JP5068005B2 - 変化する断面を有する反応装置、その製造方法および局所的接触時間を変化させて反応を行う方法 - Google Patents

変化する断面を有する反応装置、その製造方法および局所的接触時間を変化させて反応を行う方法 Download PDF

Info

Publication number
JP5068005B2
JP5068005B2 JP2004506947A JP2004506947A JP5068005B2 JP 5068005 B2 JP5068005 B2 JP 5068005B2 JP 2004506947 A JP2004506947 A JP 2004506947A JP 2004506947 A JP2004506947 A JP 2004506947A JP 5068005 B2 JP5068005 B2 JP 5068005B2
Authority
JP
Japan
Prior art keywords
reaction
microchannel
catalyst
cross
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004506947A
Other languages
English (en)
Other versions
JP2006508783A (ja
JP2006508783A5 (ja
Inventor
ワン,ヨン
カオ,チャンシュ
キンブル,ジェームズ,ビー.
シルバ,ローラ,ジェイ.
Original Assignee
バッテル メモリアル インスティチュート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バッテル メモリアル インスティチュート filed Critical バッテル メモリアル インスティチュート
Publication of JP2006508783A publication Critical patent/JP2006508783A/ja
Publication of JP2006508783A5 publication Critical patent/JP2006508783A5/ja
Application granted granted Critical
Publication of JP5068005B2 publication Critical patent/JP5068005B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00835Comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、反応マイクロチャンネルからなる化学反応装置、およびこの反応装置内で物質を反応させる方法に関するものである。さらに本発明は、共通の入口から放射する多数のチャンネルを有する反応装置、およびこの反応装置内で物質を反応させる方法に関するものである。
従来の化学反応装置においては、触媒を含む反応チャンバーは流れの方向に直線的な壁を有している。そのため、かような反応チャンバーは、入口と出口の間のチャンバー長さにわたって、流れ方向に沿って一定の断面を有するチャンネルを形成している。ここで述べている従来の反応装置は、流通式の触媒反応装置および非触媒反応装置を含んでいる。触媒反応は不均質でも均質でもよい。
直線状チャンネル反応装置は、いくつかの欠点を有している。非零次の均質または不均質反応の場合、特に高度に発熱的または吸熱的化学反応においては、触媒床中の場所毎にかなり温度が変化する。温度は軸方向(流れ方向)に均一とならず、反応物質濃度は入口ゾーンにおいて高くなる。その結果、高度に発熱的な反応の場合には、入口ゾーンで高い反応速度をもたらすとともに局所的ホットスポットを生じさせ、触媒の急速な失活と所望生成物の選択性を低下させることになる。一方、吸熱反応の場合には、コールドスポットを生じさせ、触媒の利用性が低下する。
本発明の課題は、上記した従来技術の欠点を解決することである。
本発明は、触媒を含む反応マイクロチャンネルの入口に1種または複数種の反応物質を導入し、反応触媒を含むマイクロチャンネル中の流路に実質的に沿って組成物の線速度を増加または減少させる(組成物と触媒との間の局所的接触時間を増加または減少させる)ことからなる、触媒の存在下で化学反応を行う方法を提供するものである。非触媒反応の場合には、触媒は不要となる。触媒反応は均質でも不均質でもよく、反応装置は固定床または流動床触媒を備えた流通式のものを含む。
さらに本発明は、触媒を含む反応マイクロチャンネルの入口に組成物を導入することからなり、この反応マイクロチャンネルの断面積を、触媒を含むマイクロチャンネルの流路に沿って実質的に増加または減少させるようにした、触媒の存在下で組成物を化学的に反応させる方法を提供するものである。
本発明はさらに、触媒を含む反応マイクロチャンネルの入口に組成物を導入することからなり、この反応マイクロチャンネルの入口側の断面積を反応マイクロチャンネルの出口側の断面積よりも小さくし、触媒をマイクロチャンネルの入口側から出口側に供給するようにした、触媒の存在下で組成物を化学的に反応させる方法を提供するものである。
本発明はさらに、複数のチャンネルの各入口に組成物を導入することからなり、これら入口は共通の1つの入口ゾーンに位置させ、複数のチャンネルはこの共通の入口ゾーンから放射状に延びており、複数チャンネルのそれぞれにおいては、反応チャンネルの断面積が反応触媒を含むチャンネル部分の入口側から出口側へ実質的に増加するようにした、触媒の存在下で組成物を化学的に反応させる方法を提供するものである。
本発明はさらに、反応物質の供給源に接続された入口と出口を有しかつ触媒を含む反応マイクロチャンネルからなり、反応触媒を含むチャンネル部分内の流路に沿って反応チャンネルの断面を増加するようにした、触媒的化学反応装置を提供するものである。好ましくは、この反応装置は反応マイクロチャンネルに隣接させた熱交換器を備えている。
さらに本発明は、少なくとも1つの反応物質供給源に接続されかつ1つの共通の入口ゾーン内に位置させたそれぞれの入口を有する複数の反応チャンネルからなり、複数のチャンネルは1つの共通の入口ゾーンから放射状に延びており、複数のチャンネルのそれぞれにおいては、反応触媒を含むチャンネル部分内の流路に沿って反応チャンネルの断面積が実施的に増加するようにした、触媒的化学反応装置を提供するものである。好ましい実施態様においては、この反応装置は、共通の入口の周囲に1つの共通のフッター(footer)をスポーク−車輪形状に備えている。この反応装置は、反応物質を“出口”から導入し共通の“入口”から排出させるような逆方向に運転することができる。この逆方向操作においては、反応触媒を含むチャンネル部分内の流路に沿って反応チャンネルの断面積が実質的に減少する。
本発明はさらに、入口側と出口側を備えた反応マイクロチャンネルからなり、反応チャンネルの入口側の断面積が反応チャンネルの出口側の断面積とは相違しており、反応マイクロチャンネルの高さはマイクロチャンネルの全長にわたって一定であるような、化学反応装置を提供するものである。
さらに本発明は、少なくとも1つの反応物質を反応マイクロチャンネル内に通過させ、このチャンネル内で反応物質を(それ自身でまたは他の分子と)反応させて少なくとも1つの生成物を生成させることからなる化学反応を行う方法を含むものである。上述した本発明については、後述の“好ましい実施態様”における説明を含む種々の態様に改変することが可能である。
本発明はさらに、非触媒系の場合に、触媒を存在させることなく、上述の種々の実施態様で物質を化学的に反応させる方法を提供するものである。
本明細書で使用する用語について以下に説明する。
“チャンネル”という用語は一般的に受け入れられている意味で使用されており、流体の流れを方向付ける導管や他の手段を含むものである。本発明のチャンネルは、入口と出口を備えた少なくとも1つの開口を含み、その他の開口を含んでいてもよい。以下に説明する種々の実施態様においてわかるように、チャンネル内では単なる移送の他に種々の機能を生じさせることができる。反応チャンネル(反応マイクロチャンネルを含む)は、入口または出口バルブ、または入口または出口オリフィスを含まない(勿論、入口および出口オリフィス、バルブ等は反応チャンネルに接続することができるが、これらは反応チャンネルそれ自体の一部とは考えない)。
“触媒”は、それ自体消費されることなく、例えば反応速度のような反応パラメーターを向上させる物質である。触媒は不均質(代表的には固体)または均質(例えば反応物質流中に溶解させたもの)とすることができる。
“断面積”は、正味流れの方向に対して垂直に測定されるものであり、触媒粒子(または一体物)や触媒コーティングを含む反応チャンネル内の全面積を含むが、反応チャンネル壁は含まない。長さに沿って曲がっている反応チャンネルの場合には、断面積は、長さと平行する線に沿って選択された1つの点での正味流れの方向に対して垂直に測定され、反応チャンネルの中心で測定される。“断面積が変化する”とは、面積における多大な変化を意味し、表面の凸凹によるわずかな変化を意味しない。高さと幅の寸法は、1つの反応チャンネル壁から対向する壁まで測定されたものであり、触媒コーティングの適用により変化することはない。表面の凹凸によりまたは波形等により生じる変化の場合には、その平均値である。
“特別設計触媒(engineered catalyst)”は、特定の反応チャンネル用に成形されかつマイクロチャンネル内に挿入または積重ねることができる単一片または数片の触媒である。好ましい例は、発泡体やフェルト(すなわち不織繊維または糸の集合体)である。ペレットや粉末は特別設計触媒ではない。
“組成物”は、気体、液体または流体の混合物(固体/液体混合物であるコロイド等)である。組成物はそれ自体反応性であってもよく、他の物質と混合されてもよい。
“流れの方向”とは、反応チャンネルの少なくとも1つの部分を通して流れる正味流れの方向である。直線的なチャンネルの場合、流れの方向は、1つのチャンネルの1つまたは複数の入口からそのチャンネルの1つまたは複数の出口へと向かう。
“流路”は、そこを通って組成物が移動する反応装置内の通路である。
“流体熱交換器”は、そこを通って流体(すなわち気体または液体)が流れ、かつ反応チャンネルの壁を介して、熱を反応チャンネルからまたは反応チャンネルの方へ伝達させえるチャンバー(1つまたは複数の入口と1つまたは複数の出口を有する)である。流体熱交換器は電気加熱器ではない。
“徐々に”という用語は、所定の方向に沿って1つのゾーンにわたって漸進することを意味する。この漸進は、そのゾーンにおいて連続的または段階的とすることができ、そのゾーン内での局所的な後戻りも含むことができる。
“熱交換器”は、反応チャンバーから熱を除去しまたは熱を加える構成部材である。これは能動部材であり、単なる周囲空気や流れのない流体ではない。好ましくは、熱交換器は流体熱交換器である。
“伝熱距離”は、反応チャンネルの中心点と熱交換器の壁との間の距離である。中心点は、反応チャンネルの断面の局部重点中心点であり、距離は流れに対して垂直に測定される。換言すれば、中心点は、反応チャンネルの断面積を二等分する複数の線の交点である。
“入口側”および“出口側”は、相対的な用語である。反応チャンバーの入口側のどの部分も、反応チャンネルへの入口の比較的近くにあり、反応チャンバーの出口側のどの部分も、反応チャンネルの出口の比較的近くにある。好ましい実施態様においては、1つの反応チャンネルに接続された単一の入口と単一の出口を有するが、本発明は、複数の入口および/または出口を備えた複数の反応チャンネルを含んでいる。
“局所的接触時間”は、反応チャンバーの一部分(局所的部分)で反応物質組成物が経験した接触時間である。本発明においては、局所的接触時間は反応チャンバーに導入される組成物の量に基づいており、反応チャンバー内で組成物が反応する際の組成物の量(分子の数)の変化の影響は除外する。
“線速度”は、反応チャンネルの断面積で除した反応物質の容積流量として定義され、反応チャンバー内で反応物質が反応する際の反応物の減少の影響を除外する。接触時間は、検討されている容積を標準温度および標準圧力、すなわち0℃、1気圧における流体流量で除して計算される。
“マイクロチャンネル”は、本発明においては、高さ5mm以下、好ましくは2mm以下、さらに好ましくは1mm以下を有するチャンネルであり、ある種の好ましい実施態様においては0.1から2mmの範囲内の高さである。マイクロチャンネルの長さは、特に重要ではないが、ある実施態様では、10cm以下である。長さは、マイクロチャンネルを通過する正味流れと同じ方向であると定義される。チャンネルは、例えば四角形、円形、三角形、または不規則形状とすることができる。高さと幅は、長さに対して垂直方向に測定されるものであり、その一方または両方をマイクロチャンネルの長さに沿って変化させることができる。高さと幅は任意に選択できる。本発明においては、高さは、流れに対して垂直なチャンネルの最小寸法として定義される。水蒸気改質のようないくつかの実施態様では、幅は好ましくは5cm以下、より好ましくは1cm以下、ある実施態様では0.1mmから2cmの範囲内である。
本発明の種々の実施態様は、下記の1つまたはそれ以上の多くの利点をもたらす。化学反応と熱伝達の結びつきを向上させることができ、このことは、触媒床におけるより均一な温度分布をもたらす。線速度または局所的接触時間を、反応チャンネル部分の入口から出口へと徐々に増加または減少させることができる。温度分布および局所的な反応率分布が平坦になり、このことは、生成物の選択性と触媒寿命を向上させるために重要である。反応装置の生産性が向上する。なぜならば、均一な温度分布は、反応装置容量のより大きい部分においてその最適温度近傍で運転させることを可能にするからである。
特定の説明または理論により束縛されることを望ものではないが、本発明の反応装置および反応方法の特性における従来技術に対する改善は、下記の見地に関連すると考えられる。本発明のチャンネル反応装置においては、予想されるホットスポット域において発熱速度が低下し、同時に、熱が効率よく伝導されて散らばる。逆に、コールドスポット域においては、温度を維持するように発熱速度が高まる。狭い入口域では、線速度の増加または接触時間の減少によって反応程度が減少し、したがって、発熱反応の場合には、狭い入口域がその域における発熱を減少させる。狭い入口域は、熱伝達のための距離が短いために熱除去速度を増加させることもできる。一方、比較的低い線速度または比較的長い接触時間のために、反応の程度(転化の程度)は床のより幅広の部分で増加し、同時に、熱伝導速度は床の厚さの増加により減少する。結果として、反応熱の反応床全体にわたる拡散がすすみ、このことにより、温度分布の均一性が向上すると考えられる。
本発明の効果は、各種マイクロチャンネル反応装置において質的に相違する。マイクロチャンネル反応装置は、熱移動および物質移動効率が向上している。したがって、典型的には、動力学的に制御された状況において反応が進行する。マイクロチャンネルにおいては、流れ方向の温度分布の均一性の向上により、床全体における温度分布の均一性が向上する。より好ましい温度制御のような優れたモデリング結果が、本発明のマイクロチャンネル設計を利用した反応装置および反応方法において生じることは、驚くべき発見であった。従来のような流路を備えた装置においては、匹敵しうる効果は得られないと考えられる。
本発明の要旨は、本明細書の特許請求の範囲において明瞭に記載されているが、その構成および操作方法は、さらなる効果や目的と共に、下記の説明および添付図面を参照することにより一層明確に理解できるであろう。図面においては、同じ部材については同じ番号を付してある。
台形チャンネルの反応装置を図2に示す。各反応装置においては、入口と出口は、流れの方向を示す矢印により表している。必要に応じて、反応装置チャンバーの温度は、隣接して設けた1つ又は複数の熱交換器(図示せず)内の熱交換流体の流れへの熱伝達または熱交換流体の流れからの熱伝達により制御される。図2の設計においては、触媒チャンネルは入口から出口へと徐々に増加する断面を有している。特にこの触媒チャンネルは、チャンネルの流れ線を含む平面において台形を有している。
図1に示すような従来の直線状チャンネルの反応装置においては、発熱反応はホットスポットを生じさせる可能性がある。このホットスポットの大きさと位置は、反応動力学、熱/物質移動および流体動力学に依存する。不均質触媒の固定床反応装置の場合、ホットスポットは、非零次反応においては触媒床の前部分の入口域近傍に発生する。
これに対して、本発明によるチャンネル反応装置の比較的狭い入口域は、比較的短い接触時間のために入口域近傍での反応程度が減少する。したがって、入口域近傍では、発熱反応の反応熱放出(あるいは吸熱反応の熱吸収)が減少する。触媒床に沿う局所的反応率分布は、直線状チャンネルの反応装置におけるよりも一層均一となる。なぜならば、局所的接触時間は反応装置入口から出口部分へ徐々に増加するためである。
断面積の寸法およびその変化は、特定の用途および所望の性能の関数として、例えば最適な温度分布を得られるように選定される。流体は、例えば反応装置入口温度まで予備加熱することができる。
図3は、入口と出口を有する単一チャンネルの反応装置を模式的に示しており、その断面は入口側から出口側への徐々に増加している。好ましくは、チャンネルの壁は熱伝達チャンネルの境界を規定しており、反応チャンバーに対する熱調整をもたらし、要すれば、反応チャンネルの入口に反応物質を供給するに先だって、反応物質を予備加熱する。このようにして、熱伝達チャンネルによりもたらされる熱調整は、断面積の増加によりもたらされる熱調整と協働して、反応チャンネル内の温度分布を改善する。
図4は、多チャンネル反応装置を模式的に示しており、複数の反応チャンネル、図示の実施例においては4個のチャンネルが同じ層において放射状に配設され、それらの入口は1つの共通の中央入口ゾーンに位置している。図示の反応チャンネルは、入口から出口へと増加する断面を備えた台形とされている。これら複数の反応チャンネルの複数の入口は、反応チャンネルの平面の横断方向において八角形を有する1つの共通中央入口チャンネルと流体が流通するように連通されている。複数の出口は、1つの環状の共通出口チャンネル(図示せず)と流体が流通するように連通させることができる。このようにして、同じ層の複数の反応チャンネルへの流体の供給、および複数の反応チャンネルからの流体の排出を、1つの共通の入口チャンネルおよび/または1つの共通の出口チャンネルを介して行うことができる。さらには、複数の反応チャンネルのいくつかの層を次々に積重ねることができ(重ね合わせるようにしてもよく、食い違い形状に重ねてもよい)、この場合も共通の入口および出口チャンネルを使用することができる(すなわち、共通のヘッダー(headers)またはフッター(footers)に分配してもよい)。
積層した多チャンネル反応装置80の断面模式図を図8に示す。層82はカバー板であり、複数層84は複数のマイクロチャンネル81を含むマイクロチャンネル熱交換器である。マイクロチャンネル81は直線状に示されているが、熱交換器チャンネルは、好ましくは反応チャンネルの形状に相当する形状とし得るものである。反応チャンネル層86、88は、入口83と、比較的幅広の出口87と、傾斜を付した反応チャンネル壁85を備えている。層86中の反応チャンネルはこの層を通して完全に切断されており、一方、層88中の反応チャンネルはこの層を通して一部分のみ切断されている。本発明の反応装置においては、無数の可能な構造をとることができ、種々の形状と寸法のチャンネルを含むいかなる数の層でも備えることが可能である。
いくつかの好ましい実施例においては、反応チャンネルはその入口から断面積が増加していくような形状、例えば台形、三角形、湾曲形のごとき形状をもつことができる。反応チャンネルは、対向する側面が平らな面をもつ実質的に“二次元”とすることができる。あるいは、円錐形または角錐形のごとき三次元形状とすることもできる。反応チャンネルは好ましくは触媒を含有し、反応チャンネルの出口側の触媒含有部分の断面積は、反応チャンネルの入口側の触媒含有部分の断面積の少なくとも2倍(いくつかの実施例では少なくとも5倍、さらには少なくとも20倍)とすることが好ましい。これらの断面積は、この域が触媒を含有していれば、入口側または出口側のいかなるポイントで測定してもよい。このチャンネル、好ましくは触媒含有部分の少なくとも1つの寸法(チャンネルの長さ、すなわち正味流れの方向ではない)は5mm以下、より好ましくは2mm以下とする。好ましい実施例においては、反応チャンネルの面積は、入口から離れる方向に単調に増加する。いくつかの実施例においては、このチャンネルは四角形以外の断面(流れに対して垂直)を有してもよく、断面積は、所望寸法、温度分布、反応装置形状、反応動力学等に依存して、流路に沿って非直線的に増加してもよい。一例としては、放物線形状の断面としてもよい。反応チャンネルの一部分で流路に沿って断面が増加するため、その部分の流路に沿って、反応物質の線速度は減少し、あるいは反応物質と触媒との接触時間が増加する。いくつかの好ましい実施例では、少なくとも2つ、より好ましくは少なくとも4つの反応チャンネル入口を、1つの中央チャンネルの回りに放射状に配置する。
いくつかの実施例においては、反応が進行するに伴って滞留時間を減少させることが有利となる。かような反応では、流れの方向に反応チャンバーの容積を減少することが望ましい。例えば、自触媒作用(autocatalysis)では、反応は中間体または生成物により触媒されるため、生成物が生成されるに伴って反応速度が増加する。当初の反応速度は通常遅く、かようなプロセスにおける滞留時間に伴って速度が増加する。自触媒作用(酸化のごとき多数の反応が生じる)の工業的に重要な点は、最適な濃度の反応物質と生成物が常に確実に存在するようにすることによって、反応の速度を最大にできる点である。時間とともに速度を高めて当初の速度を促進させるために、反応チャンネルの断面積を流路に沿って徐々に減少させることができる。局所的接触時間は、反応装置の出口ゾーンより入口ゾーンで長くなるであろう。反応装置の入口ゾーンにおける比較的長い滞留時間は、触媒としての生成物の生成速度をより速くして反応を促進させる。一方、反応装置の出口への流路に沿って、反応の“暴走”を防ぐために速度を制御する必要がある。この効果を達成するために、流路に沿って断面が減少する方向、または滞留時間が減少する方向に反応物を流すことによって、触媒(中間体あるいは生成物)の生成速度を減少することができる。この場合、床に沿う反応速度は比較的一定とされ、これにより生成物の選択性が向上する。したがって、いくつかの本発明の実施例においては、単一チャンネルであっても、多チャンネル形状であっても、図示または記述した方法や反応チャンバー形状が、逆になる場合も含まれる。例えば、中央出口方向へ流れかつ容積が減少するチャンネルも含まれる。
いかなる反応チャンネル形状でも、反応チャンネルに隣接させて熱交換チャンネルを配設することができる。図示の例では、熱交換チャンネルを紙面の上下に重ねて(挟み込んで)隣接させることができ、および/または紙面内で隣接させることもできる。図2−4に模式的に図示した反応チャンネルにおいては、熱交換チャンネルを反応チャンネルと熱的接触状態(好ましくは隣接させて)配置することができる。図4の実施例では、反応チャンネルは好ましくは熱伝達チャンネルにより分離されている。したがって、反応チャンネルの壁は熱伝達チャンネルの境界を形成することができ、これら熱伝達チャンネルも台形を有し、反応装置の中央域から放射状に配向されている。種々の反応装置形状において、冷却材は反応物質流に対して交流、横流または並流に(またはこれらの組み合わせで)流すことができる。いくつかの好ましい実施例では、プロセス流と冷却材流を交流式に流し、これらの間で熱交換を行わせる。熱交換流体の流れの断面を台形(または、円錐形のように、断面積が流れ方向に減少する形状)とした場合には、プロセスチャンネルの入口部分近傍での局所線速度が減少するであろう。熱交換流体の速度の増加(層流および乱流の両方に適用される)は、熱伝達を促進させるであろう。勿論、発熱反応の場合には、熱交換流体は冷却材となる。本発明では、気体、油、水、液体金属等、従来既知のいかなる熱交換流体でも利用できる。本発明は一般的には定常状態下について説明しているが、熱交換器は反応を所望温度範囲まで進行させる(または保持する)ために利用することができるものである。ある実施例では、隣接するチャンネルを二者択一的にもう一つの反応に利用することができよう。例えば、発熱反応を一つの反応チャンネルで行ない、吸熱反応を隣接する反応チャンネルで行うことができる。この場合、熱交換チャンネルは化学反応も行うことができ、適切な触媒を含有することができる。
反応チャンネルで用いる触媒は、不均質反応の場合、好ましくは固体(または固体を含有するもの)である。不均質反応は、特定の反応条件下では、(少なくとも部分的に)不均質物質として留まり、すなわち、触媒はプロセス流中に完全には溶解しない。好ましくは、触媒はプロセス流に対して実質的に不溶である。触媒は、反応物質が触媒の近傍を流れる形態(flow-by configuration)(例えばコーティングまたは薄層)あるいは反応物質が触媒を通過して流れる形態(flow through configuration)(反応チャンネルの断面全体を実質的に占める形態)で利用できる。触媒構造として例えば、発泡体、フェルト(不織繊維)、スクリーン、ペレット、サドル形、粉末、コーティングが挙げられる。好ましい実施例においては、触媒は特別設計触媒とする。これらの構造のいかなるものでも、緩衝層、境界層および触媒活性金属含有層のごとき多層を備えることができる。触媒は単一タイプの物質を含有させてもよいが、多くの場合、支持体や金属または多数の金属、または支持体と金属等の混合物のごとき多種類の物質を含有させる。前述したように、反応チャンネルの幾何学的形状は、従来の反応チャンネルの幾何学的形状で得られるよりも一層活性な触媒の使用(より効率的な触媒の利用)を可能にする。触媒は流動床でも固定床でもよい。
本発明は、均質反応にも適用できる。一つの例は、硫酸触媒を用いるオレフィンによるパラフィンのアルキル化である。この場合、触媒の硫酸は反応物質と一緒に反応チャンネルへ導入される。アルキル化は発熱反応であり、アルキレートの品質は温度に依存する。本発明によれば、より均一な温度制御ができ、品質の向上したアルキル化生成物をもたらすことができる。
本発明の反応装置は、複数の薄い金属シートのラミネーション(この場合、反応チャンネルは1枚のシート内に設けることができる。例えば、1枚のシートにチャンネルをエッチングで形成したり、1枚のシートを打ち抜いて隣接するシートで反応チャンネル壁を形成させる。あるいは、反応チャンネルを多数のシートで構成することもできる。)、マイクロ−EDMドリル加工、レーザー機械加工、化学的エッチング、射出成形、溶接等の方法を用いて組み立てることができる。金属、合金、複合体、高分子、セラミックスのごとき材料を使用することができる。高伝導性材料は熱伝達効率を高め、温度分布の不均一性を低減するであろう。好ましくは、反応チャンネル壁の少なくとも一部分を、鋼またはアルミニウムのごとき熱伝導性材料から構成する。積層構造の装置の場合、1枚のシートまたは複数枚のシートに所定形状の反応チャンネルを打ち抜くことが望ましい。かような複数シートから組み立てられた装置は、1枚のシートまたは多数の隣接するシート(好ましくは熱交換器の複数層の間に挟まれている)に所定形状の反応チャンネルを有しており、組み立てた装置は、反応チャンネルの頂部と底部を限定している頂部シートと底部シートにより形成された一定高さを有する反応チャンネルを備えることになる(例えば図8を参照)。
操作条件は、特定のチャンネル構成、触媒の性質と量、化学反応のタイプに適合させることができる。本発明のプロセスとしては、アセチル化、付加反応、アルキル化、脱アルキル化、水素化脱アルキル化、還元的アルキル化、アミノ化、芳香族化、アリール化、自熱改質、カルボニル化、脱カルボニル化、還元的カルボニル化、カルボキシル化、還元的カルボキシル化、還元的カップリング、縮合、クラッキング、水素化クラッキング、環化、シクロオリゴマー化、脱ハロゲン化、二量体化、エポキシ化、エステル化、交換反応、フィッシャー−トロプシュ反応、ハロゲン化、水素化ハロゲン化、同族体化、水和、脱水、水素化、脱水素化、水素化カルボキシル化、ヒドロホルミル化、水素化分解、ヒドロメタル化(hydorometallation)、ヒドロシラン化(hydorosilation)、加水分解、ヒドロ処理(HDS/HDN)、異性化、メチル化、脱メチル化、複分解、硝化、酸化、部分酸化、重合、還元、改質、逆水性ガス転化、スルホン化、テロメリゼーション、エステル交換反応、三量体化、水性ガス転化等が挙げられる。上述した各反応に対しては、従来から既知の触媒や条件があり、本発明はこれらの既知触媒を利用する装置および方法を包含するものである。例えば本発明には、アミノ化触媒を用いるアミノ化方法やアミノ化装置が含まれる。本発明は、上述した多くの反応の各々に対して、個々に(例えば水素化分解に)あるいは反応群に(例えば、ハロゲン化水素化、ヒドロメタル化およびヒドロシラン化触媒を用いて、それぞれハロゲン化水素化、ヒドロメタル化およびヒドロシラン化反応群に)適用することができる。
本発明の装置と方法は、その他の測定可能な特性、例えば、熱束、線速度、局所的接触時間、生成物選択性、反応物質の反応率、温度変化によって特徴付けることができる。好ましい実施例においては、反応チャンネルの前部(最初の5容量%。触媒を通過して流れる形態の触媒の場合には、容量は触媒容量(触媒内部の空孔および粒子間の隙間空間を含む)に基づいて測定される。触媒の近傍を流れる形態の触媒の場合には、容量は、触媒の“上方”空間を含み、触媒が壁に接して存在している断面容量におけるチャンネル容量に基づく。)における熱束(単位容量当たり)は、匹敵する直線状の反応チャンネルにおける熱束よりも、少なくとも10%(より好ましくは少なくとも50%、さらに好ましくは少なくとも100%)大きい。匹敵する直線状の反応チャンネルは本発明のチャンネルと同じ容量および触媒量を有しているが、対応するチャンネル壁は直線状である。ここで“対応する”という用語は、本発明のチャンネルの所定形状の壁を意味する。例えば、円錐形反応チャンネルの場合には、匹敵する反応チャンネルは、長さと容量が等しく径が一定の管となろう。台形の反応チャンネル(高さは一定であるが幅が増加する)の場合、匹敵する反応チャンネルは、容量と長さと高さが等しく高さと幅が一定(高さ=幅の場合)の平行六面体となろう。複数の方法と装置は、選択された反応物質の反応率の同じレベルか、あるいは同じ流速で比較できる。特に特定のない限り(方法ではなく)装置のみについて述べるならば、後述の実施例に記載された条件と触媒を用いて比較される。好ましくは、反応チャンネルの前部での線速度は、反応チャンネルの後部(最後の5容量%)の線速度よりも少なくとも20%以上または20%以下である(より好ましくは、反応チャンネルの前部の線速度は、反応チャンネルの後部の線速度とは少なくとも2倍、さらに好ましくは少なくとも5倍の相違がある)。あるいは、反応チャンネルの前部での局所的接触時間は反応チャンネルの後部(最後の5%)での局所的接触時間よりも少なくとも20%以上または20%以下である(より好ましくは、その相違は少なくとも2倍、さらに好ましくは少なくとも5倍である)。生成物の選択性は、好ましくは所望の生成物の少なくとも20%、より好ましくは少なくとも50%、さらに好ましくは75%、さらにより好ましくは少なくとも95%である。反応率は、好ましくは少なくとも20%、より好ましくは少なくとも50%、さらに好ましくは75%、さらにより好ましくは少なくとも95%の反応率が得られる。ここで、反応率%は平衡転化の%を表す。好ましい実施例では、反応装置の前部5%(その域の平均温度)と反応チャンネルの容量の中心との間の温度差は、匹敵する直線状の反応チャンネルにおける匹敵するポイントでの温度差より、少なくとも20%(より好ましくは少なくとも30%、さらに好ましくは少なくとも50%)少ない。本発明は、上述した性質のあらゆる組み合わせができることによっても特徴付けられる。例えば、好ましい実施例では、最初の5%の容量における熱束を、匹敵する反応チャンネルにおける熱束よりも少なくとも10%大きくして、75%の反応率を得ることができる。
直線状チャンネルの反応装置とこれとは寸法の異なる台形チャンネルの反応装置との間のモデリング試験においては、台形チャンネルの反応装置を使用することにより、最大温度差が略半分に減少することがわかった。加えて、温度分布をより均一にでき、局所ホットスポットをかなり引き延ばすことができた。
[モデル条件および触媒]
フィッシャー−トロプシュ合成(“FTS”)は極めて発熱的な反応であるため、本発明の概念を確認するのに良好なモデル系である。FTSは、過剰なメタン生成と触媒の失活を避けるために、一般的に狭い範囲での温度制御を必要とする。種々のプロセス条件における反応動力学データを収集するために、ジャケットを付けた能動冷却システムを備えた、直線状チャンネルおよび台形チャンネルを有するマイクロチャンネル反応装置を用いることができる。触媒物質を含有する多孔質媒体をマイクロチャンネル反応装置に充填する。石英ウールの薄い層を充填することによって触媒を支持し、表1に記載した寸法を有する直線状チャンネルの両端は金属発泡体により保持した。触媒充填量は0.22gである。この実験用の触媒は以下のようにして調製した。先ず、酸性γ−アルミナ支持体粉末(エンゲルハルト)を粉砕し、80メッシュと100メッシュの間(150−180ミクロン)に篩い分けし、350℃で3時間カ焼する(安定化させる)。次いでこの粉末に、硝酸コバルト6水和物、三塩化ルテニウム水和物(または硝酸ニトロシルルテニウム)および硝酸ランタンの前駆体類を含有する溶液を含浸させる。このときの濃度は、20質量%のコバルト、1.37質量%のルテニウムおよび3質量%のランタンをアルミナに担持している触媒が得られるような濃度とする。この前駆体溶液は、アルミナ支持体の細孔容積を飽和し、かつアルミナ支持体を過度に飽和させないようにして調製する。次いでこの粉体を真空乾燥機中で110℃、12時間乾燥し、さらに350℃で少なくとも3時間加熱してカ焼する。供給ガス混合物中の一酸化炭素に対する水素のモル比は2である。原料は反応装置入口温度(248℃)まで予備加熱する。2種類の反応装置は、248℃、295psig、接触時間0.3秒の平均条件で運転する。
[モデリング実験]
モデリング実験においては、最適な温度分布を得るために、台形断面の寸法を変化させることができる。この実験では、触媒床長さを、直線状チャンネル反応装置と同じに維持した。台形の上底を0.04インチ(0.1cm)、下底を0.08インチ(0.2cm)とした。触媒床の寸法を表1に示す。
Figure 0005068005
このモデリング実験では、これら2種類の反応装置の性能を比較するために、固定触媒量を基準として設定したため、接触時間を同じ供給速度で一致させた。両方の反応装置において同じ最終反応率レベルが得られた。
触媒床中の温度および反応率分布を模擬するために、擬似均質モデルを開発した。物質収支とエネルギー収支は、2つの偏微分方程式において反応速度と結びつけた。反応速度(reaction kinetic rate)は、直線状チャンネル反応装置で行った実験により測定し、パワー法則式(power law expression)に関連付けた。パワー法則式は、反応物質濃度、温度および反応活性化エネルギーの関数である。プラグ流れ条件、一定壁温度、反応温度での予備加熱供給等のような、いくつかの合理的な仮定を行った。境界条件は、反応装置入口、出口、壁および中心線の位置で規定した。この課題を解くために、有限要素法を組み込んだFEMLabソフトウエアを使用した。解答は、局所的熱束分布とともに、反応率分布や温度分布を定量的にもたらした。
両方の反応装置は、248℃、295psig、接触時間0.3秒で運転されるものとし、70%の総合的反応率が得られるものとした。各ケースにおいて、局所的反応率分布は以下のようにして測定した。床全体を、多数の“非常に薄い”触媒層(限定された、または差異のあるセグメント)の積重ねとして扱う。各セグメントで等温であると仮定して、各セグメントに対する差異のある反応率を、反応速度と滞留時間を知ることにより得ることができる。滞留時間は、流速と断面積により簡単に関連付られる。
モデリング実験から、直線状チャンネル反応装置と比較すると、台形チャンネル反応装置においては、局所的反応率が入口ゾーンで大きく減少し、出口ゾーンでは増加することが判明した。触媒床に沿う局所的反応率分布(温度および熱束)は、直線状チャンネル反応装置におけるよりも台形チャンネル反応装置において、より均一となった。テーパー形状の設計においては局所的接触時間が反応装置入口部分から出口部分へ徐々に増加するために、より均一な分布がもたらされたと考えられる。
台形チャンネル反応装置と従来の直線状チャンネル反応装置との間で、温度分布を比較した。従来の直線状マイクロチャンネル反応装置では、触媒床内で14℃の温度範囲を示し、触媒床の前部で262℃、中央で約256℃、終部で248℃の局所的ホットスポットを有していた。これに対して、台形チャンネル反応装置の触媒床内の最大温度差は9℃であり、触媒床の前部で258℃、中央で約257℃、終部で248℃であった。したがって、台形チャンネル反応装置では温度分布がより均一になり、局所的ホットスポットがかなり低減した。
台形チャンネル反応装置設計は、予想されるホットスポットにおける発熱の低減をもたらし、コールドスポットにおける発熱の増加をもたらせた。狭い入口部分での短い接触時間は反応程度を減少させ、熱放出速度を減少させる。熱伝導速度は床厚の減少により増加される。一方、床の比較的幅広部分では、比較的長い接触時間により熱発生速度が上昇する。同時に、熱伝導は床厚の増加により減少する。したがって、反応熱の反応装置床全体への拡散が“推し進め”られ、これによりより均一な温度分布が達成される。温度を狭い範囲に維持することは、所望の液体生成物に対するより高い選択性をもたらす。床のホットスポットをなくすことにより、触媒寿命が長くなる。
本発明の好ましい実施態様について説明したが、本発明の要旨から外れることなく多くの変更や改変が可能であることは、当業者にとって明らかであろう。例えば、上述した実施態様では、直線状の流れ方向および平坦な壁を備えた例を説明したが、曲線状の流れ方向と曲線状の壁を備えた種々の変形例も、本発明に含まれる。例えば、チャンネル断面は四角形でなく円形とすることもできる。上述した各実施態様では、チャンネルの断面をその長さ全体にわたって徐々に増加させているが、長さの一部分のみにおいて徐々に増加させることもできる。さらに、上述した特定の実施態様では、発熱反応を行わせる反応装置について述べている。しかし、吸熱反応を行う反応装置に対しても本発明を同様に適用することができる。この場合、反応装置は、熱源の代わりに吸熱源となる。また、本発明によれば、吸熱反応用と発熱反応用の複数の反応装置を組み合わせて、例えば発熱反応用および吸熱反応用を交互にしたジャケット付きまたはサンドイッチ構造として作製することもできる。このように、種々の変形を本発明の範囲に包含させることができる。
従来の直線状チャンネルを有する反応装置の模式的斜視図である。 本発明の第1実施例による化学反応装置のチャンネルの模式的斜視図である。 本発明の第2実施例による1つのチャンネルを有する化学反応装置の模式的縦断面図である。 本発明の第3実施例による多チャンネルを有する化学反応装置の模式的縦断面図である。 本発明の実施例による台形反応装置における局所的反応率分布と、直線状チャンネルを有する反応装置における局所的反応率分布とを比較したグラフである。 直線状チャンネルを有する反応装置の触媒床中の表面熱束とスライスド温度分布のモデル計算の結果を示す説明図である。 台形チャンネルを有する反応装置の触媒床中の表面熱束とスライスド温度分布のモデル計算の結果を示す説明図である。 多層マイクロチャンネル反応装置の模式的断面図である。

Claims (25)

  1. 反応マイクロチャンネルへの入口と反応マイクロチャンネルからの出口を有しかつ触媒を含む反応マイクロチャンネルからなり、前記反応マイクロチャンネルの断面の断面積は触媒を含む反応マイクロチャンネル部分の流路に沿って変化し、
    前記反応マイクロチャンネルは実質的に平らで平行な二つの対向する表面を含み、熱交換チャンネルまたは第2の反応マイクロチャンネルが該対向する表面の少なくとも1つに隣接しており、
    前記実質的に平らで平行な二つの対向する表面間が5mm以下の距離であり、ここで、該距離は流れに対して垂直であるマイクロチャンネルの最も小さな寸法であことを特徴とする触媒的化学反応装置。
  2. 前記反応装置は積層シートにより作製されていることを特徴とする請求項1記載の反応装置。
  3. 前記反応マイクロチャンネルの断面の断面積は連続的に変化することを特徴とする請求項1又は2記載の反応装置。
  4. 前記反応マイクロチャンネルの断面の断面積は段階的に変化することを特徴とする請求項1または2記載の反応装置。
  5. 前記断面は高さと幅を有し、高さは前記流路に沿って一定であることを特徴とする請求項1〜4のいずれか1項記載の反応装置。
  6. 前記反応マイクロチャンネルは台形の断面を有し、ここで該台形は、流れに対して平行である方向を含む平面上の形状であることを特徴とする請求項1〜5のいずれか1項記載の反応装置。
  7. 前記触媒は、前記反応マイクロチャンネルのチャンネル壁の間に存在する多孔質物質からなることを特徴とする請求項1〜6のいずれか1項記載の反応装置。
  8. 前記断面の領域は固体の固定床触媒で実質的に満たされていることを特徴とする請求項1〜7のいずれか1項記載の反応装置。
  9. 前記反応マイクロチャンネルは容量を有し、この反応マイクロチャンネルの全容量が固体の固定床触媒で実質的に満たされていることを特徴とする請求項1〜8のいずれか1項記載の反応装置。
  10. 前記触媒は前記反応マイクロチャンネルの少なくとも1つの壁に接触しかつ前記反応マイクロチャンネルの長さ全体にわたって延びる空間を残している多孔質物質からなることを特徴とする請求項1〜6のいずれか1項記載の反応装置。
  11. 前記反応マイクロチャンネルは複数のマイクロチャンネル壁からなり、前記触媒は前記マイクロチャンネル壁に設けられた触媒コーティングからなることを特徴とする請求項1〜6のいずれか1項記載の反応装置。
  12. 前記反応マイクロチャンネルが熱交換マイクロチャンネルの間に設けられており、ここでそれぞれの熱交換マイクロチャンネルは5mm以下の高さを有することを特徴とする請求項1〜11のいずれか1項記載の反応装置。
  13. 前記反応マイクロチャンネルの断面の断面積は触媒を含む反応マイクロチャンネル部分の流路に沿って連続的に減少することを特徴とする請求項1〜12のいずれか1項記載の反応装置。
  14. 前記反応マイクロチャンネルの断面の断面積は触媒を含む反応マイクロチャンネル部分の流路に沿って連続的に増加することを特徴とする請求項1〜12のいずれか1項記載の反応装置。
  15. 前記反応マイクロチャンネルの入口側の断面の断面積は、前記反応マイクロチャンネルの出口側の断面の断面積と異なることを特徴とする請求項1〜14のいずれか1項記載の反応装置。
  16. 前記反応マイクロチャンネルは単一の出口を有することを特徴とする請求項1〜15のいずれか1項記載の反応装置。
  17. 複数の前記反応マイクロチャンネルからなることを特徴とする請求項1〜16のいずれか1項記載の反応装置。
  18. 前記複数の反応マイクロチャンネルは、組成物の少なくとも1つの供給源に接続されかつ1つの共通の入口ゾーンに位置させた各々の入口を有し、前記複数のマイクロチャンネルは前記共通の入口ゾーンから放射状に延びていることを特徴とする請求項17記載の反応装置。
  19. 組成物の少なくとも1つの供給源に接続されかつ1つの共通の入口ゾーンに位置させた各々の入口を有する複数の反応マイクロチャンネルからなり、前記複数の反応マイクロチャンネルは前記共通の入口ゾーンから放射状に延びており、前記複数の反応マイクロチャンネルの少なくとも2つにおいて、反応マイクロチャンネルの断面の断面積が反応触媒を含むチャンネル部分の流路に沿って変化することを特徴とする化学反応装置。
  20. 組成物を反応マイクロチャンネルの入口へ導入し、この反応マイクロチャンネルを通して通過させ、出口から排出させることからなり、前記反応マイクロチャンネルは入口側と出口側とを有し;
    前記組成物が前記反応マイクロチャンネルを通過している最中に該組成物の線速度が変化し;
    前記反応マイクロチャンネルは少なくとも1つの熱交換器に隣接し、前記反応マイクロチャンネルから少なくとも1つの前記熱交換器までの伝熱距離が前記入口側と出口側とで異なり、前記伝熱距離は前記反応マイクロチャンネルを通る流れの方向に垂直な方向で測定されたものであり、
    前記反応マイクロチャンネルは実質的に平らで平行な二つの対向する表面を含み、ここで該実質的に平らで平行な二つの対向する表面間の距離は5mm以下であることを特徴とする、発熱反応または吸熱反応を行わせる方法。
  21. 前記線速度は前記組成物が反応マイクロチャンネルを通過している最中に減少し、反応マイクロチャンネルから少なくとも1つの前記熱交換器までの前記伝熱達距離が前記出口側より前記入口側で小さいことを特徴とする請求項20記載の方法。
  22. 請求項1〜19のいずれか1項記載の反応装置の反応マイクロチャンネルの入口に組成物を導入し、出口から排出させることからなる、発熱反応または吸熱反応を行わせる方法。
  23. 前記組成物が触媒を含む、請求項20〜22のいずれか1項記載の方法。
  24. 反応が、アセチル化、付加反応、アルキル化、脱アルキル化、水素化脱アルキル化、還元的アルキル化、アミノ化、芳香族化、アリール化、自熱改質、カルボニル化、脱カルボニル化、還元的カルボニル化、カルボキシル化、還元的カルボキシル化、還元的カップリング、縮合、クラッキング、水素化クラッキング、環化、シクロオリゴマー化、脱ハロゲン化、二量体化、エポキシ化、エステル化、交換反応、フィッシャー−トロプシュ反応、ハロゲン化、水素化ハロゲン化、同族体化、水和、脱水、水素化、脱水素化、水素化カルボキシル化、ヒドロホルミル化、水素化分解、ヒドロメタル化、ヒドロシラン化、加水分解、ヒドロ処理(HDS/HDN)、異性化、メチル化、脱メチル化、複分解、硝化、酸化、部分酸化、重合、還元、改質、逆水性ガス転化、スルホン化、テロメリゼーション、エステル交換反応、三量体化および水性ガス転化からなる群から選ばれることを特徴とする請求項20〜23のいずれか1項記載の方法。
  25. 前記熱交換器が流体熱交換器である、請求項20または21記載の方法。
JP2004506947A 2002-05-21 2003-05-21 変化する断面を有する反応装置、その製造方法および局所的接触時間を変化させて反応を行う方法 Expired - Fee Related JP5068005B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/153,577 2002-05-21
US10/153,577 US8206666B2 (en) 2002-05-21 2002-05-21 Reactors having varying cross-section, methods of making same, and methods of conducting reactions with varying local contact time
PCT/US2003/016189 WO2003099429A1 (en) 2002-05-21 2003-05-21 Reactors having varying cross-section, methods of making same, and methods of conducting reactions with varying local contact time

Publications (3)

Publication Number Publication Date
JP2006508783A JP2006508783A (ja) 2006-03-16
JP2006508783A5 JP2006508783A5 (ja) 2006-07-06
JP5068005B2 true JP5068005B2 (ja) 2012-11-07

Family

ID=29548676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004506947A Expired - Fee Related JP5068005B2 (ja) 2002-05-21 2003-05-21 変化する断面を有する反応装置、その製造方法および局所的接触時間を変化させて反応を行う方法

Country Status (6)

Country Link
US (1) US8206666B2 (ja)
EP (1) EP1511561B1 (ja)
JP (1) JP5068005B2 (ja)
AU (1) AU2003248556A1 (ja)
CA (1) CA2486379C (ja)
WO (1) WO2003099429A1 (ja)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078052A1 (en) * 2002-03-11 2003-09-25 Battelle Memorial Institute Microchannel reactors with temperature control
US7404936B2 (en) * 2002-10-22 2008-07-29 Velocys Catalysts, in microchannel apparatus, and reactions using same
US6989134B2 (en) * 2002-11-27 2006-01-24 Velocys Inc. Microchannel apparatus, methods of making microchannel apparatus, and processes of conducting unit operations
US8580211B2 (en) * 2003-05-16 2013-11-12 Velocys, Inc. Microchannel with internal fin support for catalyst or sorption medium
US7084180B2 (en) * 2004-01-28 2006-08-01 Velocys, Inc. Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor
US9023900B2 (en) 2004-01-28 2015-05-05 Velocys, Inc. Fischer-Tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor
US7820445B2 (en) * 2004-04-22 2010-10-26 Velocys Fluidization and solids processing in microchannel devices
CA2575165C (en) * 2004-08-12 2014-03-18 Velocys Inc. Process for converting ethylene to ethylene oxide using microchannel process technology
US7622509B2 (en) 2004-10-01 2009-11-24 Velocys, Inc. Multiphase mixing process using microchannel process technology
US7566441B2 (en) 2004-10-15 2009-07-28 Velocys Methods of conducting catalytic combustion in a multizone reactor, and a method of making a thermally stable catalyst support
CN101090766B (zh) * 2004-11-03 2010-06-09 维罗西股份有限公司 迷你通道和微通道中的局部沸腾
US9150494B2 (en) * 2004-11-12 2015-10-06 Velocys, Inc. Process using microchannel technology for conducting alkylation or acylation reaction
KR20100038476A (ko) 2004-11-16 2010-04-14 벨로시스, 인코포레이티드 마이크로채널 기술을 사용하는 다중상 반응 과정
US7485161B2 (en) * 2005-01-04 2009-02-03 Air Products And Chemicals, Inc. Dehydrogenation of liquid fuel in microchannel catalytic reactor
US7507274B2 (en) * 2005-03-02 2009-03-24 Velocys, Inc. Separation process using microchannel technology
EP1890802A2 (en) * 2005-05-25 2008-02-27 Velocys, Inc. Support for use in microchannel processing
US20070004810A1 (en) * 2005-06-30 2007-01-04 Yong Wang Novel catalyst and fischer-tropsch synthesis process using same
EP2543434B1 (en) * 2005-07-08 2022-06-15 Velocys Inc. Catalytic reaction process using microchannel technology
AR057787A1 (es) * 2005-08-31 2007-12-19 Fmc Corp Produccion por auto-oxidacion de peroxido de hidrogeno a traves de hidrogenacion en un microrreactor
US7416718B2 (en) * 2005-08-31 2008-08-26 Fmc Corporation Auto-oxidation production of hydrogen peroxide via oxidation in a microreactor
US8957259B2 (en) * 2005-09-30 2015-02-17 Battelle Memorial Institute Dimethyl ether production from methanol and/or syngas
DE102006011497A1 (de) * 2006-03-14 2007-09-20 Bayer Technology Services Gmbh Verfahren und Vorrichtung zur Herstellung von aromatischen Aminen durch eine heterogen katalysierte Hydrierung
CN101426752B (zh) * 2006-03-23 2014-08-13 万罗赛斯公司 利用微通道工艺技术制造苯乙烯的工艺
JP5362552B2 (ja) 2006-04-20 2013-12-11 ヴェロシス,インク. マイクロチャネルプロセス技術を用いて非ニュートン流体を処理し、および/または形成させるためのプロセス
US7923592B2 (en) 2007-02-02 2011-04-12 Velocys, Inc. Process for making unsaturated hydrocarbons using microchannel process technology
JP4777383B2 (ja) * 2008-04-28 2011-09-21 株式会社日立製作所 マイクロリアクタ
CA2752057A1 (en) * 2008-07-29 2010-02-04 Emerging Fuels Technology Inc. Pillow panel reactor and process
JP2010210118A (ja) * 2009-03-09 2010-09-24 Jamco Corp 漏水防止用安全弁を備えた旅客機搭載用スチームオーブン
JP2009166039A (ja) * 2009-03-11 2009-07-30 Tosoh Corp 微粒子製造装置
JP4706883B2 (ja) * 2009-03-17 2011-06-22 セイコーエプソン株式会社 生体試料定量方法
EP2292329B1 (de) * 2009-09-08 2014-11-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Polymersubstrat mit fluoreszierender Struktur, Verfahren zu dessen Herstellung und dessen Verwendung
US9090865B2 (en) 2010-10-29 2015-07-28 The Regents Of The University Of California Systems and methods for particle classification and sorting
GB2509254B (en) 2011-07-19 2018-07-04 Velocys Inc A method of loading material within a microchannel device
JP5966637B2 (ja) * 2012-06-07 2016-08-10 株式会社Ihi マイクロリアクタ
GB201214122D0 (en) 2012-08-07 2012-09-19 Oxford Catalysts Ltd Treating of catalyst support
JP6408754B2 (ja) 2013-02-06 2018-10-17 株式会社Ihi リアクタ
JP6055922B2 (ja) * 2013-08-08 2016-12-27 パナソニック株式会社 マイクロ流体デバイス
GB2554618B (en) 2015-06-12 2021-11-10 Velocys Inc Synthesis gas conversion process
US10023513B1 (en) * 2015-08-19 2018-07-17 Brian T. Keen Telomerization methods of using ethylene and/or propylene to make telomers of limited molecular weight
CN107519828B (zh) * 2016-06-22 2019-06-11 中国石油化工股份有限公司 采用微通道反应器的烷基化方法及装置
WO2018234975A1 (en) * 2017-06-21 2018-12-27 Sabic Global Technologies, B.V. IMPROVED REACTOR DESIGNS FOR HETEROGENEOUS CATALYTIC REACTIONS
WO2019028002A1 (en) * 2017-07-31 2019-02-07 Corning Incorporated PERFECTED CONTINUOUS REACTOR
CN109535195A (zh) * 2018-12-29 2019-03-29 山东华夏神舟新材料有限公司 连续性流微反应器合成氟硅化合物的方法
CN114733346B (zh) * 2022-05-13 2023-08-04 南京宇源新能碳中和科技有限公司 一种提升甲烷催化氧化效率的微通道反应器芯片及其制备方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1825321A (en) * 1926-10-07 1931-09-29 La Mont Corp Art of effecting heat exchange
US3503712A (en) * 1966-05-18 1970-03-31 Research Corp Apparatus for effecting interactions of fluids at extended solid surfaces
DE2929300A1 (de) * 1979-07-19 1981-01-29 Linde Ag Reaktor zur durchfuehrung katalytischer endothermer oder exothermer reaktionen
US4438809A (en) * 1980-08-01 1984-03-27 Thaddeus Papis Tapered plate annular heat exchanger
JPS59146910A (ja) * 1983-02-11 1984-08-23 Toyota Motor Corp 吸熱型ガス変成装置
JPS6154229A (ja) * 1984-08-24 1986-03-18 Mitsubishi Heavy Ind Ltd 反応器
DE3435319A1 (de) * 1984-09-26 1986-04-03 Michael 4150 Krefeld Laumen Katalytischer dampferzeuger
EP0206067A1 (de) * 1985-06-20 1986-12-30 Stettner & Co. Katalytisch wirksamer Baukörper aus Einzelelementen und Verfahren zum Herstellen dieser Baukörper
US4953634A (en) * 1989-04-20 1990-09-04 Microelectronics And Computer Technology Corporation Low pressure high heat transfer fluid heat exchanger
US5405586A (en) * 1993-07-01 1995-04-11 Uop Radial flow heat exchanging reactor
US5600052A (en) * 1994-05-02 1997-02-04 Uop Process and apparatus for controlling reaction temperatures
NO300117B1 (no) * 1994-12-22 1997-04-14 Norske Stats Oljeselskap Reaktor for dehydrogenering av hydrokarboner med selektiv oksidasjon av hydrogen
NL1000146C2 (nl) 1995-04-13 1996-10-15 Gastec Nv Werkwijze voor het uitvoeren van een chemische reactie.
JPH09315801A (ja) * 1996-03-26 1997-12-09 Toyota Motor Corp 燃料改質方法と燃料改質装置ならびに該燃料改質装置を備えた燃料電池システム
US5942443A (en) * 1996-06-28 1999-08-24 Caliper Technologies Corporation High throughput screening assay systems in microscale fluidic devices
US6375871B1 (en) * 1998-06-18 2002-04-23 3M Innovative Properties Company Methods of manufacturing microfluidic articles
DE19741645A1 (de) * 1997-09-22 1999-03-25 Bayer Ag Verfahren und Vorrichtung zur Oxidation organischer Verbindungen in flüssiger Phase unter Verwendung peroxidischer Oxidationsmittel
US5842787A (en) * 1997-10-09 1998-12-01 Caliper Technologies Corporation Microfluidic systems incorporating varied channel dimensions
WO1999044736A1 (de) * 1998-03-04 1999-09-10 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Verfahren zur durchführung chemischer umsetzungen in einem mikroreaktor und solch ein mikroreaktor
DE19819202A1 (de) * 1998-04-29 1999-11-04 Emitec Emissionstechnologie Konischer Wabenkörper und Verfahren zu seiner Herstellung
DE19909340A1 (de) * 1999-03-03 2000-09-07 Basf Ag Rohrbündelreaktor mit gestuftem Innendurchmesser
US6488838B1 (en) * 1999-08-17 2002-12-03 Battelle Memorial Institute Chemical reactor and method for gas phase reactant catalytic reactions
DE19963594C2 (de) * 1999-12-23 2002-06-27 Mannesmann Ag Vorrichtung in Mikrostrukturtechnik zum Hindurchleiten von Medien sowie Verwendung als Brennstoffzellensystem
US7241423B2 (en) 2000-02-03 2007-07-10 Cellular Process Chemistry, Inc. Enhancing fluid flow in a stacked plate microreactor
WO2002014854A1 (en) * 2000-08-14 2002-02-21 Chevron U.S.A. Inc. Use of microchannel reactors in combinatorial chemistry
JP4010171B2 (ja) * 2001-04-16 2007-11-21 東ソー株式会社 微小流路構造体、その製造方法及びその用途
US7201873B2 (en) * 2001-04-16 2007-04-10 Tosoh Corporation Fine channel device, method for producing the fine channel device and use of the same
US6746515B2 (en) 2001-04-30 2004-06-08 Battelle Memorial Institute Method and apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption
US7316804B2 (en) * 2001-08-02 2008-01-08 Ineos Usa Llc Flow reactors for chemical conversions with heterogeneous catalysts
GB0124172D0 (en) 2001-10-09 2001-11-28 Ici Plc Reactor
NO321805B1 (no) 2001-10-19 2006-07-03 Norsk Hydro As Fremgangsmate og anordning for a lede to gasser inn og ut av kanalene i en flerkanals monolittenhet.
US6936364B2 (en) 2001-10-24 2005-08-30 Modine Manufacturing Company Method and apparatus for vaporizing fuel for a reformer fuel cell system
EP2581739B1 (en) * 2002-03-05 2015-11-04 Caliper Life Sciences, Inc. Microfluidic separation method with combined pressure and voltage control
WO2003078052A1 (en) * 2002-03-11 2003-09-25 Battelle Memorial Institute Microchannel reactors with temperature control
US7097787B2 (en) 2002-07-19 2006-08-29 Conocophillips Company Utilization of micro-channel gas distributor to distribute unreacted feed gas into reactors
GB0220652D0 (en) 2002-09-05 2002-10-16 Chart Heat Exchangers Ltd Heat exchanger
US7000684B2 (en) * 2002-11-01 2006-02-21 Cooligy, Inc. Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device

Also Published As

Publication number Publication date
CA2486379A1 (en) 2003-12-04
US8206666B2 (en) 2012-06-26
EP1511561B1 (en) 2014-06-25
JP2006508783A (ja) 2006-03-16
EP1511561A1 (en) 2005-03-09
CA2486379C (en) 2013-11-12
AU2003248556A1 (en) 2003-12-12
US20030219903A1 (en) 2003-11-27
WO2003099429A1 (en) 2003-12-04

Similar Documents

Publication Publication Date Title
JP5068005B2 (ja) 変化する断面を有する反応装置、その製造方法および局所的接触時間を変化させて反応を行う方法
US9695368B2 (en) Process and apparatus employing microchannel process technology
Kapteijn et al. New non-traditional multiphase catalytic reactors based on monolithic structures
KR100716461B1 (ko) 기체상 반응물 촉매 반응의 화학 반응기 및 방법
RU2290257C2 (ru) Интегральный реактор (варианты), способ его изготовления, способ одновременного проведения экзотермических и эндотермических реакций (варианты)
Kolb et al. Micro-structured reactors for gas phase reactions
JP4554359B2 (ja) 接触酸化的脱水素化法及びそのためのマイクロチャンネル反応器
US7993599B2 (en) Method for enhancing catalyst selectivity
JP4658609B2 (ja) マイクロチャネル装置内の触媒、及びそれを用いた反応
JP2006508783A5 (ja)
EP1632282A2 (en) Method and apparatus for obtaining enhanced production rate of thermal chemical reactions
EP1568412A1 (en) A chemical reactor and method for gas phase reactant catalytic reactions
JP2011516260A (ja) 構造壁を備えるマイクロチャネル装置、化学プロセス、ホルムアルデヒドの製造方法
WO2005113130A1 (en) Staged alkylation in microchannels
JP2002126498A (ja) 強熱変動性触媒反応用反応器
CA2655030A1 (en) Microchannel apparatus and methods of conducting unit operations with disrupted flow
JP2010012466A (ja) 一体型反応器、その製造方法並びに、発熱反応及び吸熱反応を同時に実施する方法
EP2938430B1 (en) Multi-structured reactor made of monolithic adjacent thermoconductive bodies for chemical processes with a high heat exchange
WO2015033329A1 (en) Non-adiabatic catalytic reactor
Moulijn et al. Structured catalysts and reactors: A contribution to process intensification
US20110172448A1 (en) Process for carrying out heterogeneously catalyzed reactions with high selectivity and yield
Renken Process Intensification for Clean Catalytic Technology
Laguna Espitia et al. Microreactors technology for hydrogen purification: Effect of the catalytic layer thickness on CuOx/CeO2-coated microchannel reactors for the PROX reaction

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080723

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081020

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081021

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100104

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100730

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120116

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees