってきている。   The suspension mounted in the HDD is a wiring-integrated suspension in which the flying head buoyancy and the positional accuracy are stable with respect to the disk as the storage medium from the wire type suspension that has been used conventionally as the capacity of the HDD increases. The majority have been replaced.

この配線一体型サスペンションは、次の三種類のタイプがある。
a.FSA(フレックス サスペンション アッセンブリ)法と呼ばれるフレキシブルプリント基板を加工し接着剤を用いて張り合わせたタイプ
b.CIS(サーキット・インテグレーティッド・サスペンション)法と呼ばれるポリイミド樹脂の前駆体であるアミック酸を形状加工した後、イミド化し更にポリイミド上にメッキ加工を施すことにより配線を形成するタイプ
c.TSA(トレース・サスペンション・アッセンブリ)法と呼ばれるステンレス箔−ポリイミド樹脂−銅箔からなる積層体をエッチング加工により所定の形状に加工するタイプ
This wiring-integrated suspension has the following three types.
a. A type in which a flexible printed circuit board called FSA (flex suspension assembly) method is processed and bonded using an adhesive b. Type C.TSA (Trace Suspension / Assembly) type that processes a laminated body made of stainless steel foil-polyimide resin-copper foil into a predetermined shape by etching

TSA法サスペンションは、高強度を有する銅合金箔を積層することによって、容易にフライングリードを形成させることが可能であり、形状加工での自由度が高いことや比較的安価で寸法精度が良いことから幅広く使用されている。   The TSA suspension allows easy formation of flying leads by laminating copper alloy foils with high strength, has a high degree of freedom in shape processing, and is relatively inexpensive and has good dimensional accuracy. Widely used.

TSA法により形成される積層体は、ステンレス箔厚さは12〜30μm程度、ポリイミド層厚みは5〜20μm程度、銅合金箔厚さは7〜14μm程度の材料を用いて製造されている。   The laminate formed by the TSA method is manufactured using a material having a stainless steel foil thickness of about 12 to 30 μm, a polyimide layer thickness of about 5 to 20 μm, and a copper alloy foil thickness of about 7 to 14 μm.

積層体の製造は、まず基体となるステンレス箔上にポリイミド樹脂液を塗布する。塗布後、予備加熱により溶媒を除去した後、さらに加熱処理してイミド化を行う。続いてイミド化したポリイミド樹脂層の上に銅合金箔を重ね合わせ、300℃程度の温度で加熱圧着してラミネートし、ステンレス層/ポリイミド層/銅合金層からなる積層体を製造する。   In the production of the laminate, first, a polyimide resin solution is applied onto a stainless steel foil as a base. After the application, the solvent is removed by preheating, and then further heat treatment is performed to perform imidization. Subsequently, a copper alloy foil is superposed on the imidized polyimide resin layer and laminated by thermocompression bonding at a temperature of about 300 ° C. to produce a laminate composed of stainless steel layer / polyimide layer / copper alloy layer.

この300℃程度の加熱時において、ステンレス箔には寸法変化がほとんど見られない。しかし、従来の電解銅箔を使用すると、電解銅箔は300℃程度の温度で焼鈍され、再結晶が進み、軟化して寸法変化が生ずる。このため、ラミネート後に積層体に反りが生じ、製品の寸法精度が低下する。
ラミネート後に積層体に反りを生じさせないためには、加熱時の寸法変化ができるだけ小さい銅合金箔の提供が求められている。
During the heating at about 300 ° C., the stainless steel foil hardly changes in dimensions. However, when a conventional electrolytic copper foil is used, the electrolytic copper foil is annealed at a temperature of about 300 ° C., recrystallization proceeds, softens, and a dimensional change occurs. For this reason, the laminate is warped after lamination, and the dimensional accuracy of the product is lowered.
In order to prevent warping of the laminate after lamination, provision of a copper alloy foil that is as small as possible in dimensional change during heating is required.

また、TAB材料においてはHDDサスペンション材料と同様、銅箔の高強度化と共に箔表面の低粗度化が要求されている。
TAB製品においては、製品のほぼ中央部に位置するデバイスホールに配されるインナーリード(フライングリード)に対し、ICチップの複数の端子を直接ボンディングする。このボンディングはボンディング装置を用いて、瞬間的に通電加熱し、一定のボンディング圧を付加して行う。このとき、電解銅箔をエッチング形成して得られたインナーリードが、ボンディング圧で引っ張られて伸びるという問題がある。
さらには、電解銅箔の強度が低いと塑性変形してインナーリードにたるみが発生し、著しい場合には破断する可能性がある。
従って、インナーリードの線幅を細線化するには、使用する電解銅箔は低粗度化された粗面を持ち、かつ高強度であることが要求される。
In the TAB material, as with the HDD suspension material, it is required to increase the strength of the copper foil and reduce the roughness of the foil surface.
In a TAB product, a plurality of terminals of an IC chip are directly bonded to inner leads (flying leads) arranged in a device hole located substantially at the center of the product. This bonding is performed by applying a constant bonding pressure by instantaneously energizing and heating using a bonding apparatus. At this time, there is a problem that the inner lead obtained by etching the electrolytic copper foil is stretched by being pulled by the bonding pressure.
Furthermore, if the strength of the electrolytic copper foil is low, the inner lead may sag due to plastic deformation and may break if it is significant.
Therefore, in order to reduce the line width of the inner lead, the electrolytic copper foil to be used is required to have a roughened surface with low roughness and to have high strength.

この場合も、常態(常温・常圧状態)で銅箔が高強度であるとともに、加熱した後でも高強度であることが必要である。TAB用途の場合には、銅箔とポリイミドが張り合わされた2層または3層のFPCが使用される。3層のFPCでは銅箔にポリイミドを張り合わせる場合には、エポキシ系の接着剤を使用し、180℃前後の温度で張り合わせる。またポリイミド系の接着剤を使用した2層FPCでは、300℃前後の温度で張り合わせを行う。   Also in this case, it is necessary that the copper foil has high strength in a normal state (normal temperature / normal pressure state) and has high strength even after being heated. In the case of a TAB application, a two-layer or three-layer FPC in which a copper foil and a polyimide are bonded together is used. In the case of bonding the polyimide to the copper foil in the three-layer FPC, an epoxy adhesive is used and the bonding is performed at a temperature of about 180 ° C. In a two-layer FPC using a polyimide-based adhesive, bonding is performed at a temperature of about 300 ° C.

仮に常態で機械的強度が大きい電解銅箔であっても、ポリイミドに接着した時に電解銅箔が軟化しては意味がない。従来の高強度電解銅箔は常態での機械的強度が大きく、180℃前後で加熱してもほとんど機械的強度は変化しないが、300℃程度で加熱した場合は、焼鈍され再結晶が進むため、急速に軟化して機械的強度が低下する。このような銅箔はTAB用途には不向きである。   Even if the electrolytic copper foil has a high mechanical strength in a normal state, it does not make sense if the electrolytic copper foil softens when bonded to polyimide. Conventional high-strength electrolytic copper foil has high mechanical strength in the normal state, and the mechanical strength hardly changes even when heated at around 180 ° C. However, when heated at about 300 ° C, it is annealed and recrystallization proceeds. , It softens rapidly and the mechanical strength decreases. Such a copper foil is not suitable for TAB applications.

また銅箔はリチウムイオン二次電池等の電池用集電体として使用されている。リチウムイオン二次電池は基本的に、正極、負極、電解液から構成される。負極は、集電体として用いられる銅箔の表面に負極活物質層をコーティングすることで形成される。
負極の形成法としては、負極活物質とバインダー樹脂(活物質と銅箔基板とを結着することを目的に添加される)を溶剤に溶かしたスラリーを銅箔基板上に塗布し、バインダー樹脂の硬化温度以上の温度で乾燥させた後、プレスすることで形成する方法が一般的である。
Further, the copper foil is used as a current collector for a battery such as a lithium ion secondary battery. A lithium ion secondary battery is basically composed of a positive electrode, a negative electrode, and an electrolytic solution. The negative electrode is formed by coating the surface of a copper foil used as a current collector with a negative electrode active material layer.
As a method for forming the negative electrode, a slurry obtained by dissolving a negative electrode active material and a binder resin (added for the purpose of binding the active material and the copper foil substrate) in a solvent is applied onto the copper foil substrate, and then the binder resin is formed. A method of forming by pressing after drying at a temperature equal to or higher than the curing temperature is generally used.

バインダー樹脂としては、ポリフッ化ビニリデン(PVDF)やスチレンブタジエンゴム(SBR)等が広く用いられている。
近年、電池の高容量化に伴い着目されている、理論容量の高いケイ素、スズ、ゲルマニウム合金系材料などからなる活物質は、充放電時のリチウムの挿入脱離に伴う体積膨張率が大きく、上述したバインダー樹脂では強度が足りない。そこで、銅基板との接着強度の高いポリイミド系樹脂が好ましく使用されてきている。しかし、ポリイミド系樹脂は上述したバインダー樹脂と違い、硬化温度が300℃程度と高く、この加熱条件に耐え得る負極集電体(銅箔)が要求されている。
As the binder resin, polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR) and the like are widely used.
In recent years, active materials made of silicon, tin, germanium alloy materials with high theoretical capacity, which are attracting attention as the capacity of batteries increases, have a large volume expansion coefficient associated with lithium insertion / extraction during charge / discharge, The binder resin described above has insufficient strength. Therefore, a polyimide resin having a high adhesive strength with a copper substrate has been preferably used. However, unlike the binder resin described above, the polyimide resin has a high curing temperature of about 300 ° C., and a negative electrode current collector (copper foil) that can withstand this heating condition is required.

このように、FPC分野、二次電池分野では共に硬化温度が300℃程度と高いポリイミド系樹脂がバインダーとして使用されるようになってきており、この加熱条件に耐え得る銅箔が要求されている。   Thus, in the FPC field and the secondary battery field, a polyimide resin having a high curing temperature of about 300 ° C. has been used as a binder, and a copper foil that can withstand this heating condition is required. .

ところで、電解銅箔の電解液には硫酸銅と硫酸を含有する電解液を使用し、銅箔表面の光沢化や平滑化、銅箔の応力減少などを目的として、めっき浴には種々の添加剤が添加されている。添加剤を用いない場合には、銅箔に要求される表面形態や機械的特性などが得られないことから、添加剤の重要性は高い。特に硫酸銅めっき浴は単純酸性浴であるために均一電着性に劣り、添加剤無しでは好ましい電解銅箔の製造は困難である。硫酸銅めっき浴に用いられる添加剤としては、塩素イオン、ポリオキシエチレン系の界面活性剤、平滑剤、有機硫化物などの光沢剤、膠(にかわ)、ゼラチンなどが提案され、使用されている。   By the way, an electrolytic solution containing copper sulfate and sulfuric acid is used as the electrolytic solution for the electrolytic copper foil, and various additions are made to the plating bath for the purpose of making the copper foil surface bright and smooth, reducing the stress of the copper foil, etc. An agent has been added. When the additive is not used, the surface form and mechanical properties required for the copper foil cannot be obtained, so the additive is highly important. In particular, since the copper sulfate plating bath is a simple acidic bath, it is inferior in throwing power and it is difficult to produce a preferable electrolytic copper foil without an additive. As additives used in copper sulfate plating baths, chlorine ions, polyoxyethylene surfactants, smoothing agents, brighteners such as organic sulfides, glue, gelatin, etc. have been proposed and used. .

硫酸銅めっき浴に塩素や添加剤を添加しないと電気が流れやすい高電流部分(陽極に近い箇所や、陰極の端、とがったものの先端など)にめっきが集中し、一般的に言う「ヤケの状態(めっき面がより凸凹になる)」になる。   Plating concentrates on high current areas where electricity can easily flow without adding chlorine or additives to the copper sulfate plating bath (locations close to the anode, the end of the cathode, the tip of sharp objects, etc.) State (plated surface becomes more uneven).

しかし、一般的に電解液中に塩素イオンが存在すると銅箔中に特定の金属を混入させて銅箔の特性を変化させることが困難となる。即ち、塩素イオンが存在しない電解液では銅箔中に他の金属を混入させることが可能であり、他の金属を混入させ(合金化し)銅箔の特性を変化させることができるが、電解液中に塩素イオンが入ると銅箔に他の金属が混入しづらくなり、銅箔の特性を他の金属で変化させることが困難となる。   However, generally, when chlorine ions are present in the electrolytic solution, it is difficult to change the characteristics of the copper foil by mixing a specific metal in the copper foil. That is, in an electrolytic solution that does not contain chlorine ions, other metals can be mixed into the copper foil, and other metals can be mixed (alloyed) to change the characteristics of the copper foil. When chlorine ions enter, it becomes difficult for other metals to be mixed into the copper foil, and it becomes difficult to change the characteristics of the copper foil with other metals.

例えば、特許文献1、2は、硫酸−硫酸銅電解液中にタングステンを加え、さらに膠と塩素イオンを加えた電解液で電解銅箔を製造する方法を開示しており、その効果として180℃における熱間伸び率が3%以上であり、粗面の粗さが大きく、ピンホール発生の少ない銅箔が製造可能であると記載している。   For example, Patent Documents 1 and 2 disclose a method of producing an electrolytic copper foil with an electrolytic solution in which tungsten is added to a sulfuric acid-copper sulfate electrolytic solution, and further glue and chloride ions are added. It describes that it is possible to produce a copper foil having a hot elongation rate of 3% or more, a rough surface having a large roughness and less pinholes.

そこで本発明者等は、硫酸−硫酸銅電解液中にタングステンを加え、さらに膠と塩素イオンを加えた実験を繰り返し、特許文献1に開示されている電解銅箔が目的とする180℃における熱間伸び率が3%以上であり、粗面の粗さが大きく、ピンホール発生の少ない銅箔を製造することができた。しかし、この銅箔を300℃で1時間(以降、「300℃×1時間」とも記載する)の熱処理を施したところ、機械的強度が保持できないことが判明した。そこでこの銅箔を分析したところ、電析銅中にタングステンが共析していない結果となった。   Therefore, the present inventors repeated an experiment in which tungsten was added to a sulfuric acid-copper sulfate electrolytic solution, and further glue and chloride ions were added, and heat at 180 ° C., which is the purpose of the electrolytic copper foil disclosed in Patent Document 1. It was possible to produce a copper foil having an interstitial elongation of 3% or more, a large rough surface, and few pinholes. However, when this copper foil was heat-treated at 300 ° C. for 1 hour (hereinafter also referred to as “300 ° C. × 1 hour”), it was found that the mechanical strength could not be maintained. Therefore, when this copper foil was analyzed, it was found that tungsten was not co-deposited in the electrodeposited copper.

即ち、特許文献1、2の方法では硫酸−硫酸銅電解液中にタングステンを加え、さらに膠10mg/L以下と塩素イオンを20〜100mg/L添加した電解液で電析を行ったため、銅箔中にタングステンが共析せず、300℃で加熱しても高い機械的強度を保持する電解銅合金箔を製造することができない結果となった。   That is, in the methods of Patent Documents 1 and 2, electrodeposition was performed with an electrolytic solution in which tungsten was added to a sulfuric acid-copper sulfate electrolytic solution, and further, glue 10 mg / L or less and chlorine ions 20 to 100 mg / L were added. As a result, tungsten did not eutectide, and it was impossible to produce an electrolytic copper alloy foil that retained high mechanical strength even when heated at 300 ° C.

上述したように、電解銅箔は硫酸銅と硫酸を含有する電解液に添加剤として塩素と有機化合物を添加して製箔している。
有機添加剤は通常は結晶の成長を抑制する効果のあるものが多く、結晶粒界に取り込まれると考えられている。
この場合、結晶粒界に取り込まれる有機添加剤の量が多いほど機械的強度が向上する傾向にある(非特許文献1:志賀章二;金属表面技術 Vol31, No10,p573 (1980))。
As described above, the electrolytic copper foil is made by adding chlorine and an organic compound as additives to an electrolytic solution containing copper sulfate and sulfuric acid.
Many organic additives usually have an effect of suppressing crystal growth, and are considered to be taken into crystal grain boundaries.
In this case, the mechanical strength tends to improve as the amount of the organic additive taken into the crystal grain boundary increases (Non-patent Document 1: Shiga Shoji; Metal Surface Technology Vol31, No10, p573 (1980)).

非特許文献1に記載されているように電解銅箔に取り込まれる有機添加剤は銅箔の機械的強度を向上する。この要因は、有機添加剤が主に結晶粒界に取り込まれ常温においては機械的強度を向上する、と考察できる。しかし、この有機添加剤を取り込んだ電解銅箔を300℃以上の高温で加熱すると機械的強度は低下する。その原因は有機添加剤が熱分解し、その結果として機械的強度が低下すると推測される。   As described in Non-Patent Document 1, the organic additive incorporated into the electrolytic copper foil improves the mechanical strength of the copper foil. This factor can be considered that the organic additive is mainly taken into the crystal grain boundary and improves the mechanical strength at room temperature. However, when the electrolytic copper foil incorporating the organic additive is heated at a high temperature of 300 ° C. or higher, the mechanical strength decreases. The cause is presumed that the organic additive is thermally decomposed, resulting in a decrease in mechanical strength.

一方、上記要求を満たす銅箔として圧延銅合金箔が使用されている。圧延銅合金箔は300℃程度の温度では焼鈍されにくく、加熱時の寸法変化が小さく、機械的強度変化も少ない。
しかし圧延銅箔は電解銅箔に比べると高価であり、幅、厚さ等の要求を満足させることが難しい。
On the other hand, a rolled copper alloy foil is used as a copper foil that satisfies the above requirements. The rolled copper alloy foil is not easily annealed at a temperature of about 300 ° C., has little dimensional change during heating, and little mechanical strength change.
However, rolled copper foil is more expensive than electrolytic copper foil, and it is difficult to satisfy requirements such as width and thickness.

そこで本発明者等はポリイミド樹脂基材と張り合わせる面が低プロファイルで、且つ、機械的強度にも優れた電解銅合金箔、及びポリイミド系樹脂をバインダー樹脂とする用途に適合する電解銅合金箔として、銅箔に種々の金属を添加し、その耐熱性を改善する試みを行った。
しかし、銅箔の耐熱性を改善できる金属を電解銅箔中に取り込むことは困難であった。即ち、銅箔の耐熱性を改善する金属は銅箔中に取り込み難い金属であることが問題となっていた。
Therefore, the present inventors have an electrolytic copper alloy foil that has a low profile surface bonded to a polyimide resin base material and excellent mechanical strength, and an electrolytic copper alloy foil that is suitable for applications using a polyimide resin as a binder resin. Attempts were made to add various metals to the copper foil to improve its heat resistance.
However, it has been difficult to incorporate a metal capable of improving the heat resistance of the copper foil into the electrolytic copper foil. That is, there has been a problem that the metal that improves the heat resistance of the copper foil is a metal that is difficult to incorporate into the copper foil.

特許第3238278号Japanese Patent No. 3238278 特開平9−67693号公報JP-A-9-67693

志賀章二;金属表面技術 Vol31, No10,p573 (1980)Shiga Shoji; Metal Surface Technology Vol31, No10, p573 (1980)

本発明は、常温での引張強度が650MPa以上、300℃×1時間の熱処理後に常温で測定した引張強度が450MPa以上、導電率が60%IACS以上の電解銅箔を提供することを目的とする。
また、本発明はポリイミドフィルムと張り合わせるプリント配線板分野における用途において機械的強度に優れた電解銅箔を提供することを目的とする。
更に本発明は、Si又はSn合金系活物質を用いるリチウムイオン二次電池で、Si又はSn合金系活物質の大きな膨張、収縮に対して、集電体(銅箔)と活物質との密着性をポリイミドバインダーにより保持し、集電体(銅箔)が変形しない電解銅箔を提供することを目的とする。
An object of the present invention is to provide an electrolytic copper foil having a tensile strength at room temperature of 650 MPa or more, a tensile strength measured at room temperature after heat treatment at 300 ° C. for 1 hour, 450 MPa or more, and a conductivity of 60% IACS or more. .
Another object of the present invention is to provide an electrolytic copper foil having excellent mechanical strength in applications in the field of printed wiring boards bonded to polyimide films.
Furthermore, the present invention is a lithium ion secondary battery using a Si or Sn alloy-based active material, and adheres between the current collector (copper foil) and the active material against large expansion and contraction of the Si or Sn alloy-based active material An object of the present invention is to provide an electrolytic copper foil that retains its properties with a polyimide binder and does not deform the current collector (copper foil).

本発明者等は鋭意研究の結果、上述した課題を克服し、電解銅箔中にpH4以下の酸性溶液中で酸化物として存在する金属の少なくとも1種類を取り込むことに成功し、その結果として、常温での引張強度が650MPa以上、300℃×1時間の熱処理後に常温で測定した引張強度が450MPa以上、導電率が60%以上の電解銅箔を製箔することに成功した。
また、本発明者等は、たとえば、HDDサスペンション材料、TAB材料として、或いはSi又はSn合金系活物質の大きな膨張、収縮を繰り返す活物質に対して、ポリイミドバインダーの使用を可能とし、集電体(銅箔)として変形しない電解銅箔の開発に成功した。
As a result of earnest research, the inventors have overcome the above-mentioned problems and succeeded in incorporating at least one kind of metal present as an oxide in an acidic solution having a pH of 4 or less into the electrolytic copper foil. The present inventors have succeeded in producing an electrolytic copper foil having a tensile strength of 650 MPa or more at a normal temperature, a tensile strength of 450 MPa or more and a conductivity of 60% or more measured at a normal temperature after heat treatment at 300 ° C. for 1 hour.
In addition, the present inventors have made it possible to use a polyimide binder as an HDD suspension material, a TAB material, or an active material that repeats large expansion and contraction of a Si or Sn alloy-based active material. We succeeded in developing electrolytic copper foil that does not deform as (copper foil).

本発明の電解銅箔は、未処理銅箔中にpH4以下の酸性溶液中で酸化物として存在する金属またはその酸化物を含有し、前記金属又は前記酸化物を構成する前記金属の含有量が0.0001〜1.320質量%であり、塩素を0.005〜0.04質量%含有することを特徴とする。 The electrolytic copper foil of the present invention contains a metal present as an oxide or an oxide thereof in an acidic solution having a pH of 4 or less in the untreated copper foil, and the content of the metal or the metal constituting the oxide is It is 0.0001 to 1.320 % by mass , and contains 0.005 to 0.04 % by mass of chlorine.

前記電解銅箔の前記金属成分はチタン(Ti)、モリブデン(Mo)、バナジウム(V)、ビスマス(Bi)、テルル(Te)から選ばれる1種以上の金属成分であることが好ましい。   The metal component of the electrolytic copper foil is preferably one or more metal components selected from titanium (Ti), molybdenum (Mo), vanadium (V), bismuth (Bi), and tellurium (Te).

前記電解銅箔の常温での引張強度は650MPa以上であり、300℃×1時間の熱処理後に常温で測定した引張強度は450MPa以上であることが好ましい。   The electrolytic copper foil preferably has a tensile strength of 650 MPa or more at room temperature, and a tensile strength measured at room temperature after heat treatment at 300 ° C. for 1 hour is 450 MPa or more.

前記電解銅箔の常温での導電率が60%IACS以上であることが好ましい。   It is preferable that the electrical conductivity of the electrolytic copper foil at room temperature is 60% IACS or more.

本発明のリチウムイオン二次電池用電極は、本発明の電解銅箔を集電体として使用することを特徴とする。   The electrode for lithium ion secondary batteries of the present invention is characterized by using the electrolytic copper foil of the present invention as a current collector.

本発明のリチウムイオン二次電池は、本発明の電池用電極を負極電極とすることを特徴とする。   The lithium ion secondary battery of the present invention is characterized in that the battery electrode of the present invention is a negative electrode.

本発明によれば、常態の機械的強度が大きく、かつ、300℃で1時間の熱処理をしても熱劣化がし難い電解銅箔を提供することができた。   According to the present invention, it was possible to provide an electrolytic copper foil that has a high mechanical strength in the normal state and hardly undergoes thermal deterioration even after heat treatment at 300 ° C. for 1 hour.

SAXS(USAXS)の装置概略図である。It is an apparatus schematic of SAXS (USAXS).

本発明の電解銅箔はpH4以下の酸性溶液中で酸化物として存在する金属をその酸化物の超微粒子又は還元された金属の超微粒子として含有し、塩素を0.005〜0.04wt%含有することを特徴とする。
pH4以下の酸性溶液中で酸化物として存在する金属は、本実施形態ではチタン(Ti)、モリブデン(Mo)、バナジウム(V)、ビスマス(Bi)、テルル(Te)が好ましく使用できる。
即ち、本実施形態の電解銅箔はTi、Mo、V、Bi、Teの少なくとも1種類を含有し、残部が実質的に銅からなる電解銅箔である。
なお、上記「Ti、Mo、V、Bi、Teの少なくとも1種類を含有し」とは、それぞれの金属が単独で、或いは2種類以上が同時に含有される、との意味である。また、「残部が実質的に銅からなる」とは、銅に、原料等に由来する不可避的不純物が含まれ、或いは電解製箔プロセス等による微量の添加物が含まれることを許容する、との意味である。
The electrolytic copper foil of the present invention contains a metal present as an oxide in an acidic solution having a pH of 4 or less as ultrafine particles of the oxide or ultrafine particles of a reduced metal, and contains 0.005 to 0.04 wt% of chlorine. It is characterized by doing.
In the present embodiment, titanium (Ti), molybdenum (Mo), vanadium (V), bismuth (Bi), and tellurium (Te) can be preferably used as the metal present in the acidic solution having a pH of 4 or less.
That is, the electrolytic copper foil of the present embodiment is an electrolytic copper foil that contains at least one of Ti, Mo, V, Bi, and Te, and the balance is substantially made of copper.
The above-mentioned “contains at least one of Ti, Mo, V, Bi, and Te” means that each metal is contained alone or two or more of them are contained simultaneously. In addition, “the balance is substantially made of copper” means that copper contains inevitable impurities derived from raw materials or the like, or allows a trace amount of additives due to an electrolytic foil manufacturing process or the like to be included. Is the meaning.

電解銅箔に含まれるpH4以下の酸性溶液中で酸化物として存在する金属の量は0.0001wt%以上が好ましい。
pH4以下の酸性溶液中で酸化物として存在する金属の含有量が0.0001wt%以下では前記金属を添加した効果が殆ど現れない。なお、箔中の前記金属の含有量のより好ましい範囲は0.001〜1.320wt%である。
電解銅箔に含まれる金属をpH4以下の酸性溶液中に存在する金属と限定するのは、電解液のpHが4以下であり、このような酸性電解液中で酸化物として存在する金属が銅箔中に取り込まれ易いためである。
即ち、前記金属を0.0001wt%未満含有した銅箔では300℃×1時間の熱処理後に常温で測定した機械的強度は、前記金属を含有しない場合と同様、強度が低下する傾向を示す。
The amount of metal present as an oxide in an acidic solution having a pH of 4 or less contained in the electrolytic copper foil is preferably 0.0001 wt% or more.
When the content of a metal present as an oxide in an acidic solution having a pH of 4 or less is 0.0001 wt% or less, the effect of adding the metal hardly appears. In addition, the more preferable range of content of the said metal in foil is 0.001-1.320 wt%.
The reason why the metal contained in the electrolytic copper foil is limited to a metal present in an acidic solution having a pH of 4 or less is that the pH of the electrolytic solution is 4 or less, and the metal present as an oxide in such an acidic electrolytic solution is copper. This is because it is easily taken into the foil.
That is, in the copper foil containing less than 0.0001 wt% of the metal, the mechanical strength measured at room temperature after the heat treatment at 300 ° C. for 1 hour shows a tendency for the strength to decrease as in the case where the metal is not contained.

なお、本明細書において「pH4以下で酸化物として存在する金属」とは、M.Pourbaix のAtlas of electrochemical equilibria in aqueous solutions. Pergamon Press(1966)に示される電位−pH図において、4以下のpHで酸化物として存在する金属であり、該金属を添加した電解液のDLS(動的光散乱法:Dynamic Light Scattering)による粒度分布測定で、添加金属成分が固体粒子として検出される金属である。   In this specification, “a metal present as an oxide at pH 4 or lower” means a pH of 4 or lower in the potential-pH diagram shown in Pergamon Press (1966) by M. Pourbaix's Atlas of electrochemical equilibria in aqueous solutions. In this case, the added metal component is detected as solid particles in the particle size distribution measurement by DLS (Dynamic Light Scattering) of the electrolyte added with the metal.

電解銅箔を電池用集電体として、特にリチウムイオン二次電池用電極の集電体として使用するには、より機械的強度の強い銅箔が要求される。従って、集電体としての用途には電解銅箔に含まれる前記金属の量は0.001以上、好ましくは1.320wt%以下の範囲とすることが好ましい。   In order to use the electrolytic copper foil as a current collector for a battery, particularly as a current collector for an electrode for a lithium ion secondary battery, a copper foil having higher mechanical strength is required. Therefore, for use as a current collector, the amount of the metal contained in the electrolytic copper foil is preferably 0.001 or more, preferably 1.320 wt% or less.

本実施形態の電解銅箔には塩素が0.005〜0.04wt%含有されている。
本実施形態において、塩素の含有量が0.005wt%以下の電解銅箔は、該電解銅箔を製箔する電解浴中の塩素濃度を低く抑える必要性から、製箔中にピンホールが発生しやすくなり、製箔した銅箔にピンホールが存在するため好ましくない。また、塩素の含有量が0.04wt%以上の電解銅箔は、銅箔にカールが発生しやすくなり好ましくない。
従って、塩素の含有量は0.005〜0.04wt%が好適である。
The electrolytic copper foil of this embodiment contains 0.005 to 0.04 wt% of chlorine.
In the present embodiment, the electrolytic copper foil having a chlorine content of 0.005 wt% or less needs to keep the chlorine concentration in the electrolytic bath for producing the electrolytic copper foil low, so that pinholes are generated in the foil production. This is not preferable because pinholes exist in the copper foil that has been formed. Further, an electrolytic copper foil having a chlorine content of 0.04 wt% or more is not preferable because curling tends to occur in the copper foil.
Accordingly, the chlorine content is preferably 0.005 to 0.04 wt%.

本発明者等は銅箔中に前記金属を銅合金として含有させ、或いは単体として混入させる製造方法を種々模索した。その結果、塩素イオンが含まれる電解液では、液中に前記金属を多く添加しても、製箔した銅箔中に前記金属が取り込まれることはなく、当然この様な電解液で製箔された銅箔の常温及び加熱後の箔の機械的強度は向上しなかった。
しかし、電解液に塩素イオンを添加しても、液中にチオ尿素系化合物を添加すると製箔条件によっては前記金属が箔中に取り込まれる、との知見を得た。
The present inventors have sought various manufacturing methods in which the metal is contained in a copper foil as a copper alloy or mixed as a simple substance. As a result, in an electrolytic solution containing chlorine ions, even if a large amount of the metal is added to the solution, the metal is not taken into the foil-formed copper foil, and naturally the foil is made with such an electrolytic solution. The mechanical strength of the copper foil after heating at normal temperature and after heating was not improved.
However, even when chlorine ions were added to the electrolytic solution, it was found that if the thiourea compound was added to the solution, the metal was taken into the foil depending on the foil production conditions.

このような知見を踏まえて電解銅箔を以下の条件で製箔することで、耐熱性に優れた電解銅箔を製造することに成功した。
即ち、300℃×1時間の熱処理後に常温で測定した引張り強さが450MPa以上の銅箔を下記基本電解浴組成、電解条件で製箔することにより、前記金属が箔内に取り込まれた電解銅箔を製箔することができる。
Based on these findings, we succeeded in producing an electrolytic copper foil excellent in heat resistance by producing an electrolytic copper foil under the following conditions.
That is, by forming a copper foil having a tensile strength of 450 MPa or more measured at room temperature after heat treatment at 300 ° C. for 1 hour under the following basic electrolytic bath composition and electrolysis conditions, electrolytic copper in which the metal is taken into the foil The foil can be made.

基本電解浴組成:
Cu=50〜150g/L
2SO4=20〜200g/L
電解条件:
電流密度=30〜100A/dm
液温=30〜70℃
Basic electrolytic bath composition:
Cu = 50 to 150 g / L
H 2 SO 4 = 20 to 200 g / L
Electrolysis conditions:
Current density = 30-100 A / dm 2
Liquid temperature = 30-70 ° C.

硫酸−硫酸銅系銅電解液に添加する添加剤は下記の通りである。
添加剤A:チオ尿素系化合物=3〜20mg/L
添加剤B:Ti、Mo、V、Bi、Teの塩の少なくとも1種(Ti、Mo、V、Bi、Teとして、複数の金属を添加するときはその合計量)=100〜10,000mg/L
添加剤C:塩素イオン=1〜100mg/L
Additives added to the sulfuric acid-copper sulfate-based copper electrolyte are as follows.
Additive A: Thiourea compound = 3 to 20 mg / L
Additive B: At least one salt of Ti, Mo, V, Bi, Te (when adding a plurality of metals as Ti, Mo, V, Bi, Te, the total amount thereof) = 100 to 10,000 mg / L
Additive C: Chlorine ion = 1-100 mg / L

添加剤A:チオ尿素系化合物とは下記構造をもつ有機化合物である。
>N−C(=S)−N<
チオ尿素系化合物の例としては、チオ尿素、N,N‐ジエチルチオ尿素、テトラメチルチオ尿素、エチレンチオ尿素である。しかし、これらは後述する実施例で使用したものを例示しているに過ぎず、以上で述べたような構造的特徴を有し、同様の効果を発揮する化合物であれば、いずれの化合物も使用可能である。
Additive A: A thiourea compound is an organic compound having the following structure.
> N−C (= S) −N <
Examples of thiourea compounds are thiourea, N, N-diethylthiourea, tetramethylthiourea, and ethylenethiourea. However, these only exemplify those used in the examples described later, and any compound can be used as long as it has the structural characteristics as described above and exhibits the same effect. Is possible.

添加剤B:硫酸銅と硫酸を含有する酸性電解液中で溶解し酸化物として存在するTi、Mo、V、Bi、Teの金属塩から選ばれる。例えばナトリウム塩、アンモニウム塩、カリウム塩等である。   Additive B: selected from metal salts of Ti, Mo, V, Bi, and Te that are dissolved in an acidic electrolyte containing copper sulfate and sulfuric acid and exist as oxides. For example, sodium salt, ammonium salt, potassium salt and the like.

添加剤C:塩素イオンの添加は、硫酸銅と硫酸を含有する電解液中で溶解する化合物から選ばれる。例えば塩酸、塩化ナトリウム、塩化カリウム等である。   Additive C: The addition of chlorine ions is selected from compounds that dissolve in an electrolytic solution containing copper sulfate and sulfuric acid. For example, hydrochloric acid, sodium chloride, potassium chloride and the like.

有機添加剤としてチオ尿素系化合物を使用する理由は、これらの化合物が溶液中で容易に[=S]の構造に変化し、[=S]構造が優先的に銅に吸着して有機分子の吸着層を形成し、該吸着層上にTi、Mo、V、Bi、Teの少なくとも1種の酸化物が吸着することで、Ti、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属の少なくとも1種はチオ尿素系化合物と一緒に箔中に取り込まれるためである。
Ti、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属は酸性溶液中では酸化物として存在するが、塩素を含む電解液を用いた銅電析では銅の析出面上を塩素イオンが被覆しているため、Ti、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属の酸化物は銅に吸着されず、箔中への取り込みが起こらない。該電解液にチオ尿素系化合物を添加すると、[=S]構造が塩素イオンよりも優先的に銅上に吸着して銅に有機分子の吸着層を形成する。該吸着層上にTi、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属の酸化物が吸着することにより、Ti、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属はチオ尿素系化合物と一緒に箔中に取り込まれるものと推考される。
The reason for using thiourea compounds as organic additives is that these compounds easily change to a [= S] structure in the solution, and the [= S] structure is preferentially adsorbed on copper, and the organic molecules By forming an adsorption layer and adsorbing at least one oxide of Ti, Mo, V, Bi, Te on the adsorption layer, in an acidic solution having a pH of 4 or less such as Ti, Mo, V, Bi, Te This is because at least one of the metals present as oxides is incorporated into the foil together with the thiourea compound.
Metals present as oxides in acidic solutions of pH 4 or lower, such as Ti, Mo, V, Bi, Te, etc., exist as oxides in acidic solutions. However, copper deposition using an electrolytic solution containing chlorine Since chloride ions are coated on the precipitation surface, metal oxides present as oxides in acidic solutions of pH 4 or lower such as Ti, Mo, V, Bi, Te, etc. are not adsorbed by copper, but into the foil. Ingestion does not occur. When a thiourea compound is added to the electrolytic solution, the [= S] structure is preferentially adsorbed on the copper rather than the chlorine ions to form an organic molecule adsorption layer on the copper. By adsorbing metal oxides present as oxides in an acidic solution of pH 4 or lower such as Ti, Mo, V, Bi, Te, etc. on the adsorption layer, pH 4 of Ti, Mo, V, Bi, Te, etc. It is assumed that the metal present as an oxide in the following acidic solution is taken into the foil together with the thiourea compound.

このように、本発明電解銅箔は、硫酸−硫酸銅電解液にTi、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属、チオ尿素系化合物、塩素を含む電解液から電解析出により形成する。このTi、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属、チオ尿素系化合物、塩素を含む硫酸−硫酸銅電解液中で銅を電解析出すると、Ti、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属の酸化物がチオ尿素系化合物と一緒に銅の結晶粒界に吸着され、結晶核の成長を抑制し、結晶粒を微細化(低プロファイル化)し、常態で大きな機械的強度を備えた電解銅箔を形成するものと考えられる。   As described above, the electrolytic copper foil of the present invention contains a metal, a thiourea compound, and chlorine that are present as oxides in an acidic solution having a pH of 4 or less, such as Ti, Mo, V, Bi, and Te. It forms by electrolytic deposition from the electrolyte solution containing. When copper is electrolytically deposited in a sulfuric acid-copper sulfate electrolytic solution containing a metal, a thiourea compound, and chlorine present as an oxide in an acidic solution having a pH of 4 or less such as Ti, Mo, V, Bi, Te, Ti, , Mo, V, Bi, Te, and other metal oxides that exist as oxides in acidic solutions with a pH of 4 or less are adsorbed together with the thiourea compound to the copper grain boundaries to suppress the growth of crystal nuclei. It is considered that crystal grains are refined (low profile) to form an electrolytic copper foil having a large mechanical strength in a normal state.

結晶粒界に存在するTi、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属の酸化物は、バルクの銅結晶と結合、あるいは吸収されることなく、Ti、Mo、V、Bi、Te酸化物のまま結晶粒界にとどまると考えられる。
従って、Ti、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属を含有する電解銅箔は300℃程度の高温で加熱しても、Ti、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属の酸化物は結晶粒界にとどまり、銅の微細結晶が熱により再結晶し、結晶が粗大化するのを防ぐ働きをすると考えられる。
Metal oxides present as oxides in an acidic solution having a pH of 4 or less such as Ti, Mo, V, Bi, Te, etc. present at the grain boundaries are not bonded to or absorbed by the bulk copper crystals. , Mo, V, Bi, and Te oxides are considered to remain at the grain boundaries.
Therefore, even when an electrolytic copper foil containing a metal present as an oxide in an acidic solution having a pH of 4 or less such as Ti, Mo, V, Bi, Te is heated at a high temperature of about 300 ° C., Ti, Mo, V, Metal oxides that exist as oxides in acidic solutions such as Bi and Te that have a pH of 4 or less remain at the grain boundaries, and the copper fine crystals recrystallize due to heat and prevent the crystals from becoming coarse. Conceivable.

よって、本発明の電解銅箔は、300℃程度の高温で加熱した後でも、低プロファイルで、機械的強度の低下が小さいという、これまでの有機添加剤を用いた硫酸−硫酸銅系の電解液により製造された電解銅箔には見られない優れた特徴を発揮する。   Therefore, the electrolytic copper foil of the present invention has a low profile and a small decrease in mechanical strength even after being heated at a high temperature of about 300 ° C. Exhibits excellent characteristics not seen in electrolytic copper foils manufactured with liquid.

また、特許文献1、2に開示されているように、塩素イオンが含まれる電解液にTi、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属と膠を添加しても、電解銅箔中にTi、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属が取り込まれるようなことはなかった。
当然のことながら、このような電解液で製箔した電解銅箔は、300℃程度の高温で加熱した後に機械的強度が大きく低下した。
In addition, as disclosed in Patent Documents 1 and 2, an electrolyte containing chlorine ions contains metal and glue existing as oxides in an acidic solution having a pH of 4 or less, such as Ti, Mo, V, Bi, and Te. Even if it added, the metal which exists as an oxide in the acidic solution of pH 4 or less, such as Ti, Mo, V, Bi, and Te, was not taken in in electrolytic copper foil.
As a matter of course, the mechanical strength of the electrolytic copper foil made with such an electrolytic solution greatly decreased after being heated at a high temperature of about 300 ° C.

電解液中にチオ尿素系化合物を添加すると塩素イオンが含まれていても製箔条件によってはTi、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属が箔中に取り込まれる理由としては、硫酸−硫酸銅系の電解液に添加されるチオ尿素系化合物が電解液中で金属元素、塩素とともに錯体を形成すると考えられる。
Ti、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属が添加されていない場合は、電解銅箔製箔用の電解液に添加されている金属元素は銅である。従って、硫酸銅と硫酸を含有する電解液中で銅−チオ尿素系化合物が形成される。この電解液による銅電析で電解銅箔を形成すると、銅−チオ尿素系化合物が結晶粒界に吸着され、結晶核の成長を抑制し、結晶粒を微細化し、常態で大きな機械的強度を備えた電解銅箔を形成する。
When a thiourea compound is added to the electrolyte, even if chlorine ions are contained, depending on the foil production conditions, the metal present as an oxide in an acidic solution having a pH of 4 or less such as Ti, Mo, V, Bi, Te, etc. It is considered that the thiourea compound added to the sulfuric acid-copper sulfate electrolytic solution forms a complex with the metal element and chlorine in the electrolytic solution.
When the metal present as an oxide in an acidic solution of pH 4 or lower such as Ti, Mo, V, Bi, Te is not added, the metal element added to the electrolytic solution for the electrolytic copper foil foil is copper. It is. Accordingly, a copper-thiourea compound is formed in the electrolytic solution containing copper sulfate and sulfuric acid. When an electrolytic copper foil is formed by copper electrodeposition using this electrolytic solution, the copper-thiourea compound is adsorbed on the grain boundaries, suppressing the growth of crystal nuclei, making the grains finer, and increasing the mechanical strength in the normal state. The provided electrolytic copper foil is formed.

しかし、この銅箔は結晶粒界に存在する物質が、銅−チオ尿素系化合物であるため、銅はバルクの銅結晶と結合あるいは吸収され、結晶粒界に存在する物質が、チオ尿素系化合物のみとなり、このチオ尿素系化合物は300℃程度の高温に曝されると分解し、その結果として機械的強度が低下すると考えられる。
一般に銅箔を300℃程度の高温で加熱した場合に引張強度が著しく低下する理由は、上記のように結晶粒界に存在する化合物が有機化合物であり、該有機化合物は300℃程度の加熱により分解しやすいため、機械的強度が低下すると考えられる。
However, since this copper foil is a copper-thiourea compound, the substance present at the crystal grain boundary is bonded or absorbed with the bulk copper crystal, and the substance present at the crystal grain boundary is the thiourea compound. Therefore, it is considered that this thiourea compound decomposes when exposed to a high temperature of about 300 ° C., and as a result, the mechanical strength decreases.
In general, when copper foil is heated at a high temperature of about 300 ° C., the reason why the tensile strength is remarkably lowered is that the compound existing at the grain boundary is an organic compound as described above, and the organic compound is heated by heating at about 300 ° C. It is considered that the mechanical strength decreases because it is easily decomposed.

本発明は、硫酸銅と硫酸を含有する電解液にTi、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属の少なくとも1種、チオ尿素系化合物、塩素を含む電解液により銅電析を行い、銅箔を形成するので、電解液に添加されるTi、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属は酸化物として存在し、チオ尿素系化合物と一緒に銅上に吸着する。吸着されたTi、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属の酸化物及びチオ尿素系化合物により結晶核の成長が抑制され、結晶粒が微細化され、常態で大きな機械的強度を備えた電解銅箔が形成される。   In the present invention, an electrolytic solution containing copper sulfate and sulfuric acid contains at least one kind of metal, thiourea compound, and chlorine, which are present as oxides in an acidic solution having a pH of 4 or less such as Ti, Mo, V, Bi, Te. Since the copper electrodeposition is performed with the electrolytic solution containing to form a copper foil, the metal present as an oxide in an acidic solution of pH 4 or less such as Ti, Mo, V, Bi, Te, etc. added to the electrolytic solution is an oxide. And adsorb on copper together with thiourea compounds. The growth of crystal nuclei is suppressed and the crystal grains are refined by the metal oxides and thiourea compounds present as oxides in an acidic solution of pH 4 or lower such as adsorbed Ti, Mo, V, Bi, Te. An electrolytic copper foil having a large mechanical strength in a normal state is formed.

このように、本発明の電解銅箔はTi、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属の酸化物及びチオ尿素系化合物が結晶粒界に存在するため、銅−チオ尿素系化合物の場合とは異なり、Ti、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属の酸化物はバルクの銅結晶と結合、あるいは吸収されることなく、Ti、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属の酸化物及びチオ尿素系化合物のまま結晶粒界にとどまると考えられる。このため、300℃程度の高温に曝されても、Ti、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属の酸化物は結晶粒界にとどまり、銅の微細結晶が熱により再結晶し、結晶が粗大化するのを防ぐ働きをする。   Thus, the electrolytic copper foil of the present invention has metal oxides and thiourea compounds present as oxides in an acidic solution of pH 4 or lower such as Ti, Mo, V, Bi, Te, etc., at the grain boundaries. Therefore, unlike the case of a copper-thiourea compound, a metal oxide existing as an oxide in an acidic solution having a pH of 4 or less such as Ti, Mo, V, Bi, Te is bonded to a bulk copper crystal, or It is considered that the metal oxides and thiourea compounds existing as oxides in an acidic solution having a pH of 4 or less such as Ti, Mo, V, Bi, and Te remain at the grain boundaries without being absorbed. For this reason, even when exposed to a high temperature of about 300 ° C., metal oxides existing as oxides in an acidic solution having a pH of 4 or less such as Ti, Mo, V, Bi, Te, etc. remain at the crystal grain boundaries. It works to prevent fine crystals from being recrystallized by heat and coarsening of the crystals.

この観点からは、酸化物等の析出物のサイズは0.5〜20nmで最もピン止め効果が発揮され、高温でも結晶粒の成長を抑制できるため好ましい。析出物のサイズが20〜50nmでは、ピン止め効果が発揮されるものの、完全に結晶成長を抑制しているとは言えない。析出物のサイズが50〜100nmでもピン止め効果は発揮されるが、結晶粒の粗大化が多数観察される。 From this point of view, the size of precipitates such as oxides is preferably 0.5 to 20 nm because the pinning effect is most exhibited and the growth of crystal grains can be suppressed even at high temperatures. When the size of the precipitate is 20 to 50 nm, the pinning effect is exhibited, but it cannot be said that the crystal growth is completely suppressed. Even if the size of the precipitate is 50 to 100 nm, the pinning effect is exhibited, but a large number of crystal grains are observed.

電解液中に添加するTi、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属の量は100〜10,000mg/Lが好ましい。Ti、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属の添加量を100mg/L以上とするのは、これ以下ではTi、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属を含有させた効果が現れず、10,000mg/Lを超えて含有させると、浴中で添加元素由来の沈殿物を生じやすくなる。従ってTi、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属の添加量は100〜10,000mg/Lとすることが好ましい。   The amount of metal present as an oxide in an acidic solution having a pH of 4 or less such as Ti, Mo, V, Bi, Te, etc. added to the electrolyte is preferably 100 to 10,000 mg / L. The amount of metal added as an oxide in an acidic solution having a pH of 4 or less, such as Ti, Mo, V, Bi, Te, is set to 100 mg / L or more. Below this, Ti, Mo, V, Bi, Te, etc. The effect of containing a metal present as an oxide in an acidic solution having a pH of 4 or less does not appear, and if it exceeds 10,000 mg / L, a precipitate derived from an additive element tends to be generated in a bath. Therefore, it is preferable that the addition amount of the metal which exists as an oxide in the acidic solution of pH 4 or less, such as Ti, Mo, V, Bi, Te, is 100 to 10,000 mg / L.

本発明ではチオ尿素系化合物を添加することで、銅箔中にTi、Mo、V、Bi、Teを取り込むことに成功した。
添加するチオ尿素系化合物の量を3〜20mg/Lとするのは、3mg/L未満では銅箔中にTi、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属を規定量取り込むことができず、300℃×1時間の熱処理後の常温での引張強度が450MPa以下となり、20mg/Lを超えて添加すると銅箔中にTi、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属が入りすぎ、引張強度が高くなり過ぎ、或いは伸びが小さくなり、好ましくない性質が現れるためで、添加量は3〜20mg/Lが好ましい範囲である。
In the present invention, the addition of a thiourea compound succeeded in incorporating Ti, Mo, V, Bi, and Te into the copper foil.
The amount of thiourea compound to be added is 3 to 20 mg / L. If it is less than 3 mg / L, it exists as an oxide in an acidic solution of Ti, Mo, V, Bi, Te or the like in copper foil in a copper foil. The tensile strength at room temperature after heat treatment at 300 ° C. for 1 hour becomes 450 MPa or less, and when added over 20 mg / L, Ti, Mo, V, Bi, This is because a metal existing as an oxide in an acidic solution of pH 4 or lower such as Te enters too much, the tensile strength becomes too high, or the elongation becomes small, and undesirable properties appear. Therefore, the addition amount is 3 to 20 mg / L. This is a preferred range.

塩素イオンの添加量は1〜100mg/Lである。塩素イオンが1mg/L未満の添加では、箔にピンホールが多く発生するため好ましくなく、また、塩素イオンを100mg/Lを超えて添加すると、表面粗さが著しく大きくなり、或いはカールが発生する等の不具合が発現すためで、従って、塩素イオンは1〜100mg/Lの範囲とすることが好ましく、特に好ましくは15〜50mg/Lである。このような量の塩素イオンを含有する電解液で製箔することで電解銅箔中に塩素を0.005〜0.04wt%含有させることができる。   The addition amount of chloride ions is 1 to 100 mg / L. Addition of less than 1 mg / L of chlorine ions is not preferable because many pinholes are generated in the foil, and addition of more than 100 mg / L of chloride ions causes a significant increase in surface roughness or curling. Therefore, the chlorine ion is preferably in the range of 1 to 100 mg / L, particularly preferably 15 to 50 mg / L. By making a foil with an electrolytic solution containing such an amount of chlorine ions, 0.005 to 0.04 wt% of chlorine can be contained in the electrolytic copper foil.

電解銅箔は、Ti、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属の少なくとも1種、チオ尿素系化合物、塩素イオンを上記した規定量添加した硫酸銅溶液を電解液として、貴金属酸化物被覆チタンを陽極に、チタン製回転ドラムを陰極として、電流密度30〜100A/dm、液温30〜70℃の条件で電解処理することで製箔する。The electrolytic copper foil is copper sulfate to which at least one kind of metal existing as an oxide in an acidic solution of pH 4 or lower such as Ti, Mo, V, Bi, Te, a thiourea compound, and a chlorine ion is added in the specified amount. Using the solution as the electrolytic solution, the noble metal oxide-coated titanium as the anode, and the titanium rotating drum as the cathode, electrolytic foil treatment is performed under the conditions of a current density of 30 to 100 A / dm 2 and a liquid temperature of 30 to 70 ° C.

好ましくは、本発明の電解液にアンモニウムイオン、または硝酸イオンを添加することで製箔される電解銅箔の300℃×1時間の熱処理後の常温での機械的強度をさらに向上させることができる。
電解液に添加するアンモニウムイオンの量は1〜15g/L、硝酸イオンの量は50〜200mg/Lが適している。加熱処理後の常温での機械的強度をさらに向上させる際には、電解液にアンモニアイオンまたは硝酸イオンを添加することが好ましい。
Preferably, the mechanical strength at room temperature after 300 ° C. × 1 hour heat treatment of the electrolytic copper foil to be formed by adding ammonium ion or nitrate ion to the electrolytic solution of the present invention can be further improved. .
The amount of ammonium ions added to the electrolytic solution is suitably 1 to 15 g / L, and the amount of nitrate ions is suitably 50 to 200 mg / L. In order to further improve the mechanical strength at normal temperature after the heat treatment, it is preferable to add ammonia ions or nitrate ions to the electrolytic solution.

前記電解液を使用し、適正な電流密度と液温で製箔することで、300℃×1時間の熱処理後の常温での引張り強さが450MPa以上、導電率が60%IACS以上の電解銅箔を製造することができる。   By using the above-mentioned electrolytic solution and making a foil at an appropriate current density and liquid temperature, electrolytic copper having a tensile strength at room temperature after heat treatment at 300 ° C. for 1 hour of 450 MPa or more and a conductivity of 60% IACS or more. A foil can be produced.

上述したように、リチウムイオン二次電池の負極集電体を構成する集電体(銅箔)は、ポリイミドバインダーを使用する場合、通常300℃×1時間の熱処理に耐える必要性がある。即ち、リチウムイオン二次電池用集電体表面には活物質、導電材とバインダーの混合物に溶剤などを加えてペースト状に調製した活物質組成物が塗布され、乾燥工程を経て、リチウムイオン二次電池の負極電極とする。その乾燥工程において、300℃×1時間の熱処理を必要とする。この乾燥工程の加熱条件に耐え、かつ活物質の充放電サイクルによる膨張、収縮に耐える銅箔として、300℃×1時間の熱処理後に常温で測定した引張り強さが450MPa以上である、という条件を満足する性能が必要である。   As described above, the current collector (copper foil) constituting the negative electrode current collector of the lithium ion secondary battery needs to withstand a heat treatment of 300 ° C. × 1 hour usually when a polyimide binder is used. That is, an active material composition prepared by adding a solvent to a mixture of an active material, a conductive material and a binder to a surface of a current collector for a lithium ion secondary battery and applying a lithium ion secondary battery through a drying process. The negative electrode of the secondary battery is used. In the drying process, a heat treatment of 300 ° C. × 1 hour is required. As a copper foil that withstands the heating conditions of this drying process and withstands expansion and contraction due to charge / discharge cycles of the active material, the tensile strength measured at room temperature after heat treatment at 300 ° C. for 1 hour is 450 MPa or more. Satisfactory performance is required.

また、SiやSnなどの活物質はカーボンなどの活物質と比べ電子伝導性が悪い。活物質の導電性が悪いと、電極の内部抵抗が上がるため、サイクル特性が劣化する。そのため、集電体としての銅箔には60%以上の導電率が要求される。   In addition, active materials such as Si and Sn have poor electronic conductivity compared to active materials such as carbon. If the conductivity of the active material is poor, the internal resistance of the electrode increases, and the cycle characteristics deteriorate. Therefore, the copper foil as a current collector is required to have a conductivity of 60% or more.

本発明のTi、Mo、V、Bi、TeなどのpH4以下の酸性溶液中で酸化物として存在する金属を含有する銅箔は上記二次電池用集電体が要求する諸特性を満足する。従ってかかる電解銅箔を集電体とし、該集電体にシリコン、ゲルマニウム、錫又はそれらの合金化合物またはそれらを主成分とする活物質を堆積して電極とし、該電極を組み込むことで性能の優れたリチウムイオン二次電池を製造し、提供することができる。   The copper foil containing a metal present as an oxide in an acidic solution having a pH of 4 or less such as Ti, Mo, V, Bi, and Te of the present invention satisfies various characteristics required by the current collector for a secondary battery. Therefore, such an electrolytic copper foil is used as a current collector, and silicon, germanium, tin, or an alloy compound thereof or an active material containing them as a main component is deposited on the current collector as an electrode. An excellent lithium ion secondary battery can be manufactured and provided.

〈実施例〉
下記の硫酸銅と硫酸を含有する電解液を基本浴組成とし、表1に示す量の塩素イオン、Ti、Mo、V、Bi、Te、チオ尿素系有機添加剤を添加した電解液を用いて貴金属酸化物被覆チタンを陽極に、チタン製回転ドラムを陰極として、下記電解条件で電解銅箔を製箔した。
基本電解浴組成
Cu=50〜150g/L
2SO4=20〜200g/L
電解条件
電流密度 30〜100A/dm
温度 30〜70℃
<Example>
An electrolytic solution containing the following copper sulfate and sulfuric acid is used as a basic bath composition, and an electrolytic solution to which chlorine ions, Ti, Mo, V, Bi, Te, and thiourea organic additives in amounts shown in Table 1 are added is used. An electrolytic copper foil was made under the following electrolysis conditions using a noble metal oxide-coated titanium as an anode and a titanium rotating drum as a cathode.
Basic electrolytic bath composition Cu = 50 to 150 g / L
H 2 SO 4 = 20 to 200 g / L
Electrolysis conditions Current density 30-100 A / dm 2
Temperature 30 ~ 70 ℃

なお、表1において、「加熱後」とは、不活性ガス雰囲気中で、300℃×1時間の熱処理後に常温で測定した結果である。「加熱前」とは、上記熱処理を行う前に常温で測定した結果である。以下の実施例でも同様である。   In Table 1, “after heating” is a result of measurement at room temperature after heat treatment at 300 ° C. for 1 hour in an inert gas atmosphere. “Before heating” is the result of measurement at room temperature before the heat treatment. The same applies to the following embodiments.

Figure 0005740055
Figure 0005740055

防錆処理
このようにして製箔した電解銅箔に下記条件で防錆処理を施した。
製箔した電解銅箔(未処理銅箔)をCrO;1g/L水溶液に5秒間浸漬して、クロメート処理を施し、水洗後乾燥させた。
なお、ここでは、クロメート処理を行ったが、ベンゾトリアゾール系処理、或いはシランカップリング剤処理、又はクロメート処理後にシランカップリング剤処理を行ってもよいことは勿論である。
Rust prevention treatment The electrolytic copper foil thus formed was subjected to a rust prevention treatment under the following conditions.
The formed electrolytic copper foil (untreated copper foil) was immersed in a CrO 3 ; 1 g / L aqueous solution for 5 seconds, subjected to chromate treatment, washed with water and dried.
Although the chromate treatment is performed here, it goes without saying that the silane coupling agent treatment may be performed after the benzotriazole-based treatment, the silane coupling agent treatment, or the chromate treatment.

〈比較例〉
表2に示す量の塩素、Mo、Fe、Ni、エチレンチオ尿素または膠を添加した硫酸銅と硫酸を含有する電解液を用いて貴金属酸化物被覆チタンを陽極に、チタン製回転ドラムを陰極として、下記電解条件で電解銅箔を製箔した。
電解条件
電流密度 30〜100A/dm
温度 30〜70℃
このようにして製箔した銅箔に実施例と同様の表面処理を行った。
<Comparative example>
Using an electrolyte containing copper sulfate and sulfuric acid with the addition of chlorine, Mo, Fe, Ni, ethylenethiourea or glue in the amounts shown in Table 2, the noble metal oxide-coated titanium as the anode, and the titanium rotating drum as the cathode, An electrolytic copper foil was made under the following electrolysis conditions.
Electrolysis conditions Current density 30-100 A / dm 2
Temperature 30 ~ 70 ℃
The copper foil thus produced was subjected to the same surface treatment as in the example.

Figure 0005740055
Figure 0005740055

作成した銅箔について次の試験を実施した。
銅箔中のTi、Mo、V、Bi、Te、Fe、Ni、の含有量の測定
Ti、Mo、V、Bi、Teの含有量は、一定重量の電解銅箔を酸で溶解した後、溶液中のTi、Mo、V、Bi、TeをICP発光分光分析法により求めた。
使用機器 :ICPS−7000(島津製作所)
銅箔の引張強度の測定
銅箔の引張強度は、IPC−TM−650に基づいて箔の加熱前と加熱後に付き測定した。
使用機器 : AG−I (島津製作所)
The following test was implemented about the produced copper foil.
Measurement of content of Ti, Mo, V, Bi, Te, Fe, Ni in copper foil Content of Ti, Mo, V, Bi, Te is obtained by dissolving a certain weight of electrolytic copper foil with acid, Ti, Mo, V, Bi, and Te in the solution were determined by ICP emission spectroscopy.
Equipment used: ICPS-7000 (Shimadzu Corporation)
Measurement of tensile strength of copper foil The tensile strength of copper foil was measured before and after heating the foil based on IPC-TM-650.
Equipment used: AG-I (Shimadzu Corporation)

導電率の測定
導電率は、まず20mm×200mmの銅箔の抵抗値を測定した後、測定した抵抗値を銅箔の断面積で割って算出した。
塩素含有量の測定
塩素含有量は、一定重量の電解銅箔を酸で溶解した後、溶液中の塩素を硝酸銀滴定により定量を行い、算出を行った。
Measurement of electrical conductivity The electrical conductivity was calculated by first measuring the resistance value of a 20 mm × 200 mm copper foil and then dividing the measured resistance value by the cross-sectional area of the copper foil.
Measurement of chlorine content Chlorine content was calculated by dissolving a certain weight of electrolytic copper foil with an acid and then quantifying the chlorine in the solution by silver nitrate titration.

酸化物の解析
電解銅合金中に含有される酸化物の化学結合状態や電子状態の解析をXAFS(X線微細吸収構造:X-ray Absorption Fine Structure)法で行った。XAFS法では、試料にX線エネルギーを変化させながらX線を照射し、得られたX線吸収スペクトルから試料中の化学結合状態や電子状態の解析を行うことができる。
その他、X線吸収スペクトルを得る手法として、入射したX線の強度と透過したX線の強度からX線吸収スペクトルを求める透過法、X線の吸収に伴って試料から発せられる蛍光X線の強度を測定する蛍光法がある。
金属材料などの添加元素を分析対象とするとき、その添加量は微量であり透過法でのXAFSスペクトルを得ることは困難である。この様な場合に有効なのが上記に記した蛍光法である。蛍光法の特徴としては、その光軸系よりX線の照射面積が広く取れることにより微量成分の元素でもXAFS測定が可能となる。
本測定では高強度銅箔中のTi、Mo、V、Bi、Teの化学結合状態や電子状態を知ることが目的であり、Ti、Mo、V、Bi、Teの量は微量であり、透過法でXAFSスペクトルを得るには困難であることから蛍光法を選択した。
測定に関してはSPring−8の産業利用ビームラインBL14B2を使用した。測定したX線のエネルギー範囲は10000〜10434eVとした。
Analysis of oxides The chemical bonding state and electronic state of oxides contained in the electrolytic copper alloy were analyzed by the XAFS (X-ray Absorption Fine Structure) method. In the XAFS method, a sample is irradiated with X-rays while changing X-ray energy, and a chemical bond state and an electronic state in the sample can be analyzed from the obtained X-ray absorption spectrum.
Other methods for obtaining an X-ray absorption spectrum include a transmission method for obtaining an X-ray absorption spectrum from the intensity of incident X-rays and the intensity of transmitted X-rays, and the intensity of fluorescent X-rays emitted from a sample along with X-ray absorption. There is a fluorescence method for measuring.
When an additive element such as a metal material is to be analyzed, the amount of addition is very small, and it is difficult to obtain an XAFS spectrum by the transmission method. The fluorescent method described above is effective in such a case. As a feature of the fluorescence method, XAFS measurement can be performed even with a trace amount of elements by taking a wider X-ray irradiation area than the optical axis system.
The purpose of this measurement is to know the chemical bonding state and electronic state of Ti, Mo, V, Bi, and Te in the high-strength copper foil. The amount of Ti, Mo, V, Bi, and Te is very small, and the transmission The fluorescence method was selected because it was difficult to obtain an XAFS spectrum by this method.
Regarding the measurement, SPring-8 industrial use beam line BL14B2 was used. The measured X-ray energy range was 10000-10434 eV.

実施例の箔の測定結果と、比較のために用意したTi、Mo、V、Bi、Teの各酸化物の測定結果とを比較したところ、Ti、Mo、V、Bi、Te含有銅箔のスペクトルは金属ではなく酸化物のスペクトルとほぼ一致したエネルギー領域にピークを持っている。このことから、電解銅箔中のTi、Mo、V、Bi、Te元素は酸化物状態として含有されていることを確認した。   When the measurement result of the foil of an Example and the measurement result of each oxide of Ti, Mo, V, Bi, and Te prepared for the comparison were compared, Ti, Mo, V, Bi, and Te containing copper foil of The spectrum has a peak in the energy region that almost coincides with the spectrum of the oxide, not the metal. From this, it was confirmed that Ti, Mo, V, Bi, and Te elements in the electrolytic copper foil were contained in an oxide state.

箔中金属成分の粒径の測定
箔中における金属(無機添加物)の粒径は、SAXS(small angle X−ray scattering、小角X線散乱)とUSAXS(ultra small angle X−ray scattering、極小角X線散乱)測定の解析によって求めた。SAXS・USAXS測定においてはSpring−8の産業利用ビームラインBL19B2で行った。
Measurement of the particle size of the metal component in the foil The particle size of the metal (inorganic additive) in the foil is determined by SAXS (small angle X-ray scattering) and USAXS (ultra small angle X-ray scattering). X-ray scattering) was determined by analysis. The SAXS / USAXS measurement was performed at the industrial beam line BL19B2 of Spring-8.

図1(a)にSAXS(USAXS)測定の簡単な光軸図を示す。シャッター15を備えるX線源13から生じる入射X線14は、モノクロメーター17、第1ピンホール19、第2ピンホール21、第3ピンホール25を通って、試料27に照射される。試料27に照射された入射X線14から、試料27を透過する透過X線29と、試料27により散乱された散乱X線31を生じる。検出器35は、光軸の最後に設けられ、透過X線29または散乱X線31を検出する。   FIG. 1A shows a simple optical axis diagram of SAXS (USAXS) measurement. Incident X-rays 14 generated from the X-ray source 13 including the shutter 15 are irradiated to the sample 27 through the monochromator 17, the first pinhole 19, the second pinhole 21, and the third pinhole 25. From incident X-rays 14 irradiated on the sample 27, transmitted X-rays 29 that pass through the sample 27 and scattered X-rays 31 scattered by the sample 27 are generated. The detector 35 is provided at the end of the optical axis and detects transmitted X-rays 29 or scattered X-rays 31.

検出器35で散乱X線31を測定する場合は、図1(b)に示す通り、減衰器23を通さずに入射X線14を試料27に照射し、透過X線29をビームストッパー33で遮蔽し、検出器35で散乱X線31を測定する。   When the scattered X-ray 31 is measured by the detector 35, as shown in FIG. 1B, the incident X-ray 14 is irradiated to the sample 27 without passing through the attenuator 23, and the transmitted X-ray 29 is irradiated by the beam stopper 33. The light is shielded and the scattered X-ray 31 is measured by the detector 35.

検出器35で透過X線29を測定する場合は、図1(c)に示す通り、減衰器23で入射X線14の強度を弱めた上で、入射X線14を試料27に照射し、透過X線29をビームストッパー33で遮蔽せずに検出器35で透過X線35を測定する。   When measuring the transmitted X-ray 29 with the detector 35, as shown in FIG. 1C, the intensity of the incident X-ray 14 is weakened with the attenuator 23, and then the sample 27 is irradiated with the incident X-ray 14. The transmitted X-ray 35 is measured by the detector 35 without shielding the transmitted X-ray 29 by the beam stopper 33.

試料27から検出器35までの距離をLとする。試料27を透過した透過X線29が検出器35に到達する場所をOとして、同じく試料27から角度θで散乱された散乱X線31が検出器35に到達する場所をAとする。AO=rとすればtanθ=r/Lとなりθが求まる。SAXS及びUSAXSのデータの横軸を式(1)で表すq(nm−1)で記述する。
q=4πsinθ/λ・・・(1)
Let L be the distance from the sample 27 to the detector 35. A location where the transmitted X-ray 29 transmitted through the sample 27 reaches the detector 35 is denoted by O, and a location where the scattered X-ray 31 scattered from the sample 27 at the angle θ reaches the detector 35 is denoted by A. If AO = r, then tan θ = r / L and θ can be obtained. The horizontal axis of the SAXS and USAXS data is described by q (nm −1 ) represented by the formula (1).
q = 4πsin θ / λ (1)

λは入射X線の波長である。測定ではλ=0.068nm、試料から検出器までの距離をL=4.2m(SAXS)、L=42m(USAXS)とした。測定の範囲はq=0.05〜4(nm−1)である。検出器は半導体二次元検出器ピラタスを使用した。SAXS測定をした後、2次元のX線の強度のマッピングを見て異方性が無いのを確認して、一次元化を行った。銅箔と電解銅合金銅箔比較してq=0.4〜2の間でX線の強度が異なったのを確認した。これは電解銅合金銅箔中に10nm以下の介在物が存在していることを示唆している。   λ is the wavelength of incident X-rays. In the measurement, λ = 0.068 nm, the distance from the sample to the detector was L = 4.2 m (SAXS), and L = 42 m (USAXS). The measurement range is q = 0.05-4 (nm-1). The detector used was a semiconductor two-dimensional detector Pilatus. After performing SAXS measurement, it was confirmed that there was no anisotropy by looking at the mapping of the intensity of two-dimensional X-rays, and one-dimensionalization was performed. It was confirmed that the X-ray intensity was different between q = 0.4-2 as compared with copper foil and electrolytic copper alloy copper foil. This suggests that inclusions of 10 nm or less are present in the electrolytic copper alloy copper foil.

例えば、Mo入り電解銅箔に関しては、TEM観察とXAFS測定の結果から、微粒子はMoOであると考えられる。よって、Mo入り電解銅箔のSAXSデータから純銅箔のSAXS強度を差し引くことで、MoOからのX線の散乱を抽出できる。この抽出データを用いて、MoOの数密度を算出するために散乱X線から散乱断面積を求め、Fittingを行った。測定されるX線散乱強度I(q)と散乱断面積dΣ/dΩ(q)は式−(2)関係にある。For example, regarding Mo-containing electrolytic copper foil, the fine particles are considered to be MoO 3 from the results of TEM observation and XAFS measurement. Therefore, X-ray scattering from MoO 3 can be extracted by subtracting the SAXS intensity of the pure copper foil from the SAXS data of the Mo-containing electrolytic copper foil. Using this extracted data, in order to calculate the number density of MoO 3, a scattering cross section was obtained from scattered X-rays, and fitting was performed. The measured X-ray scattering intensity I (q) and the scattering cross section dΣ / dΩ (q) are in the relationship of equation (2).

Figure 0005740055
Φ0はダイレクトビームの強度、ηは検出器による補正項、Sは照射面積、Tは透過率、Dは厚さである。基本的にはΦ0、η、Sは一定なのでΦ0・η・S=A=constとして装置固有の値とする。
Figure 0005740055
Φ0 is the intensity of the direct beam, η is the correction term by the detector, S is the irradiation area, T is the transmittance, and D is the thickness. Since Φ0, η, and S are basically constant, Φ0 · η · S = A = const is set to a value unique to the apparatus.

Aに関しては予めΦ0、η、Sを決定している装置で測定したグラッシーカーボンをSPring−8, BL19B2でも測定を行い、Aを算出した。式−(2)のS、C、Nの記号はそれぞれSample、Cell、Noiseの略記号であり、本願ではSampleが電解銅合金箔、Cellが純銅箔となる。式−(2)から散乱断面積を求めると式−(3)となる。   Regarding A, glassy carbon measured with an apparatus that previously determined Φ0, η, and S was also measured with SPring-8, BL19B2, and A was calculated. Symbols S, C, and N in Formula- (2) are abbreviations for Sample, Cell, and Noise, respectively. In this application, Sample is an electrolytic copper alloy foil, and Cell is a pure copper foil. When the scattering cross section is obtained from Equation- (2), Equation- (3) is obtained.

Figure 0005740055
一方で散乱断面積は式−(4)で表される。
Figure 0005740055
On the other hand, the scattering cross section is expressed by the formula-(4).

Figure 0005740055
dΣ/dΩ(q)は散乱断面積、Δρ2は原子散乱因子、dNは粒子数密度、Vは粒子体積、Fは粒子の形状因子、N(r)は粒径分布関数である。TEM観察の結果から、粒子の形状因子は球体とした(式−(5))。
Figure 0005740055
dΣ / dΩ (q) is a scattering cross section, Δρ2 is an atomic scattering factor, dN is a particle number density, V is a particle volume, F is a particle shape factor, and N (r) is a particle size distribution function. From the result of TEM observation, the shape factor of the particle was a sphere (formula- (5)).

Figure 0005740055
散乱X線強度から求めた散乱断面積:dΣ/dΩ(q)を変数qで式−(3)を用いてFittingを行った。その結果、平均粒子径(半径)が解析的に求められた。
Figure 0005740055
Fitting was performed using the equation-(3) with the scattering cross section obtained from the scattered X-ray intensity: dΣ / dΩ (q) as a variable q. As a result, the average particle diameter (radius) was analytically determined.

電池性能試験
次に実施例で製箔した電解銅箔を集電体として、リチウムイオン二次電池を作成し、サイクル寿命試験を行った。
粉末状のSi合金系活物質(平均粒径0.1μm〜10μm)を85、バインダー(ポリイミド)を15の比率(重量比)で混合し、N−メチルピロリドン(溶剤)に分散させて活物質スラリーとした。
次いで、このスラリーを、作成した12μm厚の電解銅箔両面に塗布し、乾燥後ローラープレス機で圧縮形成し、その後、窒素雰囲気下、300℃で1時間焼結し、負極とした。この負極は、成形後の負極合剤の膜厚が両面共に20μmと同一であった。
Battery Performance Test Next, a lithium ion secondary battery was prepared using the electrolytic copper foil produced in the example as a current collector, and a cycle life test was performed.
Powdered Si alloy-based active material (average particle size 0.1 μm to 10 μm) is mixed in a ratio (weight ratio) of 85 and binder (polyimide) at 15 (weight ratio), and dispersed in N-methylpyrrolidone (solvent). A slurry was obtained.
Subsequently, this slurry was applied to both surfaces of the prepared electrolytic copper foil having a thickness of 12 μm, dried and compression-formed with a roller press, and then sintered at 300 ° C. for 1 hour in a nitrogen atmosphere to obtain a negative electrode. In this negative electrode, the negative electrode mixture after molding had the same film thickness of 20 μm on both sides.

リチウムイオン二次電池の作成
アルゴン雰囲気下のグローブボックス内で、以下の構成で評価用三極式セルを構築した。
負極:上記で作製のSi合金系負極
対極、参照極:リチウム箔
電解液:1mol/L LiPF/EC+DEC(3:7vol%)
Creation of Lithium Ion Secondary Battery A three-electrode cell for evaluation was constructed with the following configuration in a glove box under an argon atmosphere.
Negative electrode: Si alloy negative electrode prepared above Counter electrode, reference electrode: Lithium foil Electrolytic solution: 1 mol / L LiPF 6 / EC + DEC (3: 7 vol%)

構築したセルをボックスから大気中に取り出し、25℃の雰囲気下で充放電測定を実施した。
充電はLiの標準単極電位基準に対して0.02Vまで定電流で行い、その後はCVで(定電位のまま)電流が0.05C低下した時点で充電終了とした。なお、Cは充放電レートを示す。放電は定電流にて0.1Cで1.5V(Li基準)まで行った。同じ0.1C相当電流で充放電を繰り返した。
充放電性能の評価として、放電容量が1サイクル目の放電容量の70%に達するまでのサイクル数を測定し、これをサイクル寿命とし、サイクル寿命100回以上の電極を実用上使用可能と判断し、合格レベルとした。各条件で製造した電極のサイクル寿命を表1及び表2に示す。サイクル寿命100回未満の電極を不合格、100回以上120回未満を良好な範囲、120回以上を最適な範囲とした。
また、充放電性能の評価として、充放電100サイクルを行った後電池を分解し、箔の変形、破断を観察した。その結果を箔の変形として表1、2に示す。シワ等の変形がないものに対しては○を、シワ等の変形が生じたものは不合格とし×を付した。
Ti、Mo、V、Bi、Teの少なくとも1種含有電解銅合金箔のTi、Mo、V、Bi、Te含有量は0.0001wt%以上であることが好ましく、特に0.001〜1.320wt%であることが好ましい。この範囲を外れると充放電試験後にしわの発生が見られた。
The constructed cell was taken out from the box into the atmosphere, and charge / discharge measurement was performed in an atmosphere at 25 ° C.
Charging was performed at a constant current up to 0.02 V with respect to the standard unipolar potential of Li, and thereafter, charging was terminated when the current decreased by 0.05 C at CV (while being at a constant potential). C indicates a charge / discharge rate. Discharging was carried out at a constant current up to 1.5 V (based on Li) at 0.1 C. Charging / discharging was repeated with the same current equivalent to 0.1 C.
As an evaluation of the charge / discharge performance, the number of cycles until the discharge capacity reaches 70% of the discharge capacity of the first cycle is measured, and this is regarded as the cycle life, and it is judged that an electrode having a cycle life of 100 times or more can be used practically. , Passed level. Tables 1 and 2 show the cycle life of the electrodes manufactured under each condition. An electrode having a cycle life of less than 100 times was rejected, 100 times to less than 120 times was a good range, and 120 times or more was an optimum range.
Further, as an evaluation of the charge / discharge performance, the battery was disassembled after 100 cycles of charge / discharge, and the deformation and fracture of the foil were observed. The results are shown in Tables 1 and 2 as the deformation of the foil. Those with no deformation such as wrinkles were marked with ◯, and those with wrinkles and other deformation were rejected and marked with ×.
The content of Ti, Mo, V, Bi, Te of at least one of Ti, Mo, V, Bi, Te is preferably 0.0001 wt% or more, particularly 0.001-1.320 wt. % Is preferred. Outside this range, wrinkles were observed after the charge / discharge test.

表1に示すように、電解浴中のTi、Mo、V、Bi、Te量を増加させると箔中へのTi、Mo、V、Bi、Teの取り込み量も増加する傾向にあることが分かる。300℃×1時間の熱処理後の常温での引張強度をみると、全ての箔において450MPa以上と耐熱性に優れている。
Ti、Mo、V、Bi、Teの取り込み量が0.001wt%以上となる条件においては、300℃×1時間の熱処理後の常温での引張強度が460MPa以上と特に耐熱性に優れている。
しかし、Ti、Mo、V、Bi、Te取り込み量が1.320wt%より多い箔においては、導電率が70%IACS未満と低くなる傾向にあるが、実用的には60%IACS以上であれば支障がなく、また、Ti、Mo、V、Bi、Te取り込み量が0.001wt%より少ない箔においては300℃×1時間の熱処理後の常温での引張強度の強さが460MPaより僅かに落ちるが450MPaよりは強く、実用的には支障のない範囲であることから、箔中のTi、Mo、V、Bi、Teの取り込み量は0.0001wt%以上、好ましくは0.001〜1.320wt%、より好ましく0.001〜1.000wt%である。
As shown in Table 1, when the amount of Ti, Mo, V, Bi, Te in the electrolytic bath is increased, the amount of Ti, Mo, V, Bi, Te incorporated into the foil tends to increase. . Looking at the tensile strength at room temperature after heat treatment at 300 ° C. for 1 hour, all foils have excellent heat resistance of 450 MPa or more.
Under conditions where the amount of Ti, Mo, V, Bi, and Te incorporated is 0.001 wt% or more, the tensile strength at normal temperature after heat treatment at 300 ° C. for 1 hour is 460 MPa or more, which is particularly excellent in heat resistance.
However, in a foil having a Ti, Mo, V, Bi, and Te uptake of more than 1.320 wt%, the conductivity tends to be as low as less than 70% IACS, but practically 60% IACS or more. There is no hindrance, and in the case of Ti, Mo, V, Bi, Te uptake amount less than 0.001 wt%, the tensile strength at room temperature after heat treatment at 300 ° C. for 1 hour is slightly lower than 460 MPa. Is stronger than 450 MPa and practically has no problem, the amount of Ti, Mo, V, Bi, Te incorporated in the foil is 0.0001 wt% or more, preferably 0.001 to 1.320 wt. %, More preferably 0.001-1.000 wt%.

上記本実施例で確認したように本発明によれば、常温での引張強度が650MPa以上、300℃×1時間の熱処理後に常温で測定した引張強度が450MPa以上、導電率が60%IACS以上の電解銅箔を作成することができた。
また、本発明は機械的強度に優れた電解銅箔であり、ポリイミドフィルムと張り合わせるプリント配線板分野における用途においても好適に用いることができる。
更に本発明は、Si又はSn合金系活物質を用いるリチウムイオン二次電池で、Si又はSn合金系活物質の大きな膨張、収縮に対して、集電体(銅箔)と活物質との密着性をポリイミドバインダーで保持でき、充放電100サイクル以上の電池特性が得られ、集電体(銅箔)として変形しない優れた電解銅箔である。
As confirmed in the above Example, according to the present invention, the tensile strength at room temperature is 650 MPa or more, the tensile strength measured at room temperature after heat treatment at 300 ° C. × 1 hour is 450 MPa or more, and the conductivity is 60% IACS or more. An electrolytic copper foil could be created.
Moreover, this invention is an electrolytic copper foil excellent in mechanical strength, and can be used suitably also in the use in the printed wiring board field bonded with a polyimide film.
Furthermore, the present invention is a lithium ion secondary battery using a Si or Sn alloy-based active material, and adheres between the current collector (copper foil) and the active material against the large expansion and contraction of the Si or Sn alloy-based active material. It is an excellent electrolytic copper foil that can retain its properties with a polyimide binder, has battery characteristics of 100 cycles or more of charge and discharge, and does not deform as a current collector (copper foil).

表2に比較例1〜5の評価結果を示す。
比較例1は、エチレンチオ尿素とMoを添加した電解液で製箔しているが、Moの添加量が少なかったために、箔中にMoを取り込むことができなかった。従って常態での機械的強度は大きいが、300℃×1時間の熱処理後では機械的強度が著しく低下している。
Table 2 shows the evaluation results of Comparative Examples 1-5.
In Comparative Example 1, the foil was made with an electrolytic solution to which ethylenethiourea and Mo were added. However, since the amount of Mo added was small, Mo could not be taken into the foil. Accordingly, the mechanical strength in the normal state is large, but the mechanical strength is significantly lowered after the heat treatment at 300 ° C. for 1 hour.

比較例2、3は有機添加剤として膠を添加した組成で製箔したものである。
この銅箔は常態での機械的強度も小さく、300℃×1時間の熱処理後では機械的強度が250MPa以下と著しく低下する。この銅箔中のMo量の測定結果は検出下限の、0.0001wt%未満であった。
電解液中に膠を添加したが、膠は[=S]を持たないため、膠では、塩素イオンよりも優先的に銅上に吸着して銅上に有機分子の吸着層を形成することができず、Mo酸化物は銅上に吸着されず、箔中へのMoの取り込みが起こらず、電解Cu−Mo箔は形成されなかったものと推考される。
Comparative Examples 2 and 3 are foils made with a composition to which glue is added as an organic additive.
This copper foil has a low mechanical strength in a normal state, and the mechanical strength is remarkably lowered to 250 MPa or less after heat treatment at 300 ° C. for 1 hour. The measurement result of the amount of Mo in the copper foil was less than 0.0001 wt%, which is the lower limit of detection.
Although glue is added to the electrolyte, glue does not have [= S], so glue can preferentially adsorb on copper rather than chloride ions to form an organic molecule adsorption layer on copper. It is considered that Mo oxide was not adsorbed on copper, Mo was not taken into the foil, and the electrolytic Cu-Mo foil was not formed.

比較例4、5はpH4以下の電解液中で酸化物として存在せず、イオンとして溶解する例としてFe、Niを添加し製箔したものである。しかし、Fe、Niは箔中に取り込まれることなく、従って常態での機械的強度は大きいが、300℃×1時間の熱処理後では機械的強度が著しく低下している。
更に比較例1〜5の電解銅箔を集電体としたリチウムイオン二次電池では、充放電100サイクル以下で集電体(銅箔)に変形が発生し、実用的に使用するには電池特性に問題がある。
In Comparative Examples 4 and 5, as an example that does not exist as an oxide in an electrolyte solution having a pH of 4 or lower and dissolves as ions, Fe and Ni are added to form foil. However, Fe and Ni are not taken into the foil, and thus the mechanical strength in the normal state is large, but the mechanical strength is significantly lowered after the heat treatment at 300 ° C. × 1 hour.
Furthermore, in the lithium ion secondary battery using the electrolytic copper foil of Comparative Examples 1 to 5 as a current collector, the current collector (copper foil) is deformed in 100 cycles or less of charge and discharge, and the battery is required for practical use. There is a problem with the characteristics.

本発明によれば、上記いずれかに記載の電解銅箔を用いた、二次電池用負極集電体が提供される。
また、本発明によれば、上記いずれかに記載の電解銅箔を、二次電池用負極集電体として用い、その表面に、シリコン、ゲルマニウム、錫又はそれらの合金化合物またはそれらを主成分とする活物質が堆積されている、二次電池用電極が提供される。
According to this invention, the negative electrode collector for secondary batteries using the electrolytic copper foil in any one of the above is provided.
Moreover, according to the present invention, the electrolytic copper foil according to any one of the above is used as a negative electrode current collector for a secondary battery, and on its surface, silicon, germanium, tin, an alloy compound thereof or a main component thereof. An electrode for a secondary battery is provided in which an active material is deposited.

本発明によれば、上記の二次電池用電極を使用した二次電池が提供される。
本発明によれば、硫酸−硫酸銅系電解液に、添加剤として、チオ尿素系化合物、pH4以下の酸性溶液中で酸化物として存在する金属塩の少なくとも1種類、塩素イオンを添加し、電解析出により、pH4以下の酸性溶液中で酸化物として存在する金属の少なくとも1種類を含有し、残部が銅からなる電解銅箔を製造する、電解銅箔の製造方法が提供される。
According to the present invention, a secondary battery using the secondary battery electrode is provided.
According to the present invention, a sulfuric acid-copper sulfate-based electrolytic solution is added with at least one kind of metal salt existing as an oxide in an acidic solution having a pH of 4 or less, chloride ions as an additive. As a result of the analysis, a method for producing an electrolytic copper foil is provided, which comprises an electrolytic copper foil containing at least one kind of metal present as an oxide in an acidic solution having a pH of 4 or less, and the balance being copper.

また、本発明によれば、pH4以下の酸性溶液中で酸化物として存在する金属を0.0001wt%以上含み、常温での引張強度が650MPa以上で、300℃×1時間の熱処理後に常温で測定した引張強度が450MPa以上で、導電率が60%IACS以上である銅箔の製造方法であって、該銅箔は、硫酸銅系電解液に、添加剤として、pH4以下の酸性溶液中で酸化物として存在する金属の少なくとも1種類を100〜10,000mg/L、チオ尿素系化合物を1〜20mg/L、塩素イオンを1〜100mg/L添加した、硫酸銅系電解液で製箔する銅箔の製造方法が提供される。   Further, according to the present invention, the metal present as an oxide in an acidic solution having a pH of 4 or less is contained at 0.0001 wt% or more, the tensile strength at room temperature is 650 MPa or more, and measured at room temperature after heat treatment at 300 ° C. for 1 hour. A method for producing a copper foil having a tensile strength of 450 MPa or more and an electrical conductivity of 60% IACS or more, wherein the copper foil is oxidized in an acidic solution having a pH of 4 or less as an additive to a copper sulfate electrolyte. Copper to be foil-formed with a copper sulfate-based electrolyte containing 100 to 10,000 mg / L of a metal present as a product, 1 to 20 mg / L of a thiourea compound, and 1 to 100 mg / L of a chloride ion A method of manufacturing a foil is provided.

13・・・X線源
14・・・入射X線
15・・・シャッター
17・・・モノクロメーター
19・・・第1ピンホール
21・・・第2ピンホール
23・・・減衰器
25・・・第3ピンホール
27・・・試料
29・・・透過X線
31・・・散乱X線
33・・・ビームストッパー
35・・・検出器
DESCRIPTION OF SYMBOLS 13 ... X-ray source 14 ... Incident X-ray 15 ... Shutter 17 ... Monochromator 19 ... 1st pinhole 21 ... 2nd pinhole 23 ... Attenuator 25 ... Third pinhole 27 ... Sample 29 ... Transmission X-ray 31 ... scattered X-ray 33 ... Beam stopper 35 ... Detector

Claims (6)

未処理銅箔中にpH4以下の酸性溶液中で酸化物として存在する金属またはその酸化物を含有し、前記金属の含有量又は前記酸化物を構成する前記金属の含有量が0.0001〜1.320質量%であり、塩素を0.005〜0.04質量%含有することを特徴とする電解銅箔。 The untreated copper foil contains a metal present as an oxide or an oxide thereof in an acidic solution having a pH of 4 or less, and the content of the metal or the content of the metal constituting the oxide is 0.0001 to 1 .320 % by mass and containing 0.005 to 0.04% by mass of chlorine. 前記金属またはその酸化物を構成する金属がチタン(Ti)、モリブデン(Mo)、バナジウム(V)、ビスマス(Bi)、テルル(Te)から選ばれる1種以上である
請求項1に記載の電解銅箔。
The metal constituting the metal or its oxide is at least one selected from titanium (Ti), molybdenum (Mo), vanadium (V), bismuth (Bi), and tellurium (Te).
The electrolytic copper foil according to claim 1 .
常温での引張強度が650MPa以上であり、
300℃で1時間の熱処理後に常温で測定した引張強度が450MPa以上である
請求項1または2に記載の電解銅箔。
The tensile strength at room temperature is 650 MPa or more,
Tensile strength measured at room temperature after heat treatment at 300 ° C. for 1 hour is 450 MPa or more
The electrolytic copper foil of Claim 1 or 2 .
常温での導電率が60%IACS以上である
請求項1〜3のいずれかに記載の電解銅箔。
Conductivity at room temperature is 60% IACS or higher
The electrolytic copper foil in any one of Claims 1-3 .
請求項1〜4のいずれかに記載の電解銅箔を集電体として使用するリチウムイオン二次電池用電極。 The electrode for lithium ion secondary batteries which uses the electrolytic copper foil in any one of Claims 1-4 as a collector. 請求項5に記載の電池用電極を負極とするリチウムイオン二次電池。 A lithium ion secondary battery using the battery electrode according to claim 5 as a negative electrode.
JP2014524192A 2013-01-29 2014-01-28 Electrolytic copper foil, electrode for lithium ion secondary battery using the electrolytic copper foil, lithium ion secondary battery using the electrode Active JP5740055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014524192A JP5740055B2 (en) 2013-01-29 2014-01-28 Electrolytic copper foil, electrode for lithium ion secondary battery using the electrolytic copper foil, lithium ion secondary battery using the electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013014354 2013-01-29
JP2013014354 2013-01-29
PCT/JP2014/051859 WO2014119582A1 (en) 2013-01-29 2014-01-28 Electrolytic copper foil, electrode obtained using said electrolytic copper foil for lithium-ion secondary battery, and lithium-ion secondary battery obtained using said electrode
JP2014524192A JP5740055B2 (en) 2013-01-29 2014-01-28 Electrolytic copper foil, electrode for lithium ion secondary battery using the electrolytic copper foil, lithium ion secondary battery using the electrode

Publications (2)

Publication Number Publication Date
JP5740055B2 true JP5740055B2 (en) 2015-06-24
JPWO2014119582A1 JPWO2014119582A1 (en) 2017-01-26

Family

ID=51262295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014524192A Active JP5740055B2 (en) 2013-01-29 2014-01-28 Electrolytic copper foil, electrode for lithium ion secondary battery using the electrolytic copper foil, lithium ion secondary battery using the electrode

Country Status (5)

Country Link
JP (1) JP5740055B2 (en)
KR (1) KR101675706B1 (en)
CN (1) CN104812943B (en)
TW (1) TWI588301B (en)
WO (1) WO2014119582A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101733409B1 (en) * 2016-11-11 2017-05-10 일진머티리얼즈 주식회사 Electrolytic Copper Foil of secondary battery and manufacturing method thereof
KR101734840B1 (en) * 2016-11-11 2017-05-15 일진머티리얼즈 주식회사 Electrolytic copper foil of secondary battery enhanced for flexibility resistance and manufacturing method thereof
CN110637385A (en) * 2017-05-18 2019-12-31 富士胶片株式会社 Perforated metal foil, method for producing perforated metal foil, negative electrode for secondary battery, and positive electrode for secondary battery
JP6827022B2 (en) * 2018-10-03 2021-02-10 Jx金属株式会社 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054198A (en) * 2010-09-03 2012-03-15 Nec Energy Devices Ltd Cathode for secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP2012195192A (en) * 2011-03-17 2012-10-11 Hitachi Cable Ltd Rolled copper foil for lithium ion secondary battery collector
WO2013002279A1 (en) * 2011-06-30 2013-01-03 古河電気工業株式会社 Electrolytic copper foil, method for producing electrolytic copper foil, and lithium ion secondary cell using electrolytic copper foil as collector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3238278B2 (en) * 1994-04-12 2001-12-10 株式会社日鉱マテリアルズ Manufacturing method of electrolytic copper foil
JPH0967693A (en) 1995-08-29 1997-03-11 Nikko Gould Foil Kk Production of electrolytic copper foil
KR100389061B1 (en) * 2002-11-14 2003-06-25 일진소재산업주식회사 Electrolytic copper foil and process producing the same
EP2660359A4 (en) * 2011-07-29 2015-08-05 Furukawa Electric Co Ltd Electrolytic copper alloy foil, method for producing same, electrolytic solution used for production of same, negative electrode collector for secondary batteries using same, secondary battery, and electrode of secondary battery
KR20170061717A (en) * 2011-10-31 2017-06-05 후루카와 덴키 고교 가부시키가이샤 High strength, high heat-resistance electrolytic copper foil, and manufacturing method for same
JP5718426B2 (en) * 2012-10-31 2015-05-13 古河電気工業株式会社 Copper foil, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054198A (en) * 2010-09-03 2012-03-15 Nec Energy Devices Ltd Cathode for secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP2012195192A (en) * 2011-03-17 2012-10-11 Hitachi Cable Ltd Rolled copper foil for lithium ion secondary battery collector
WO2013002279A1 (en) * 2011-06-30 2013-01-03 古河電気工業株式会社 Electrolytic copper foil, method for producing electrolytic copper foil, and lithium ion secondary cell using electrolytic copper foil as collector

Also Published As

Publication number Publication date
TW201439384A (en) 2014-10-16
CN104812943B (en) 2016-11-16
KR20150114459A (en) 2015-10-12
JPWO2014119582A1 (en) 2017-01-26
WO2014119582A1 (en) 2014-08-07
CN104812943A (en) 2015-07-29
KR101675706B1 (en) 2016-11-11
TWI588301B (en) 2017-06-21

Similar Documents

Publication Publication Date Title
WO2013018773A1 (en) Electrolytic copper alloy foil, method for producing same, electrolytic solution used for production of same, negative electrode collector for secondary batteries using same, secondary battery, and electrode of secondary battery
KR101779653B1 (en) High strength, high heat-resistance electrolytic copper foil, and manufacturing method for same
JP5740052B2 (en) Electrolytic copper foil and method for producing the same
JP5579350B1 (en) Electrolytic copper foil, battery current collector using the electrolytic copper foil, secondary battery electrode using the current collector, and secondary battery using the electrode
JP5706045B2 (en) Electrolytic copper foil and manufacturing method thereof
JP5740055B2 (en) Electrolytic copper foil, electrode for lithium ion secondary battery using the electrolytic copper foil, lithium ion secondary battery using the electrode
TWI468284B (en) Surface treatment copper foil, surface treatment copper foil manufacturing method, cathode current collector and non-aqueous secondary battery cathode material
JP2014101581A (en) Electrolytic copper alloy foil, its manufacturing method, electrolyte used for its manufacturing, negative electrode collector for secondary battery, secondary battery and its electrode
JP5697051B2 (en) Electrolytic copper alloy foil, method for producing the same, electrolyte used for the production, negative electrode current collector for secondary battery, secondary battery and electrode thereof
JP6082609B2 (en) High strength, high heat resistant electrolytic copper foil and manufacturing method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150424

R151 Written notification of patent or utility model registration

Ref document number: 5740055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350