JP5073887B2 - 自動周波数ステッピングノイズ測定テストシステム - Google Patents

自動周波数ステッピングノイズ測定テストシステム Download PDF

Info

Publication number
JP5073887B2
JP5073887B2 JP2000618740A JP2000618740A JP5073887B2 JP 5073887 B2 JP5073887 B2 JP 5073887B2 JP 2000618740 A JP2000618740 A JP 2000618740A JP 2000618740 A JP2000618740 A JP 2000618740A JP 5073887 B2 JP5073887 B2 JP 5073887B2
Authority
JP
Japan
Prior art keywords
signal
noise
low noise
mixer
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000618740A
Other languages
English (en)
Other versions
JP2004500545A (ja
Inventor
ユージン ジスキー
Original Assignee
ユージン ジスキー
ファーストラブ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユージン ジスキー, ファーストラブ インコーポレイテッド filed Critical ユージン ジスキー
Publication of JP2004500545A publication Critical patent/JP2004500545A/ja
Application granted granted Critical
Publication of JP5073887B2 publication Critical patent/JP5073887B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/20Measurement of non-linear distortion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/26Measuring noise figure; Measuring signal-to-noise ratio

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【0001】
(発明の背景)
本発明は無線周波数(RF)信号に存在するノイズを測定する装置に関する。特に、本発明はRF信号を増幅または修正する装置の位相ノイズ及び周波数ノイズを測定するためのノイズ測定テストシステムに関する。
【0002】
増幅器は搬送波信号のゲインを増加させる装置である。今日、増幅器は多くの電子システムで重要な役割を果たしている。ゲイン、フラットなゲイン、圧縮点、相互変調などのパラメータは増幅器の性能を最適化するのに常に重要であった。さらに、増幅器の新しいパラメータがシステム全体の性能を維持するのに重要であった。残念なことに、搬送波信号を増幅することに加えて、増幅器は通常、熱ノイズ、ショットノイズ及びフリッカノイズを含むRFエネルギーを相互変調及び側波帯ノイズの形で元のRF信号内に取り込んでしまう。このノイズは通常不規則であって追加及び残余位相ノイズ並びに周波数ノイズと呼ばれる。さらに、増幅器によってスプリアスノイズ信号が生成されることがある。これらは電源ライン及び/または振動変調に関連することがある「スパー」と呼ばれる特殊な成分として現れる離散的信号からなる。このノイズが可能な限り最小限にされることが重要である。周波数ノイズは位相ノイズの関数であるので、これらのノイズ成分を本明細書ではまとめて位相ノイズと呼ぶ。
【0003】
RF信号源に位相ノイズが存在することは、符号分割多元接続(CDMA)及び時分割多元接続(TDMA)セルラ通信システムなどのアナログ及びデジタル通信に関連する適用分野を含むいくつかの適用分野で問題になっている。European Global System for Mobile communications(GSM)は、各コンポーネントが正確な限度の範囲内で動作する場合にのみ無線通信システムは全体として正しく動作することから、移動体及び基地局の送信機の動作要件を規定した詳細な標準を公表している。移動体の送信機と基地局とは呼の通話品質を維持するのに十分な電力と十分な忠実度を備えた出力RF信号を、他の信号に割り当てられた周波数チャネルと時間スロットに余分な電力を伝送することなく送信しなければならない。
【0004】
特に通信装置の場合、増幅器によって生成される信号の振幅レベル以下に見えるスパー及び歪み成分であってもそれらを最小限にすることが重要である。通信システム内の多数の通信モジュールによって引き起こされた歪みまたはノイズが統計的に増加し、これによってシステム全体でのノイズのレベルを上げていることから、このことは重要である。従って、増幅器によって生成された信号のレベル以下であっても、増幅器の位相ノイズレベルを測定することが重要になっている。
【0005】
位相ノイズは、レーダ装置、特に送信信号の戻りエコーによって生成される周波数のシフトを測定することによって、移動する目標物の速度を決定するドップラーレーダ装置で重要な問題である。戻りエコー信号は通常、測定のために増幅される。残念ながら、最大40dBの基底ノイズは搬送波周波数付近で観察されている。レーダ装置の増幅器によって引き起こされたそのような大きい背景ノイズは目標物捕捉感度の低下を招き、地上及び空中能動アレイレーダの正常な動作を阻害することがある。場合によっては、増幅器によって引き起こされた位相ノイズの混入が部分的または全体的にエコー信号を覆い隠すことが分かっている。
【0006】
増幅器の位相ノイズを測定する最も直接的で最も安価な技法は、知られている周波数の信号を増幅器に入力してその出力をスペクトルアナライザに接続することである。ただし、周波数が搬送波信号に近い位相ノイズを測定するのは困難である。さらに、この技法を用いて、増幅器の出力信号の振幅より低い増幅器によって引き起こされたノイズを測定することは不可能である。特定のシステムによって生成されるノイズの量を最小限にするために、そのノイズを測定できることは極めて有利である。その結果、位相ノイズ測定が可能な装置が、依然として要求されている。
【0007】
RF信号の位相ノイズ測定を行う2つの手法が有力である。第1のシステムは導波路遅延ライン弁別器を使用するノイズ測定テスト装置である。例えば、Newberg他に付与された米国特許第5608331号は、導波路、同軸及び光ファイバ遅延ラインを用いたマイクロ波信号の位相ノイズ及び増幅ノイズを測定するためのテストシステムを開示している。遅延ライン弁別器は、遅延ラインを介して位相ノイズ評価のための基準信号を生成するために、テスト対象ユニット(UUT)からのRF入力を使用する。テスト対象ユニットから出力された信号は第1及び第2の経路に分割され、ミキサーで再び結合され、ミキサーはそれぞれの信号の位相を90度ずらす(直交位相状態)。テストシステムが非常に小さいノイズしか発生しないかほとんどノイズを発生しない場合、ミキサーは掃引スペクトルアナライザによって測定され得る変調された位相ノイズを出力する。
【0008】
位相ノイズ測定を実行する第2の従来の手法は、2つの位相ロックRF源から発生するノイズの組み合わせを使用する。テスト対象ユニットに搬送波信号を提供する、通常は増幅器である、ローノイズ源が提供される。ローノイズ源は搬送波信号と周波数が同じ第2のローノイズ信号も出力し、この第2のローノイズ信号はミキサー内で増幅器から出力された搬送波信号と組み合わされる。ミキサーは移相器を用いて2つの信号を直交位相状態にする。テスト装置内に有意なノイズがないとすると、ミキサーの出力信号は掃引スペクトルアナライザによって測定され得る被測定装置のノイズを表す。
【0009】
残念ながら、従来システムを用いた変調測定及び広帯域ノイズ測定は高価で、困難で時間がかかる。600kHz程度の広いオフセットで、これらの測定には従来高価であった広いダイナミックレンジが必要である。これらの理由から、広帯域ノイズ測定は通常サンプル単位で実行される。サンプル単位でノイズ測定を行う場合でも、この技法では一連の個別の測定を行う必要があり、テスト装置の頻繁な再調節が必要になるので、極めて時間がかかる。例えば、上記の遅延ラインの技法を用いて、広い帯域幅にわたって割り当てた異なる周波数で移相器、減衰器及び加算増幅器を調節しなければならない。同様に、上記の超ローノイズ源テストシステムでは、通常、広い帯域幅の周波数オフセットごとにローノイズ源、移相器、加算増幅器及びバッファを手動で調節しなければならない。これらの装置の手動の調節はテスト測定ごとに普通10分以上かかる。さらに、テストの精度を保証するために、テスト対象ユニットのノイズ測定のエラーの標準偏差が減少することとなるように、サンプル測定回数を増加させて、多数のテストサンプルが採取されなければならない。即ち、テスト対象ユニットの正常な動作を確認するために十分な読み取りをしなければならない。
【0010】
残念なことに、そのようなテストを実行することは高価であると同時に時間がかかる。さらに、従来技術のテストシステムは極めて高価で、通常100,000ドルから200,000ドルの間である。さらに、これらのシステムは少しづつ購入されなければならず、増幅器、ローノイズ源、信号減衰器、移相器、ミキサー及び掃引スペクトルアナライザを別々に購入することが必要で、それらは、所望のテストシステムを生成するように組み合わされなければならない。これらのコンポーネントの各々の相互接続が、位相ノイズがシステムに混入する余地を生じる。
【0011】
従って、低レベル位相ノイズを正確に測定できるノイズ測定テストシステムが必要である。
【0012】
テスト測定で高度な再現性を有するノイズ測定テストシステムが提供されたならば、有利であろう。この目的のために、ノイズ測定のたびに通常は調節しなければならない増幅器、移相器、減衰器、ローノイズ源などを含むテストシステムの異なるコンポーネントを手動で操作する必要性を無くすテストシステムが提供されたならば、極めて有利であろう。
【0013】
また、軽量で小型の単一モジュールコンポーネントとしてノイズ測定テストシステムを提供できれば極めて有利であろう。
(発明の概要)
要約すると、本発明に関して、私はテスト対象ユニットの位相ノイズを自動的にテストする改良された装置及び方法を提供する。本発明は、搬送波信号のノイズレベル以下であっても、特に、増幅器の位相ノイズをテストするのに適していると考えられている。このノイズ測定システムは、調節可能なローノイズ信号を発生する可変ローノイズ源を含む。該可変ローノイズ源は、同一のローノイズ信号を出力する2個の出力を含むか、または単一のローノイズ信号を2つの同一のローノイズ源信号に分離する分離器に結合される。第1のローノイズはテスト対象ユニットに導かれる。テスト対象ユニットは第1のローノイズ搬送波信号を受信する入力部及び搬送波信号を出力する出力部を備えている。そして、このテスト対象ユニットの搬送波信号は可変増幅器に通された後、ミキサーによって受信される。
【0014】
可変ローノイズ源から出力された第2のローノイズ信号は、可変増幅器を通過するテスト対象ユニットの信号と共に位相が90度ずれる(直交位相状態になる)ように、第2のローノイズ信号の位相を調節する可変移相器に伝達される。第2のローノイズ信号は同位相に変換された後、第2の入力ポートのミキサーによって受信され、そこでテスト対象ユニットの信号と組み合わされてミキサーの出力ポートから出力される。可変増幅器及び可変移相器は共に、UUT信号及び第2ノイズ信号が直交位相状態及び振幅が一致しているように調節され、その結果、システムまたはテスト対象ユニットにノイズがなくなれば、直流(DC)がミキサーの出力ポートから出力される。しかし、ノイズがテスト対象ユニットにあり、且つきわめて小さなノイズがテストシステムにあると仮定した場合、ミキサーはテスト対象ユニットのノイズを表す信号を出力する。次に、以下「測定テスト信号」と呼ぶミキサーから出力されたこの信号は、可変ローノイズ整合増幅器に送られる。可変ローノイズ整合増幅器は、測定テスト信号を増幅すると共にバッファとして働く。可変ローノイズ整合増幅器は、テスト対象ユニットのノイズ測定に干渉しないように、きわめて低いノイズを加えるような構成になっており、テスト対象ユニットの任意のノイズを測定する能力を高めるために測定テスト信号の増幅を行う。
【0015】
測定テスト信号はローノイズ整合増幅器を通過した後、アナログ/デジタル変換器(ADC)によって受信され、アナログ測定テスト信号はデジタルデータに変換される。続いて、測定テスト信号をスペクトルアナライザに送る前に評価するために、このデジタルデータはプロセッサに伝達される。このスペクトルアナライザは、標準的な窓型で高速の、あるいは離散フーリエ変換を使用し、測定テスト信号のノイズスペクトルを正確に測定する。このようなフーリエ変換は当業者には既知であり、ここでは詳細に解説しない。
【0016】
前記プロセッサは複数のコントロールラインを介して、可変増幅器、可変ローノイズ源、可変移相器、及び可変ローノイズ整合増幅器に接続されている。最初の較正を行い、且つテスト対象ユニットの位相ノイズを測定するシステムの感度を最適に維持するために、このプロセッサはレベルを設定し、増幅器、ローノイズ源、移相器、及び整合増幅器を調節する。通常は手動で行われる可変ローノイズ源、増幅器、移相器及び整合増幅器を調節するために、プロセッサはこれらの自動化された制御機能を実行する。例えば、テスト対象ユニットのノイズを測定するには、搬送波信号を生成するローノイズ源のオフセット周波数を変えて、テスト対象ユニットのテスト測定を数回行う必要がある。従来技術のシステムでは最初にローノイズ源を手動で調節する必要がある。次に、ミキサーが受信する信号を確実に直交位相状態にするには、移相器が手動で調節される必要がある。また、ミキサーが受信する信号を確実に同じ振幅にするには、増幅器が調節される必要がある。さらに、ミキサーとアナログ/デジタル変換器との間のインピーダンスが確実に適切になるようにするには、整合増幅器が調節される必要がある。通常、このような手動による調節には10分以上かかる。本発明のプロセッサは、これらのコンポーネントの自動調節を、通常1分未満で行うことができる。さらに、本発明のプロセッサは、すべてのテストプログラムまたはプロトコルの生成及び自動動作を行う。テスト対象ユニットのテスト測定をローノイズ源の異なるオフセット周波数において多数回行うために、テスト対象ユニットは所定の帯域にわたって、テストシステムを予めプログラムすることによってテストされる。さらに、テスト対象ユニットのノイズレベルを確実に許容レベルにするために、このプロセッサは、十分な回数のテストサンプルを各オフセット周波数で行えるように、予めプログラムされ得る。
【0017】
測定テストシステムを制御するために、信号プロセッサは、システムを較正し、且つ増幅器、ローノイズ源及び移相器が正しいレベルにセットされることを保証するために、ADCから出力されたデジタル化された出力を使用する。特に、ADCからの出力によって、プロセッサはローノイズ源が搬送波信号を正確な周波数で供給しているかどうかを判定することが可能になる。ADCからの出力を評価することによって、プロセッサは移相器がミキサーによって受信された信号を適切に直交位相状態に維持していることを判定することができる。同じく、可変増幅器がミキサーが受信するテスト対象ユニットの信号の増幅レベルを適切に維持できない失敗は、プロセッサにより修正され得る。また、これらのコンポーネントのいずれかが最適に機能しない場合、このプロセッサは、測定テスト信号によるテスト対象ユニットのノイズテストを確実に適切に実行できるように必要な調節を行う。
【0018】
好ましい実施形態では、本発明の可変ローノイズ源は可変搬送周波数と可変較正信号の両方を出力する。この較正信号はきわめて低レベルのノイズ側波帯であり、搬送波信号の強度に関連して正確に知られている強度を有し、その強度は、通常は搬送波信号の振幅以下の約60dBである。較正信号はテスト測定システムの較正を可能にする。この較正信号はミキサーの直交位相によって除去されることがないため、スペクトルアナライザに現れる。この較正信号は既知の強度を有しているため、表示された位相ノイズの高さは表示された較正信号の高さと比較され得る。テスト対象ユニットにより生じた任意のノイズは、テスト対象ユニットの位相ノイズを定量的に測定するために較正信号と比較される。
【0019】
さらに、本発明は、較正信号の強度を調節することによって、種々のレベルで定量的にシステムを較正することを可能にする。特に、測定テストシステムが較正される場合、較正信号は連続的に異なる強度で供給されることが好ましい。例えば、この較正信号は、最初は、搬送波信号に対して−10dBで供給される。その後、この較正信号は搬送波信号に対して、−20dB、−30dB、−40dB、−50dB及びー60dBで供給される。次に、プロセッサは、テスト対象ユニットで発生する実際の位相ノイズを測定するときの測定精度を高めるために、これらの較正信号の各々をスペクトルアナライザに図形として表示する。
【0020】
別の好ましい実施形態では、テストシステムの較正手順中に周波数にオフセットされる多数の較正信号を生成するために、プロセッサは可変ローノイズ源を制御する。すなわち、本発明は、システムが較正される毎に、システムの周波数及び振幅の較正を提供する。例えば、搬送波信号に対して−10dBから−60dBの較正信号を生成することによって、システムを較正することに加え、較正中にローノイズ源は、搬送波信号に関連する周波数にオフセットされる種々の付加的な較正信号を生成する。次に、テスト対象ユニットによって生じるスパーまたは歪みの実際の周波数を測定するときの測定精度を高めるために、このプロセッサはこれらの較正レベルの各々をスペクトルアナライザに図形として表示する。この情報は、テスト対象ユニットによって生成されるノイズの実際の原因を解明するときにも有用である。
【0021】
従って、本発明の目的は、テスト対象ユニットのRFノイズを測定する改良された測定テストシステムを提供することである。
【0022】
本発明のさらなる目的は、通常は1分未満で達成される、システムのコンポーネントの自動調節を可能にする、自動ノイズ測定テストシステムを提供することである。さらに、本発明の目的は、所望の要件に対して完全に自動化されたテストプログラムを作成し、且つ実行することのできる自動ノイズ測定テストシステムを提供することである。
【0023】
本発明のさらにまた別の目的は、システムを較正する毎に、搬送波信号に関して種々のデシベル値で、且つ搬送波信号に関して種々のオフセット周波数でシステムの較正を行うことができる自動ノイズ測定テストシステムを提供することである。
【0024】
本発明のこれら及びさらなる利点は、当業者によって、添付図面を参照して以下の詳細な説明を読めば十分に理解されるであろう。
(発明の詳細な説明)
本発明は種々の実施形態により理解されるが、ここで示される本発明の好ましい実施形態は、本発明の開示は本発明の一例として考慮され、且つ本発明が図示した特定の実施形態に限定されるものではないという了解の下で、図面に示され、以下に説明される。
【0025】
図1を参照すると、本発明は、テスト対象ユニット3によって搬送波信号39に加えられたノイズを測定する改良されたノイズ測定テストシステム1を提供する。テスト対象ユニット3は、ノイズ測定システムから出力ポート7を介して伝達されるローノイズ搬送波信号39を受信する入力4を含んでいる。テスト対象ユニット3は、搬送波信号39の修正、増幅または調節を行い、出力ポート5からテスト対象ユニットの信号35を出力する。テスト対象ユニットの信号35は測定テストシステムの入力ポート6によって受信され、そこで入力ポート17及び出力ポート19を有する可変増幅器15を介して導かれる。可変増幅器15を通過した後、テスト対象ユニットの信号35は第1のミキサー入力23を介してミキサー21によって受信される。
【0026】
本発明のノイズ測定テストシステム1は、テスト対象ユニットに供給されるローノイズ搬送波信号39を生成する可変ローノイズ源9をさらに含む。また、ローノイズ源9は搬送波信号39と同一の周波数である第2のローノイズ信号37を供給し、この信号は出力ポート13を介して供給される。次に、第2のローノイズ信号37は入力ポート31を介して可変移相器29に送られ、そこで位相が調節され、続いて移相器の出力ポート33を介して出力される。可変移相器29によって位相が調節された後、第2のローノイズ信号37は入力ポート25を介してミキサー21へ導かれる。
【0027】
作動時には、ミキサー21によって受信されるときに第2のローノイズ信号37がテスト対象ユニットの信号35と共に位相が90度ずれる(直交位相状態になる)ように、可変移相器29は第2のローノイズ信号37の位相を調節する。さらに、テスト対象ユニットの信号35が増幅され、且つミキサー21によって受信されるときにテスト対象ユニットの信号35は第2のローノイズ信号37の振幅と同じ振幅を有するように、可変増幅器15を調節することも可能である。信号が直交位相状態になるように、ミキサー21はテスト対象ユニットの信号35と第2のローノイズ信号37を組み合わせる。可変増幅器15、可変ローノイズ源9、可変移相器29及びミキサー21において、きわめて小さいノイズが存在する場合には、測定テスト信号と呼ばれる出力信号は、テスト対象ユニット3のノイズを表している。次に、この測定テスト信号41は、ローノイズ整合増幅器43の入力45に入力され、出力47から出力される。テスト信号にノイズがあっても簡単に測定できるように、ローノイズ整合増幅器43は測定テスト信号41の強度を増幅する。さらに、ミキサー21とローノイズ整合増幅器43を通過した後に測定テスト信号41を受信するアナログ/デジタル変換器49との間のインピーダンスが確実に最適になるように、ローノイズ整合増幅器43はバッファとして機能する。
【0028】
アナログ/デジタル変換器49は、測定テスト信号41を受信する入力ポート51を有する。アナログ/デジタル変換器49によって測定テスト信号41が受信された後、この信号は先入れ先出し方式でデジタル形式に変換され、続いて、出力ポート53を介して出力される。ここでデジタル形式に変換された測定テスト信号41は、入力ポート57を介してプロセッサ55に送られる。プロセッサ55は測定テスト信号41の測定操作を何回か行い、通常は変化していない信号を、出力ポート59を介して入力ポート63を有するスペクトルアナライザ61に出力する。スペクトルアナライザ61は測定テスト信号41を画像化するビデオディスプレイを備えている。
【0029】
また、本発明のノイズ測定テストシステム1は、可変移相器29、可変増幅器15、可変ローノイズ源9及び可変ローノイズ整合増幅器43の各々に、プロセッサ55を接続する複数のコントロールライン65、67、69及び71を含んでいる。プロセッサ55は、テストシステムオペレータによって予め決定されたテストレベルを設定し、システムの最初の較正を行い、且つテスト対象ユニット3の位相ノイズを測定するシステムの感度を最適に維持するために、増幅器15、ローノイズ源9、移相器29及びローノイズ整合増幅器43を調節する。例えば、テスト対象ユニット3の位相ノイズを測定するためには、通常は、ローノイズ源が種々のオフセット周波数で搬送波信号を生成した状態で、テスト対象ユニット3の位相ノイズの測定を何回か行う必要がある。
【0030】
テスト対象ユニット3のテストプロトコルは、ノイズ測定テストシステム1がテスト対象ユニット3の発生する位相ノイズを確実に正確に計量し、且つノイズ測定テストシステム1が過大な量のノイズをテストのセットアップ自体に導入しなことを保証するために、システム全体の較正を最初に必要とする。さらに、図2及び図3を参照すると、好ましい実施形態において、プロセッサ55はローノイズ源9を制御して可変搬送波信号75と可変較正信号77の両方を生成する。較正信号77は、搬送波信号75に関して正確に知られている周波数及び強度を有するきわめて低いノイズの側波帯である。典型的な較正信号77は、搬送波信号自身の強度より小さい約60dBの強度を有することも可能である。図4に示すように、較正信号77は既知の強度を有するので、テスト対象ユニット3の位相ノイズを定量的に測定するために、測定テスト信号79の任意の位相ノイズの表示された高さは、較正信号77の表示された高さと比較され得る。
【0031】
別の好ましい実施形態においては、較正過程では強度レベルの異なる種々の較正信号77を使用する。例えば、図2(a)〜2(f)を参照すると、本発明のノイズ測定テストシステム1の較正を向上させるために、較正信号77は種々の強度で順に供給される。例えば、図2(a)に示すように、較正信号77は、最初は−60dBで供給される。図2(b)〜2(f)を参照すると、次に較正信号77は、それぞれ−50dB、−40dB、−30dB、−20dB及び−10dBで順に供給される。図4に示すように、オペレータがより正確にビデオディスプレイに表示されたスパーまたはノイズの摂動を測定できるように、次にこれらの値はスペクトルアナライザ61に図形として表示される。
【0032】
さらに別の実施形態においては、本発明のノイズ測定テストシステム1の最初の較正を行うときに周波数にオフセットされる複数の較正信号77を生成するために、プロセッサ55は可変ローノイズ源9を制御する。図3(a)〜3(f)を参照すると、3つの較正信号77は搬送波信号75よりも低い周波数で供給されるが、3つの較正信号77は搬送波信号75よりも高い周波数で供給される。一旦、較正信号77の強度が検知されると、次に、テスト対象ユニット3によって生成されたスパーまたは歪みの実際の周波数を測定するときの測定精度を高めるために、これらの値はスペクトルアナライザ61に図形として表示される。プロセッサ55は、オペレータが可変増幅器15、ローノイズ源9、移相器29またはローノイズ整合増幅器43を手動で調節しなくとも、テストシステムの較正を自動的に行う。
【0033】
通常のノイズ測定システムは、可変増幅器15、ローノイズ源9、移相器29またはローノイズ整合増幅器43の手動での調節を必要とする。再び図1を参照すると、本発明のノイズ測定テストシステム1は、これらコンポーネントの自動制御を提供する。一旦、較正が行われると、ノイズ測定テストシステム1は、テストオペレータがキーボード等を使用して行う命令に基づいてテストプロトコルを開始する。通常、オペレータからの命令は、テスト対象ユニット3がテストされる周波数帯域幅、テストに必要なオフセット周波数の数、オフセット周波数の間隔及び各オフセット周波数で行われなければならないサンプル数を含む。このテストプログラムに従って、プロセッサ55はコントロールリンク69を介してローノイズ源9を自動的に調節して、所定の周波数で搬送波信号39を生成する。前述のように、搬送波信号39はテスト対象ユニット3を介して導かれ、そこでは増幅器15を介してミキサー21に通されるUUT信号35が生成される。一方では、ローノイズ源9は、ミキサー21に到達する前に移相器29を通過する第2のローノイズ信号37を生成する。このミキサーはアナログ/デジタル変換器49を介してプロセッサ55に通される測定テスト信号41を生成する。UUT信号35の振幅が入力ポート25を介してミキサー21により受信されるような第2のローノイズ信号37の振幅と整合するように、プロセッサ55はコントロールリンク67を介して増幅器15を自動的に調節する。また、ミキサー21で信号を直交位相状態にしたままテスト対象ユニット信号35の位相が90度ずれるように第2のローノイズ信号37を調節するために、プロセッサ55は、コントロールリンク65を介して移相器29を自動的に調節する。このような調節は、測定信号41がプロセッサ55に到達するときの測定テスト信号41の評価に基づいている。ローノイズ源9、増幅器15または移相器29が正確に調節されない場合、プロセッサ55はコントロールリンクを介して移相器29、増幅器15またはローノイズ源9に命令を自動的に送り、測定テストシステムが確実に最適なレベルで作動するように必要な調節を行う。これらの調節は、何らオペレータの操作無く行なわれる。ミキサー21を通過後、測定テスト信号41はローノイズ整合増幅器43及びアナログ/デジタル変換器49を介してプロセッサ55に導かれる。ミキサー21とアナログ/デジタル変換器49との間のインピーダンスが不適切な場合、確実に適切なインピーダンスになるように、プロセッサ55はローノイズ整合増幅器43を自動的に調節する。同じく、ノイズ測定を適切に行うには測定テスト信号41の信号強度が不十分な場合、プロセッサ55は、コントロールリンク71を介してローノイズ整合増幅器43に、ローノイズ整合増幅器43に測定テスト信号41のゲインを増幅させるように命令するコマンドを送る。このような方法で、本発明のノイズ測定テストシステムは完全に自動化されたテストシステムを提供する。
【0034】
プロセッサ55に到達後、測定テスト信号41はスペクトルアナライザ61まで導かれる。図4に示すように、ここではアナログ/デジタル変換器49によりデジタル形式に変換された測定テスト信号41は、測定テスト信号41のノイズスペクトルを正確に測定する離散フーリエ変換を用いてスペクトルアナライザ61によって分析される。前述のように、システムまたはテスト対象ユニット3にノイズがない場合、測定テスト信号41はDC信号またはゼロ信号を出力する。しかし、テスト対象ユニットによってノイズが発生した場合、測定テスト信号41は、交流(AC)として、テスト対象ユニットにより発生されたノイズを表すジッタと共にスペクトルアナライザ61に表示される。当業者には理解されるように、1kHzの位相ノイズがある場合、次式に従って掃引アナライザにスパイクが1kHzで表示される。
ΔV(t)=Vpeak sinΔΦ(t)
これはミキサー出力27とテスト対象ユニット3の位相変動との間に線形関係があるためである。これは、次式によって表わされる。
ΦΔΦ=ΔV
ミキサー21が位相検波器として用いられる場合、ミキサーの電圧出力はテスト対象ユニット3の位相変動に正比例する。例えば、1kHzの位相変動は、以下の式に従って比例した振幅周波数として表示される。
ΔV(fm)=KΦΔΦ(fm)
ΔV(fm)=1.414VrmsΔΦ(fm)
同様に、ミキサー21の出力電圧は、スペクトルアナライアザ61で測定された周波数の関数として、以下の式に従って入力信号の位相偏移に正比例する。
ΔV(t)=±peakΔΦ(t)
ΔV(fm)=KΦΔΦfm)
ΔV(fm)=(測定された位相検波器の定数)ΔΦ(fm)
ΔΦrms(fm)=(1/KΦ)ΔVrms(fm)
単純に、位相変動が大きくなるほど振幅は大きくなり、そのノイズ信号はスペクトルアナライザに表示される。さらに、ノイズ測定テストシステムの分解能帯域幅を変えることによって、ノイズに関連する摂動から実際のスパーを見分けることができる。分解能帯域幅が変化しても、スパーは振幅が一定のままである。一方、ノイズに関連する摂動は、分解能帯域幅が変化するにつれて振幅が変化しやすい。
【0035】
一旦、前述したテスト対象ユニット3の評価が特定の周波数で完了すると、例えば、テスト対象ユニットにサンプル信号を所定の回数通過させることによって、プロセッサ55はローノイズ源9の周波数を異なるオフセットレベルに自動的に調節、すなわちステップさせる。また、ミキサー21が受信する信号が直交位相状態に維持されるように、増幅器15及び移相器29はプロセッサ55によって自動的に調節され、ミキサー21とアナログ/デジタル変換器49との間に十分なゲイン及び適切なインピーダンスが確実に得られるように、ローノイズ整合増幅器43はプロセッサ55によって自動的に調節される。次に、測定テスト信号41のさらなる評価が、新しいオフセット周波数でスペクトルアナライザ61によって実行される。望ましくは、スパーまたはノイズに関連する摂動が特定のオフセット周波数または周波数で現われる可能性があるため、対象となる帯域にわたって非常に近接した周波数でテストが行われる。
【0036】
テスト対象ユニット3が増幅器15である場合、テスト対象ユニット3は特定のゲインレベルでスパーまたはノイズの摂動を生成する可能性がある。従って、好ましい実施形態では、ノイズ測定テスト装置1はプロセッサ55をテスト対象ユニット3に接続する付加的なコントロールリンク73を含む。また、テストプログラム中、テスト対象ユニット3はテストシステムのオペレータの指令に従って、プロセッサ55によって種々のゲインレベルに自動的に調節される。
【0037】
ノイズ測定テストシステムのコンポーネントは、当業者に知られている多数の企業から購入され得るが、本発明に適用するには、低ノイズ特性のために、カリフォルニア州ナショナルシティのマイクロウェーブソリューション社による増幅器及びローノイズ整合増幅器が、特に適していると考えられる。同様に、本発明に適用するには、ニュージャージー州ウィッパーニーのKDI社による移相器、及びカリフォルニア州ミルピタスのワトキンス−ジョンソン社によるミキサーが、適していると考えられる。
【0038】
本発明を実施するために、ノイズ測定テストシステムのプロセッサを制御する条件を満たしたソフトウェアソースコードを以下に示す。このソースコードは、C++のコンパイルされていないフォーマットで提供されており、測定テスト信号の特性を評価することを可能とする。このソースコードはビデオディスプレイに測定テスト信号を図形表示することはないが、当業者であれば実験を無効にすることなく解決され得る。
【0039】
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
Figure 0005073887
【0040】
本発明は、当業者が理解し且つ実行できる用語で説明され、その現在の望ましい実施形態は定義及び特定された。
【図面の簡単な説明】
【図1】 本発明の自動ノイズ測定テストシステムを示す図である。
【図2】 図2(a)〜2(f)は、本発明のローノイズ信号源によって生成された搬送波信号及び較正信号を示しており、前記較正信号が搬送波信号に対して異なったデシベルレベルに調節されている、スペクトルアナライザに表示されるであろうグラフ的描画である。
【図3】 図3(a)〜(f)は、幾つかの搬送波信号に対するオフセット周波数において、較正信号がシステムの較正のために調節されている、本発明のローノイズ信号源によって生成された搬送波信号及び較正信号を示している、スペクトルアナライザに表示されるであろうグラフ的描画である。
【図4】 本発明のローノイズ源によって生成された較正信号と比較されるテスト対象ユニットのテスト信号の測定を示している、スペクトルアナライザに表示されるであろうグラフ的描画である。

Claims (10)

  1. UUT入力部及びUUT出力部を有する測定対象ユニット(UUT)から生成された信号の位相ノイズを測定するためのノイズ測定テストシステムであって、
    測定対象ユニットから信号を受信するための増幅器入力部及びミキサーに結合するための増幅器出力部を有する可変増幅器と、
    ローノイズ信号を生成し、該ローノイズ信号を第1の出力部から出力される第1のローノイズ搬送波信号及び第2の出力部から出力される第2のローノイズ信号に分離するための分離器を備え、前記第1の出力部はUUT入力部に結合するためのものであり、前記第2の出力部は可変移相器に結合するためのものである可変ローノイズ源と、
    前記ローノイズ源の前記第2の出力部に結合されている移相器入力部及びミキサーに結合されている移相器出力部を備えており、前記ローノイズ源の前記第2出力部から受信した前記第2のローノイズ信号の位相を調節する可変移相器と、
    第1、第2のミキサー入力部及びミキサー出力部を備えており、前記第1のミキサー入力部は前記増幅器出力部に結合され、前記第2のミキサー入力部は前記移相器出力部に結合され、且つ前記ミキサー出力部はプロセッサに結合されており、前記ミキサー出力部から測定テスト信号を出力するために、前記第1及び第2の入力部で受信した信号を同期させる同期位相検波部を備えているミキサーと、
    前記ミキサー出力部に結合されたプロセッサ入力部を備えており、前記可変増幅器、前記可変ローノイズ源及び前記可変移相器の調節を自動的に制御するために、プロセッサを前記可変増幅器、前記可変ローノイズ源及び前記可変移相器と接続するためのコントロールリンクをさらに備えているプロセッサと
    を備えていることを特徴とするノイズ測定テストシステム。
  2. 前記ミキサーから出力される前記測定テスト信号の特徴を図示する画像を生成するために、前記プロセッサに接続されたディスプレイ手段をさらに備えていることを特徴とする請求項1記載の測定対象ユニット(UUT)から生成された信号の位相ノイズを測定するためのノイズ測定テストシステム。
  3. 前記ディスプレイ手段はスペクトルアナライザを備えていることを特徴とする請求項2記載の測定対象ユニット(UUT)から生成された信号の位相ノイズを測定するためのノイズ測定テストシステム。
  4. 前記ミキサー及び前記プロセッサの間に結合されたアナログ/デジタル変換器をさらに備えていることを特徴とする請求項1記載の測定対象ユニット(UUT)から生成された信号の位相ノイズを測定するためのノイズ測定テストシステム。
  5. 前記ミキサー及び前記プロセッサの間に結合されたローノイズ整合増幅器をさらに備えていることを特徴とする請求項1記載の測定対象ユニット(UUT)から生成された信号の位相ノイズを測定するためのノイズ測定テストシステム。
  6. 前記プロセッサは、前記ローノイズ整合増幅器のゲインを自動的に調節するために、前記ローノイズ整合増幅器に接続されたコントロールリンクをさらに備えていることを特徴とする請求項5記載の測定対象ユニット(UUT)から生成された信号の位相ノイズを測定するためのノイズ測定テストシステム。
  7. 前記プロセッサは、前記ローノイズ整合増幅器のインピーダンスを自動的に調節するために、前記ローノイズ整合増幅器に接続されたコントロールリンクをさらに備えていることを特徴とする請求項5記載の測定対象ユニット(UUT)から生成された信号の位相ノイズを測定するためのノイズ測定テストシステム。
  8. 前記プロセッサは、異なる予め選択されたオフセット周波数の前記ローノイズ信号を生成するために、前記ローノイズ源の動作を自動的に調節し、前記プロセッサはさらに、前記ミキサーによって受信された前記信号が直交位相状態にあることを保証するために、前記増幅器及び前記移相器を自動的に制御することを特徴とする請求項1記載の測定対象ユニット(UUT)から生成された信号の位相ノイズを測定するためのノイズ測定テストシステム。
  9. 可変増幅器、可変ローノイズ源、可変移相器、ミキサー、ビデオディスプレイ、及び該増幅器、該ローノイズ源及び該移相器を制御するためのコントロールリンクを備えているプロセッサを備えているテスト測定システムを使用してテスト対象ユニット(UUT)の信号ノイズを測定する方法であって、
    前記プロセッサからの命令に従って前記可変ローノイズ源によってローノイズ信号を生成するステップと、
    前記ローノイズ信号を第1のローノイズ搬送波信号及び第2のローノイズ信号に分離するステップと、
    前記第1のローノイズ搬送波信号を、前記テスト対象ユニット及び前記可変増幅器を介して前記ミキサーに導くステップと、
    前記第2のローノイズ信号を、前記可変移相器を介して前記ミキサーに導くステップと、
    前記ミキサーからの出力信号を前記プロセッサに導くステップと、
    前記ミキサーによって受信された前記信号を直交位相状態に置くために、前記プロセッサからの命令に従って前記可変増幅器及び前記可変移相器を調節するステップとを含んでいることを特徴とする信号ノイズ測定方法。
  10. 異なる予め選択されたオフセット周波数における前記ローノイズ信号を生成するために、前記可変ローノイズ源の動作を自動的に調節するステップと、
    前記ミキサーによって受信された前記信号が直交位相にあることを保証するために、前記可変増幅器及び前記可変移相器を自動的に制御するステップと
    をさらに含んでいることを特徴とする請求項9記載のテスト対象ユニット(UUT)の信号ノイズ測定方法。
JP2000618740A 1999-05-17 2000-05-17 自動周波数ステッピングノイズ測定テストシステム Expired - Fee Related JP5073887B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/313,435 US6393372B1 (en) 1999-05-17 1999-05-17 Automated frequency stepping noise measurement system
US09/313,435 1999-05-17
PCT/US2000/013545 WO2000070357A2 (en) 1999-05-17 2000-05-17 Automated frequency stepping noise measurement test system

Publications (2)

Publication Number Publication Date
JP2004500545A JP2004500545A (ja) 2004-01-08
JP5073887B2 true JP5073887B2 (ja) 2012-11-14

Family

ID=23215682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000618740A Expired - Fee Related JP5073887B2 (ja) 1999-05-17 2000-05-17 自動周波数ステッピングノイズ測定テストシステム

Country Status (11)

Country Link
US (1) US6393372B1 (ja)
EP (1) EP1204874B1 (ja)
JP (1) JP5073887B2 (ja)
KR (1) KR100772838B1 (ja)
AT (1) ATE276522T1 (ja)
AU (1) AU773393B2 (ja)
CA (1) CA2372800C (ja)
DE (1) DE60013855T2 (ja)
ES (1) ES2232455T3 (ja)
MX (1) MXPA01011752A (ja)
WO (1) WO2000070357A2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7035324B2 (en) * 2001-08-01 2006-04-25 Agilent Technologies, Inc. Phase-noise measurement with compensation for phase noise contributed by spectrum analyzer
KR20030044105A (ko) * 2001-11-28 2003-06-09 엘지이노텍 주식회사 위상 잡음 측정장치
US7079818B2 (en) * 2002-02-12 2006-07-18 Broadcom Corporation Programmable mutlistage amplifier and radio applications thereof
US6745020B2 (en) 2002-08-29 2004-06-01 Eugene Rzyski Direct downconversion receiver
US7155218B1 (en) * 2003-04-15 2006-12-26 Sprint Spectrum L.P. Method and system for determining spurious emission output by a wireless terminal
US6980915B2 (en) * 2004-03-23 2005-12-27 Agilent Technologies, Inc. Phase noise compensation for spectral measurements
US7035743B1 (en) * 2004-10-18 2006-04-25 Agilent Technologies, Inc. Phase noise compensation for phase noise measurements
US7885632B2 (en) * 2005-05-20 2011-02-08 Omniphase Research Laboratories, Inc. Automated noise measurement system
US8965727B2 (en) * 2005-05-20 2015-02-24 Omniphase Research Laboratories, Inc. Intelligent low noise design
US7693674B2 (en) * 2005-05-20 2010-04-06 Omniphase Research Laboratories, Inc. Low-noise source
JP4792340B2 (ja) * 2006-07-11 2011-10-12 株式会社アドバンテスト 試験装置および試験方法
US8269529B2 (en) 2010-01-14 2012-09-18 Advanced Testing Technologies, Inc. Low phase noise RF signal generating system and phase noise measurement calibrating method
US20110169545A1 (en) * 2010-01-14 2011-07-14 Shahen Minassian Low phase noise rf signal generating system and method for calibrating phase noise measurement systems using same
US8248297B1 (en) * 2011-04-11 2012-08-21 Advanced Testing Technologies, Inc. Phase noise measurement system and method
WO2014125736A1 (ja) * 2013-02-14 2014-08-21 ソニー株式会社 音声認識装置、および音声認識方法、並びにプログラム
US9500697B2 (en) * 2014-01-27 2016-11-22 ProPlus Design Solutions, Inc. Noise measurement system
KR101516341B1 (ko) * 2014-07-11 2015-05-04 (주)에스티앤씨 펄스 레이더 실시간 잡음지수 산출 방법 및 그 시스템
CN104122457B (zh) * 2014-07-15 2017-05-31 中国电子科技集团公司第四十一研究所 一种脉冲调制信号相位噪声测量装置及方法
CN107966620A (zh) * 2017-11-21 2018-04-27 中国电子科技集团公司第四十研究所 一种数字鉴频的相位噪声测量装置及方法
DE102018112092A1 (de) * 2018-01-10 2019-07-11 Infineon Technologies Ag Integrierte mehrkanal-hf-schaltung mit phasenerfassung

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2803608C2 (de) 1978-01-27 1985-04-18 Wandel & Goltermann Gmbh & Co, 7412 Eningen Vierpolmeßverfahren und Schaltungsanordnung zu dessen Durchführung
US4336505A (en) * 1980-07-14 1982-06-22 John Fluke Mfg. Co., Inc. Controlled frequency signal source apparatus including a feedback path for the reduction of phase noise
US4580105A (en) 1985-01-25 1986-04-01 At&T Bell Laboratories Automatic reduction of intermodulation products in high power linear amplifiers
US4636747A (en) * 1985-03-11 1987-01-13 Ifr, Inc. System and method for wideband, continuous tuning of an oscillator
JPS6380626A (ja) 1986-09-24 1988-04-11 Yamaha Corp デイジタル・アナログ変換回路
US4918373A (en) 1988-03-18 1990-04-17 Hughes Aircraft Company R.F. phase noise test set using fiber optic delay line
US5524281A (en) 1988-03-31 1996-06-04 Wiltron Company Apparatus and method for measuring the phase and magnitude of microwave signals
GB2238195A (en) 1989-11-16 1991-05-22 Motorola Inc Feed forward amplifier with pilot tone cancellation
US5334946A (en) 1990-04-25 1994-08-02 British Technology Group Limited Apparatus and method for reducing distortion in amplification
GB9009295D0 (en) 1990-04-25 1990-06-20 Kenington Peter B Apparatus and method for reducing distortion in amplification
US5077532A (en) 1990-12-17 1991-12-31 Motorola, Inc. Feed forward distortion minimization circuit
US5119040A (en) 1991-01-04 1992-06-02 Motorola, Inc. Method and apparatus for optimizing the performance of a power amplifier circuit
JP3099979B2 (ja) * 1991-05-27 2000-10-16 日本電信電話株式会社 付加位相雑音測定方法および装置
JPH05249161A (ja) * 1992-03-09 1993-09-28 Toshiba Corp ジッタ測定装置
US5459680A (en) 1993-10-20 1995-10-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for spur-reduced digital sinusoid synthesis
US5365187A (en) 1993-10-29 1994-11-15 Hewlett-Packard Company Power amplifier utilizing the vector addition of two constant envelope carriers
US5412325A (en) 1993-12-23 1995-05-02 Hughes Aircraft Company Phase noise measurement system and method
US5455537A (en) 1994-08-19 1995-10-03 Radio Frequency Systems, Inc. Feed forward amplifier
US5493304A (en) 1994-09-29 1996-02-20 Hughes Aircraft Company Calibration system for wide band array using true-time-delay beamsteering
US5528196A (en) 1995-01-06 1996-06-18 Spectrian, Inc. Linear RF amplifier having reduced intermodulation distortion
US5608331A (en) 1995-06-06 1997-03-04 Hughes Electronics Noise measurement test system
US5619168A (en) 1995-08-07 1997-04-08 Lucent Technologies Inc. Distortion creation and reduction circuit
US5758275A (en) 1995-09-29 1998-05-26 Motorola, Inc. Method and apparatus for scheduling adaptation for a notch filter
US5623227A (en) 1995-10-17 1997-04-22 Motorola, Inc. Amplifier circuit and method of controlling an amplifier for use in a radio frequency communication system
US5621354A (en) 1995-10-17 1997-04-15 Motorola, Inc. Apparatus and method for performing error corrected amplification in a radio frequency system
US5742201A (en) 1996-01-30 1998-04-21 Spectrian Polar envelope correction mechanism for enhancing linearity of RF/microwave power amplifier
US5903819A (en) 1996-03-13 1999-05-11 Ericsson Inc. Noise suppressor circuit and associated method for suppressing periodic interference component portions of a communication signal
US5892397A (en) 1996-03-29 1999-04-06 Spectrian Adaptive compensation of RF amplifier distortion by injecting predistortion signal derived from respectively different functions of input signal amplitude
AUPO024296A0 (en) 1996-05-31 1996-06-27 Poseidon Scientific Instruments Pty Ltd Interferometric signal processing apparatus
JP3297307B2 (ja) 1996-06-14 2002-07-02 沖電気工業株式会社 背景雑音消去装置
US5808512A (en) 1997-01-31 1998-09-15 Ophir Rf, Inc. Feed forward amplifiers and methods
TR200002060T2 (tr) 1998-01-14 2001-01-22 Advanced Testing Technologies Inc. Faz gürültüsü ölçüm sistemi.
US5886573A (en) 1998-03-06 1999-03-23 Fujant, Inc. Amplification using amplitude reconstruction of amplitude and/or angle modulated carrier
US6172564B1 (en) * 1999-07-30 2001-01-09 Eugene Rzyski Intermodulation product cancellation circuit

Also Published As

Publication number Publication date
DE60013855D1 (de) 2004-10-21
EP1204874B1 (en) 2004-09-15
CA2372800C (en) 2011-01-11
MXPA01011752A (es) 2004-09-06
AU5023900A (en) 2000-12-05
CA2372800A1 (en) 2000-11-23
ES2232455T3 (es) 2005-06-01
ATE276522T1 (de) 2004-10-15
KR20020044109A (ko) 2002-06-14
US6393372B1 (en) 2002-05-21
EP1204874A2 (en) 2002-05-15
DE60013855T2 (de) 2005-09-22
JP2004500545A (ja) 2004-01-08
AU773393B2 (en) 2004-05-27
WO2000070357A2 (en) 2000-11-23
WO2000070357A3 (en) 2001-08-23
KR100772838B1 (ko) 2007-11-02

Similar Documents

Publication Publication Date Title
JP5073887B2 (ja) 自動周波数ステッピングノイズ測定テストシステム
US6211663B1 (en) Baseband time-domain waveform measurement method
KR0158791B1 (ko) 노이즈 측정 시험 시스템
KR100973099B1 (ko) 혼변조 잡음 소거 회로
AU775816B2 (en) Intermodulation product cancellation circuit
US6480006B1 (en) Method for measuring phase noise using a low noise synthesizer
EP1305643B1 (en) Signal measurement
US7720137B2 (en) Characterization of a frequency response for a frequency translation device
Salehi et al. A zero-IF auto-calibration system for phased array antennas
Kast et al. Traceable mm Wave modulated-signal measurements for OTA test
US11237197B1 (en) Method and systems for making improved quasi-linear/nonlinear measurements on integrated antenna arrays and elements
KR102450699B1 (ko) 이더넷을 이용한 fm 송신기 자동 측정 방법
KR102246233B1 (ko) 방사보정 데이터 생성을 위한 다중 신호 송, 수신 장치 및 방법
CN100512265C (zh) 用于在线校准的增益测量装置及其方法
CN116032390A (zh) 发射信号调试方法、接收信号调试方法及其系统
PH12013000148A1 (en) Intermodulation product cancellation circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100517

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110921

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110929

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111021

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111028

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111116

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees