JP5096040B2 - Laser processing method and laser processed product - Google Patents

Laser processing method and laser processed product Download PDF

Info

Publication number
JP5096040B2
JP5096040B2 JP2007130532A JP2007130532A JP5096040B2 JP 5096040 B2 JP5096040 B2 JP 5096040B2 JP 2007130532 A JP2007130532 A JP 2007130532A JP 2007130532 A JP2007130532 A JP 2007130532A JP 5096040 B2 JP5096040 B2 JP 5096040B2
Authority
JP
Japan
Prior art keywords
laser
processing
workpiece
processing method
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007130532A
Other languages
Japanese (ja)
Other versions
JP2008284572A (en
Inventor
直之 松尾
幹司 西田
敦司 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2007130532A priority Critical patent/JP5096040B2/en
Priority to PCT/JP2008/058692 priority patent/WO2008143042A1/en
Priority to TW097117754A priority patent/TW200848191A/en
Publication of JP2008284572A publication Critical patent/JP2008284572A/en
Application granted granted Critical
Publication of JP5096040B2 publication Critical patent/JP5096040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/08Treatments involving gases
    • H05K2203/082Suction, e.g. for holding solder balls or components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laser Beam Processing (AREA)
  • Prevention Of Fouling (AREA)

Description

本発明は、例えば各種シート材料、回路基板、半導体ウエハ、ガラス基板、セラミック基板、金属基板、半導体レーザー等の発光あるいは受光素子基板、MEMS基板、半導体パッケージ、布、皮、紙、フィルム材料などの被加工物を、レーザーを用いて例えば切断、孔あけなどの加工を行うレーザー加工方法及びレーザー加工品に関する。   The present invention includes various sheet materials, circuit substrates, semiconductor wafers, glass substrates, ceramic substrates, metal substrates, light emitting or receiving element substrates such as semiconductor lasers, MEMS substrates, semiconductor packages, cloth, leather, paper, film materials, etc. The present invention relates to a laser processing method and a laser processed product that perform processing such as cutting and drilling on a workpiece using a laser.

最近の電気・電子機器の小型化等に伴い、部品の小型化・高精細化が進み、各種材料の外形加工も、加工精度が±50μmあるいはそれ以下の高精細・高精度化が求められてきている。レーザー光を用いた被加工物の切断、穴あけ等の加工は、高速性、微細性、切断面品質、加工形状自由度などの利点を有しており、この様な観点から金属、ガラス、樹脂、半導体、セラミックなど材料を問わず一般に広く活用されている。   With the recent miniaturization of electrical and electronic equipment, the miniaturization of parts and high definition have progressed, and the outline processing of various materials has been required to have high precision and high accuracy with processing accuracy of ± 50 μm or less. ing. Processing such as cutting and drilling of workpieces using laser light has advantages such as high speed, fineness, cut surface quality, and freedom of processing shape. From this point of view, metal, glass, resin Widely used regardless of materials such as semiconductors and ceramics.

ところが、レーザーを用いた材料加工は、被加工物の光吸収による溶融や分解反応により実施されるため、被加工物の加工面側(レーザー光の照射面側)に於けるレーザー加工部分周辺にカーボン等の分解物が付着するという問題がある。従って、この分解物を除去する為、アルコール拭き取り、洗浄やデスミアと呼ばれる後工程が必須となっている。   However, since material processing using laser is performed by melting or decomposition reaction due to light absorption of the workpiece, it is around the laser processing portion on the processing surface side (laser light irradiation surface side) of the workpiece. There exists a problem that decomposition products, such as carbon, adhere. Therefore, in order to remove this decomposition product, a post-process called alcohol wiping, washing or desmear is essential.

特に、被加工物の加工面側に於ける切断端面周辺部では、分解物が上方へ飛散することから、その堆積量も多い。この照射側の分解物残渣はレーザー光のパワーに比例して堆積量が増える。従って、高速で切断するために高いパワーでレーザー光を被加工物に照射すると、分解物残渣の堆積が増し、後工程での分解物残渣除去が困難になってくる。強固に付着した分解物残渣の場合は、過マンガン酸カリウム水溶液等によるウェットデスミアが一般に行われるが、この場合、廃液処理による環境負荷の増大という問題も生じる。こうした問題を回避する方法として、YAG基本波とウォータージェットとを併用する方法も提案されているが、この方法によるとエッジ部分の分解物の堆積は、ウォータージェットの冷却効果により低減されるものの、吸湿性の材料に対しては適応できないなど、材料選択性において問題がある。   In particular, in the periphery of the cut end surface on the processed surface side of the workpiece, the decomposed material scatters upward, so that the amount of deposition is large. The amount of deposited residue on the irradiation side increases in proportion to the power of the laser beam. Therefore, when the workpiece is irradiated with laser light with high power in order to cut at high speed, the deposition of decomposed residue increases, and it becomes difficult to remove the decomposed residue in a subsequent process. In the case of a residue of decomposition product that adheres strongly, wet desmearing with an aqueous potassium permanganate solution or the like is generally performed, but in this case, there is also a problem of an increase in environmental load due to waste liquid treatment. As a method for avoiding such a problem, a method using both a YAG fundamental wave and a water jet has also been proposed. According to this method, although deposition of decomposition products at the edge portion is reduced by the cooling effect of the water jet, There is a problem in material selectivity, such as being incompatible with hygroscopic materials.

特開2002−343747号公報JP 2002-343747 A

本発明は、前記従来の問題点に鑑みなされたものであり、その目的は、レーザー光により被加工物を加工する場合に、分解物による被加工物表面の汚染を効果的に低減して、生産効率よくかつ容易にレーザー加工を行うことが可能なレーザー加工方法を提供することにある。また、前記レーザー加工方法により得られるレーザー加工品を提供することにある。   The present invention has been made in view of the above-described conventional problems, and its purpose is to effectively reduce contamination of the surface of a workpiece by a decomposition product when processing the workpiece by laser light, It is an object of the present invention to provide a laser processing method capable of performing laser processing efficiently and easily. Another object of the present invention is to provide a laser processed product obtained by the laser processing method.

本願発明者等は、前記従来の問題点を解決すべく、レーザー加工方法、およびレーザー加工品について検討した。その結果、以下の構成を採用することにより前記の目的を達成できることを見出して、本発明を完成させるに至った。   The inventors of the present application have studied a laser processing method and a laser processed product in order to solve the conventional problems. As a result, it has been found that the above object can be achieved by adopting the following configuration, and the present invention has been completed.

即ち、本発明に係るレーザー加工品の製造方法は、前記の課題を解決する為に、被加工物に対しレーザー光を照射して加工するレーザー加工方法であって、前記レーザー光の照射の際に発生する分解物を、照射部分の近傍で吸引除去しながら、前記レーザー加工することを特徴とする。   That is, the method of manufacturing a laser processed product according to the present invention is a laser processing method for processing a workpiece by irradiating the workpiece with a laser beam in order to solve the above-described problem. The laser processing is performed while the decomposition product generated in the step is sucked and removed in the vicinity of the irradiated portion.

レーザー光を被加工物に照射すると、その照射部分での被加工物の溶融や分解反応により分解物が発生し周囲に飛散する。前記方法では、その照射部分近傍に於いて分解物を吸引除去しながらレーザー加工を行うので、被加工物の加工面側に於ける分解物の付着を抑制し、表面汚染を低減することができる。   When the workpiece is irradiated with laser light, a decomposition product is generated by the melting or decomposition reaction of the workpiece at the irradiated portion and scattered around. In the above method, since laser processing is performed while removing the decomposed material in the vicinity of the irradiated portion, adhesion of the decomposed material on the processed surface side of the workpiece can be suppressed and surface contamination can be reduced. .

前記吸引除去を前記レーザー光の照射方向と同軸の方向、又はレーザー光による加工の進行方向に対し後方から行うことが好ましい。例えば、被加工物をステージ上に固定してレーザー光を走査させ、又はレーザー光を固定してステージを走査させることにより、被加工物の切断加工を行う場合、分解物は加工の進行方向(走査方向)の後方に飛散する。従って、前記方法の様に、レーザー光の照射方向と同軸の方向、又はレーザー光による加工の進行方向に対し後方から吸引除去を行うことにより、分解物の除去を一層効果的に行うことができる。   The suction removal is preferably performed from the rear with respect to a direction coaxial with the irradiation direction of the laser beam or a progress direction of processing by the laser beam. For example, when cutting the workpiece by fixing the workpiece on the stage and scanning the laser beam, or by scanning the stage with the laser beam fixed, the decomposed product is processed in the processing direction ( Scattered backward in the scanning direction). Accordingly, by performing suction removal from the rear in the direction coaxial with the laser light irradiation direction or the processing direction of the laser light as in the above method, the decomposition product can be removed more effectively. .

前記照射部分又はその近傍にガスを吹き付けて、前記分解物を吸引除去する方向に拡散させることが好ましい。これにより、分解物の吸引除去の効率を向上させ、被加工物の加工面側に於ける汚染を一層低減することができる。   It is preferable that gas is blown to the irradiated portion or the vicinity thereof to diffuse in the direction of removing the decomposed product by suction. Thereby, the efficiency of suction removal of the decomposed product can be improved, and contamination on the processed surface side of the workpiece can be further reduced.

前記ガスとして圧縮エアーを使用することが好ましい。   It is preferable to use compressed air as the gas.

前記被加工物として、シート材料、回路基板、半導体ウエハ、ガラス基板、セラミック基板、金属基板、半導体レーザーの発光若しくは受光素子基板、MEMS基板、半導体パッケージ、布、皮、紙、又は単層若しくは多層のフィルム材料を使用することができる。前記に示す各種の被加工物に於いても、レーザー加工の際にその加工面側に分解物が付着して表面汚染が生じる。しかし、分解物の吸引除去を伴う本発明のレーザー加工方法であると当該表面汚染を低減できるので、これらの各種の被加工物に対しても本発明は好適に適用することができる。   As the workpiece, a sheet material, a circuit board, a semiconductor wafer, a glass substrate, a ceramic substrate, a metal substrate, a semiconductor laser light emitting or receiving element substrate, a MEMS substrate, a semiconductor package, cloth, leather, paper, or a single layer or multiple layers Any film material can be used. Even in the above-described various workpieces, decomposition products adhere to the processed surface side during laser processing, resulting in surface contamination. However, since the surface contamination can be reduced by the laser processing method of the present invention involving suction removal of the decomposed product, the present invention can be suitably applied to these various types of workpieces.

前記レーザー光として、ArFエキシマレーザー、KrFエキシマレーザー、XeClエキシマレーザー、YAGレーザーの第3高調波若しくは第4高調波、YLF若しくはYVOの固体レーザーの第3高調波若しくは第4高調波、Ti:Sレーザー、半導体レーザー、ファイバーレーザー又は炭酸ガスレーザーを使用することができる。 As the laser light, ArF excimer laser, KrF excimer laser, XeCl excimer laser, third harmonic or fourth harmonic of YAG laser, third harmonic or fourth harmonic of solid laser of YLF or YVO 4 , Ti: S laser, semiconductor laser, fiber laser or carbon dioxide laser can be used.

本発明のレーザー加工品は、前記の課題を解決する為に、前記に記載のレーザー加工方法により得られる。   In order to solve the above problems, the laser processed product of the present invention is obtained by the laser processing method described above.

本発明に係るレーザー加方法は、レーザー光の照射の際に発生する分解物を、照射部分の近傍で吸引除去しながら行うので、被加工物の加工面側に分解物が付着せず、これにより、加工面が汚染されるのを低減することができる。その結果、生産効率よくかつ容易にレーザー加工を行うことが可能なレーザー加工方法を提供することができる。   In the laser processing method according to the present invention, the decomposition product generated during the laser light irradiation is performed while sucking and removing in the vicinity of the irradiated portion, so that the decomposition product does not adhere to the processed surface side of the workpiece. Thus, contamination of the processed surface can be reduced. As a result, it is possible to provide a laser processing method capable of performing laser processing with high production efficiency and easily.

更に、分解物の除去の為、例えばウェットデスミアなどの後工程も省略できる。加えて、後工程で必要な廃液処理も不要となり、環境負荷の低減にも寄与できる。また、分解物の付着を低減できることからレーザー光の高パワー化が可能となり、スループットの向上が図れる。   Furthermore, post-process such as wet desmear, for example, can be omitted for removal of decomposition products. In addition, there is no need for waste liquid treatment required in the post-process, which can contribute to reducing the environmental burden. In addition, since the adhesion of decomposition products can be reduced, it is possible to increase the power of the laser beam and improve the throughput.

本発明の実施の形態に係るレーザー加工方法について、図を参照しながら説明する。図1は、本実施の形態に係るレーザー加工方法の様子を概略的に示す模式図である。   A laser processing method according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram schematically showing the state of the laser processing method according to the present embodiment.

本実施の形態に係るレーザー加工方法は、図1に示すように、被加工物3に対しレーザー光1を照射する際に発生する分解物4を、吸引ノズル5を用いて吸引除去しながら行う。吸引除去は、レーザー光1の照射方向と同軸の方向、又はレーザー光1による加工の進行方向(走査方向)に対し後方から行うのが好ましい。分解物4の飛散は走査方向の後方に向かう傾向がある為であり、前記の方向から吸引除去を行うことにより、除去効率の向上が図れる。また、吸引ノズル5は、レーザー光1の走査速度に合わせて同様の速度で移動させるのが好ましい。   In the laser processing method according to the present embodiment, as shown in FIG. 1, the decomposition product 4 generated when the workpiece 3 is irradiated with the laser beam 1 is sucked and removed using the suction nozzle 5. . The suction removal is preferably performed from the rear in the direction coaxial with the irradiation direction of the laser beam 1 or in the processing progress direction (scanning direction) by the laser beam 1. This is because the decomposition product 4 tends to scatter toward the rear in the scanning direction, and removal efficiency can be improved by performing suction removal from the above direction. The suction nozzle 5 is preferably moved at a similar speed in accordance with the scanning speed of the laser beam 1.

前記吸引ノズル5は、例えば真空ポンプ等に連結されている。但し、本発明では分解物4の吸引が可能なものであれば特に限定されず、従来公知の種々のものを用いることができる。吸引能力としては、100L/min以上のものが好ましく、300L/min以上のものがより好ましい。吸引能力が100L/min未満であると分解物4の除去が不十分となり、被加工物3の加工面側に於ける表面汚染の抑制が図れない場合がある。尚、吸引能力が高いほど分解物4の除去率が向上するが、吸引能力の上限値は一般的には1000L/min以下であることが好ましい。   The suction nozzle 5 is connected to, for example, a vacuum pump. However, the present invention is not particularly limited as long as the decomposition product 4 can be sucked, and various conventionally known ones can be used. The suction ability is preferably 100 L / min or more, and more preferably 300 L / min or more. If the suction capacity is less than 100 L / min, removal of the decomposed product 4 becomes insufficient, and surface contamination on the processed surface side of the workpiece 3 may not be suppressed. In addition, although the removal rate of the decomposition product 4 improves, so that suction capability is high, it is preferable that the upper limit of suction capability is generally 1000 L / min or less.

また、前記照射部分又はその近傍にガス14を吹き付けて、前記分解物4を吸引除去する方向に拡散させるのが好ましい。より具体的には、図1に示すようにレーザー加工を行う場合には、ガス14を加工の進行方向の後方であって、吸引ノズル5の後方から被加工物3の加工面に向かって、吹き付けノズル6より吹き付ける。分解物4は、加工の進行方向に対しその後方に向かって、被加工物の加工面を沿うように拡散するので、前記方向からガス14を吹き付けることにより、分解物4を吸引ノズル5の方向に拡散させる。これにより、分解物4の除去効率を向上させることができる。ガス14としては特に限定されず、例えば、圧縮エアーやヘリウム、窒素、酸素等が例示できる。   Further, it is preferable that the gas 14 is blown to the irradiated portion or the vicinity thereof to diffuse in the direction in which the decomposed product 4 is removed by suction. More specifically, when laser processing is performed as shown in FIG. 1, the gas 14 is rearward in the processing direction, from the rear of the suction nozzle 5 toward the processing surface of the workpiece 3. Spray from the spray nozzle 6. Since the decomposed material 4 diffuses along the processed surface of the workpiece toward the rear with respect to the processing progress direction, the decomposed material 4 is directed to the suction nozzle 5 by blowing the gas 14 from the direction. To diffuse. Thereby, the removal efficiency of the decomposition product 4 can be improved. The gas 14 is not particularly limited, and examples thereof include compressed air, helium, nitrogen, and oxygen.

尚、本発明に於いては、レーザー光1と同軸上にアシストガスをレーザー加工部分に吹き付けることは好ましくない。従来のレーザー加工方法では、例えば炭酸ガスレーザーで加工する際に、反応促進の為にレーザー照射方向と同軸上より酸素などのアシストガスを吹き付けていた。しかし、アシストガスを吹き付けると、発生した分解物の拡散がそのガス圧力によって押さえ込まれ、加工部分に滞留する。その結果、被加工物の表面汚染を助長し、悪影響をもたらす場合がある。   In the present invention, it is not preferable to spray the assist gas on the laser processing portion coaxially with the laser beam 1. In the conventional laser processing method, for example, when processing with a carbon dioxide laser, an assist gas such as oxygen is blown from the same axis as the laser irradiation direction in order to promote the reaction. However, when the assist gas is sprayed, diffusion of the generated decomposition product is suppressed by the gas pressure and stays in the processed portion. As a result, the surface contamination of the workpiece may be promoted and adversely affected.

本発明のレーザー加工方法は、例えば切断加工、マーキング、穴空け加工、溝加工、スクライビング加工、又はトリミング加工など分解物が飛散する全ての形状加工に対し適用可能である。本発明はこれらの加工のうち切断加工に適用するのが好ましい。また、切断加工としては、ハーフカット、フルカットの何れにも適用可能である。   The laser processing method of the present invention is applicable to all shape processing in which decomposition products are scattered, such as cutting processing, marking, drilling processing, grooving processing, scribing processing, or trimming processing. The present invention is preferably applied to cutting among these processes. Moreover, as a cutting process, it can apply to both a half cut and a full cut.

レーザー光1は、レーザー発振機により発振され、伝送路内の反射鏡で反射し、集光レンズによりその焦点位置に極小に集光され、加工に必要な高エネルギーを備えて加工ノズル2より照射される。レーザー光1は、X−Yステージ7上の被加工物3に対し垂直方向から照射される。このとき切断加工を行う際には、レーザー照射位置を所定の加工ライン上に沿って移動させることにより行う。レーザー光1の移動手段としては、X−Yステージスキャンの他に、ガルバノスキャン、マスクイメージング加工といった公知の方法が例示できる。   The laser beam 1 is oscillated by a laser oscillator, reflected by a reflecting mirror in the transmission path, focused to the focal position by a condensing lens to a minimum, and irradiated from a processing nozzle 2 with high energy necessary for processing. Is done. The laser beam 1 is irradiated from the vertical direction to the workpiece 3 on the XY stage 7. At this time, when performing the cutting process, the laser irradiation position is moved along a predetermined processing line. Examples of the moving means of the laser beam 1 include known methods such as galvano scan and mask imaging processing in addition to the XY stage scan.

前記レーザー光1としては特に限定されず、加工方法に応じて適宜選択される。また、反応過程は用いるレーザー光源によって異なり、例えば発振波長193nmのArFエキシマレーザーや248nmのKrFエキシマレーザーや308nmのXeClエキシマレーザー、355nmのYAGレーザーの第3高調波、同じく266nmの第4高調波、同様に、YLF、YVO等の固体レーザーの第3、4高調波、あるいは400nm以上の波長を持つレーザーであっても多光子吸収過程を経由した紫外線領域の光吸収が可能なTi:Sレーザーなどはアブレーションによるエッチングにより加工が行われ、発振波長9.3mmや10.6mmの炭酸ガスレーザーは赤外吸収を利用した発熱現象によるエッチングが行われる。紫外吸収によるアブレーションと赤外吸収による熱加工では反応過程は異なるものの、両者において分解物の発生は起こる為、いずれの加工プロセスにおいても表面への分解物の付着は問題となる。 The laser beam 1 is not particularly limited and is appropriately selected depending on the processing method. The reaction process varies depending on the laser light source used. For example, an ArF excimer laser with an oscillation wavelength of 193 nm, a KrF excimer laser with 248 nm, a 308 nm XeCl excimer laser, a third harmonic of a 355 nm YAG laser, a fourth harmonic of 266 nm, Similarly, a Ti: S laser capable of absorbing light in the ultraviolet region via a multiphoton absorption process even with a laser having a wavelength of third, fourth harmonic, or 400 nm or more of a solid-state laser such as YLF or YVO 4 Are processed by ablation etching, and a carbon dioxide laser with an oscillation wavelength of 9.3 mm or 10.6 mm is etched by a heat generation phenomenon using infrared absorption. Although the reaction process is different between the ablation by ultraviolet absorption and the thermal processing by infrared absorption, the decomposition products are generated in both processes. Therefore, the adhesion of the decomposition products to the surface becomes a problem in both processing processes.

本発明で加工する被加工物3としては、例えば、図2に示す偏光フィルム15が挙げられる。偏光フィルム15は、ポリビニルアルコール(PVA)フィルム11の両面に一対のトリアセチルセルロース(TAC)フィルム10が貼り合わされている。更に、一方のTACフィルム10側には、アクリル系粘着剤層9を介してPETフィルムからなるセパレータ13が設けられている。他方のTACフィルム10側には、表面保護フィルム12が設けられている。この表面保護フィルム12は、ポリエチレンテレフタレート(PET)フィルム8にアクリル系粘着剤層9が設けられた構成であり、アクリル系粘着剤層9が他方のTACフィルム10との貼合せ面となっている。   Examples of the workpiece 3 processed in the present invention include a polarizing film 15 shown in FIG. In the polarizing film 15, a pair of triacetyl cellulose (TAC) films 10 are bonded to both surfaces of a polyvinyl alcohol (PVA) film 11. Further, a separator 13 made of a PET film is provided on one TAC film 10 side with an acrylic pressure-sensitive adhesive layer 9 interposed therebetween. A surface protection film 12 is provided on the other TAC film 10 side. The surface protective film 12 has a configuration in which an acrylic pressure-sensitive adhesive layer 9 is provided on a polyethylene terephthalate (PET) film 8, and the acrylic pressure-sensitive adhesive layer 9 serves as a bonding surface with the other TAC film 10. .

また、被加工物3としては、前記偏光フィルム15の他に、レーザー光により加工できるものであれば特に限定なく適用することができる。具体的には、例えば各種シート材料、回路基板、半導体ウエハ、ガラス基板、セラミック基板、金属基板、半導体レーザー等の発光あるいは受光素子基板、MEMS(Micro Electro Mechanical System)基板、半導体パッケージ、布、皮、紙、単層若しくは多層のフィルム材料などが挙げられる。   In addition to the polarizing film 15, the workpiece 3 can be applied without particular limitation as long as it can be processed by laser light. Specifically, for example, various sheet materials, circuit boards, semiconductor wafers, glass substrates, ceramic substrates, metal substrates, light emitting or light receiving element substrates such as semiconductor lasers, MEMS (Micro Electro Mechanical System) substrates, semiconductor packages, cloths, leathers Paper, single layer or multilayer film materials.

各種シート材料としては、例えば、ポリイミド系樹脂、ポリエステル系樹脂、エポキシ系樹脂、ウレタン系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂や、充填剤を含むポリエチレン系、ポリプロピレン樹脂等での高分子フィルムや不織布、それらの樹脂を延伸加工、含浸加工等により物理的あるいは光学的な機能を付与したもの、銅、アルミ、ステンレス等の金属シートあるいは、上記ポリマーシートおよび/または金属シートを直接または接着剤等を介して積層したものなどが挙げられる。   Various sheet materials include, for example, polyimide resins, polyester resins, epoxy resins, urethane resins, polystyrene resins, polyamide resins, polycarbonate resins, and polyethylene and polypropylene resins containing fillers. Molecular film or non-woven fabric, those obtained by imparting physical or optical functions to the resin by stretching, impregnation, etc., metal sheets such as copper, aluminum, and stainless steel, or the above polymer sheet and / or metal sheet directly or The thing laminated | stacked through the adhesive agent etc. is mentioned.

また回路基板としては、片面、両面あるいは多層フレキシブルプリント基板、ガラスエポキシやセラミック、金属コア基板等からなるリジッド基板、ガラスあるいはポリマー上に形成された光回路あるいは光−電気混成回路基板などが挙げられる。   Examples of the circuit board include single-sided, double-sided or multilayer flexible printed boards, rigid boards made of glass epoxy, ceramic, metal core boards, etc., optical circuits formed on glass or polymers, or opto-electric hybrid circuit boards. .

また、単層若しくは多層のフィルム材料としては、各種の粘着フィルム、光学フィルム等が挙げられる。   In addition, examples of the single layer or multilayer film material include various adhesive films and optical films.

レーザーの加工条件は、被加工物3の種類等に応じて適宜設定され得る。例えば、本発明のレーザー加工方法を切断加工に適用する場合、その切断速度(加工の進行速度)は被加工物3の物性に応じて適宜設定され得る。本発明はレーザー光1を用いた加工である為、従来の刃物や金型による切断加工と比べて切断速度を速くすることができる。被加工物3として、前記偏光フィルム15を用いる場合、切断速度は10〜300m/minが好ましく、50〜150m/minがより好ましい。切断速度が10m/min未満であると、生産性が低下させるという不都合がある。その一方、300m/minを超えると、単位時間当たりの分解物発生量に対してポンプの吸引能力が追いつかないという不都合がある。   The laser processing conditions can be appropriately set according to the type of the workpiece 3 and the like. For example, when the laser processing method of the present invention is applied to cutting processing, the cutting speed (processing progress speed) can be appropriately set according to the physical properties of the workpiece 3. Since the present invention is a process using the laser beam 1, the cutting speed can be increased as compared with a conventional cutting process using a blade or a mold. When the polarizing film 15 is used as the workpiece 3, the cutting speed is preferably 10 to 300 m / min, and more preferably 50 to 150 m / min. When the cutting speed is less than 10 m / min, there is an inconvenience that productivity is lowered. On the other hand, if it exceeds 300 m / min, there is a disadvantage that the suction capacity of the pump cannot catch up with the amount of decomposed products generated per unit time.

レーザー光1の集光径は、被加工物3に施す加工の種類に応じて適宜設定され得る。切断加工の場合、切断幅がレーザー光1の集光径とほぼ一致する。従って、集光径を調節することにより、切断幅の制御が可能になる。集光径(切断幅)は、通常50〜500μmが好ましく、100〜300μmがより好ましい。集光径が50μm未満であると、切断速度が小さくなる場合がある。その一方、500μmを超えると、被加工物からの製品取り出し効率が低下する場合がある。   The condensing diameter of the laser beam 1 can be appropriately set according to the type of processing performed on the workpiece 3. In the case of the cutting process, the cutting width substantially coincides with the focused diameter of the laser beam 1. Therefore, the cutting width can be controlled by adjusting the condensing diameter. The condensed diameter (cutting width) is usually preferably 50 to 500 μm, and more preferably 100 to 300 μm. When the condensed diameter is less than 50 μm, the cutting speed may be reduced. On the other hand, when it exceeds 500 μm, the efficiency of taking out the product from the workpiece may be lowered.

レーザー光1のパワー密度は、被加工物3の物性、切断加工の場合にはその切断速度に応じて適宜設定され得る。被加工物3の光吸収率はレーザー光1の波長に左右される。レーザー光1は発振媒体や結晶を選択することで紫外線から近赤外線まで波長を発振できる。従って、被加工物3の光吸収波長に合わせたレーザー光1を使用することにより、低いパワー密度で効率よく加工できる。例えば、被加工物3が前記偏光フィルム15の場合、50〜700Wが好ましい。   The power density of the laser beam 1 can be appropriately set according to the physical properties of the workpiece 3 and the cutting speed in the case of cutting. The light absorption rate of the workpiece 3 depends on the wavelength of the laser beam 1. The laser beam 1 can oscillate its wavelength from ultraviolet to near infrared by selecting an oscillation medium or crystal. Therefore, by using the laser beam 1 matched with the light absorption wavelength of the workpiece 3, it can be efficiently processed with a low power density. For example, when the workpiece 3 is the polarizing film 15, 50 to 700 W is preferable.

以下、本発明について実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to a following example, unless the summary is exceeded.

(実施例1)
[被加工物]
本実施例では、被加工物として前記図2に示す構成の偏光フィルムを用いた。即ち、PVAフィルムの一方の面に表面保護フィルムが設けられており、他方の面にアクリル系粘着剤層(厚さ24μm)を介してセパレータが積層された構造である。表面保護フィルムは厚さ38μmのPET基材上に粘着剤層を塗布して設けたフィルムからなる。粘着剤層としては、厚さ24μmのアクリル系粘着剤を用いた。セパレータは、厚さ38μmのPETフィルムからなる。尚、PVAフィルムの厚さは約22μmである。
Example 1
[Workpiece]
In this example, a polarizing film having the structure shown in FIG. 2 was used as a workpiece. That is, a surface protective film is provided on one surface of the PVA film, and a separator is laminated on the other surface via an acrylic pressure-sensitive adhesive layer (thickness: 24 μm). The surface protective film is made of a film provided by applying an adhesive layer on a PET substrate having a thickness of 38 μm. As the pressure-sensitive adhesive layer, an acrylic pressure-sensitive adhesive having a thickness of 24 μm was used. The separator is made of a PET film having a thickness of 38 μm. The PVA film has a thickness of about 22 μm.

[レーザー光照射装置]
使用したレーザー光照射装置は以下の通りである。
レーザー光源:炭酸ガスレーザー
レーザー波長:10.6mm
最高出力:250W
[Laser irradiation device]
The used laser beam irradiation apparatus is as follows.
Laser light source: Carbon dioxide laser Laser wavelength: 10.6 mm
Maximum output: 250W

[レーザー光の照射条件]
下記条件下で、偏光フィルムのハーフカット加工を実施した。尚、吸引ノズルは、レーザー光の走査方向に対し反対側の方向に配置して行った。また、吸引ノズルは、レーザー光の走査速度と同じ速度で移動させて行った。
パワー:40W
スポット径:120mm
パルス幅:9ms
繰り返し周波数:20kHz
走査速度:400mm/s
吸引ノズル径:4.5mmφ
真空ポンプ排気能力:500L/min
吸引ノズル−照射部間距離:5mm
切断深さ:325μm
[Laser irradiation conditions]
The half cut process of the polarizing film was implemented on the following conditions. The suction nozzle was arranged in the direction opposite to the scanning direction of the laser beam. The suction nozzle was moved at the same speed as the scanning speed of the laser beam.
Power: 40W
Spot diameter: 120mm
Pulse width: 9ms
Repeat frequency: 20 kHz
Scanning speed: 400mm / s
Suction nozzle diameter: 4.5mmφ
Vacuum pump exhaust capacity: 500L / min
Distance between suction nozzle and irradiated part: 5mm
Cutting depth: 325 μm

ハーフカット加工の結果、レーザー加工時に発生した分解物は吸引ノズルの方へ引き寄せられ、被加工物表面を這うことなく吸引除去された。偏光フィルムのハーフカット部周辺に於ける分解物残渣は、ハーフカット部分を中心にして500mm幅以下の範囲での付着に留まった。   As a result of the half-cut processing, the decomposition product generated during the laser processing was drawn toward the suction nozzle, and was removed by suction without crawling the workpiece surface. The decomposition product residue in the vicinity of the half cut portion of the polarizing film remained attached within a range of 500 mm width or less with the half cut portion as the center.

(実施例2)
本実施例に於いては、下記の加工条件下で切断(フルカット)加工を行ったこと以外は、前記実施例1と同様にしてレーザー加工を行った。
(Example 2)
In this example, laser processing was performed in the same manner as in Example 1 except that cutting (full cut) processing was performed under the following processing conditions.

[レーザー光の照射条件]
パワー:100W
スポット径:120mm
パルス幅:20ms
繰り返し周波数:20kHz
走査速度:400mm/s
吸引ノズル径:8mmφ
真空ポンプ排気能力:500L/min
吸引ノズル−照射部間距離:5mm
[Laser irradiation conditions]
Power: 100W
Spot diameter: 120mm
Pulse width: 20ms
Repeat frequency: 20 kHz
Scanning speed: 400mm / s
Suction nozzle diameter: 8mmφ
Vacuum pump exhaust capacity: 500L / min
Distance between suction nozzle and irradiated part: 5mm

切断加工の結果、レーザー加工時に発生した分解物は吸引ノズルの方へ引き寄せられ、被加工物表面を這うことなく吸引除去された。偏光フィルムの切断部周辺に於ける分解物残渣は、切断部分を中心にして100mm幅以下の範囲での付着に留まった。   As a result of the cutting process, the decomposed material generated during the laser processing was drawn toward the suction nozzle, and was removed by suction without scratching the workpiece surface. The decomposition product residue in the periphery of the cut portion of the polarizing film remained attached within a range of 100 mm or less with the cut portion as the center.

(実施例3)
[被加工物]
本実施例では、被加工物としてポリイミドフィルム(商品名;カプトン、125mm厚、デュポン社製)を用いた。
(Example 3)
[Workpiece]
In this example, a polyimide film (trade name: Kapton, 125 mm thickness, manufactured by DuPont) was used as a workpiece.

[レーザー光照射装置]
使用したレーザー光照射装置は、前記実施例1と同様のものを用いた。
[Laser irradiation device]
The same laser beam irradiation apparatus as that used in Example 1 was used.

[レーザー光の照射条件]
下記条件下で、ポリイミドフィルムの切断(フルカット)加工を実施した。尚、吸引ノズルは、レーザー光の走査方向に対し反対側の方向に配置して行った。また、吸引ノズルは、レーザー光の走査速度と同じ速度で移動させて行った。
[Laser irradiation conditions]
Under the following conditions, the polyimide film was cut (full cut). The suction nozzle was arranged in the direction opposite to the scanning direction of the laser beam. The suction nozzle was moved at the same speed as the scanning speed of the laser beam.

パワー:40W
スポット径:120mm
パルス幅:9 ms
繰り返し周波数:20kHz
走査速度:400mm/s
吸引ノズル径:8mmφ
真空ポンプ排気能力:500L/min
吸引ノズル−照射部間距離:5mm
Power: 40W
Spot diameter: 120mm
Pulse width: 9 ms
Repeat frequency: 20 kHz
Scanning speed: 400mm / s
Suction nozzle diameter: 8mmφ
Vacuum pump exhaust capacity: 500L / min
Distance between suction nozzle and irradiated part: 5mm

切断加工の結果、レーザー加工時に発生した分解物は吸引ノズルの方へ引き寄せられ、被加工物表面を這うことなく吸引除去された。ポリイミドフィルムの切断部周辺に於ける分解物残渣は、光学顕微鏡では確認されなかった。   As a result of the cutting process, the decomposed material generated during the laser processing was drawn toward the suction nozzle, and was removed by suction without scratching the workpiece surface. The decomposition product residue around the cut portion of the polyimide film was not confirmed by an optical microscope.

(比較例1)
本比較例に於いては、分解物の吸引除去を行わなかったこと以外は、前記実施例1と同様にして偏光フィルムのハーフカット加工を行った。その結果、偏光フィルムの切断部周辺に於ける分解物残渣は、ハーフカット部分を中心にして5mm以上の範囲にわたって多量に付着していることが確認された。
(Comparative Example 1)
In this comparative example, the polarizing film was half cut in the same manner as in Example 1 except that the decomposed product was not removed by suction. As a result, it was confirmed that the decomposition product residue around the cut portion of the polarizing film adhered in a large amount over a range of 5 mm or more around the half cut portion.

本発明の実施の形態に係る被加工物のレーザー加工について説明するための概略図である。It is the schematic for demonstrating the laser processing of the to-be-processed object which concerns on embodiment of this invention. 前記被加工物としての偏光フィルムを模式的に示す断面図である。It is sectional drawing which shows typically the polarizing film as the said to-be-processed object.

符号の説明Explanation of symbols

1 レーザー光
2 加工ノズル
3 被加工物
4 分解物
5 吸引ノズル
6 吹き付けノズル
7 X−Yステージ
8 フィルム
9 アクリル系粘着剤層
10 TACフィルム
11 ポリビニルフィルム
12 表面保護フィルム
13 セパレータ
14 ガス
15 偏光フィルム(被加工物)
DESCRIPTION OF SYMBOLS 1 Laser beam 2 Processing nozzle 3 Work piece 4 Decomposition thing 5 Suction nozzle 6 Spray nozzle 7 XY stage 8 Film 9 Acrylic adhesive layer 10 TAC film 11 Polyvinyl film 12 Surface protection film 13 Separator 14 Gas 15 Polarizing film ( Work piece)

Claims (2)

被加工物に対しレーザー光を照射して加工するレーザー加工方法であって、
前記レーザー光の照射の際に発生する分解物を、照射部分の近傍で吸引除去しながら、前記レーザー加工し、
前記吸引除去を前記レーザー光による加工の進行方向に対し後方から吸引ノズルを用いて行い、
前記被加工物の加工面にガスとして圧縮エアーを、加工の進行方向の後方であって、前記吸引ノズルの後方から吹き付けて、前記分解物を吸引除去する方向に拡散させ、
前記被加工物として、シート材料、回路基板、半導体ウエハ、ガラス基板、セラミック基板、金属基板、半導体レーザーの発光若しくは受光素子基板、MEMS基板、半導体パッケージ、布、皮、紙、又は単層若しくは多層のフィルム材料を使用し、
前記レーザー光として、ArFエキシマレーザー、KrFエキシマレーザー、XeClエキシマレーザー、YAGレーザーの第3高調波若しくは第4高調波、YLF若しくはYVO の固体レーザーの第3高調波若しくは第4高調波、Ti:Sレーザー、半導体レーザー、ファイバーレーザー又は炭酸ガスレーザーを使用することを特徴とするレーザー加工方法。
A laser processing method for processing a workpiece by irradiating a laser beam,
Decomposing products generated during the irradiation of the laser light, while removing the suction in the vicinity of the irradiated portion, the laser processing ,
The suction removal is performed using a suction nozzle from behind with respect to the processing direction of the laser beam,
Compressed air as a gas on the processing surface of the workpiece is blown from the back of the suction nozzle in the direction of processing, and diffused in the direction of sucking and removing the decomposition product,
As the workpiece, a sheet material, a circuit board, a semiconductor wafer, a glass substrate, a ceramic substrate, a metal substrate, a semiconductor laser light emitting or receiving element substrate, a MEMS substrate, a semiconductor package, cloth, leather, paper, or a single layer or multiple layers Of film material,
As the laser light, ArF excimer laser, KrF excimer laser, XeCl excimer laser, third harmonic or fourth harmonic of YAG laser, third harmonic or fourth harmonic of solid laser of YLF or YVO 4 , Ti: A laser processing method using an S laser, a semiconductor laser, a fiber laser, or a carbon dioxide gas laser .
請求項に記載のレーザー加工方法により得られるレーザー加工品。 A laser processed product obtained by the laser processing method according to claim 1 .
JP2007130532A 2007-05-16 2007-05-16 Laser processing method and laser processed product Active JP5096040B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007130532A JP5096040B2 (en) 2007-05-16 2007-05-16 Laser processing method and laser processed product
PCT/JP2008/058692 WO2008143042A1 (en) 2007-05-16 2008-05-12 Laser processing method and laser-processed product
TW097117754A TW200848191A (en) 2007-05-16 2008-05-14 Laser processing method and laser-processed product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007130532A JP5096040B2 (en) 2007-05-16 2007-05-16 Laser processing method and laser processed product

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2012073899A Division JP5340447B2 (en) 2012-03-28 2012-03-28 Laser processing method and laser processed product
JP2012073900A Division JP2012121073A (en) 2012-03-28 2012-03-28 Laser machining method and laser-machined article

Publications (2)

Publication Number Publication Date
JP2008284572A JP2008284572A (en) 2008-11-27
JP5096040B2 true JP5096040B2 (en) 2012-12-12

Family

ID=40031751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007130532A Active JP5096040B2 (en) 2007-05-16 2007-05-16 Laser processing method and laser processed product

Country Status (3)

Country Link
JP (1) JP5096040B2 (en)
TW (1) TW200848191A (en)
WO (1) WO2008143042A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5328424B2 (en) * 2009-03-02 2013-10-30 本田技研工業株式会社 Drilling device
WO2011016572A1 (en) * 2009-08-06 2011-02-10 住友化学株式会社 Method for manufacturing polarizing plate
JP5460176B2 (en) * 2009-08-18 2014-04-02 キヤノン株式会社 Laser processing equipment
KR101203106B1 (en) * 2010-04-05 2012-11-20 김원옥 Laser cutting method for multilayer film having cop layer
CN102405426B (en) * 2010-05-28 2014-07-09 Lg化学株式会社 Method for manufacturing polarizing plate
JP5481300B2 (en) * 2010-07-29 2014-04-23 住友化学株式会社 Polarizing plate cutting method and polarizing plate cut by the method
TW201207913A (en) * 2010-08-13 2012-02-16 Msscorps Co Ltd Two-stage encapsulation removing method for semiconductor device and laser grooving device
JP2012045581A (en) * 2010-08-27 2012-03-08 Mitsubishi Materials Corp Laser processing method
JP5663507B2 (en) * 2012-02-16 2015-02-04 信越化学工業株式会社 Pellicle manufacturing method
JP2014026186A (en) * 2012-07-30 2014-02-06 Miyakoshi Printing Machinery Co Ltd Half-cut type punch processing method for label paper
JP6057778B2 (en) 2013-02-27 2017-01-11 本田技研工業株式会社 Laser processing equipment
JP6120161B2 (en) * 2013-04-08 2017-04-26 住友化学株式会社 Laser processing apparatus and optical display device production system
JP2014121736A (en) * 2014-03-18 2014-07-03 Sumitomo Chemical Co Ltd Laser light irradiation apparatus and laser light irradiation method
JP6401526B2 (en) * 2014-07-09 2018-10-10 住友化学株式会社 Bonding apparatus, bonding method, optical display device production system, and optical display device production method
DE102016105567B4 (en) * 2016-03-24 2018-05-24 Eissmann Automotive Deutschland Gmbh Method for introducing a defined weakening line with a pulsed laser beam by removing material from a coating material
JP6814459B2 (en) * 2016-07-28 2021-01-20 三星ダイヤモンド工業株式会社 Laser processing method
JP7021887B2 (en) * 2016-09-30 2022-02-17 住友化学株式会社 Optical film manufacturing method
JP7242166B2 (en) * 2016-09-30 2023-03-20 住友化学株式会社 Optical film and method for producing optical film
JP2018065331A (en) * 2016-10-21 2018-04-26 昭和電工パッケージング株式会社 Method for working laminate material
JP7319044B2 (en) 2018-12-14 2023-08-01 Tdk株式会社 Device array manufacturing equipment and specific device removal equipment
US20240058892A1 (en) * 2021-03-03 2024-02-22 Meng Keong LIM An integrated x-ray imaging and laser ablating system for precision micromachining

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001084579A (en) * 1999-09-10 2001-03-30 Fuji Photo Film Co Ltd Magnetic tape machining device
JP2002341322A (en) * 2001-05-17 2002-11-27 Matsushita Electric Ind Co Ltd Method and apparatus for manufacturing liquid crystal display element
JP2004268080A (en) * 2003-03-07 2004-09-30 Sumitomo Heavy Ind Ltd Device and method for laser beam machining

Also Published As

Publication number Publication date
TW200848191A (en) 2008-12-16
JP2008284572A (en) 2008-11-27
WO2008143042A1 (en) 2008-11-27

Similar Documents

Publication Publication Date Title
JP5096040B2 (en) Laser processing method and laser processed product
TWI464029B (en) Laser processing method
KR102096674B1 (en) Wafer machining method
JP7182362B2 (en) Composite parting method
JP2008277414A (en) Dividing method of wafer
US20070000875A1 (en) Method and apparatus for assisting laser material processing
JP2007173475A (en) Method for dividing wafer
US9085049B2 (en) Method and system for manufacturing semiconductor device
JP5202876B2 (en) Laser processing method and laser processed product
JP2003506216A (en) Circuit singulation system and method
JP2009021476A (en) Wafer dividing method
JP2008028113A (en) Wafer machining method by laser
KR101795327B1 (en) Laser processing method and laser processing apparatus
TWI784121B (en) Processing method, etching device and laser processing device
JP2009290052A (en) Method of dividing wafer
JP5340447B2 (en) Laser processing method and laser processed product
JP2004179302A (en) Method for splitting semiconductor wafer
WO2003028943A1 (en) Method and apparatus for fine liquid spray assisted laser material processing
JP2005222989A (en) Method for dividing wafer
JP2012121073A (en) Laser machining method and laser-machined article
CN115485097A (en) Method for cutting composite material
JP2007012733A (en) Dividing method of substrate
JP2005142303A (en) Method of dividing silicon wafer, and apparatus thereof
JP2014121718A (en) Laser machining apparatus
JPH1190667A (en) Sheet holding device for laser beam machining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5096040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250