JP5066351B2 - Device comprising a ceramic thin plate - Google Patents

Device comprising a ceramic thin plate Download PDF

Info

Publication number
JP5066351B2
JP5066351B2 JP2006229460A JP2006229460A JP5066351B2 JP 5066351 B2 JP5066351 B2 JP 5066351B2 JP 2006229460 A JP2006229460 A JP 2006229460A JP 2006229460 A JP2006229460 A JP 2006229460A JP 5066351 B2 JP5066351 B2 JP 5066351B2
Authority
JP
Japan
Prior art keywords
thin plate
support member
plate body
plane
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006229460A
Other languages
Japanese (ja)
Other versions
JP2008053107A (en
Inventor
誠 大森
夏己 下河
高宏 前田
七瀧  努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2006229460A priority Critical patent/JP5066351B2/en
Publication of JP2008053107A publication Critical patent/JP2008053107A/en
Application granted granted Critical
Publication of JP5066351B2 publication Critical patent/JP5066351B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、少なくともセラミックスシートを含む焼成された薄板体と、その薄板体を支持する支持部材と、を備えるデバイスに関する。   The present invention relates to a device including a fired thin plate including at least a ceramic sheet and a support member that supports the thin plate.

従来から、セラミックスシートを含む焼成された薄板体は、例えば、センサ、アクチュエータ及び固体酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)等の種々のデバイスに用いられて来ている。例えば、デバイスがSOFCである場合、薄板体は、セラミックスである固体電解質ジルコニアと、その固体電解質ジルコニアの一面に形成された燃料極層と、その固体電解質ジルコニアの他面に形成された空気極層と、からなる焼成体である。更に、燃料流路が燃料極層と対向する部分に形成され、空気流路が空気極層と対向する部分に形成される。この種の薄板体は、少なくとも二箇所の部分(多くの場合、全周)において支持部材に固定され、デバイスを構成している。(例えば、特許文献1を参照。)。
特開2004−342584号公報
Conventionally, a fired thin plate including a ceramic sheet has been used in various devices such as sensors, actuators, and solid oxide fuel cells (SOFCs). For example, when the device is an SOFC, the thin plate body is made of ceramic solid electrolyte zirconia, a fuel electrode layer formed on one surface of the solid electrolyte zirconia, and an air electrode layer formed on the other surface of the solid electrolyte zirconia. And a fired body comprising: Further, the fuel flow path is formed in a portion facing the fuel electrode layer, and the air flow path is formed in a portion facing the air electrode layer. This type of thin plate member is fixed to a support member at least at two portions (in many cases, the entire circumference) to constitute a device. (For example, see Patent Document 1).
JP 2004-342584 A

このようなデバイスを小型化するためには、薄板体自体の厚さを小さくするとともに、その薄板体を収容しているデバイスのケース等(例えば、支持部材の厚さ)も小さくする必要がある。一方、デバイス(薄板体及び/又は支持部材)の温度が急激に変化する場合、薄板体と支持部材との間に膨張量の差が発生する。しかしながら、薄板体は少なくとも二箇所の部分において支持部材に拘束(固定)されているので、薄板体と支持部材との間の膨張量の差によって薄板体に大きな応力が加わる。このため、薄板体の特に中央部近傍が変形し、小型化されたデバイスにおいては薄板体が支持部材等に当接することがある。この結果、デバイスの信頼性が低下する等の種々の問題が発生する。   In order to reduce the size of such a device, it is necessary to reduce the thickness of the thin plate itself and the case of the device that accommodates the thin plate (for example, the thickness of the support member). . On the other hand, when the temperature of the device (thin plate body and / or support member) changes abruptly, a difference in expansion occurs between the thin plate body and the support member. However, since the thin plate body is constrained (fixed) to the support member in at least two portions, a large stress is applied to the thin plate body due to a difference in expansion amount between the thin plate body and the support member. For this reason, especially the central part vicinity of a thin plate body deform | transforms, and in a miniaturized device, a thin plate body may contact | abut to a support member. As a result, various problems such as a decrease in device reliability occur.

より具体的に述べると、例えば、デバイスが小型化されたSOFCであれば、前記薄板体に直交する方向における燃料流路の距離(高さ)及び空気流路の距離(高さ)は非常に小さくなる。一方、燃料電池に発電を開始させようとするとき又は発電を終了させようとするとき、単セルとしての薄板体の温度及び支持部材の温度は急激に変化する。その結果、薄板体と支持部材との間に伸縮量(膨張量)の差が発生して薄板体に大きな応力が加わるので、薄板体の特に中央部近傍が変形して燃料流路及び/又は空気流路を閉じてしまうという問題が発生する。また、薄板体が燃料流路又は空気流路を閉じない程度に変形した場合であっても、それらの流路を流体が流れる際の圧損が薄板体の変形によって増大する。従って、本発明の目的の一つは、小型化されたデバイスであって、デバイスの温度変化に対して所期の性能を安定して発揮することが可能なデバイスを提供することにある。   More specifically, for example, if the device is a miniaturized SOFC, the distance (height) of the fuel flow path and the distance (height) of the air flow path in the direction orthogonal to the thin plate member are very high. Get smaller. On the other hand, when the fuel cell is about to start power generation or to end power generation, the temperature of the thin plate as a single cell and the temperature of the support member change rapidly. As a result, a difference in expansion / contraction amount (expansion amount) occurs between the thin plate member and the support member, and a large stress is applied to the thin plate member. Therefore, particularly in the vicinity of the central portion of the thin plate member is deformed and the fuel flow path and / or The problem of closing the air flow path occurs. Further, even when the thin plate member is deformed to such an extent that the fuel flow channel or the air flow channel is not closed, the pressure loss when the fluid flows through these flow channels increases due to the deformation of the thin plate member. Accordingly, one of the objects of the present invention is to provide a device that is miniaturized and that can stably exhibit a desired performance against a temperature change of the device.

上記目的を達成するための本発明によるデバイスは、少なくともセラミックスシートを含む焼成された薄板体と、前記薄板体を支持する支持部材と、を備えるデバイスである。このような薄板体の厚さは、小型化する観点から、例えば5μm以上且つ100μm以下であり、且つ、薄板体全体にわたって均一であることが望ましい。   In order to achieve the above object, a device according to the present invention is a device comprising a fired thin plate including at least a ceramic sheet, and a support member that supports the thin plate. From the viewpoint of downsizing, the thickness of such a thin plate member is preferably, for example, 5 μm or more and 100 μm or less and is uniform over the entire thin plate member.

更に、このデバイスにおいて、前記薄板体は、同薄板体の少なくとも二箇所の部分において前記支持部材に固定され、且つ、同薄板体の一つの平面から突出した凸状部を複数備えるとともに同平面から陥没した凹状部を複数備えている。この場合、薄板体の一面側から見た凸状部及び凹状部は、同薄板体の他面側から見ればそれぞれ凹状部及び凸状部である。   Further, in this device, the thin plate member is fixed to the support member at at least two portions of the thin plate member, and includes a plurality of convex portions protruding from one plane of the thin plate member and from the same plane. A plurality of depressed concave portions are provided. In this case, the convex part and the concave part seen from the one surface side of the thin plate body are the concave part and the convex part, respectively, when seen from the other surface side of the thin plate body.

このように、薄板体は薄板体の少なくとも二箇所の部分において支持部材に固定されている。この場合、支持部材に固定される薄板体の少なくとも二箇所は、薄板体が平面視において多角形であれば、その多角形を構成する二つの辺(対向する二辺及び隣接する二辺等)のそれぞれに沿った少なくとも二つの領域であってよく、その多角形の総ての辺のそれぞれに沿った二以上の領域(外周部の全周)を含む領域であってもよい。また、薄板体は平面視において円形(真円、長円及び楕円等)であってもよい。その場合、支持部材に固定される薄板体の少なくとも二箇所は、その円に対して描かれる二つの異なる絃を含む領域であってもよく、外周部の総ての領域であってもよい。   As described above, the thin plate member is fixed to the support member at at least two portions of the thin plate member. In this case, if the thin plate body is a polygon in plan view, at least two places of the thin plate body fixed to the support member are two sides constituting the polygon (two opposite sides and two adjacent sides). May be at least two regions along each of the regions, and may be a region including two or more regions (the entire circumference of the outer peripheral portion) along each of all sides of the polygon. The thin plate member may be circular (perfect circle, ellipse, ellipse, etc.) in plan view. In that case, at least two places of the thin plate member fixed to the support member may be regions including two different ridges drawn with respect to the circle, or may be all regions of the outer peripheral portion.

一方、薄板体及び支持部材は、その温度変化により伸縮しようとする。このとき、薄板体と支持部材との間に伸縮量の差が生じる。しかしながら、薄板体は少なくとも二箇所の部分において支持部材に固定されているから、薄板体が従来の薄板体のように平坦であると(即ち、薄板体が上記凸状部及び上記凹状部を備えていないと)、薄板体の平面に沿った方向に大きな応力(引張り応力又は圧縮応力)が発生し、薄板体或いは接合部(薄板体と支持部材との固定部)が破損するか、薄板体の特に中央部近傍が薄板体の平面と直交する方向に変形してしまう。これに対し、本発明のデバイスにおける薄板体は、薄板体の平面から突出した凸状部を複数備えるとともに同平面から陥没した凹状部を複数備えているから、それらの凸状部及び凹状部が上記温度変化による薄板体の平面に沿った方向の薄板体と支持部材との間の伸縮量差を吸収するように変形する。換言すると、前記伸縮量差により薄板体内部に発生する応力が薄板体の平面方向と直交する方向にも分散される。この結果、本発明によるデバイスの薄板体は、その中央部近傍が薄板体の平面と直交する方向に変形し難いので、同デバイスは薄板体の温度変化に対して所期の性能を安定して発揮することができる。更に、薄板体或いは接合部が破損することを回避できる。   On the other hand, the thin plate member and the support member tend to expand and contract due to temperature changes. At this time, a difference in expansion and contraction occurs between the thin plate member and the support member. However, since the thin plate body is fixed to the support member in at least two portions, if the thin plate body is flat like a conventional thin plate body (that is, the thin plate body includes the convex portion and the concave portion). Otherwise, a large stress (tensile stress or compressive stress) is generated in the direction along the plane of the thin plate member, and the thin plate member or the joint (the fixed portion between the thin plate member and the support member) is damaged, or the thin plate member In particular, the vicinity of the center of the plate is deformed in a direction perpendicular to the plane of the thin plate member. On the other hand, since the thin plate member in the device of the present invention includes a plurality of convex portions protruding from the plane of the thin plate body and a plurality of concave portions recessed from the same plane, the convex portions and the concave portions are provided. It deform | transforms so that the expansion amount difference between the thin plate body of the direction along the plane of the thin plate body by the said temperature change and a supporting member may be absorbed. In other words, the stress generated inside the thin plate member due to the difference in the amount of expansion and contraction is also distributed in the direction perpendicular to the plane direction of the thin plate member. As a result, the thin plate member of the device according to the present invention is not easily deformed in the direction perpendicular to the plane of the thin plate member in the vicinity of the central portion thereof, so that the device stabilizes the expected performance against the temperature change of the thin plate member. It can be demonstrated. Furthermore, it can avoid that a thin plate body or a junction part is damaged.

また、この薄板体と支持部材とからなる構造体(デバイス)が複数段にわたって積み上げられてなるSOFCスタックを構成する場合、各薄板体の両面にはそれぞれ燃料ガス及び空気ガスが接触することになる。このとき、両ガスの圧力に差があると、そのガスの圧力差が外力となって薄板体へ作用する。このため、薄板体が変形して流路幅を狭めてしまう可能性がある。しかしながら、本発明によれば、薄板体が上記凸状部及び上記凹状部を備えているので変形し難く、その結果、流路幅を狭めてしまう可能性が低減される。   Further, when a SOFC stack in which a structure (device) composed of the thin plate member and the support member is stacked in a plurality of stages is configured, the fuel gas and the air gas are in contact with both surfaces of each thin plate member. . At this time, if there is a difference in pressure between the two gases, the pressure difference between the gases acts as an external force and acts on the thin plate. For this reason, there is a possibility that the thin plate member is deformed to narrow the flow path width. However, according to the present invention, since the thin plate body includes the convex portion and the concave portion, it is difficult to deform, and as a result, the possibility of narrowing the flow path width is reduced.

一方、前記複数の凸状部のうちの少なくとも一対の凸状部は、各凸状部の最高点に位置する頂部が前記平面に沿う方向であって互いに交差する方向に連続的に伸びるように形成され、且つ、前記複数の凹状部のうちの少なくとも一対の凹状部は、各凹状部の最低点に位置する底部が前記平面に沿う方向であって互いに交差する方向に連続的に伸びるように形成されている。 On the other hand, at least a pair of the convex portions of the plurality of convex portions are continuously extended in a direction in which the top portion located at the highest point of each convex portion is along the plane and intersects each other. The at least one pair of concave portions formed among the plurality of concave portions is continuously extended in a direction in which the bottom portion located at the lowest point of each concave portion is along the plane and intersects each other. that has been formed.

このように、凸状部が「薄板体の平面に沿う所定の方向に長手方向を有する山脈状」であり、凹状部が「薄板体の平面に沿う所定の方向に長手方向を有する溝状」であれば、そのような凹状部及び凸状部はデバイスの温度変化に伴う薄板体と支持部材との間の伸縮量差を容易に吸収するように変形する。従って、薄板体の特に中央部近傍が同薄板体の平面と直交する方向へ変形することをより効果的に抑制することができる。なお、この山脈状の凸状部及び/又は溝状の凹状部は、薄板体上部から見た形状(薄板体の平面視における形状)が直線的であっても良いし、曲線的であっても良い。   Thus, the convex portion is “a mountain range having a longitudinal direction in a predetermined direction along the plane of the thin plate body”, and the concave portion is “a groove shape having a longitudinal direction in a predetermined direction along the plane of the thin plate body”. Then, such a concave part and a convex part deform | transform so that the expansion-contraction difference between the thin plate body and supporting member accompanying the temperature change of a device may be absorbed easily. Accordingly, it is possible to more effectively suppress the deformation of the thin plate body, particularly in the vicinity of the center portion, in a direction perpendicular to the plane of the thin plate body. Note that the mountain-shaped convex portion and / or the groove-shaped concave portion may have a linear shape or a curved shape as viewed from above the thin plate member (a shape in a plan view of the thin plate member). Also good.

この場合、凸状部の頂部が連なる方向(連続的に伸びる方向)又は凹状部の底部が連なる方向(連続的に伸びる方向)は、前記少なくとも二箇所のうちの一つの箇所(領域)内の所定の点(第1地点)と、前記少なくとも二箇所のうちの他の一つの箇所(領域)内の所定の点(第2地点)と、を結んだ直線と直交する方向であることが好ましい。これによれば、そのような凹状部及び凸状部は、デバイスの温度変化に伴う薄板体と支持部材との間の伸縮量差をより容易に吸収するように変形する。従って、薄板体の特に中央部近傍が同薄板体の平面と直交する方向へ変形することを一層効果的に抑制することができる。   In this case, the direction in which the tops of the convex portions are continuous (the direction extending continuously) or the direction in which the bottoms of the concave portions are continuous (the direction extending continuously) is within one of the at least two locations (regions). The direction is preferably perpendicular to a straight line connecting a predetermined point (first point) and a predetermined point (second point) in the other one of the at least two locations (region). . According to this, such a concave part and convex part deform | transform so that the expansion-contraction difference between the thin plate body and supporting member accompanying the temperature change of a device may be absorbed more easily. Therefore, it is possible to more effectively suppress the deformation of the thin plate body, particularly in the vicinity of the center portion, in a direction perpendicular to the plane of the thin plate body.

更に、本発明によるデバイスの薄板体は、前記凸状部の最高点に位置する頂部の前記平面からの距離を前記複数の凸状部について単純平均した頂部距離平均値と、前記凹状部の最低点に位置する底部の前記平面からの距離を前記複数の凹状部について単純平均した底部距離平均値と、の和である頂部底部間距離平均値が20μm以上且つ400μm以下であるように構成されていることが好適である。   Furthermore, the thin plate body of the device according to the present invention includes a top distance average value obtained by simply averaging the distances from the plane of the top located at the highest point of the convex portions with respect to the plurality of convex portions, and a minimum of the concave portions. The average distance between the top and bottom, which is the sum of the bottom distance average value obtained by simply averaging the distance from the plane of the bottom located at the point with respect to the plurality of concave portions, is 20 μm or more and 400 μm or less. It is preferable that

検討によれば、頂部底部間距離平均値が20μm以上になると、薄板体に同じ撓み量を発生させるのに必要な外力が大きくなることが判明した(図15を参照。)。つまり、頂部底部間距離平均値が20μm以上になると、外力に対して薄板体が極めて変形し難くなることが判明した。一方、頂部底部間距離平均値が400μm以上となると、薄板体の表面に形成された凹状部及び凸状部の曲率が大きくなることに起因して焼成体である薄板体にマイクロクラックが発生する場合があることが判明した。マイクロクラックが生じると、薄板体の強度は極端に低下する。以上のことから、頂部底部間距離平均値は、20μm以上且つ400μm以下であることが好ましい。   According to the study, it has been found that when the average distance between the top and bottom portions is 20 μm or more, the external force required to generate the same amount of bending in the thin plate increases (see FIG. 15). That is, it has been found that when the average distance between the top and bottom portions is 20 μm or more, the thin plate body is extremely difficult to be deformed by an external force. On the other hand, when the average distance between the top and bottom portions is 400 μm or more, microcracks are generated in the thin plate body that is a fired body due to an increase in the curvature of the concave portion and the convex portion formed on the surface of the thin plate body. It turns out that there may be cases. When microcracks occur, the strength of the thin plate body is extremely reduced. From the above, it is preferable that the average distance between the top and bottom portions is 20 μm or more and 400 μm or less.

更に、本発明によるデバイスの薄板体は、以下に述べる条件の総てを満たす少なくとも一組の凸状部及び凹状部を含むことが好適である。
その条件とは、以下の通りである。
・その凸状部は前記複数の凸状部のうちの一つであること。
・その凹状部は前記複数の凹状部うちの一つであること。
・その凹状部はその凸状部に隣接していること。
・その凸状部の頂部とその凹状部の底部との前記平面(薄板体の平面)に沿う方向の距離(以下、「頂部底部平面方向距離」と称呼する。)が0.05mm以上且つ1.00mm以下であること。
Furthermore, it is preferable that the thin plate member of the device according to the present invention includes at least one pair of convex portions and concave portions that satisfy all of the conditions described below.
The conditions are as follows.
The convex portion is one of the plurality of convex portions.
The concave portion is one of the plurality of concave portions.
・ The concave part is adjacent to the convex part.
The distance in the direction along the plane (the plane of the thin plate member) between the top of the convex part and the bottom of the concave part (hereinafter referred to as “top bottom part plane direction distance”) is 0.05 mm or more and 1 0.000 mm or less.

検討によれば、頂部底部平面方向距離が1.00mm以下となると、薄板体に同じ撓み量を発生させるのに必要な外力が大きくなることが判明した(図16を参照。)。つまり、頂部底部平面方向距離が1.00mm以下となると、外力に対して薄板体が極めて変形し難くなることが判明した。一方、頂部底部平面方向距離が50μm未満であって凸状部と凹状部とが極めて近接した状況になると、焼成体である薄板体にマイクロクラックが発生する場合があることが判明した。マイクロクラックが生じると、薄板体の強度は極端に低下する。以上のことから、頂部底部平面方向距離は、0.05mm(50μm)以上且つ1.00mm(1000μm)以下であることが好ましい。   According to the study, it has been found that when the top bottom planar distance is 1.00 mm or less, the external force required to generate the same amount of deflection in the thin plate increases (see FIG. 16). That is, it has been found that when the distance in the top-bottom planar direction is 1.00 mm or less, the thin plate body is extremely difficult to deform with respect to external force. On the other hand, it has been found that when the distance in the top-bottom plane direction is less than 50 μm and the convex portion and the concave portion are very close to each other, microcracks may occur in the thin plate body that is a fired body. When microcracks occur, the strength of the thin plate body is extremely reduced. From the above, it is preferable that the top bottom plane direction distance is 0.05 mm (50 μm) or more and 1.00 mm (1000 μm) or less.

更に、本発明によるデバイスの薄板体は、セラミックスシートのみの単層体であってもよく、セラミックスシートと同セラミックスシートとは熱膨張率が相違する材料からなるシートとの積層体(積層焼成体)であってもよい。この場合、前記薄板体は、前記セラミックススシートとしての焼成により形成された固体電解質層と、同固体電解質層の一面に焼成により形成された前記熱膨張率が相違する材料からなるシートとしての燃料極層と、同固体電解質層の他面に焼成により形成された前記熱膨張率が相違する材料からなるシートとしての空気極層と、を備えることが好適である。これによれば、小型化され且つ安定した発電を長期に行い得るSOFCが提供される。   Furthermore, the thin plate body of the device according to the present invention may be a single layer body made of only a ceramic sheet, and a laminated body (laminated fired body) of a ceramic sheet and a sheet made of a material having a different coefficient of thermal expansion from the ceramic sheet. ). In this case, the thin plate body is a fuel as a sheet made of a material having a different coefficient of thermal expansion formed by firing on one surface of the solid electrolyte layer and the solid electrolyte layer formed by firing as the ceramic sheet. It is preferable to include an electrode layer and an air electrode layer as a sheet made of a material having a different coefficient of thermal expansion formed on the other surface of the solid electrolyte layer by firing. According to this, the SOFC that can be downsized and perform stable power generation for a long period of time is provided.

本発明の一実施態様において、
前記支持部材は、平面部と同平面部の周囲において同平面部の上方に向けて立設した上方枠体部と同平面部の下方に向けて立設した下方枠体部とを有する第1支持部材と、前記第1支持部材と同一形状の第2支持部材と、を備え、
前記第1支持部材及び前記第2支持部材は、前記第1支持部材の上方枠体部の上に前記第2支持部材の下方枠体部が対向するように互いに同軸的に配置され、
前記薄板体は、前記第1支持部材の平面部の上面に前記空気極層が配置され且つ前記第2支持部材の平面部の下面に前記燃料極層が配置されるように前記第1支持部材の上方枠体部と前記第2支持部材の下方枠体部との間に挟持され、
前記第1支持部材の平面部の上面と同第1支持部材の上方枠体部の内側壁面と前記薄板体の空気極層とにより酸素を含む気体が供給される空気流路が形成され、
前記第2支持部材の平面部の下面と同第2支持部材の下方枠体部の内側壁面と前記薄板体の燃料極層とにより水素を含む燃料が供給される燃料流路が形成されることが好ましい。
In one embodiment of the invention,
The support member has a first frame portion and an upper frame portion that is erected toward the upper side of the flat surface portion and a lower frame body portion that is erected toward the lower side of the flat surface portion. A support member, and a second support member having the same shape as the first support member,
The first support member and the second support member are coaxially arranged on the upper frame portion of the first support member so that the lower frame portion of the second support member faces each other,
The thin plate member includes the first support member such that the air electrode layer is disposed on an upper surface of a planar portion of the first support member and the fuel electrode layer is disposed on a lower surface of the planar portion of the second support member. Between the upper frame body portion and the lower frame body portion of the second support member,
The upper surface of the flat portion of the first support member, the inner wall surface of the upper frame body portion of the first support member, and the air electrode layer of the thin plate body form an air flow path to which a gas containing oxygen is supplied,
A fuel flow path to which fuel containing hydrogen is supplied is formed by the lower surface of the planar portion of the second support member, the inner wall surface of the lower frame portion of the second support member, and the fuel electrode layer of the thin plate member. Is preferred.

このようなデバイスを、支持部材と薄板体とが交互に配列されるように積み上げることによって、平板スタック型の小型化されたSOFCが提供される。   By stacking such devices so that the support members and the thin plate members are alternately arranged, a flat-plate stack type miniaturized SOFC is provided.

更に、本発明によるデバイスの薄板体は、前記薄板体単体を同薄板体の所定の支持箇所で支持するとともに同薄板体に対し同支持箇所以外の荷重印加箇所に前記平面に直交する方向であって所定の大きさの荷重を加えたときの撓み量が、前記薄板体が前記凸状部及び前記凹状部を備えることなく平坦であると仮定した場合に同仮定した薄板体単体を前記支持箇所で支持するとともに同仮定した薄板体に対し前記荷重印加箇所に前記平面に直交する方向であって前記所定の大きさの荷重を加えたときの撓み量よりも小さいように構成されていることが望ましい。   Furthermore, the thin plate body of the device according to the present invention supports the thin plate body alone at a predetermined support location of the thin plate body and is in a direction perpendicular to the plane at a load application location other than the support location with respect to the thin plate body. When the predetermined amount of load is applied, it is assumed that the amount of bending when the thin plate member is flat without including the convex portion and the concave portion. And is configured to be smaller than the amount of deflection when a load of the predetermined size is applied to the load application location in a direction orthogonal to the plane with respect to the thin plate body supported by desirable.

これによれば、薄板体をデバイスに組み込む作業を行う際やデバイスに組み込んだ後において薄板体が何らかの外力を受けた場合であっても、薄板体は変形し難い。従って、所期の性能を発揮し続けることが可能なデバイスを容易に製造することができる。   According to this, even when the thin plate is subjected to an operation of incorporating the thin plate into the device or after the thin plate is subjected to some external force after being incorporated into the device, the thin plate is not easily deformed. Therefore, it is possible to easily manufacture a device that can continue to exhibit the desired performance.

以下、図面を参照しつつ本発明の実施形態に係るデバイスについて説明する。本発明によるデバイスは、例えば、センサ、アクチュエータ及び燃料電池等の種々のデバイスを含む。   Hereinafter, a device according to an embodiment of the present invention will be described with reference to the drawings. Devices according to the present invention include various devices such as sensors, actuators and fuel cells.

(燃料電池の全体構造)
図1は、本発明の一実施形態に係るデバイスである固体酸化物形燃料電池(以下、単に「燃料電池」と称呼する。)10の破断斜視図である。図2は、燃料電池10の部分分解斜視図である。燃料電池10は、薄板体11と支持部材12とが交互に積層されることにより形成されている。即ち、燃料電池10は、スタック構造を備えている。薄板体11は、燃料電池10の「単セル」とも称呼される。支持部材12は、「インターコネクタ」とも称呼される。
(Overall structure of fuel cell)
FIG. 1 is a cutaway perspective view of a solid oxide fuel cell (hereinafter simply referred to as “fuel cell”) 10 which is a device according to an embodiment of the present invention. FIG. 2 is a partially exploded perspective view of the fuel cell 10. The fuel cell 10 is formed by alternately laminating thin plate members 11 and support members 12. That is, the fuel cell 10 has a stack structure. The thin plate member 11 is also referred to as a “single cell” of the fuel cell 10. The support member 12 is also referred to as an “interconnector”.

図2の円A内に拡大して示したように、薄板体11は、電解質層(固体電解質層)11aと、電解質層11aの上(上面)に形成された燃料極層11bと、電解質層11a上の燃料極層11bとは反対の面(下面)に形成された空気極層11cと、を有している。薄板体11の平面形状は、互いに直交するx軸及びy軸の方向に沿う辺を有する正方形である。薄板体11は、x軸及びy軸に直交するz軸方向に厚み方向を有する板体である。   As shown in an enlarged circle A in FIG. 2, the thin plate member 11 includes an electrolyte layer (solid electrolyte layer) 11a, a fuel electrode layer 11b formed on the upper surface (upper surface), and an electrolyte layer. And an air electrode layer 11c formed on a surface (lower surface) opposite to the fuel electrode layer 11b on 11a. The planar shape of the thin plate member 11 is a square having sides along the x-axis and y-axis directions orthogonal to each other. The thin plate member 11 is a plate member having a thickness direction in the z-axis direction orthogonal to the x-axis and the y-axis.

本例において、電解質層11aはセラミックスシートとしてのYSZ(イットリア安定化ジルコニア)の緻密な焼成体である。燃料極層11bは、Ni−YSZからなる焼成体であり、多孔質電極層である。空気極層11cはLSM(La(Sr)MnO3:ランタンストロンチウムマンガナイト)−YSZからなる焼成体であり、多孔質電極層である。これら3つの層の熱膨張率は互いに相違している。   In this example, the electrolyte layer 11a is a dense fired body of YSZ (yttria stabilized zirconia) as a ceramic sheet. The fuel electrode layer 11b is a fired body made of Ni—YSZ and is a porous electrode layer. The air electrode layer 11c is a fired body made of LSM (La (Sr) MnO3: lanthanum strontium manganite) -YSZ, and is a porous electrode layer. These three layers have different coefficients of thermal expansion.

薄板体11は、一対のセル貫通孔11d,11dを備えている。それぞれのセル貫通孔11dは、電解質層11a、燃料極層11b及び空気極層11cを貫通している。一対のセル貫通孔11d,11dは、薄板体11の一つの辺の近傍であってその辺の両端部近傍領域に形成されている。薄板体11の構造については、後に詳述する。   The thin plate member 11 includes a pair of cell through holes 11d and 11d. Each cell through hole 11d passes through the electrolyte layer 11a, the fuel electrode layer 11b, and the air electrode layer 11c. The pair of cell through holes 11d and 11d are formed in the vicinity of one side of the thin plate member 11 and in the vicinity of both ends of the side. The structure of the thin plate member 11 will be described in detail later.

図3は、図2においてx軸と平行な1−1線を含むとともにx−z平面と平行な平面に沿って支持部材12を切断した支持部材12の断面図である。   FIG. 3 is a cross-sectional view of the support member 12 taken along the plane including the 1-1 line parallel to the x axis and parallel to the xz plane in FIG. 2.

図2及び図3に示したように、支持部材12は、平面部12aと、上方枠体部12bと、下方枠体部12cと、を備えている。支持部材12は、Ni系耐熱合金(例えば、フェライト系SUS、インコネル600及びハステロイ等)から構成されている。従って、支持部材12の熱膨張率と薄板体11の熱膨張率は相違する。換言すると、燃料電池10の温度が変化したとき、薄板体11と支持部材12との間に伸縮量差が生じる。   As shown in FIGS. 2 and 3, the support member 12 includes a flat surface portion 12 a, an upper frame portion 12 b, and a lower frame portion 12 c. The support member 12 is made of a Ni-based heat-resistant alloy (for example, ferrite-based SUS, Inconel 600, Hastelloy, etc.). Therefore, the thermal expansion coefficient of the support member 12 and the thermal expansion coefficient of the thin plate member 11 are different. In other words, when the temperature of the fuel cell 10 changes, a difference in expansion and contraction occurs between the thin plate member 11 and the support member 12.

平面部12aは、z軸方向に厚み方向を有する薄い平板体である。平面部12aの平面形状は、x軸及びy軸方向に沿う辺を有する正方形である。   The flat surface portion 12a is a thin flat plate having a thickness direction in the z-axis direction. The planar shape of the planar portion 12a is a square having sides along the x-axis and y-axis directions.

上方枠体部12bは、平面部12aの周囲(4つの辺の近傍領域、即ち、外周近傍領域)において平面部12aの上方に向けて立設された枠体である。上方枠体部12bは、外周枠部12b1と段差形成部12b2と段差延長部12b3とからなっている。   The upper frame body portion 12b is a frame body erected toward the upper side of the flat surface portion 12a around the flat surface portion 12a (a region near four sides, that is, a region near the outer periphery). The upper frame body portion 12b includes an outer peripheral frame portion 12b1, a step forming portion 12b2, and a step extending portion 12b3.

外周枠部12b1は、支持部材12の最外周側に位置している。外周枠部12b1の縦断面(例えば、y軸方向に長手方向を有する外周枠部12b1をx−z平面に平行な平面により切断した断面)の形状は長方形(又は正方形)である。   The outer peripheral frame portion 12 b 1 is located on the outermost peripheral side of the support member 12. The shape of the longitudinal cross section of the outer peripheral frame portion 12b1 (for example, a cross section obtained by cutting the outer peripheral frame portion 12b1 having a longitudinal direction in the y-axis direction by a plane parallel to the xz plane) is a rectangle (or a square).

段差形成部12b2は、外周枠部12b1の内周面から支持部材12の中央に向けて延設された部分である。段差形成部12b2の下面は平面部12aと連接している。段差形成部12b2の縦断面(例えば、y軸方向に長手方向を有する段差形成部12b2をx−z平面に平行な平面により切断した断面)の形状は、外周枠部12b1の断面形状である長方形よりも小さい長方形(又は正方形)である。   The step forming portion 12b2 is a portion extending from the inner peripheral surface of the outer peripheral frame portion 12b1 toward the center of the support member 12. The lower surface of the step forming portion 12b2 is connected to the flat portion 12a. The shape of the vertical cross section of the step forming portion 12b2 (for example, a cross section obtained by cutting the step forming portion 12b2 having a longitudinal direction in the y-axis direction along a plane parallel to the xz plane) is a rectangle that is a cross sectional shape of the outer peripheral frame portion 12b1. Smaller rectangle (or square).

段差延長部12b3は、平面部12aの四つの角部のうちの一つの角部において、段差形成部12b2の内周面から支持部材12の中央に向けて延設された部分である。段差延長部12b3の下面は平面部12aと連接している。段差延長部12b3の平面視における形状は略正方形である。段差延長部12b3の高さ(z軸方向長さ)は、段差形成部12b2の高さと同一である。段差延長部12b3には、貫通孔THが形成されている。貫通孔THは、段差延長部12b3の下方に位置する平面部12aも貫通している。   The step extension portion 12b3 is a portion extending from the inner peripheral surface of the step forming portion 12b2 toward the center of the support member 12 at one corner portion of the four corner portions of the flat surface portion 12a. The lower surface of the step extension portion 12b3 is connected to the flat surface portion 12a. The step extension 12b3 has a substantially square shape in plan view. The height of the step extension portion 12b3 (the length in the z-axis direction) is the same as the height of the step formation portion 12b2. A through hole TH is formed in the step extension portion 12b3. The through-hole TH also penetrates the flat portion 12a located below the step extension portion 12b3.

下方枠体部12cは、平面部12aの周囲(4つの辺の近傍領域、即ち、外周近傍領域)において平面部12aの下方に向けて立設された枠体である。下方枠体部12cは、平面部12aの厚さ方向の中心線CLに対して上方枠体部12bと対称形状を有している。従って、下方枠体部12cは、外周枠部12b1、段差形成部12b2及び段差延長部12b3とそれぞれ同一形状の外周枠部12c1、段差形成部12c2及び段差延長部12c3を備えている。但し、段差延長部12c3は、段差延長部12b3に対して平面部12aの平面視における対角線上であって段差延長部12b3に対向するように配置・形成されている。   The lower frame body portion 12c is a frame body erected toward the lower side of the flat surface portion 12a around the flat surface portion 12a (a region near four sides, that is, a region near the outer periphery). The lower frame part 12c has a symmetrical shape with the upper frame part 12b with respect to the center line CL in the thickness direction of the plane part 12a. Accordingly, the lower frame portion 12c includes an outer peripheral frame portion 12c1, a step forming portion 12c2, and a step extending portion 12c3 having the same shape as the outer peripheral frame portion 12b1, the step forming portion 12b2, and the step extending portion 12b3, respectively. However, the step extension portion 12c3 is disposed and formed on the diagonal line in the plan view of the plane portion 12a with respect to the step extension portion 12b3 so as to face the step extension portion 12b3.

図4は、薄板体11及び薄板体11を支持(挟持)した状態における一対の支持部材12を、それらの平面視における対角線を含む平面にて切断した縦断面図である。上述したように、燃料電池10は、薄板体11と支持部材12とが交互に積層されることにより形成されている。ここで、互いに対向し且つ隣接するように配置される二つの支持部材12を、便宜上、第1支持部材121及び第2支持部材122と称呼する。図4に示したように、第1支持部材121及び第2支持部材122は、第1支持部材121の上方枠体部12bの上に第2支持部材122の下方枠体部12cが対向するように互いに同軸的に配置される。   FIG. 4 is a longitudinal sectional view of the thin plate member 11 and the pair of support members 12 in a state of supporting (holding) the thin plate member 11 taken along a plane including diagonal lines in plan view. As described above, the fuel cell 10 is formed by alternately laminating the thin plate members 11 and the support members 12. Here, the two support members 12 arranged to face each other and adjacent to each other are referred to as a first support member 121 and a second support member 122 for convenience. As shown in FIG. 4, the first support member 121 and the second support member 122 are arranged such that the lower frame body portion 12 c of the second support member 122 faces the upper frame body portion 12 b of the first support member 121. Are arranged coaxially with each other.

薄板体11は、第1支持部材121の上方枠体部12bと第2支持部材122の下方枠体部12cとの間に挟持される。このとき、薄板体11は、第1支持部材121の平面部12aの上面に空気極層11cが対向するように配置され、第2支持部材122の平面部12aの下面に燃料極層11bが対向するように配置される。   The thin plate member 11 is sandwiched between the upper frame portion 12 b of the first support member 121 and the lower frame portion 12 c of the second support member 122. At this time, the thin plate member 11 is disposed so that the air electrode layer 11c faces the upper surface of the flat portion 12a of the first support member 121, and the fuel electrode layer 11b faces the lower surface of the flat portion 12a of the second support member 122. To be arranged.

薄板体11の外周部下面(即ち、空気極層11cの外周部下面)は、第1支持部材121の上方枠体部12bの一部である段差形成部12b2及び段差延長部12b3の上面と当接し、且つ、この段差形成部12b2及び段差延長部12b3に対して導電性のロウ材により接合・固定されている。同様に、薄板体11の外周部上面(即ち、燃料極層11bの外周部上面)は、第2支持部材122の下方枠体部12cの一部である段差形成部12c2及び段差延長部12c3の下面と当接し、且つ、この段差形成部12c2及び段差延長部12c3に対して導電性のロウ材により接合・固定されている。換言すると、薄板体11は薄板体11の少なくとも二箇所の部分(具体的には、外周部全周)において支持部材12(第1支持部材121及び第2支持部材122)に接合・固定されている。   The lower surface of the outer peripheral portion of the thin plate member 11 (that is, the lower surface of the outer peripheral portion of the air electrode layer 11c) is in contact with the upper surfaces of the step forming portion 12b2 and the step extending portion 12b3 that are part of the upper frame body portion 12b of the first support member 121. The step forming portion 12b2 and the step extending portion 12b3 are joined and fixed by a conductive brazing material. Similarly, the upper surface of the outer peripheral portion of the thin plate member 11 (that is, the upper surface of the outer peripheral portion of the fuel electrode layer 11b) is a step forming portion 12c2 and a step extending portion 12c3 that are part of the lower frame portion 12c of the second support member 122. It is in contact with the lower surface and joined and fixed to the step forming portion 12c2 and the step extending portion 12c3 by a conductive brazing material. In other words, the thin plate member 11 is joined and fixed to the support member 12 (the first support member 121 and the second support member 122) in at least two portions of the thin plate member 11 (specifically, the entire outer periphery). Yes.

ここで、支持部材12と薄板体11との接合・固定方法について具体的に説明する。燃料極層11b及び空気極層11cは、多孔質電極層として形成されている。そのため、燃料極層11bと支持部材12との間の導電性を維持し且つ燃料極層11bを支持部材12に固定するため、及び、空気極層11cと支持部材12との間の導電性を維持し且つ空気極層11cを支持部材12に固定するためには、例えば、以下の方法が採用される。   Here, a method of joining and fixing the support member 12 and the thin plate member 11 will be specifically described. The fuel electrode layer 11b and the air electrode layer 11c are formed as porous electrode layers. Therefore, the conductivity between the fuel electrode layer 11b and the support member 12 is maintained and the fuel electrode layer 11b is fixed to the support member 12, and the conductivity between the air electrode layer 11c and the support member 12 is increased. In order to maintain and fix the air electrode layer 11c to the support member 12, for example, the following method is employed.

図5の(A)に示したように、多孔質電極層(空気極層11c又は燃料極層11b)と支持部材12との間に導電性のロウ材RWを挟む。その状態において、所定の減圧又は加圧により、図5の(B)に示したように、ロウ材RWを多孔質電極層に浸透させて多孔質電極層を緻密化し、同時に、その緻密化された部分をロウ材RWによって支持部材12に接合する。この接合は、Ni−Mnメタライズ層を用いて行っても良い。また、その緻密化された部分を活性金属ロウを用いて支持部材12に直接接合しても良い。   As shown in FIG. 5A, a conductive brazing material RW is sandwiched between the porous electrode layer (the air electrode layer 11 c or the fuel electrode layer 11 b) and the support member 12. In this state, as shown in FIG. 5B, the brazing material RW is infiltrated into the porous electrode layer by the predetermined pressure reduction or pressurization to densify the porous electrode layer, and at the same time, the densification is performed. These parts are joined to the support member 12 by the brazing material RW. This bonding may be performed using a Ni—Mn metallized layer. The densified portion may be directly joined to the support member 12 using an active metal braze.

以上により、図4に示したように、第1支持部材121の平面部12aの上面と、第1支持部材121の上方枠体部12b(段差形成部12b2及び段差延長部12b3)の内側壁面と、薄板体11の空気極層11cと、により酸素を含む気体が供給される空気流路21が形成される。酸素を含む気体は、図4の破線の矢印により示したように、第2支持部材122の貫通孔THと薄板体11のセル貫通孔11dとを通して空気流路21に流入する。   As described above, as shown in FIG. 4, the upper surface of the flat portion 12a of the first support member 121 and the inner wall surface of the upper frame body portion 12b (the step forming portion 12b2 and the step extension portion 12b3) of the first support member 121 The air electrode layer 11c of the thin plate member 11 forms an air flow path 21 to which a gas containing oxygen is supplied. The gas containing oxygen flows into the air flow path 21 through the through hole TH of the second support member 122 and the cell through hole 11d of the thin plate member 11 as indicated by the dashed arrows in FIG.

また、第2支持部材122の平面部12aの下面と、第2支持部材122の下方枠体部12c(段差形成部12c2及び段差延長部12c3)の内側壁面と、薄板体11の燃料極層11bと、により水素を含む燃料が供給される燃料流路22が形成される。燃料は、図4の実線の矢印により示したように、第1支持部材121の貫通孔THと薄板体11のセル貫通孔11dとを通して燃料流路22に流入する。なお、対向する一対の支持部材12(即ち、第1支持部材121と第2支持部材122)は、短絡を防止するために、薄板体11が配置されていない部分において、それらの間に空間(間隙)を有するように配置・構成される。即ち、第1支持部材121の外周枠部12b1と第2支持部材122の外周枠部12c1との間には薄板体11が挟持された状態において空隙が存在するように、薄板体11及び支持部材12の各部の寸法が決定されている。   Further, the lower surface of the flat surface portion 12 a of the second support member 122, the inner wall surface of the lower frame body portion 12 c (the step forming portion 12 c 2 and the step extension portion 12 c 3) of the second support member 122, and the fuel electrode layer 11 b of the thin plate body 11. Thus, a fuel flow path 22 to which a fuel containing hydrogen is supplied is formed. The fuel flows into the fuel flow path 22 through the through hole TH of the first support member 121 and the cell through hole 11d of the thin plate member 11 as indicated by the solid arrow in FIG. In addition, in order that a pair of supporting member 12 (namely, the 1st supporting member 121 and the 2nd supporting member 122) which opposes may prevent a short circuit, in the part in which the thin-plate body 11 is not arrange | positioned, ( Arranged and configured to have a gap). That is, the thin plate member 11 and the support member are arranged such that a gap exists between the outer peripheral frame portion 12b1 of the first support member 121 and the outer peripheral frame portion 12c1 of the second support member 122 in a state where the thin plate member 11 is sandwiched. The dimensions of 12 parts are determined.

このように構成された支持部材12は、一方の面(上面)である第一面側に、薄板体11を配置するための窪んだ形状に形成された第一収容部を備えていると言うこともできる。同様に、支持部材12は、他方の面(下面)である第二面側に、薄板体11を配置するための窪んだ形状に形成された第二収容部を備えていると言うこともできる。そして、一つの薄板体11の空気極層11cが一つの支持部材12の平面部12aの上面と対向するように同一つの薄板体11が第一収容部に収容され、他の一つの薄板体11の燃料極層11bがその支持部材12の平面部12aの下面と対向するように同他の一つの薄板体11が第二収容部に収容されていると言うことができる。   The support member 12 configured in this manner is provided with a first housing portion formed in a recessed shape for disposing the thin plate member 11 on the first surface side which is one surface (upper surface). You can also Similarly, it can be said that the support member 12 includes a second accommodating portion formed in a recessed shape for disposing the thin plate member 11 on the second surface side which is the other surface (lower surface). . The same thin plate member 11 is accommodated in the first accommodating portion so that the air electrode layer 11c of one thin plate member 11 faces the upper surface of the flat surface portion 12a of one support member 12, and the other thin plate member 11 is accommodated. It can be said that the other thin plate member 11 is housed in the second housing portion so that the fuel electrode layer 11b faces the lower surface of the flat surface portion 12a of the support member 12.

以上のように構成された燃料電池10は、例えば、図6に示したように、薄板体11の燃料極層11bと支持部材12の平面部12aの下面との間に形成された燃料流路22に燃料が供給され、且つ、薄板体11の空気極層11cと支持部材12の平面部12aの上面との間に形成された空気流路21に空気が供給されることにより、以下に示す化学反応式(1)及び(2)に基く発電を行う。
(1/2)・O+2e−→O2− (於:空気極層11c) …(1)
+O2−→HO+2e− (於:燃料極層11b) …(2)
The fuel cell 10 configured as described above includes, for example, a fuel flow path formed between the fuel electrode layer 11b of the thin plate member 11 and the lower surface of the flat portion 12a of the support member 12, as shown in FIG. The fuel is supplied to 22 and air is supplied to the air flow path 21 formed between the air electrode layer 11c of the thin plate member 11 and the upper surface of the flat surface portion 12a of the support member 12, and the following is shown. Power generation based on chemical reaction formulas (1) and (2) is performed.
(1/2) · O 2 +2 e− → O 2− (at: air electrode layer 11c) (1)
H 2 + O 2− → H 2 O + 2 e− (in the fuel electrode layer 11b) (2)

(薄板体11の詳細構造)
次に、薄板体11の構造について詳細に説明する。前述したように、薄板体11は、平面視において正方形である。図7に示した薄板体11の幅(一辺の長さ)a及び奥行き(他の辺の長さ)bは、5mm以上且つ300mm以下である。薄板体11の厚さtは、全体に渡って均一であり、5μm以上且つ100μm以下(例えば、30μm)である。
(Detailed structure of the thin plate 11)
Next, the structure of the thin plate member 11 will be described in detail. As described above, the thin plate member 11 is square in plan view. The width (length of one side) a and the depth (length of the other side) b of the thin plate member 11 shown in FIG. 7 are 5 mm or more and 300 mm or less. The thickness t of the thin plate member 11 is uniform throughout and is not less than 5 μm and not more than 100 μm (for example, 30 μm).

薄板体11は、図7及び薄板体11の部分拡大斜視図である図8に示したように、薄板体11の一つの平面(例えば、表面及び裏面のうちの何れかの面)Pから突出した凸状部111と、その平面Pから陥没した凹状部112と、をそれぞれ複数備えている。それらの凸状部111と凹状部112は、畝、波形のしわ及びリブと称呼することもできる。   As shown in FIG. 7 and FIG. 8 which is a partially enlarged perspective view of the thin plate member 11, the thin plate member 11 protrudes from one plane P (for example, any one of the front surface and the back surface) P. And a plurality of concave portions 112 recessed from the plane P. These convex portions 111 and concave portions 112 can also be referred to as wrinkles, corrugated wrinkles and ribs.

図8に示したように、複数の凸状部111のうちの少なくとも一つの凸状部は、その一つの凸状部の最高点に位置する頂部111a(図9を参照。)が平面Pに沿う方向に(図8の破線に沿って)所定の距離だけ(連続的に)伸びるように形成されている。即ち、少なくとも一つの凸状部は、「薄板体11の平面Pに沿う所定の方向に長手方向を有する山脈状」である。同様に、複数の凹状部112のうちの少なくとも一つの凹状部は、その凹状部の最低点に位置する底部112a(図9を参照。)が平面Pに沿う方向に(図8の一点鎖線に沿って)連続的に伸びるように形成されている。即ち、少なくとも一つの凹状部は、「薄板体11の平面Pに沿う所定の方向に長手方向を有する溝状」である。   As shown in FIG. 8, at least one convex portion among the plurality of convex portions 111 has a top portion 111 a (see FIG. 9) located at the highest point of the one convex portion on the plane P. It is formed so as to extend (continuously) by a predetermined distance in the direction along the line (along the broken line in FIG. 8). That is, at least one convex part is a “mountain shape having a longitudinal direction in a predetermined direction along the plane P of the thin plate member 11”. Similarly, at least one of the plurality of concave portions 112 has a bottom portion 112a (see FIG. 9) located at the lowest point of the concave portion in a direction along the plane P (in the dashed line in FIG. 8). Along). That is, at least one concave portion is “a groove shape having a longitudinal direction in a predetermined direction along the plane P of the thin plate member 11”.

図9に示した頂部111aの平面Pからの距離h1を複数の(総ての)凸状部111について単純平均した頂部距離平均値と、図9に示した底部112aの平面Pからの距離h2を複数の(総ての)凹状部112について単純平均した底部距離平均値と、の和である頂部底部間距離平均値は、20μm以上且つ400μm以下である。なお、薄板体11は3層構造を備えるが、図9等においては一つの一体化された層として描かれている。   The distance h1 from the plane P of the top 111a shown in FIG. 9 is simply averaged for a plurality of (all) convex parts 111, and the distance h2 from the plane P of the bottom 112a shown in FIG. The average distance between the top and bottom, which is the sum of the average of the bottom distances obtained by simply averaging the plurality of (all) concave portions 112, is 20 μm or more and 400 μm or less. The thin plate member 11 has a three-layer structure, but is depicted as one integrated layer in FIG.

また、薄板体11は、複数の凸状部のうちの一つの凸状部と同一つの凸状部に隣接した複数の凹状部うちの一つの凹状部とからなるとともに同一つの凸状部の頂部111aと同一つの凹状部の底部112aとの平面Pに沿う方向の距離(図9に示した頂部底部平面方向距離(w/2))が0.05mm以上且つ1.00mm以下である少なくとも一組の凸状部及び凹状部を含んでいる。   The thin plate member 11 is composed of one convex portion of the plurality of convex portions and one concave portion of the plurality of concave portions adjacent to the same convex portion, and the top of the same convex portion. 111a and at least one set in which the distance along the plane P with the bottom 112a of the same concave portion (the top bottom plane direction distance (w / 2) shown in FIG. 9) is 0.05 mm or more and 1.00 mm or less The convex part and the concave part are included.

(作用)
以上のように構成された燃料電池10は、上記(1)及び(2)式に従った化学反応を利用して発電を行う。しかしながら、燃料電池(SOFC)10は、固体電解質層11aの酸素伝導度を利用して発電するので、燃料電池10としての作動温度は最低600℃以上であることが一般的である。このため、燃料電池10は作動温度(例えば800℃)まで外部の加熱機構(例えば、抵抗加熱ヒータ方式の加熱機構、或いは、燃料ガスを燃焼して得られる熱を利用する加熱機構等)により昇温される。このとき、薄板体11及び支持部材12は、熱膨張率が異なるため、この温度変化に伴って互いに相違する量だけ伸縮しようとする。例えば、燃料電池10の温度が発電開始後に急激に上昇すると、金属からなる支持部材12の膨張量は主としてセラミックスからなる薄板体11の膨張量よりも大きくなる。
(Function)
The fuel cell 10 configured as described above generates power using a chemical reaction according to the above formulas (1) and (2). However, since the fuel cell (SOFC) 10 generates power using the oxygen conductivity of the solid electrolyte layer 11a, the operating temperature of the fuel cell 10 is generally at least 600 ° C. or higher. For this reason, the fuel cell 10 is heated up to an operating temperature (for example, 800 ° C.) by an external heating mechanism (for example, a resistance heater type heating mechanism or a heating mechanism that uses heat obtained by burning fuel gas). Be warmed. At this time, since the thin plate member 11 and the support member 12 have different coefficients of thermal expansion, the thin plate member 11 and the support member 12 try to expand and contract by an amount different from each other with the temperature change. For example, when the temperature of the fuel cell 10 rapidly rises after the start of power generation, the amount of expansion of the support member 12 made of metal becomes larger than the amount of expansion of the thin plate body 11 mainly made of ceramics.

しかしながら、薄板体11は少なくとも二箇所の部分(本例では、外周部の全周)において支持部材12に固定されているから、図31の(A)に示したように、薄板体11が従来の薄板体11’のように平坦であると(即ち、薄板体11が上記凸状部111及び上記凹状部112を備えていないと)、同図中矢印にて示した大きな引張り応力が薄板体11’の平面Pと平行な方向(薄板体11の平面方向)に加わる。その結果、図31の(B)に示したように、薄板体11’の中央部近傍は平面Pと直交する方向(z軸方向)に変形してしまう。   However, since the thin plate member 11 is fixed to the support member 12 in at least two portions (in this example, the entire outer periphery), as shown in FIG. If it is flat like the thin plate member 11 ′ (that is, the thin plate member 11 does not include the convex portion 111 and the concave portion 112), the large tensile stress indicated by the arrow in FIG. It is added in a direction parallel to the plane P of 11 '(plane direction of the thin plate member 11). As a result, as shown in FIG. 31B, the vicinity of the center portion of the thin plate member 11 ′ is deformed in a direction (z-axis direction) orthogonal to the plane P.

これに対し、薄板体11は、薄板体の平面Pから突出した凸状部111を複数備えるとともに同平面から陥没した凹状部112を複数備えている。従って、薄板体11の凸状部111及び凹状部112は、例えば、図10の破線により示した状態から図10の実線により示したように、上記温度変化による薄板体11と支持部材12との間の伸縮量差を吸収するように変形する。換言すると、図4に白抜きの矢印により示したように、前記伸縮量差により発生する薄板体11の内部応力が平面方向及び同平面方向と直交する方向に分散される。この結果、薄板体11の中央部近傍は、薄板体11の平面Pと直交する方向(z軸方向)に大きく変形し難いので、薄板体11が空気流路21又は燃料流路22を閉じるように変形しない。従って、薄板体11が支持部材12の平面部12aに当接することがないから、燃料電池10は、薄板体11の温度変化に対して所期の性能を安定して発揮することができる。   On the other hand, the thin plate body 11 includes a plurality of convex portions 111 protruding from the plane P of the thin plate body and a plurality of concave portions 112 recessed from the same plane. Therefore, the convex portion 111 and the concave portion 112 of the thin plate body 11 are formed between the thin plate body 11 and the support member 12 due to the temperature change, for example, as shown by the solid line in FIG. 10 from the state shown by the broken line in FIG. It deforms so as to absorb the difference in expansion / contraction amount. In other words, as indicated by the white arrows in FIG. 4, the internal stress of the thin plate member 11 generated by the difference in the amount of expansion and contraction is dispersed in the plane direction and the direction orthogonal to the plane direction. As a result, the vicinity of the central portion of the thin plate member 11 is hardly deformed in a direction (z-axis direction) orthogonal to the plane P of the thin plate member 11, so that the thin plate member 11 closes the air flow path 21 or the fuel flow path 22. It will not be deformed. Accordingly, since the thin plate member 11 does not come into contact with the flat portion 12 a of the support member 12, the fuel cell 10 can stably exhibit the expected performance against the temperature change of the thin plate member 11.

更に、少なくとも一つの凸状部111が「薄板体11の平面Pに沿う所定の方向に長手方向を有する山脈状」であり、少なくとも一つの凹状部112が「薄板体11の平面Pに沿う所定の方向に長手方向を有する溝状」であるから、凸状部111及び凹状部112は
燃料電池10の温度変化に伴う薄板体11と支持部材12との間の伸縮量差を容易に吸収するように変形する。従って、薄板体11の中央部近傍が平面Pに直交する方向へ変形してしまうことを、より効果的に抑制することができる。
Furthermore, at least one convex portion 111 is “a mountain range having a longitudinal direction in a predetermined direction along the plane P of the thin plate body 11”, and at least one concave portion 112 is “a predetermined direction along the plane P of the thin plate body 11. Therefore, the convex portion 111 and the concave portion 112 easily absorb the difference in expansion and contraction between the thin plate member 11 and the support member 12 due to the temperature change of the fuel cell 10. It deforms as follows. Therefore, it is possible to more effectively suppress the vicinity of the center portion of the thin plate member 11 from being deformed in the direction orthogonal to the plane P.

更に、薄板体11は凸状部111及び凹状部112をそれぞれ複数備えているので、外力に対して変形し難くなっている。従って、薄板体11を燃料電池10の一部として組み込む作業を行う際等において薄板体11が何らかの外力を受けた場合であっても、薄板体11は変形し難い。また、空気流路21を流れる空気ガス及び燃料流路22を流れる燃料ガスとの間に圧力差が生じ、その圧力差が外力となって薄板体11へ作用した場合であっても、薄板体11が外力に対して変形し難いので、空気流路21や燃料流路22の流路幅(高さ)を狭めてしまう可能性も低減される。その結果、所期の性能を発揮する燃料電池10が容易に提供される。以下、この点について図11乃至図14を参照しながら説明する。なお、図11乃至図14においては、図面を簡素化するために凸状部111及び凹状部112の図示を省略する。   Further, since the thin plate member 11 includes a plurality of convex portions 111 and concave portions 112, it is difficult for the thin plate body 11 to be deformed by an external force. Accordingly, even when the thin plate 11 is subjected to some external force when performing an operation of incorporating the thin plate 11 as a part of the fuel cell 10, the thin plate 11 is hardly deformed. Further, even when a pressure difference is generated between the air gas flowing through the air flow path 21 and the fuel gas flowing through the fuel flow path 22, and the pressure difference acts as an external force on the thin plate body 11, the thin plate body Since 11 is difficult to deform with respect to an external force, the possibility of narrowing the flow width (height) of the air flow path 21 and the fuel flow path 22 is also reduced. As a result, the fuel cell 10 that exhibits the desired performance is easily provided. Hereinafter, this point will be described with reference to FIGS. 11 to 14. In FIGS. 11 to 14, the convex portions 111 and the concave portions 112 are not shown to simplify the drawings.

この検討のため、図11及び図12に示したように、薄板体11の左右方向両端の近傍部位を距離Lを隔てて支持し(即ち、梁の長さをLとし)、その薄板体11に対して、薄板体11の平面Pに直交する方向の荷重Fを加える。荷重Fを加える点(荷重印加箇所)は、薄板体11の中央(2箇所の支持部位のそれぞれから距離L/2の位置、且つ、奥行き方向の手前又は後方の辺から距離b/2の位置)である。この薄板体11のサンプルにおいて、距離Lは40mm、距離bは30mm、厚みtは30μmである。   For this study, as shown in FIG. 11 and FIG. 12, the thin plate member 11 is supported at a distance L in the vicinity of both ends in the left-right direction (that is, the length of the beam is L). In contrast, a load F in a direction orthogonal to the plane P of the thin plate member 11 is applied. The point at which the load F is applied (load application point) is the center of the thin plate 11 (a position at a distance L / 2 from each of the two support parts, and a position at a distance b / 2 from the front or rear side in the depth direction. ). In the sample of the thin plate member 11, the distance L is 40 mm, the distance b is 30 mm, and the thickness t is 30 μm.

いま、薄板体11に凸状部111及び凹状部112が存在しないと仮定し、図13に示したように、荷重Fを加えた位置における平面Pに直交する向き(荷重Fの向き)の撓み量をyとすると、撓み量yは材料力学上、下記(3)式のように表される。なお、以下において、凸状部111及び凹状部112を備えない薄板体を仮想薄板体と称呼する。

Figure 0005066351
Assuming that the thin plate member 11 does not have the convex portion 111 and the concave portion 112, the deflection in the direction perpendicular to the plane P (the direction of the load F) at the position where the load F is applied as shown in FIG. When the amount is y, the deflection amount y is expressed by the following equation (3) in terms of material mechanics. In the following, a thin plate body that does not include the convex portion 111 and the concave portion 112 is referred to as a virtual thin plate body.
Figure 0005066351

ここで、断面2次モーメントIは(4)式のように表される。

Figure 0005066351
Here, the cross-sectional secondary moment I is expressed as in equation (4).
Figure 0005066351

従って、(4)式を(3)式に代入することにより、撓み量yは下記(5)式のように表される。

Figure 0005066351
Therefore, by substituting the equation (4) into the equation (3), the deflection amount y is expressed as the following equation (5).
Figure 0005066351

この(5)式から、荷重F、ヤング率E(ジルコニアの場合、E=200GPa)が一定であると仮定すると、撓み量yは、梁の長さLの3乗に比例し、奥行きの長さbに反比例し、且つ、薄板体の厚さtの3乗に反比例することが理解される。そこで、梁の長さLと奥行きの長さbを一定とすると、撓み量yは厚さtの3乗に反比例する。従って、撓み量yと厚さtとの関係は、図14の破線の曲線C1により表される。   Assuming that the load F and Young's modulus E (E = 200 GPa in the case of zirconia) are constant, the amount of deflection y is proportional to the cube of the length L of the beam, It is understood that it is inversely proportional to the thickness b and inversely proportional to the cube of the thickness t of the thin plate member. Therefore, if the length L of the beam and the length b of the depth are constant, the deflection amount y is inversely proportional to the cube of the thickness t. Accordingly, the relationship between the deflection amount y and the thickness t is represented by a dashed curve C1 in FIG.

これに対し、上述した凸状部111及び凹状部112を備える薄板体11においては、荷重F、ヤング率E、梁の長さL及び奥行きの長さb等が仮想薄板体と同じであっても、撓み量yと厚さtとの関係は、図14の実線の曲線C2により表したように変化する。即ち、凸状部111及び凹状部112を備える薄板体11の撓み量yは、厚さtが薄板体11と同じである仮想薄板体の撓み量yよりも小さくなる。   On the other hand, in the thin plate body 11 including the convex portion 111 and the concave portion 112 described above, the load F, Young's modulus E, beam length L, depth length b, and the like are the same as the virtual thin plate body. However, the relationship between the deflection amount y and the thickness t changes as represented by the solid curve C2 in FIG. That is, the deflection amount y of the thin plate body 11 including the convex portion 111 and the concave portion 112 is smaller than the deflection amount y of the virtual thin plate body having the same thickness t as the thin plate body 11.

例えば、仮想薄板体を1mm撓ませる(y=1mm)のに必要な荷重Fを実測したところ、5.1g重であった。一方、計算によれば、仮想薄板体の撓み量yが1mmのときの荷重Fは、(3)式からF=0.12N(約12g重)相当となる。   For example, when the load F necessary to bend the virtual thin plate member by 1 mm (y = 1 mm) was measured, it was 5.1 g weight. On the other hand, according to the calculation, the load F when the bending amount y of the virtual thin plate member is 1 mm is equivalent to F = 0.12N (about 12 g weight) from the equation (3).

これに対し、凸状部111及び凹状部112を備える薄板体11を1mm撓ませる(y=1mm)のに必要な荷重Fを実測したところ、78.3g重であった。即ち、薄板体11を所定量だけ撓ませるのに必要な荷重は、仮想薄板体を同所定量だけ撓ませるのに必要な荷重よりも非常に大きい値となっていた。   On the other hand, when the load F necessary to bend 1 mm (y = 1 mm) of the thin plate 11 provided with the convex portion 111 and the concave portion 112 was measured, it was 78.3 g weight. In other words, the load necessary to bend the thin plate member 11 by a predetermined amount is much larger than the load necessary to bend the virtual thin plate member by the same predetermined amount.

また、前述した頂部底部間距離平均値と「セラミックス薄板体を1mm撓ませるのに必要な荷重」との関係を調査し、その結果を図15に示した。図15から、頂部底部間距離平均値が20μm以上になると、急激に前記荷重が大きくなることがわかる。一方、頂部底部間距離平均値が400μm以上となると、薄板体の表面に形成された凹状部及び凸状部の曲率が大きくなることに起因して焼成体である薄板体にマイクロクラックが発生するため、極端に強度の弱い薄板体が発生した。以上のことから、頂部底部間距離平均値は、20μm以上且つ400μm以下であることが好ましい。   Further, the relationship between the above-mentioned average value of the distance between the top and bottom and the “load necessary for bending the ceramic thin plate by 1 mm” was investigated, and the result is shown in FIG. From FIG. 15, it can be seen that when the average distance between the top and bottom is 20 μm or more, the load increases rapidly. On the other hand, when the average distance between the top and bottom portions is 400 μm or more, microcracks are generated in the thin plate body that is a fired body due to an increase in the curvature of the concave portion and the convex portion formed on the surface of the thin plate body. Therefore, an extremely weak thin plate was generated. From the above, it is preferable that the average distance between the top and bottom portions is 20 μm or more and 400 μm or less.

更に、前述した「一つの凸状部の頂部11aと同一つの凹状部の底部12aとの平面Pに沿う方向の距離(w/2)」(即ち、頂部底部平面方向距離)と「セラミックス薄板体を1mm撓ませるのに必要な荷重」との関係を調査し、その結果を図16に示した。図16から、頂部底部平面方向距離が1000μm(1.00mm)以下となると、前記荷重が急激に大きくなることがわかる。従って、頂部底部平面方向距離を1000μm(1mm)以下とすると、変形に強い薄板体10を得ることができる。一方、頂部底部平面方向距離が50μm未満であって凸状部11と凹状部12とが極めて近接した状況になると、焼成体である薄板体にマイクロクラックが発生するため、極端に強度の弱い薄板体が発生した。以上のことから、頂部底部平面方向距離は、50μm以上且つ1mm以下であることが好ましい。   Further, the “distance (w / 2) in the direction along the plane P between the top portion 11a of one convex portion and the bottom portion 12a of the same concave portion” (that is, the distance in the top bottom plane direction) and the “ceramic thin plate body” The relationship with the “load required to bend 1 mm” was investigated, and the result is shown in FIG. From FIG. 16, it can be seen that the load increases rapidly when the distance in the top-bottom plane direction is 1000 μm (1.00 mm) or less. Therefore, when the top bottom plane direction distance is 1000 μm (1 mm) or less, the thin plate member 10 that is resistant to deformation can be obtained. On the other hand, when the distance between the top and bottom plane direction is less than 50 μm and the convex portion 11 and the concave portion 12 are extremely close to each other, micro cracks are generated in the thin plate body that is a fired body. The body occurred. From the above, it is preferable that the top-bottom planar distance is 50 μm or more and 1 mm or less.

次に、薄板体11の製造方法について説明する。
(第1製法例)
薄板体11は、グリーンシート法により作成したセラミックスシート(YSZのテープ)を1400℃・1時間にて焼成し、その焼成体の下面にシート(燃料極層11bとなる層)を印刷法により形成してから1400℃・1時間にて焼成し、更に、その焼成体の上面にシート(空気極層11cとなる層)を同じく印刷法により形成してから1200℃・1時間にて焼成することにより形成される。ここでは、緻密なジルコニア固体電解質層11aの厚さを30μm、燃料極層11bの厚さを10μm、空気極層11cの厚さを10μmとした。薄板体11のサイズは30mm×30mm(a×b)とした。これらの寸法については、以下において同じである。
Next, a method for manufacturing the thin plate member 11 will be described.
(Example of the first manufacturing method)
The thin plate member 11 is formed by firing a ceramic sheet (YSZ tape) prepared by a green sheet method at 1400 ° C. for 1 hour, and forming a sheet (a layer to be the fuel electrode layer 11b) on the lower surface of the fired member by a printing method. Then, firing is performed at 1400 ° C. for 1 hour, and further, a sheet (a layer that becomes the air electrode layer 11c) is formed on the upper surface of the fired body by the same printing method and then fired at 1200 ° C. for 1 hour. It is formed by. Here, the thickness of the dense zirconia solid electrolyte layer 11a is 30 μm, the thickness of the fuel electrode layer 11b is 10 μm, and the thickness of the air electrode layer 11c is 10 μm. The size of the thin plate member 11 was 30 mm × 30 mm (a × b). These dimensions are the same in the following.

ところで、緻密なジルコニア固体電解質層11aを構成するYSZの熱膨張率と、燃料極層11bを構成するNi+YSZサーメットの熱膨張率と、空気極層11cを構成するLSMの熱膨張率と、は互いに相違している。従って、それぞれが焼成されるとき、焼成収縮差と熱膨張差があることから、焼成後には残留応力に伴う基板反りが発生する。その後、その基板(ジルコニア固体電解質層11a、燃料極層11b及び空気極層11cが形成された薄板体)の反りを修正するために、凸状部111及び凹状部112を形成するための起伏が形成されているセッターの上に基板を載置するとともに、例えば、300gのアルミナ製のおもりを基板の上に載せた状態(図19の(C)に示した状態と同様の状態)において、1400℃・1時間の条件にて再度加熱する。以上により、基板の反りが修正されるとともに凸状部111及び凹状部112を備えた薄板体11が製造される。   By the way, the thermal expansion coefficient of YSZ constituting the dense zirconia solid electrolyte layer 11a, the thermal expansion coefficient of Ni + YSZ cermet constituting the fuel electrode layer 11b, and the thermal expansion coefficient of LSM constituting the air electrode layer 11c are mutually different. It is different. Accordingly, when each is fired, there is a difference in firing shrinkage and a difference in thermal expansion, so that a substrate warp accompanying residual stress occurs after firing. Thereafter, in order to correct the warpage of the substrate (thin plate body on which the zirconia solid electrolyte layer 11a, the fuel electrode layer 11b, and the air electrode layer 11c are formed), there are undulations for forming the convex portions 111 and the concave portions 112. While the substrate is placed on the setter formed, for example, in a state where a 300 g alumina weight is placed on the substrate (the same state as the state shown in FIG. 19C), 1400 Heat again at ℃ for 1 hour. As described above, the warp of the substrate is corrected, and the thin plate body 11 including the convex portion 111 and the concave portion 112 is manufactured.

なお、固体電解質層11aとなるジルコニアテープの一面に燃料極層11bとなる層を印刷法により形成してから、両者を1400℃・1時間にて焼成し、その後、空気極層となる層11cを上述した方法により形成してもよい。或いは、固体電解質層11aとなるジルコニアテープと燃料極層11bとなるテープとを積層一体化し、両者を1400℃・1時間にて焼成し、その後、空気極層11cとなるテープを上述した方法により形成してもよい。   In addition, after forming the layer used as the fuel electrode layer 11b on one surface of the zirconia tape used as the solid electrolyte layer 11a by a printing method, both were baked at 1400 degreeC and 1 hour, and the layer 11c used as an air electrode layer after that. May be formed by the method described above. Alternatively, the zirconia tape that becomes the solid electrolyte layer 11a and the tape that becomes the fuel electrode layer 11b are laminated and integrated, and both are fired at 1400 ° C. for 1 hour, and then the tape that becomes the air electrode layer 11c is obtained by the method described above. It may be formed.

(第2製法例)
第2製法例においては、先ず、図17の(A)に示したように、セラミックス(この場合、YSZ)のグリーンシート11Aと、押し型30とを準備する。押し型30の上面には、凸状部111及び凹状部112を形成するための起伏が形成されている。次いで、グリーンシート11Aを押し型30の上面に対して押圧する。この結果、図17の(B)に示したように、グリーンシート11Aに凸状部111及び凹状部112となる起伏が形成される。そして、このグリーンシート11Aを所定の焼成条件(例えば、1400℃、1時間)にて焼成し、電解質層11aを得る。
(Second manufacturing method example)
In the second manufacturing method example, first, as shown in FIG. 17A, a green sheet 11A of ceramics (in this case, YSZ) and a pressing die 30 are prepared. On the upper surface of the pressing die 30, undulations for forming the convex portion 111 and the concave portion 112 are formed. Next, the green sheet 11 </ b> A is pressed against the upper surface of the pressing die 30. As a result, as shown in FIG. 17B, the green sheet 11A is formed with undulations that become the convex portion 111 and the concave portion 112. And this green sheet 11A is baked on predetermined baking conditions (for example, 1400 degreeC, 1 hour), and the electrolyte layer 11a is obtained.

その後、その焼成された電解質層11aの上面にシート(燃料極層11bとなる層)を印刷法により形成してから1400℃・1時間にて焼成し、更に、その電解質層11aの下面にシート(空気極層11cとなる層)を同じく印刷法により形成してから1200℃・1時間にて焼成する。以上により、凸状部111及び凹状部112を備えた薄板体11が製造される。   After that, a sheet (a layer that becomes the fuel electrode layer 11b) is formed on the upper surface of the fired electrolyte layer 11a by a printing method, and then fired at 1400 ° C. for 1 hour. After the (layer to become the air electrode layer 11c) is formed by the printing method, it is fired at 1200 ° C. for 1 hour. As described above, the thin plate member 11 including the convex portion 111 and the concave portion 112 is manufactured.

(第3製法例)
第3製法例においては、図18の(A)に示したように、セラミックス(この場合、YSZ)のグリーンシート11Aと、焼成用セッター40とを準備する。この焼成用セッター40の上面には、研削、研磨及びブラスト処理等のうちの適当な手法により、凸状部111及び凹状部112を形成するための起伏が形成されている。次に、図18の(B)に示したように、グリーンシート11Aを焼成用セッター40の上面に対して押圧しながら、このグリーンシート11Aを所定の焼成条件(例えば、1400℃、1時間)にて焼成する。その後、第2製法例と同様に、燃料極層11b及び空気極層11cを形成する。以上により、凸状部111及び凹状部112を備えた薄板体11が製造される。
(Example of third manufacturing method)
In the third manufacturing method example, as shown in FIG. 18A, a ceramic (in this case, YSZ) green sheet 11A and a firing setter 40 are prepared. On the upper surface of the firing setter 40, undulations for forming the convex portion 111 and the concave portion 112 are formed by an appropriate method such as grinding, polishing, and blasting. Next, as shown in FIG. 18B, while pressing the green sheet 11A against the upper surface of the firing setter 40, the green sheet 11A is subjected to predetermined firing conditions (for example, 1400 ° C., 1 hour). Bake in Thereafter, as in the second manufacturing method example, the fuel electrode layer 11b and the air electrode layer 11c are formed. As described above, the thin plate member 11 including the convex portion 111 and the concave portion 112 is manufactured.

(第4製法例)
第4製法例においては、図19の(A)に示したように、セラミックス(この場合、YSZ)のグリーンシート11Aを準備し、そのグリーンシート11Aの両端の片面側に焼成前セラミックス小片11Bを印刷により成形する。焼成前セラミックス小片11Bは、グリーンシート11Aと同種のセラミックスからなる。
(Example of 4th manufacturing method)
In the fourth manufacturing method, as shown in FIG. 19A, a ceramic (in this case, YSZ) green sheet 11A is prepared, and pre-fired ceramic pieces 11B are provided on one side of both ends of the green sheet 11A. Molded by printing. The pre-firing ceramic piece 11B is made of the same kind of ceramic as the green sheet 11A.

次に、グリーンシート11A及び焼成前セラミックス小片11Bを所定の焼成条件(例えば、1400℃、1時間)にて焼成する。この結果、グリーンシート11Aと焼成前セラミックス小片11Bとの収縮差によって、図19の(B)に示したように、グリーンシート11Aが反りを有する薄板体11Cとなる。なお、グリーンシート10Aとセラミックス小片10Bとの焼成収縮差は、例えば粒子径が異なる材料を使用することなどにより容易に制御可能である。次に、第2製法例等と同様に、燃料極層11b及び空気極層11cを形成する。   Next, the green sheet 11A and the pre-fired ceramic piece 11B are fired under predetermined firing conditions (for example, 1400 ° C., 1 hour). As a result, due to the shrinkage difference between the green sheet 11A and the pre-firing ceramic piece 11B, the green sheet 11A becomes a thin plate 11C having a warp, as shown in FIG. In addition, the firing shrinkage difference between the green sheet 10A and the ceramic piece 10B can be easily controlled by using materials having different particle diameters, for example. Next, the fuel electrode layer 11b and the air electrode layer 11c are formed as in the second manufacturing method.

次に、燃料極層11b及び空気極層11cが形成された薄板体11Cの反りを修正するために、図19の(C)に示したように、薄板体11Cの上部におもり50を載置し、この状態にて(即ち、おもり50により薄板体11Cを伸ばすように下方に押圧しながら)、薄板体11Cを所定の条件所定の条件にて加熱・冷却(焼成)する(例えば、図13に示した凸状部11及び凹状部12を形成するための起伏が形成されているセッター40の上に薄板体11Cを載置するとともに、300gのアルミナ製のおもり50を薄板体11Cの上に載せた状態において、1400℃・1時間の条件にて焼成する。)。係るそり修正のための加熱・冷却時にも、各層の膨張・収縮量が相違するので、各層の界面において残留応力が発生し、凸状部111及び凹状部112が形成される。その結果、図1に示した凸状部111及び凹状部112を有する薄板体11が形成される。   Next, in order to correct the warpage of the thin plate body 11C on which the fuel electrode layer 11b and the air electrode layer 11c are formed, as shown in FIG. 19C, the weight 50 is placed on the upper portion of the thin plate body 11C. In this state (that is, while pressing downward so that the thin plate 11C is extended by the weight 50), the thin plate 11C is heated and cooled (fired) under predetermined conditions and predetermined conditions (for example, FIG. 13). The thin plate member 11C is placed on the setter 40 on which undulations for forming the convex portion 11 and the concave portion 12 shown in FIG. 5 are formed, and a 300 g alumina weight 50 is placed on the thin plate member 11C. In the mounted state, firing is performed under the conditions of 1400 ° C. and 1 hour.) Even during heating / cooling for warping correction, the amount of expansion / contraction of each layer is different, so that residual stress is generated at the interface of each layer, and the convex portion 111 and the concave portion 112 are formed. As a result, the thin plate member 11 having the convex portion 111 and the concave portion 112 shown in FIG. 1 is formed.

なお、グリーンシート11Aに対して焼成前セラミックス11Bを印刷することなく、グリーンシート11Aを所定の条件にて焼成することにより、図19の(B)に示したような反りを有する薄板体11Cを得ることもできる。即ち、例えば、セッター中央部がくり抜かれた(すなわち4方の外枠のみがある)セッター上にグリーンシート11Aを置いた状態にてグリーンシート11Aを焼成すれば、グリーンシート11Aの中央部が自重によって撓み、焼成後において中央部が凹形状となった反りを有する薄板体11Cを得ることができる。そして、その後、上述した第4製法例と同じ方法によって薄板体11を製造することができる。   In addition, by printing the green sheet 11A under predetermined conditions without printing the ceramics 11B before firing on the green sheet 11A, the thin plate body 11C having a warp as shown in FIG. It can also be obtained. That is, for example, if the green sheet 11A is baked in a state where the green sheet 11A is placed on a setter in which the center part of the setter is cut out (that is, there are only four outer frames), the center part of the green sheet 11A is self-weighted. Thus, it is possible to obtain a thin plate body 11 </ b> C having a warp in which the central portion has a concave shape after firing. And after that, the thin plate member 11 can be manufactured by the same method as the fourth manufacturing method described above.

次に、本発明による薄板体の各種変形例について説明する。
(第1変形例)
図20に示したように、本発明の第1変形例に係る薄板体61は、薄板体61の周辺部のみに凸状部111と凹状部112とを備えている。このように、周辺部のみに凸状部111及び凹状部112が形成されていても、それらは燃料電池10の温度変化に伴う薄板体11と支持部材12との間の伸縮量差を吸収するように変形するから、薄板体11の特に中央部近傍が薄板体11の平面Pに直交する方向へ変形することを抑制することができる。ところで、この薄板体61に対して、図11乃至図13を用いて説明した場合と同じ条件(梁の長さL=40mm、奥行きb=30mm、厚みt=30μm、材質はジルコニア)にて荷重を加え、薄板体61を1mm撓ませる(y=1mm)のに必要な荷重Fを実測したところ、50.2g重であった。このように、薄板体61の周辺部のみに凸状部111と凹状部112を形成させた場合であっても、凸状部111及び凹状部112を備えない上記仮想薄板体と比較して、外力に対して極めて変形しにくい薄板体が提供されることが理解できる。
Next, various modifications of the thin plate member according to the present invention will be described.
(First modification)
As shown in FIG. 20, the thin plate member 61 according to the first modified example of the present invention includes the convex portion 111 and the concave portion 112 only in the peripheral portion of the thin plate body 61. Thus, even if the convex part 111 and the concave part 112 are formed only in the peripheral part, they absorb the difference in expansion and contraction between the thin plate member 11 and the support member 12 due to the temperature change of the fuel cell 10. Therefore, it is possible to suppress deformation of the thin plate member 11 in the direction perpendicular to the plane P of the thin plate member 11 particularly in the vicinity of the center portion. By the way, the load is applied to the thin plate member 61 under the same conditions as described with reference to FIGS. 11 to 13 (beam length L = 40 mm, depth b = 30 mm, thickness t = 30 μm, material is zirconia). When the load F necessary for bending the thin plate 61 by 1 mm (y = 1 mm) was measured, it was 50.2 g weight. Thus, even when the convex portion 111 and the concave portion 112 are formed only in the peripheral portion of the thin plate body 61, compared to the virtual thin plate body that does not include the convex portion 111 and the concave portion 112, It can be understood that a thin plate body that is extremely difficult to deform against an external force is provided.

(第2変形例)
図21に示したように、本発明の第2変形例に係る薄板体62は、薄板体62の中央部のみに凸状部111と凹状部112とを備えている。このように、中央部のみに凸状部111及び凹状部112が形成されていても、それらは燃料電池10の温度変化に伴う薄板体11と支持部材12との間の伸縮量差を吸収するように変形する
(Second modification)
As shown in FIG. 21, the thin plate member 62 according to the second modified example of the present invention includes the convex portion 111 and the concave portion 112 only at the central portion of the thin plate body 62. Thus, even if the convex part 111 and the concave part 112 are formed only in the central part, they absorb the difference in expansion and contraction between the thin plate member 11 and the support member 12 due to the temperature change of the fuel cell 10. It deforms as follows .

(第変形例)
図23に示したように、本発明の第変形例に係る薄板体64は、凸状部111及び凹状部112(波形のしわ)の尾根が正方格子に沿うように形成されていてもよい。このように、凸状部111及び凹状部112が正方格子状に形成されていても、それらは燃料電池10の温度変化に伴う薄板体11と支持部材12との間の伸縮量差を吸収するように変形する。
( Third Modification)
As shown in FIG. 23, the thin plate member 64 according to the third modified example of the present invention is formed such that the ridges of the convex portion 111 and the concave portion 112 (corrugated wrinkles) are along a square lattice. Good. Thus, even if the convex portion 111 and the concave portion 112 are formed in a square lattice shape, they absorb the difference in expansion and contraction between the thin plate member 11 and the support member 12 due to the temperature change of the fuel cell 10. It deforms as follows.

(第変形例)
図24に示したように、本発明の第変形例に係る薄板体65は、凸状部111及び凹状部112が平面P上において分布上の偏りが略ないように(略均一に)、不規則に設けられたものである。このように、凸状部111及び凹状部112がランダムに形成されていても、それらは燃料電池10の温度変化に伴う薄板体11と支持部材12との間の伸縮量差を吸収するように変形する。
( Fourth modification)
As shown in FIG. 24, the thin plate member 65 according to the fourth modified example of the present invention is such that the convex portion 111 and the concave portion 112 are not substantially uneven in distribution on the plane P (substantially uniform). It is provided irregularly. Thus, even if the convex part 111 and the concave part 112 are formed at random, they absorb the difference in expansion and contraction between the thin plate member 11 and the support member 12 accompanying the temperature change of the fuel cell 10. Deform.

なお、これらの第1変形例〜第変形例の薄板体61、62、64及び65も、第2製法例の押し型30の上面に形成される起伏の形状、又は、第3製法例の焼成用セッター40の上面に形成される起伏の形状を適宜設定することにより簡単に製造することができる。 In addition, the thin plate members 61 , 62, 64 and 65 of the first to fourth modified examples are also the shape of the undulations formed on the upper surface of the pressing die 30 of the second manufacturing method, or the third manufacturing method. It can manufacture easily by setting suitably the shape of the undulation formed in the upper surface of the setter 40 for baking.

例えば、図23に示した薄板体64は、図17を参照して説明した第2製法例において、押し型30として金属メッシュを使用することにより製造できる。より具体的に述べると、セラミックスのグリーンシート11Aと金属メッシュからなる押し型30とを、例えば5〜100kgf/cm程度の加重を印加しながら互いに押圧させる。これにより、セラミックスのグリーンシート11Aの表面にメッシュ形状に沿った凹状部及び凸状部を形成することができる。この凹状部及び凸状部の深さは荷重により制御可能である。そして、そのグリーンシート11Aを前述したように焼成する。その後、上記製法例等と同様に、燃料極層11b及び空気極層11cを形成する。この結果、図23に示した凸状部111及び凹状部112がメッシュ状に配置された薄板体64が容易に製造される。 For example, the thin plate member 64 shown in FIG. 23 can be manufactured by using a metal mesh as the pressing die 30 in the second manufacturing method example described with reference to FIG. More specifically, the ceramic green sheet 11A and the pressing die 30 made of a metal mesh are pressed against each other while applying a weight of, for example, about 5 to 100 kgf / cm 2 . Thereby, the recessed part and convex part along a mesh shape can be formed in the surface of the ceramic green sheet 11A. The depths of the concave and convex portions can be controlled by the load. Then, the green sheet 11A is fired as described above. Thereafter, the fuel electrode layer 11b and the air electrode layer 11c are formed in the same manner as in the above manufacturing method. As a result, the thin plate body 64 in which the convex portions 111 and the concave portions 112 shown in FIG. 23 are arranged in a mesh shape is easily manufactured.

以上、説明したように、本発明の実施形態及び変形例に係るデバイスは、薄板体11が凸状部111及び凹状部112を備えているので、燃料電池10の温度が変化した場合であっても、薄板体11の特に中央部近傍が平面Pに直交する方向へ大きく変形することを回避することができる。更に、薄板体11は、凸状部及び凹状部を有さない同種の薄板体(仮想薄板体)よりも、変形し難い。従って、この薄板体11を使用すれば、製造し易く且つ信頼性の高いデバイスが提供される。   As described above, the device according to the embodiment and the modified example of the present invention is a case where the temperature of the fuel cell 10 changes because the thin plate member 11 includes the convex portion 111 and the concave portion 112. In addition, it can be avoided that the vicinity of the center portion of the thin plate member 11 is largely deformed in the direction orthogonal to the plane P. Furthermore, the thin plate body 11 is more difficult to deform than the same type of thin plate body (virtual thin plate body) that does not have a convex portion and a concave portion. Therefore, if this thin plate member 11 is used, a device that is easy to manufacture and highly reliable is provided.

なお、本発明は上記実施形態及び変形例に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、燃料極層11bは、白金、白金−ジルコニアサーメット、白金−酸化セリウムサーメット、ルテニウム、ルテニウム−ジルコニアサーメット等から構成することができる。   In addition, this invention is not limited to the said embodiment and modification, A various modification can be employ | adopted within the scope of the present invention. For example, the fuel electrode layer 11b can be composed of platinum, platinum-zirconia cermet, platinum-cerium oxide cermet, ruthenium, ruthenium-zirconia cermet, or the like.

更に、空気極層11cは、例えば、ランタンを含有するペロブスカイト型複合酸化物(例えば、上述のランタンマンガナイトのほか、ランタンコバルタイト)から構成することができる。ランタンコバルタイト及びランタンマンガナイトは、ストロンチウム、カルシウム、クロム、コバルト(ランタンマンガナイトの場合)、鉄、ニッケル、アルミニウム等をドープしたものであってよい。また、パラジウム、白金、ルテニウム、白金−ジルコニアサーメット、パラジウム−ジルコニアサーメット、ルテニウム−ジルコニアサーメット、白金−酸化セリウムサーメット、パラジウム−酸化セリウムサーメット、ルテニウム−酸化セリウムサーメットであってもよい。   Further, the air electrode layer 11c can be made of, for example, a perovskite complex oxide containing lanthanum (for example, lanthanum cobaltite in addition to the lanthanum manganite described above). Lanthanum cobaltite and lanthanum manganite may be doped with strontium, calcium, chromium, cobalt (in the case of lanthanum manganite), iron, nickel, aluminum or the like. Further, palladium, platinum, ruthenium, platinum-zirconia cermet, palladium-zirconia cermet, ruthenium-zirconia cermet, platinum-cerium oxide cermet, palladium-cerium oxide cermet, ruthenium-cerium oxide cermet may be used.

加えて、上記実施形態のデバイスは燃料電池10であったが、センサやアクチュエータ等であってもよい。更に、薄板体11は、3層の積層体であったが、セラミックスの単層体からなっていてもよく、2層又は4層以上の積層体(例えば、4層〜7層)であってもよい。   In addition, although the device of the above embodiment is the fuel cell 10, it may be a sensor, an actuator, or the like. Furthermore, the thin plate member 11 was a three-layer laminate, but may be composed of a single layer of ceramics, and may be a laminate of two layers or four or more layers (for example, four to seven layers). Also good.

また、支持部材12は、図25乃至図27に示したような空気又は燃料を流通させるための凸状の流通規制部が、平面部12aの上面及び下面に設けられていてもよい。具体的には、図25に示した支持部材12においては、燃料又は空気を面内に分布させて蛇行させるために、平面部12aに凸状の蛇行隔壁部(流通規制部)12eが形成されている。図26に示した支持部材12においては、燃料又は空気を面内に分布させるために、平面部12aに凸状の分離した流通規制部12fが形成されている。図27に示した支持部材12においては、燃料又は空気を面内に分布させるために、平面部12aに凸状の複数の突起部(流通規制部)12gが形成されている。このようにすることにより、燃料又は空気が平面部12aの面内を広く分布しながら流通することになるので、燃料電池10は効率よく発電を行うことができる。   Further, the support member 12 may be provided with convex flow restricting portions for flowing air or fuel as shown in FIGS. 25 to 27 on the upper surface and the lower surface of the flat surface portion 12a. Specifically, in the support member 12 shown in FIG. 25, a convex meandering partition wall portion (distribution restricting portion) 12e is formed on the flat surface portion 12a in order to meander the fuel or air in a distributed manner. ing. In the support member 12 shown in FIG. 26, in order to distribute fuel or air in a plane, a convex separated flow restricting portion 12f is formed on the flat surface portion 12a. In the support member 12 shown in FIG. 27, in order to distribute fuel or air in the plane, a plurality of convex protrusions (distribution restricting portions) 12g are formed on the flat surface portion 12a. By doing so, fuel or air circulates while being widely distributed in the plane of the flat surface portion 12a, so that the fuel cell 10 can efficiently generate power.

更に、薄板体11及び/又は支持部材12の温度変化時に薄板体11に加わる応力を低減するため、図28乃至図30に示したような構造を採用してもよい。   Furthermore, in order to reduce the stress applied to the thin plate 11 when the temperature of the thin plate 11 and / or the support member 12 changes, a structure as shown in FIGS. 28 to 30 may be employed.

即ち、図28の(A)及び図28の(B)に示した例においては、支持部材12の上方枠体部12b及び下方枠体部12cに薄板体11を支持する弾性支持部71が形成されている。弾性支持部71は、上方枠体部12b及び下方枠体部12cのそれぞれから、平面部12aとほぼ平行に突出したリング状の板バネ体である。   That is, in the example shown in FIGS. 28A and 28B, the elastic support portion 71 that supports the thin plate member 11 is formed on the upper frame portion 12b and the lower frame portion 12c of the support member 12. Has been. The elastic support portion 71 is a ring-shaped leaf spring body protruding from each of the upper frame body portion 12b and the lower frame body portion 12c substantially parallel to the flat surface portion 12a.

この構造は、図28の(A)に示したように、ロウ材RWを弾性支持部71の一面(上面又は下面)と薄板体11の角部との間に配置し、そのロウ材を溶融させて図28の(B)に示したように弾性支持部71と薄板体11とを接合することにより、作成される。このように、弾性支持部71を平面部12aから分離して形成することにより、平面部12aが熱等によって変形した場合であっても薄板体11に応力が加わり難いので、薄板体11の破損や支持部材12と薄板体11と接合部の接合不良を回避することが可能となる。   In this structure, as shown in FIG. 28A, the brazing material RW is disposed between one surface (upper surface or lower surface) of the elastic support portion 71 and the corner portion of the thin plate member 11, and the brazing material is melted. Then, as shown in FIG. 28B, the elastic support portion 71 and the thin plate member 11 are joined to each other. In this way, by forming the elastic support portion 71 separately from the flat surface portion 12a, it is difficult to apply stress to the thin plate body 11 even when the flat surface portion 12a is deformed by heat or the like. In addition, it is possible to avoid poor bonding between the support member 12, the thin plate member 11, and the bonding portion.

図29の(A)乃至(C)に示した例は、図28の(A)及び(B)に示した弾性支持部71を、弾性支持部72に置換した構造を備えている。弾性支持部72は、弾性支持部71と同様に、板バネ体である。ただし、弾性支持部72は、湾曲部(断面形状U字部)72aと接合平面部72bとを備えている。湾曲部72aの一端は上方枠体部12b及び下方枠体部12cのそれぞれに接合されている。湾曲部72aの他端は接合平面部72bと連接している。接合平面部72bの上面は、ロウ材RWによって薄板体11の端部下面即ち空気極層11c(又は薄板体11の端部上面、即ち、燃料極層11b)と接合されている。   The example shown in FIGS. 29A to 29C has a structure in which the elastic support portion 71 shown in FIGS. 28A and 28B is replaced with an elastic support portion 72. The elastic support portion 72 is a leaf spring body, like the elastic support portion 71. However, the elastic support part 72 includes a curved part (cross-sectional shape U-shaped part) 72a and a joining flat part 72b. One end of the curved portion 72a is joined to each of the upper frame portion 12b and the lower frame portion 12c. The other end of the curved portion 72a is connected to the joining plane portion 72b. The upper surface of the joining plane portion 72b is joined to the lower end surface of the thin plate member 11, that is, the air electrode layer 11c (or the upper end surface of the thin plate member 11, ie, the fuel electrode layer 11b) by the brazing material RW.

この構造によれば、図29の(B)に示したような上下方向(z軸方向、薄板体11の平面に直交する方向)の荷重が薄板体11に加わった場合、及び、図29の(C)に示したような左右方向(x−y平面と平行な方向、薄板体11の平面Pと平行な方向)の荷重が薄板体11に加わった場合、の何れの場合にも弾性支持部72(特に、湾曲部72a)が容易に弾性変形する。従って、それらの荷重が薄板体11に及ぼす影響を小さくすることができるので、薄板体11の破損や支持部材12と薄板体11と接合部の接合不良を回避することが可能となる。   According to this structure, when a load in the vertical direction (z-axis direction, a direction perpendicular to the plane of the thin plate member 11) as shown in FIG. 29B is applied to the thin plate member 11, and in FIG. Elastic support is provided in any case when a load in the left-right direction (direction parallel to the xy plane, direction parallel to the plane P of the thin plate member 11) is applied to the thin plate member 11 as shown in FIG. The portion 72 (particularly the curved portion 72a) is easily elastically deformed. Accordingly, since the influence of these loads on the thin plate member 11 can be reduced, it is possible to avoid damage to the thin plate member 11 and poor bonding between the support member 12, the thin plate member 11, and the joint portion.

図30の(A)乃至(C)に示した例は、図29の(A)乃至(C)に示した弾性支持部72を、弾性支持部73に置換した構造を備えている。弾性支持部73は、平面部12aから湾曲して突出した形状を備える。このように弾性支持部72を形成することにより、図29の(A)乃至(C)に示した例と同様、上下方向の荷重が薄板体11に加わった場合、及び、左右方向の荷重が薄板体11に加わった場合、の何れの場合にも弾性支持部73が容易に弾性変形する。従って、それらの荷重が薄板体11に及ぼす影響を小さくすることができるので、薄板体11の破損や支持部材12と薄板体11と接合部の接合不良を回避することが可能となる。   The example shown in FIGS. 30A to 30C has a structure in which the elastic support portion 72 shown in FIGS. 29A to 29C is replaced with an elastic support portion 73. The elastic support portion 73 has a shape that is curved and protrudes from the flat surface portion 12a. By forming the elastic support portion 72 in this manner, as in the example shown in FIGS. 29A to 29C, when a load in the vertical direction is applied to the thin plate member 11 and when the load in the horizontal direction is applied. When added to the thin plate member 11, the elastic support portion 73 is easily elastically deformed in any case. Accordingly, since the influence of these loads on the thin plate member 11 can be reduced, it is possible to avoid damage to the thin plate member 11 and poor bonding between the support member 12, the thin plate member 11, and the joint portion.

このように、薄板体11を支持部材12に対して弾性部材71〜73を介して支持・固定することにより、薄板体11の内部応力を低減できるので、薄板体11の変形をより効果的に抑制することができる。   As described above, since the internal stress of the thin plate body 11 can be reduced by supporting and fixing the thin plate body 11 to the support member 12 via the elastic members 71 to 73, the deformation of the thin plate body 11 can be more effectively performed. Can be suppressed.

また、薄板体11は、平面視において正方形、長方形、多角形、円形であってもよい。更に、薄板体11は、ロウ材に代え、ガラスによって支持部材12に固定されてもよい。加えて、凸状部111は、円錐台形状を有していてもよい。同様に、凹状部112は、円錐台形状を有していてもよい。   Further, the thin plate member 11 may be square, rectangular, polygonal, or circular in plan view. Further, the thin plate member 11 may be fixed to the support member 12 with glass instead of the brazing material. In addition, the convex portion 111 may have a truncated cone shape. Similarly, the concave portion 112 may have a truncated cone shape.

本発明の一実施形態に係るデバイス(SOFC)の破断斜視図である。It is a fracture perspective view of a device (SOFC) concerning one embodiment of the present invention. 図1に示した燃料電池の部分分解斜視図である。FIG. 2 is a partially exploded perspective view of the fuel cell shown in FIG. 1. 図2に示した1−1線を含むとともにx−z平面と平行な平面に沿って支持部材を切断した支持部材の断面図である。It is sectional drawing of the supporting member which cut | disconnected the supporting member along the plane parallel to an xz plane while including the 1-1 line | wire shown in FIG. 図1に示した薄板体及び薄板体を支持した状態における支持部材を、それらの平面視における対角線を含む平面にて切断した縦断面図である。It is the longitudinal cross-sectional view which cut | disconnected the supporting member in the state which supported the thin plate body shown in FIG. 1, and a thin plate body in the plane containing the diagonal line in those planar views. 図1に示した薄板体と支持部材との接合部近傍の拡大断面図である。It is an expanded sectional view of the junction part vicinity of the thin plate body shown in FIG. 1 and a supporting member. 図1に示した燃料電池における燃料と空気の流通を説明する図である。It is a figure explaining the distribution | circulation of the fuel and air in the fuel cell shown in FIG. 図1に示した薄板体の斜視図である。It is a perspective view of the thin plate body shown in FIG. 図1に示した薄板体の部分拡大斜視図である。It is a partial expansion perspective view of the thin-plate body shown in FIG. 図1に示した薄板体の断面図である。It is sectional drawing of the thin-plate body shown in FIG. 図1に示した薄板体の変形の様子を示した同薄板体の部分断面図である。It is the fragmentary sectional view of the thin plate which showed the mode of a deformation | transformation of the thin plate shown in FIG. 図1に示した薄板体の大きさ及び荷重印加箇所等を示した同薄板体の斜視図である。FIG. 2 is a perspective view of the thin plate body showing the size of the thin plate body shown in FIG. 図11に示した薄板体の正面図である。It is a front view of the thin plate body shown in FIG. 図11に示した薄板体が変形した場合の同薄板体の正面図である。It is a front view of the thin plate body when the thin plate body shown in FIG. 11 is deformed. 凸状部及び凹状部を備えない仮想薄板体と凸状部及び凹状部を備える薄板体とにおける厚さと撓み量の関係を示すグラフである。It is a graph which shows the relationship between the thickness in the virtual thin plate body which is not provided with a convex part and a concave part, and the thin plate body which is provided with a convex part and a concave part. 頂部底部間距離平均値とセラミックス薄板体を所定量だけ撓ませるのに必要な荷重との関係を示したグラフである。It is the graph which showed the relationship between the average value between top part bottom part distances, and the load required in order to bend a ceramic thin plate body by predetermined amount. 頂部底部平面方向距離とセラミックス薄板体を所定量だけ撓ませるのに必要な荷重との関係を示したグラフである。It is the graph which showed the relationship between top part bottom part plane direction distance, and the load required in order to bend a ceramic thin plate body only by predetermined amount. 図1に示した薄板体の第2製法例の工程図である。It is process drawing of the 2nd manufacturing method example of the thin-plate body shown in FIG. 図1に示した薄板体の第3製法例の工程図である。It is process drawing of the 3rd manufacturing method example of the thin-plate body shown in FIG. 図1に示した薄板体の第4製法例の工程図である。It is process drawing of the 4th manufacturing method example of the thin-plate body shown in FIG. 図1に示した薄板体の第1変形例の斜視図である。It is a perspective view of the 1st modification of the thin-plate body shown in FIG. 図1に示した薄板体の第2変形例の斜視図である。It is a perspective view of the 2nd modification of the thin-plate body shown in FIG. 比較例の薄板体の斜視図である。A swash plan view of the sheet of Comparative Example. 図1に示した薄板体の第変形例の斜視図である。It is a perspective view of the 3rd modification of the thin-plate body shown in FIG. 図1に示した薄板体の第変形例の斜視図である。It is a perspective view of the 4th modification of the thin-plate body shown in FIG. 図1に示した支持部材の変形例の斜視図である。It is a perspective view of the modification of the supporting member shown in FIG. 図1に示した支持部材の他の変形例の斜視図である。It is a perspective view of the other modification of the supporting member shown in FIG. 図1に示した支持部材の更に他の変形例の斜視図である。FIG. 10 is a perspective view of still another modification example of the support member shown in FIG. 1. 図1に示した薄板体と支持部材とを他の接合方法により接合した部分の拡大断面図である。It is an expanded sectional view of the part which joined the thin plate body shown in FIG. 1 and the supporting member with the other joining method. 図1に示した薄板体と支持部材とを更に他の接合方法により接合した部分の拡大断面図である。It is an expanded sectional view of the part which joined the thin plate body shown in Drawing 1 and a support member by other joining methods. 図1に示した薄板体と支持部材とを更に他の接合方法により接合した部分の拡大断面図である。It is an expanded sectional view of the part which joined the thin plate body shown in Drawing 1 and a support member by other joining methods. 従来の燃料電池における薄板体の変形の様子を示す薄板体と支持部材の断面図である。It is sectional drawing of the thin plate body and support member which show the mode of a deformation | transformation of the thin plate body in the conventional fuel cell.

符号の説明Explanation of symbols

10…燃料電池、11…薄板体、11a…ジルコニア固体電解質層、11b…燃料極層、11c…空気極層、11d…セル貫通孔、12…支持部材、12a…平面部、12b…上方枠体部、12b1…外周枠部、12b2…段差形成部、12b3…段差延長部、12c…下方枠体部、12c1…外周枠部、12c2…段差形成部、12c3…段差延長部、21…空気流路、22…燃料流路、30…押し型、40…焼成用セッター、111…凸状部、111a…頂部、112…凹状部、112a…底部、121…第1支持部材、122…第2支持部材。
DESCRIPTION OF SYMBOLS 10 ... Fuel cell, 11 ... Thin plate body, 11a ... Zirconia solid electrolyte layer, 11b ... Fuel electrode layer, 11c ... Air electrode layer, 11d ... Cell through-hole, 12 ... Support member, 12a ... Planar part, 12b ... Upper frame Part, 12b1 ... outer peripheral frame part, 12b2 ... step forming part, 12b3 ... step extending part, 12c ... lower frame part, 12c1 ... outer peripheral frame part, 12c2 ... step forming part, 12c3 ... step extending part, 21 ... air flow path , 22 ... Fuel flow path, 30 ... Stamping die, 40 ... Setter for firing, 111 ... Convex part, 111a ... Top part, 112 ... Concave part, 112a ... Bottom part, 121 ... First support member, 122 ... Second support member .

Claims (8)

少なくともセラミックスシートを含む焼成された薄板体と、前記薄板体を支持する支持部材と、を備えるデバイスにおいて、
前記薄板体は同薄板体の外周部の少なくとも二箇所の部分において前記支持部材に固定され、且つ、同薄板体の一つの平面から突出した凸状部を複数備えるとともに同平面から陥没した凹状部を複数備え
前記複数の凸状部のうちの少なくとも一対の凸状部は、各凸状部の最高点に位置する頂部が前記平面に沿う方向であって互いに交差する方向に連続的に伸びるように形成されるとともに、前記複数の凹状部のうちの少なくとも一対の凹状部は、各凹状部の最低点に位置する頂部が前記平面に沿う方向であって互いに交差する方向に連続的に伸びるように形成され、
前記支持部材は平面部を備え、前記薄板体の前記外周部を除く部分は前記支持部材の前記平面部と固定されることなく対向して空間を形成していることを特徴とするデバイス。
In a device comprising: a fired thin plate including at least a ceramic sheet; and a support member that supports the thin plate,
The thin plate member is fixed to the support member at at least two portions of the outer peripheral portion of the thin plate member, and has a plurality of convex portions protruding from one flat surface of the thin plate member and is recessed from the same plane. a plurality of,
At least a pair of the convex portions of the plurality of convex portions is formed such that the top portion located at the highest point of each convex portion extends continuously in a direction along the plane and intersecting each other. In addition, at least a pair of concave portions of the plurality of concave portions is formed such that a top portion located at the lowest point of each concave portion continuously extends in a direction along the plane and intersecting each other. ,
The support member includes a flat portion, and a portion of the thin plate member excluding the outer peripheral portion forms a space facing the flat portion of the support member without being fixed .
請求項1に記載のデバイスにおいて、
前記薄板体の厚さが5μm以上且つ100μm以下の均一の厚さであるデバイス。
The device of claim 1, wherein
A device in which the thickness of the thin plate member is a uniform thickness of 5 μm or more and 100 μm or less.
請求項1又は請求項2に記載のデバイスであって、
前記凸状部の最高点に位置する頂部の前記平面からの距離を前記複数の凸状部について単純平均した頂部距離平均値と、前記凹状部の最低点に位置する底部の前記平面からの距離を前記複数の凹状部について単純平均した底部距離平均値と、の和である頂部底部間距離平均値が20μm以上且つ400μm以下であることを特徴とするデバイス。
A device according to claim 1 or claim 2 , wherein
The top distance average value obtained by simply averaging the distances from the plane of the top located at the highest point of the convex part with respect to the plurality of convex parts, and the distance from the plane of the bottom located at the lowest point of the concave part The average distance between the top and bottom, which is the sum of the average of the bottom distances obtained by simply averaging the plurality of concave portions, is 20 μm or more and 400 μm or less.
請求項3に記載のデバイスにおいて、
前記薄板体は、前記複数の凸状部のうちの一つの凸状部と同一つの凸状部に隣接した前記複数の凹状部うちの一つの凹状部とからなるとともに同一つの凸状部の頂部と同一つの凹状部の底部との前記平面に沿う方向の距離が0.05mm以上且つ1.00mm以下である少なくとも一組の凸状部及び凹状部を含むことを特徴とするデバイス。
The device of claim 3 , wherein
The thin plate body includes one convex portion of the plurality of convex portions and one concave portion of the plurality of concave portions adjacent to the same convex portion, and the top of the same convex portion. A device including at least one pair of convex and concave portions having a distance in a direction along the plane with the bottom of the same concave portion is 0.05 mm or more and 1.00 mm or less.
請求項1乃至請求項4の何れか一項に記載のデバイスにおいて、
前記薄板体は、セラミックスシートと同セラミックスシートとは熱膨張率が相違する材料からなるシートとの積層体であることを特徴とするデバイス。
The device according to any one of claims 1 to 4 ,
The thin plate body is a laminated body of a ceramic sheet and a sheet made of a material having a coefficient of thermal expansion different from that of the ceramic sheet.
請求項5に記載のデバイスにおいて、
前記薄板体は、前記セラミックススシートとしての焼成により形成された固体電解質層と、同固体電解質層の一面に焼成により形成された前記熱膨張率が相違する材料からなるシートとしての燃料極層と、同固体電解質層の他面に焼成により形成された前記熱膨張率が相違する材料からなるシートとしての空気極層と、を備えることを特徴とするデバイス。
The device of claim 5 , wherein
The thin plate body includes a solid electrolyte layer formed by firing as the ceramic sheet, and a fuel electrode layer as a sheet made of a material having a different coefficient of thermal expansion formed by firing on one surface of the solid electrolyte layer. And an air electrode layer as a sheet made of a material having a different coefficient of thermal expansion formed on the other surface of the solid electrolyte layer by firing.
請求項6に記載のデバイスであって、
前記支持部材は、前記平面部と同平面部の周囲において同平面部の上方に向けて立設した上方枠体部と同平面部の下方に向けて立設した下方枠体部とを有する第1支持部材と、前記第1支持部材と同一形状の第2支持部材と、を備え、
前記第1支持部材及び前記第2支持部材は、前記第1支持部材の上方枠体部の上に前記第2支持部材の下方枠体部が対向するように互いに同軸的に配置され、
前記薄板体は、前記第1支持部材の上方枠体部と前記第2支持部材の下方枠体部との間に挟持されることにより前記第1支持部材の平面部の上面に前記空気極層が対向するように配置され且つ前記第2支持部材の平面部の下面に前記燃料極層が対向するように配置され、
前記第1支持部材の平面部の上面と同第1支持部材の上方枠体部の内側壁面と前記薄板体の空気極層とにより酸素を含む気体が供給される空気流路が形成され、
前記第2支持部材の平面部の下面と同第2支持部材の下方枠体部の内側壁面と前記薄板体の燃料極層とにより燃料が供給される燃料流路が形成されたデバイス。
The device of claim 6 , comprising:
The support member includes a first and a said planar portion the plane portion and the lower frame portion provided upright toward upward of the plane portion beneath the upper frame portion and the flat portion provided upright around the 1 support member, and a second support member having the same shape as the first support member,
The first support member and the second support member are coaxially arranged on the upper frame portion of the first support member so that the lower frame portion of the second support member faces each other,
The thin plate member is sandwiched between an upper frame portion of the first support member and a lower frame portion of the second support member, whereby the air electrode layer is formed on the upper surface of the flat portion of the first support member. Are arranged so as to face each other, and are arranged so that the fuel electrode layer faces the lower surface of the flat portion of the second support member,
The upper surface of the flat portion of the first support member, the inner wall surface of the upper frame body portion of the first support member, and the air electrode layer of the thin plate body form an air flow path to which a gas containing oxygen is supplied,
A device in which a fuel flow path for supplying fuel is formed by the lower surface of the flat portion of the second support member, the inner wall surface of the lower frame portion of the second support member, and the fuel electrode layer of the thin plate member.
請求項1乃至請求項7の何れか一項に記載のデバイスにおいて、
前記薄板体は、前記薄板体単体を同薄板体の所定の支持箇所で支持するとともに同薄板体に対し同支持箇所以外の荷重印加箇所に前記平面に直交する方向であって所定の大きさの荷重を加えたときの撓み量が、前記薄板体が前記凸状部及び前記凹状部を備えることなく平坦であると仮定した場合に同仮定した薄板体単体を前記支持箇所で支持するとともに同仮定した薄板体に対し前記荷重印加箇所に前記平面に直交する方向であって前記所定の大きさの荷重を加えたときの撓み量よりも小さいことを特徴とするデバイス。
The device according to any one of claims 1 to 7 ,
The thin plate body supports the thin plate body alone at a predetermined support location of the thin plate body and has a predetermined size in a direction perpendicular to the plane at a load application location other than the support location with respect to the thin plate body. The amount of bending when a load is applied assumes that the thin plate body is flat without being provided with the convex portion and the concave portion, and the hypothetical thin plate body is supported at the support location and the same assumption. A device that is smaller than an amount of deflection when a load having the predetermined magnitude is applied to the thin plate body in a direction orthogonal to the plane at the load application location.
JP2006229460A 2006-08-25 2006-08-25 Device comprising a ceramic thin plate Expired - Fee Related JP5066351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229460A JP5066351B2 (en) 2006-08-25 2006-08-25 Device comprising a ceramic thin plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229460A JP5066351B2 (en) 2006-08-25 2006-08-25 Device comprising a ceramic thin plate

Publications (2)

Publication Number Publication Date
JP2008053107A JP2008053107A (en) 2008-03-06
JP5066351B2 true JP5066351B2 (en) 2012-11-07

Family

ID=39236944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229460A Expired - Fee Related JP5066351B2 (en) 2006-08-25 2006-08-25 Device comprising a ceramic thin plate

Country Status (1)

Country Link
JP (1) JP5066351B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470493B2 (en) * 2008-10-28 2013-06-25 Alan Devoe Fuel cell device and system
KR101274809B1 (en) 2012-02-27 2013-06-13 한국생산기술연구원 Design of improved output in intermediate temperature of solid oxide fuel cell and manufacturing method of the solid oxide fuel cell
EP3306719B1 (en) * 2015-05-25 2019-04-03 Nissan Motor Co., Ltd. Solid oxide fuel cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280075A (en) * 1991-03-08 1992-10-06 Nippon Telegr & Teleph Corp <Ntt> Solid electrolyte fuel cell and manufacture thereof
JP3349245B2 (en) * 1994-03-04 2002-11-20 三菱重工業株式会社 Method for manufacturing solid oxide fuel cell
JP5061408B2 (en) * 2001-05-01 2012-10-31 日産自動車株式会社 STACK FOR SOLID ELECTROLYTE FUEL CELL AND SOLID ELECTROLYTE FUEL CELL
JP2006179357A (en) * 2004-12-24 2006-07-06 Chubu Electric Power Co Inc Manufacturing method of supporting film type power generating film and solid electrolyte fuel cell

Also Published As

Publication number Publication date
JP2008053107A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
US11735758B2 (en) Solid oxide fuel cell stack
JP2008050222A (en) Ceramic thin plate member
JP5119257B2 (en) Fuel cell stack device, fuel cell stack coupling device and fuel cell device
US20070111068A1 (en) Compliant feed tubes for planar solid oxide fuel cell systems
JP2019527922A (en) Planar solid oxide fuel unit cell and stack
US8968962B2 (en) Solid oxide fuel cell, and assembling method of the same
JP5066351B2 (en) Device comprising a ceramic thin plate
JP2007141743A (en) Current collector
JP5255327B2 (en) Reactor
JP5289052B2 (en) Stress reduction mount for assembled electrolyte sheets in solid oxide fuel cells
EP1936725B1 (en) Device with ceramic thin plate member and metal thin plate member
EP2017914A1 (en) Reactor
JP5208622B2 (en) Method for assembling a solid oxide fuel cell
JP5222503B2 (en) Device comprising a ceramic thin plate and a metal thin plate
US20090169940A1 (en) Reactor
JP5237614B2 (en) Solid oxide fuel cell
JP5378062B2 (en) Solid oxide fuel cell thin plate and solid oxide fuel cell
JP5368062B2 (en) Solid oxide fuel cell
JP5727915B2 (en) Solid oxide fuel cell, solid oxide fuel cell main body, and method for producing solid oxide fuel cell
JP4470474B2 (en) Solid oxide fuel cell
CN110945698B (en) Fuel cell unit
WO2019026168A1 (en) Cell unit
JP6393849B1 (en) Manifold and cell stack equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

R150 Certificate of patent or registration of utility model

Ref document number: 5066351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees