JP5237614B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP5237614B2
JP5237614B2 JP2007305173A JP2007305173A JP5237614B2 JP 5237614 B2 JP5237614 B2 JP 5237614B2 JP 2007305173 A JP2007305173 A JP 2007305173A JP 2007305173 A JP2007305173 A JP 2007305173A JP 5237614 B2 JP5237614 B2 JP 5237614B2
Authority
JP
Japan
Prior art keywords
thin plate
support member
fuel cell
electrode layer
plate member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007305173A
Other languages
Japanese (ja)
Other versions
JP2009004353A (en
Inventor
誠 大森
夏己 下河
七瀧  努
俊之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2007305173A priority Critical patent/JP5237614B2/en
Priority to EP08250700.5A priority patent/EP1998396B1/en
Priority to US12/039,790 priority patent/US7968246B2/en
Publication of JP2009004353A publication Critical patent/JP2009004353A/en
Application granted granted Critical
Publication of JP5237614B2 publication Critical patent/JP5237614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体酸化物型燃料電池(Solid Oxide Fuel Cell:SOFC)に係わり、特に、薄板体とその薄板体を支持する支持部材とが1つずつ交互に積層されてなる(平板)スタック構造を有するものに関する。薄板体は「単セル」とも称呼され、支持部材は「インターコネクタ」とも称呼される。   The present invention relates to a solid oxide fuel cell (SOFC), and in particular, a (flat) stack structure in which thin plates and support members that support the thin plates are alternately stacked one by one. It is related with what has. The thin plate is also referred to as “single cell”, and the support member is also referred to as “interconnector”.

従来から、上記スタック構造を有する固体酸化物型燃料電池が知られている(例えば、特許文献1を参照)。この場合、薄板体として、ジルコニアから構成される固体電解質層と、その固体電解質層の上面に形成された燃料極層と、その固体電解質層の下面に形成された空気極層と、が積層されてなる焼成体が使用され得る。以下、各薄板体について、薄板体の上方、下方に隣接する支持部材をそれぞれ、「上方支持部材」、「下方支持部材」とも称呼するものとする。
特開2004−342584号公報
Conventionally, a solid oxide fuel cell having the above-described stack structure is known (see, for example, Patent Document 1). In this case, as a thin plate body, a solid electrolyte layer composed of zirconia, a fuel electrode layer formed on the upper surface of the solid electrolyte layer, and an air electrode layer formed on the lower surface of the solid electrolyte layer are laminated. The fired body can be used. Hereinafter, for each thin plate member, the support members adjacent to the upper and lower portions of the thin plate member are also referred to as “upper support member” and “lower support member”, respectively.
JP 2004-342584 A

また、支持部材は、平面部と、その平面部の外周部の全周に設けられた同平面部よりも厚さが大きい枠体部とを有するように構成され得る。この場合、各薄板体について、薄板体の外周部の全周が上方支持部材の枠体部と下方支持部材の枠体部との間に挟持されることで、上方支持部材の平面部の下面と上方支持部材の枠体部の内側壁面と薄板体の燃料極層の上面とにより燃料ガスが供給される燃料流路が区画・形成され得、下方支持部材の平面部の上面と下方支持部材の枠体部の内側壁面と薄板体の空気極層の下面とにより酸素を含むガス(空気)が供給される空気流路が区画・形成され得る。   Further, the support member can be configured to have a flat surface portion and a frame body portion having a thickness larger than that of the flat surface portion provided on the entire outer periphery of the flat surface portion. In this case, for each thin plate body, the entire circumference of the outer peripheral portion of the thin plate body is sandwiched between the frame body portion of the upper support member and the frame body portion of the lower support member, so that the lower surface of the flat portion of the upper support member A fuel flow path to which fuel gas is supplied can be defined and formed by the inner wall surface of the frame portion of the upper support member and the upper surface of the fuel electrode layer of the thin plate member, and the upper surface of the lower support member and the lower support member An air flow path to which a gas (air) containing oxygen is supplied can be defined and formed by the inner wall surface of the frame body portion and the lower surface of the air electrode layer of the thin plate member.

係る構成にて、固体酸化物型燃料電池の作動温度(例えば、800℃、以下、単に「作動温度」と称呼する。)まで薄板体を加熱した状態で、燃料流路及び空気流路に燃料ガス及び空気がそれぞれ供給されることで、各薄板体の上面及び下面に燃料ガス及び空気がそれぞれ接触し、この結果、各薄板体にて発電反応が発生する。   With such a configuration, fuel is supplied to the fuel channel and the air channel while the thin plate member is heated to the operating temperature of the solid oxide fuel cell (for example, 800 ° C., hereinafter simply referred to as “operating temperature”). By supplying gas and air, respectively, the fuel gas and air come into contact with the upper and lower surfaces of each thin plate member, and as a result, a power generation reaction occurs in each thin plate member.

ところで、燃料流路及び空気流路に供給される燃料ガス及び空気の圧力に差(以下、単に「圧力差」と称呼する。)があると、その圧力差が薄板体の平面方向(以下、単に「平面方向」とも称呼する。)に垂直方向の外力として薄板体へ作用する。この結果、この圧力差が大きいほど薄板体(特に、その中央部近傍)がより大きく変形し得る。   By the way, if there is a difference in pressure between the fuel gas and the air supplied to the fuel flow path and the air flow path (hereinafter simply referred to as “pressure difference”), the pressure difference is reduced in the plane direction of the thin plate (hereinafter referred to as “pressure difference”). It is also simply referred to as “planar direction”) and acts on the thin plate as an external force in the vertical direction. As a result, as the pressure difference increases, the thin plate (particularly, near the center) can be deformed more greatly.

ここで、上記スタック構造では、薄板体間において流路に供給されるガスの流量にばらつきが発生し得ること等に起因して、薄板体間において圧力差にばらつきが発生し得る。従って、薄板体間において薄板体(特に、その中央部近傍)の変形量にばらつきが発生し得る。   Here, in the stack structure, the pressure difference between the thin plate bodies may vary due to the variation in the flow rate of the gas supplied to the flow path between the thin plate bodies. Therefore, the amount of deformation of the thin plate (especially in the vicinity of the central portion) may vary between the thin plates.

加えて、近年、SOFCの小型化、内部電気抵抗の低減等の目的を達成するために、薄板体及び支持部材(特に、薄板体)を極めて薄く形成する試みがなされてきている。このように薄板体を極めて薄く形成すると、薄板体中の支持部(薄板体を支持する層)が薄くなることから、圧力差に対する薄板体の変形量が大きくなる。即ち、圧力差のばらつきに対する薄板体の変形量のばらつきが大きくなる。   In addition, in recent years, attempts have been made to form a thin plate member and a support member (particularly, a thin plate member) extremely thin in order to achieve the objectives such as downsizing the SOFC and reducing the internal electric resistance. When the thin plate member is formed extremely thin in this manner, the support portion (layer that supports the thin plate member) in the thin plate member becomes thin, and thus the deformation amount of the thin plate member with respect to the pressure difference increases. That is, the variation of the deformation amount of the thin plate member with respect to the variation of the pressure difference becomes large.

薄板体(特に、その中央部近傍)が変形すると、流路を流体が流れる際の圧力損失が変化してガス流量が変化するから、薄板体の発電特性が変化し得る。従って、SOFC全体として所期の発電特性を安定して得るためには、圧力差のばらつきに起因する薄板体間における薄板体の変形量のばらつきを抑制することが好ましい。このためには、作動温度時において、圧力差に基づく外力に対して薄板体を変形し難くすることが要求されるところである。   When the thin plate body (particularly, in the vicinity of the central portion thereof) is deformed, the pressure loss when the fluid flows through the flow path changes and the gas flow rate changes, so that the power generation characteristics of the thin plate body can change. Therefore, in order to stably obtain the desired power generation characteristics for the SOFC as a whole, it is preferable to suppress variations in the deformation amount of the thin plate members between the thin plate members due to variations in pressure difference. For this purpose, at the operating temperature, it is required to make it difficult to deform the thin plate against an external force based on the pressure difference.

以上より、本発明の目的は、固体電解質層、燃料極層、及び空気極層が積層・焼成されてなる薄板体と、支持部材と、が1つずつ交互に積層されてなる(平板)スタック構造を有する小型の固体酸化物型燃料電池において、作動温度時において、燃料ガスと酸素を含むガスとの圧力差に基づく外力に対して薄板体が変形し難いものを提供することにある。   As described above, an object of the present invention is a (flat plate) stack in which a thin plate body in which a solid electrolyte layer, a fuel electrode layer, and an air electrode layer are stacked and fired and a support member are alternately stacked. It is an object of the present invention to provide a small solid oxide fuel cell having a structure in which a thin plate body is hardly deformed by an external force based on a pressure difference between a fuel gas and a gas containing oxygen at an operating temperature.

上記目的を達成するための本発明による固体酸化物型燃料電池(SOFC)は、固体電解質層とその上面に形成された燃料極層とその下面に形成された空気極層とが積層・焼成されてなる上述した1又は複数の薄板体と、上述した平面部と枠体部とを有する複数の支持部材と、が1つずつ交互に積層されてなる。ここで、SOFC全体を小型化する観点から、各薄板体の厚さは、20μm以上且つ500μm以下であり、且つ、薄板体全体に亘って均一であることが好ましい。   In order to achieve the above object, a solid oxide fuel cell (SOFC) according to the present invention includes a solid electrolyte layer, a fuel electrode layer formed on the upper surface thereof, and an air electrode layer formed on the lower surface thereof, which are laminated and fired. The one or more thin plate members described above and the plurality of support members having the above-described flat portion and frame portion are alternately laminated one by one. Here, from the viewpoint of downsizing the entire SOFC, the thickness of each thin plate member is preferably 20 μm or more and 500 μm or less and is uniform over the entire thin plate member.

また、上述したように、前記各薄板体について、前記薄板体の外周部の全周が前記上方支持部材の枠体部と前記下方支持部材の枠体部との間に挟持(好ましくは、気密的に挟持)されることにより、前記上方支持部材の平面部の下面と前記上方支持部材の枠体部の内側壁面と前記薄板体の燃料極層の上面とで燃料流路が区画・形成されるとともに、前記下方支持部材の平面部の上面と前記下方支持部材の枠体部の内側壁面と前記薄板体の空気極層の下面とで酸素を含むガス(空気等)が供給される空気流路が区画・形成される。   Further, as described above, for each of the thin plate bodies, the entire circumference of the outer peripheral portion of the thin plate body is sandwiched between the frame body portion of the upper support member and the frame body portion of the lower support member (preferably, airtight Thus, a fuel flow path is defined and formed by the lower surface of the flat portion of the upper support member, the inner wall surface of the frame portion of the upper support member, and the upper surface of the fuel electrode layer of the thin plate member. And an air flow in which oxygen-containing gas (air or the like) is supplied from the upper surface of the flat portion of the lower support member, the inner wall surface of the frame portion of the lower support member, and the lower surface of the air electrode layer of the thin plate member. Roads are defined and formed.

本発明によるSOFCの特徴は、前記各薄板体が、常温時においても常温よりも高い前記固体酸化物型燃料電池の作動温度時においても下方に向けて反っていて、前記薄板体の平面方向に垂直な方向における前記各薄板体の反り高さが、(ガスが供給されていない状態において)常温時よりも前記作動温度時の方が小さいことにある。   The feature of the SOFC according to the present invention is that each of the thin plate bodies is warped downward both at normal temperature and at the operating temperature of the solid oxide fuel cell higher than normal temperature, and in the plane direction of the thin plate body. The warp height of each thin plate member in the vertical direction is that the operating temperature is smaller than the normal temperature (in a state where no gas is supplied).

この構成を実現するための具体的構成の一つとしては、例えば、前記各薄板体について、前記燃料極層の熱膨張率が前記固体電解質層の熱膨張率よりも大きく且つ前記空気極層の熱膨張率が前記固体電解質層の熱膨張率と略等しく、且つ、前記支持部材の熱膨張率が前記薄板体の平均熱膨張率よりも大きい構成が挙げられる。ここで、「空気極層の熱膨張率が固体電解質層の熱膨張率と略等しい」とは、例えば、空気極層の熱膨張率が、固体電解質層の熱膨張率以上且つ燃料極層の熱膨張率未満であって、燃料極層の熱膨張率よりも固体電解質層の熱膨張率に近い値であるということを意味している。   As one specific configuration for realizing this configuration, for example, for each of the thin plate bodies, the thermal expansion coefficient of the fuel electrode layer is larger than the thermal expansion coefficient of the solid electrolyte layer, and the air electrode layer Examples include a configuration in which the thermal expansion coefficient is substantially equal to the thermal expansion coefficient of the solid electrolyte layer, and the thermal expansion coefficient of the support member is larger than the average thermal expansion coefficient of the thin plate member. Here, “the thermal expansion coefficient of the air electrode layer is substantially equal to the thermal expansion coefficient of the solid electrolyte layer” means, for example, that the thermal expansion coefficient of the air electrode layer is greater than or equal to the thermal expansion coefficient of the solid electrolyte layer and the fuel electrode layer. This means that it is less than the thermal expansion coefficient and is closer to the thermal expansion coefficient of the solid electrolyte layer than the thermal expansion coefficient of the fuel electrode layer.

薄板体内の層間の熱膨張率の大小関係を上記のように設定すれば、焼成後の層間の収縮量の差異に基づいて発生する内部応力(熱応力)を利用して、常温にて下方(即ち、空気極層側)に向けて反った薄板体を容易に製造することができる。   If the relationship between the thermal expansion coefficients of the layers in the thin plate is set as described above, the internal stress (thermal stress) generated based on the difference in the amount of shrinkage between the layers after firing can be used to lower the temperature at room temperature ( That is, a thin plate body warped toward the air electrode layer side) can be easily manufactured.

加えて、支持部材と薄板体との間の熱膨張率の大小関係を上記のように設定すれば、加熱によりSOFCの温度を常温から作動温度に向けて次第に高めていった場合、薄板体が上方・下方支持部材から受ける平面方向に沿った方向の引っ張り力が次第に大きくなっていく。この結果、薄板体の下方への反り高さが次第に小さくなっていく。なお、SOFCの温度を常温から作動温度に向けて次第に高めていった場合、薄板体内の層間の上述した熱膨張率の大小関係に起因する層間の膨張量の差異によっても、薄板体の下方への反り高さが次第に小さくなり得る。   In addition, if the magnitude relationship of the coefficient of thermal expansion between the support member and the thin plate member is set as described above, when the temperature of the SOFC is gradually raised from the normal temperature to the operating temperature by heating, the thin plate member is The tensile force in the direction along the planar direction received from the upper and lower support members gradually increases. As a result, the downward warping height of the thin plate member is gradually reduced. When the temperature of the SOFC is gradually increased from the normal temperature to the operating temperature, the lower part of the thin plate body is also affected by the difference in the amount of expansion between the layers due to the above-described relationship of the thermal expansion coefficient between the layers in the thin plate body. The warp height can be gradually reduced.

なお、薄板体の外周部の全周は、上方・下方支持部材の枠体部に対して、完全に相対移動不能に所定の接合剤等を利用して接合されていてもよいし、所定の温度以上でのみ或る程度相対移動可能に所定の接合剤等を利用して接合されていてもよい。   Note that the entire circumference of the outer peripheral portion of the thin plate member may be bonded to the frame body portion of the upper and lower support members using a predetermined bonding agent or the like so as not to be relatively movable. Bonding may be performed using a predetermined bonding agent or the like so as to be relatively movable to some extent only at a temperature or higher.

以上のことから、上記の具体的構成によれば、各薄板体が常温時でも作動温度時でも(ガスが供給されていない状態において)下方(即ち、空気極層側)に向けて反っていて、且つ、常温時よりも作動温度時の方が各薄板体の反り高さが小さいSOFCを容易に実現することができる。   From the above, according to the above specific configuration, each thin plate body is warped downward (that is, on the air electrode layer side) at normal temperature or operating temperature (in a state where no gas is supplied). In addition, it is possible to easily realize the SOFC in which the warp height of each thin plate member is smaller at the operating temperature than at the normal temperature.

係る構成を有するSOFCによれば、作動温度時(且つ、ガスが供給されていない状態)において、各薄板体が下方(即ち、空気極層側)に向けて反っている。従って、作動温度時において各薄板体が反っていない構成を有するSOFCに比して、作動温度時において、上記圧力差に基づく平面方向に垂直な方向の外力に対して薄板体が変形し難くなる。この結果、圧力差のばらつきに起因する薄板体間における薄板体の変形量のばらつきが抑制され得、SOFC全体として所期の発電特性を安定して得ることができる。   According to the SOFC having such a configuration, at the operating temperature (and in a state where no gas is supplied), each thin plate body is warped downward (that is, on the air electrode layer side). Therefore, compared with an SOFC having a configuration in which each thin plate member is not warped at the operating temperature, the thin plate member is less likely to be deformed by an external force in a direction perpendicular to the plane direction based on the pressure difference at the operating temperature. . As a result, variations in the deformation amount of the thin plate members between the thin plate members due to variations in the pressure difference can be suppressed, and desired power generation characteristics can be stably obtained as a whole SOFC.

なお、一般に、薄板体(特に、その中央部近傍)が反っている場合、平面方向に垂直な方向であって凹側から凸側へ向いた方向の外力よりも平面方向に垂直な方向であって凸側から凹側へ向いた方向の外力に対して薄板体はより変形し難くなる傾向がある。即ち、薄板体が下方(即ち、空気極層側)に向けて反っている場合、上方へ向いた外力(即ち、空気極層側から燃料極層側へ向いた外力)が作用した場合に「反りによる変形抑制効果」がより一層発揮されることになる。   In general, when the thin plate body (particularly, in the vicinity of the central portion) is warped, it is in a direction perpendicular to the planar direction rather than an external force in a direction perpendicular to the planar direction from the concave side to the convex side. Therefore, the thin plate member tends to be more difficult to deform with respect to the external force in the direction from the convex side to the concave side. That is, when the thin plate body is warped downward (that is, the air electrode layer side), when an external force that is directed upward (that is, an external force that is directed from the air electrode layer side to the fuel electrode layer side) is applied. The “deformation suppressing effect due to warping” is further exhibited.

他方、固体酸化物型燃料電池の発電反応(後述する化学反応式(1)及び(2)を参照)にて消費される酸素と燃料(水素)との分子数比率、及び、空気中における酸素の分子数比率を鑑みると、一般に、空気流路に供給される空気の流量が燃料流路に供給される燃料ガスの流量よりも大きい値に設定される。この場合、空気流路に供給される空気の圧力が燃料流路に供給される燃料ガスの圧力よりも大きくなり、この結果、各薄板体には、圧力差に起因して上方へ向いた外力(即ち、空気極層側から燃料極層側へ向いた外力)が作用する。従って、空気流路に供給される空気の流量が燃料流路に供給される燃料ガスの流量よりも大きい値に設定される場合、上記構成のように、薄板体が下方(即ち、空気極層側)に向けて反っていると、「反りによる変形抑制効果」がより一層発揮され得る。   On the other hand, the molecular number ratio of oxygen and fuel (hydrogen) consumed in the power generation reaction of the solid oxide fuel cell (see chemical reaction formulas (1) and (2) described later), and oxygen in the air In general, the flow rate of air supplied to the air flow path is set to a value larger than the flow rate of fuel gas supplied to the fuel flow path. In this case, the pressure of the air supplied to the air flow path becomes larger than the pressure of the fuel gas supplied to the fuel flow path. As a result, each thin plate member has an external force directed upward due to the pressure difference. (In other words, an external force directed from the air electrode layer side to the fuel electrode layer side) acts. Therefore, when the flow rate of the air supplied to the air flow path is set to a value larger than the flow rate of the fuel gas supplied to the fuel flow path, the thin plate member is located below (that is, the air electrode layer) as in the above configuration. If it is warped toward the “side”, the “deformation suppressing effect by warping” can be further exhibited.

また、このように薄板体(特に、その中央部近傍)が下方(即ち、空気極層側)に向けて反っていると、平面視(上面視)にて、空気流路の中央部近傍での空気流路の高さが他の部分に比して小さくなる。これにより、平面視にて、空気流路の中央部近傍での空気の流速が低下するとともに他の部分の空気の流速が上がる作用が生じ得る。この結果、特に、平面視にて、空気流路の空気流入孔と空気流出孔とを結ぶ線分が空気流路の中央部を通過するように空気流入孔及び空気流出孔が配置されている場合において、空気流路内での空気の流速の不均一性の程度が抑制され得ることが判明した。これにより、発電反応に対する空気の利用効率が高めることができ、空気の利用率が高い場合であっても、SOFCの出力の低下を抑制することができる。   In addition, when the thin plate body (particularly, in the vicinity of the central portion) is warped downward (that is, on the air electrode layer side), in the plan view (top view), in the vicinity of the central portion of the air flow path. The height of the air flow path becomes smaller than other parts. As a result, the air flow rate in the vicinity of the central portion of the air flow path can be lowered and the air flow rate in other portions can be increased in plan view. As a result, the air inflow hole and the air outflow hole are arranged so that the line connecting the air inflow hole and the air outflow hole of the air flow path passes through the central portion of the air flow path, particularly in plan view. In some cases, it has been found that the degree of non-uniformity of the air flow rate in the air flow path can be suppressed. Thereby, the utilization efficiency of the air with respect to a power generation reaction can be improved, and even if the utilization factor of air is high, the fall of the output of SOFC can be suppressed.

上記本発明によるSOFCにおいては、前記各薄板体について、前記薄板体の反り高さがゼロであると仮定した場合における前記薄板体の平面方向に垂直な方向の前記空気流路の高さ(T1)に対する常温時における前記薄板体の反り高さ(X1)の割合(X1/T1、図6を参照、以下、「常温反り高さ割合」と称呼する。)は、0.05以上且つ0.8以下であることが好適である。   In the SOFC according to the present invention, for each of the thin plate bodies, the height of the air flow path (T1) in the direction perpendicular to the plane direction of the thin plate body when the warp height of the thin plate body is assumed to be zero. The ratio of the warp height (X1) of the thin plate at normal temperature (X1 / T1, see FIG. 6, hereinafter referred to as “room temperature warp height ratio”) is 0.05 or more and 0.00. It is suitable that it is 8 or less.

ここで、前記「空気流路の高さ」とは、具体的には、例えば、前記下方支持部材における平面部上面と枠体部上面との間の、平面方向に垂直な方向における距離等である。また、「薄板体の反り高さ」とは、具体的には、例えば、薄板体の外周部と薄板体の中央部近傍における最低点に位置する底部との、平面方向に垂直な方向における距離等である。   Here, the “height of the air flow path” specifically refers to, for example, a distance in a direction perpendicular to the plane direction between the upper surface of the flat surface portion and the upper surface of the frame body portion in the lower support member. is there. In addition, “the warp height of the thin plate member” specifically refers to, for example, the distance in the direction perpendicular to the planar direction between the outer peripheral portion of the thin plate member and the bottom located at the lowest point in the vicinity of the central portion of the thin plate member. Etc.

以下、説明の便宜上、常温時における薄板体の下方への反り高さ(X1、図6を参照)を「常温反り高さ」と称呼し、作動温度時における薄板体の下方への反り高さ(X2、図7を参照)を「作動温度反り高さ」と称呼するものとする。   Hereinafter, for convenience of explanation, the downward warping height (X1, see FIG. 6) of the thin plate at normal temperature is referred to as “normal temperature warping height”, and the downward warping height of the thin plate at the operating temperature. (X2, see FIG. 7) shall be referred to as “operating temperature warp height”.

検討によれば、常温反り高さ割合が0.05未満では、作動温度反り高さが非常に小さくなり、上記圧力差に基づく外力に対する薄板体の変形抑制効果が十分に発揮され得ないという問題が発生することが判明した。一方、常温反り高さ割合が0.8を超えると、作動温度反り高さがなおも十分に大きくて、空気が空気流路を流れる際の圧力損失が非常に大きくなるという問題が発生することが判明した。以上のことから、常温反り高さ割合は、0.05以上且つ0.8以下であることが好ましい。   According to the study, if the room temperature warp height ratio is less than 0.05, the operating temperature warp height becomes very small, and the deformation suppressing effect of the thin plate against the external force based on the pressure difference cannot be sufficiently exhibited. Was found to occur. On the other hand, if the room temperature warp height ratio exceeds 0.8, the operating temperature warp height is still sufficiently large, and there is a problem that the pressure loss when air flows through the air flow path becomes very large. There was found. From the above, it is preferable that the normal temperature warp height ratio is 0.05 or more and 0.8 or less.

常温反り高さ割合が係る範囲内にある場合、SOFC全体を小型化する観点から、前記空気流路の高さ(T1)は、50μm以上且つ700μm以下であることが好ましい。   When the normal temperature warp height ratio is within such a range, the height (T1) of the air channel is preferably 50 μm or more and 700 μm or less from the viewpoint of downsizing the entire SOFC.

加えて、空気流路の高さ(T)が係る範囲内にある場合であって、平面視にて前記支持部材の平面部の形状が正方形、長方形、円形、又は楕円形である場合、前記正方形の1片の長さ、前記長方形の短辺の長さ、前記円形の直径、又は前記楕円形の短径は、4mm以上且つ190mm以下であることが好ましい。   In addition, when the height (T) of the air flow path is within such a range, and the shape of the planar portion of the support member is a square, a rectangle, a circle, or an ellipse in plan view, The length of one square piece, the length of the short side of the rectangle, the diameter of the circle, or the short diameter of the ellipse is preferably 4 mm or more and 190 mm or less.

これによれば、作動温度時において、薄板体の反りの程度(曲率)を、過度の内部応力が発生することなく且つ変形抑制効果が十分に発揮され得る程度とすることができる。なお、正方形の1片の長さ、長方形の短辺の長さ、円形の直径、又は楕円形の短径の寸法範囲が規定されているのは、以下の理由に基づく。   According to this, at the operating temperature, the degree of curvature (curvature) of the thin plate member can be set to such an extent that the deformation suppressing effect can be sufficiently exhibited without generating excessive internal stress. The reason why the length of a square piece, the length of a short side of a rectangle, the diameter of a circle, or the short diameter of an ellipse is defined is as follows.

薄板体に発生する主たる反りの態様を表す形状は、支持部材の平面部の中央部近傍を含む同平面部の種々の縦断面(同平面部を平面方向に垂直な平面に沿って切断して得られる断面)のうちで幅(縦断面の平面方向における距離)が最も短くなる縦断面(以下、「最小幅縦断面」と称呼する。)を含む平面に沿って、薄板体を切断して得られる薄板体の縦断面において現れる傾向がある。従って、薄板体の主たる反りの程度(曲率)は、上記最小幅縦断面の幅に大きく依存する。他方、平面視にて支持部材の平面部の形状が正方形、長方形、円形、又は楕円形である場合、上記最小幅縦断面の幅はそれぞれ、正方形の1片の長さ、長方形の短辺の長さ、円形の直径、又は楕円形の短径と一致する。以上より、平面視にて支持部材の平面部の形状が正方形、長方形、円形、又は楕円形である場合、薄板体の主たる反りの程度(曲率)はそれぞれ、正方形の1片の長さ、長方形の短辺の長さ、円形の直径、又は楕円形の短径に大きく依存する。   The shape representing the mode of main warpage occurring in the thin plate body is various longitudinal sections of the same plane portion including the vicinity of the central portion of the plane portion of the support member (the same plane portion is cut along a plane perpendicular to the plane direction). The thin plate body is cut along a plane including a vertical section (hereinafter referred to as “minimum width vertical section”) having the shortest width (distance in the plane direction of the vertical section) among the obtained cross sections). There is a tendency to appear in the longitudinal section of the obtained thin plate. Therefore, the main degree of curvature (curvature) of the thin plate body greatly depends on the width of the minimum width longitudinal section. On the other hand, when the shape of the planar portion of the support member is square, rectangular, circular, or elliptical in plan view, the width of the minimum width longitudinal section is the length of one piece of the square and the short side of the rectangle, respectively. Matches the length, circular diameter, or elliptical minor axis. From the above, when the shape of the planar portion of the support member is a square, rectangle, circle, or ellipse in plan view, the degree of curvature (curvature) of the thin plate member is the length of one square piece, a rectangle, respectively. Depends largely on the length of the short side, the diameter of the circle, or the minor axis of the ellipse.

以下、図面を参照しつつ本発明の実施形態に係る固体酸化物型燃料電池について説明する。   Hereinafter, a solid oxide fuel cell according to an embodiment of the present invention will be described with reference to the drawings.

(燃料電池の全体構造)
図1は、本発明の一実施形態に係るデバイスである固体酸化物型燃料電池(以下、単に「燃料電池」と称呼する。)10の破断斜視図である。図2は、燃料電池10の部分分解斜視図である。燃料電池10は、薄板体11と支持部材12とが交互に積層されることにより形成されている。即ち、燃料電池10は、平板スタック構造を備えている。薄板体11は、燃料電池10の「単セル」とも称呼される。支持部材12は、「インターコネクタ」とも称呼される。
(Overall structure of fuel cell)
FIG. 1 is a cutaway perspective view of a solid oxide fuel cell (hereinafter simply referred to as “fuel cell”) 10 which is a device according to an embodiment of the present invention. FIG. 2 is a partially exploded perspective view of the fuel cell 10. The fuel cell 10 is formed by alternately laminating thin plate members 11 and support members 12. That is, the fuel cell 10 has a flat stack structure. The thin plate member 11 is also referred to as a “single cell” of the fuel cell 10. The support member 12 is also referred to as an “interconnector”.

図2の円A内に拡大して示したように、薄板体11は、電解質層(固体電解質層)11aと、電解質層11aの上(上面)に形成された燃料極層11bと、電解質層11a上の燃料極層11bとは反対の面(下面)に形成された空気極層11cと、を有している。薄板体11の平面形状は、互いに直交するx軸及びy軸の方向に沿う辺を有する正方形(1辺の長さ=A)である。薄板体11は、x軸及びy軸に直交するz軸方向に厚み方向を有する板体である。   As shown in an enlarged circle A in FIG. 2, the thin plate member 11 includes an electrolyte layer (solid electrolyte layer) 11a, a fuel electrode layer 11b formed on the upper surface (upper surface), and an electrolyte layer. And an air electrode layer 11c formed on a surface (lower surface) opposite to the fuel electrode layer 11b on 11a. The planar shape of the thin plate member 11 is a square (length of one side = A) having sides along the x-axis and y-axis directions orthogonal to each other. The thin plate member 11 is a plate member having a thickness direction in the z-axis direction orthogonal to the x-axis and the y-axis.

本例において、電解質層11aはYSZ(イットリア安定化ジルコニア)の緻密な焼成体である。燃料極層11bは、Ni−YSZからなる焼成体であり、多孔質電極層である。空気極層11cはLSM(La(Sr)MnO3:ランタンストロンチウムマンガナイト)−YSZからなる焼成体であり、多孔質電極層である。電解質層11a、燃料極層11b、及び空気極層11cの常温から1000℃での平均熱膨張率はそれぞれ、およそ、10.8ppm/K、12.5ppm/K、及び11(10.8)ppm/Kである。   In this example, the electrolyte layer 11a is a dense fired body of YSZ (yttria stabilized zirconia). The fuel electrode layer 11b is a fired body made of Ni—YSZ and is a porous electrode layer. The air electrode layer 11c is a fired body made of LSM (La (Sr) MnO3: lanthanum strontium manganite) -YSZ, and is a porous electrode layer. The average thermal expansion coefficients of the electrolyte layer 11a, the fuel electrode layer 11b, and the air electrode layer 11c from room temperature to 1000 ° C. are approximately 10.8 ppm / K, 12.5 ppm / K, and 11 (10.8) ppm, respectively. / K.

即ち、燃料極層11bの熱膨張率は電解質層11aの熱膨張率よりも大きく、空気極層11cの熱膨張率は電解質層11aの熱膨張率と略等しい。従って、燃料電池10の温度が変化したとき、薄板体11内の層間にて伸縮量差が生じる。   That is, the thermal expansion coefficient of the fuel electrode layer 11b is larger than the thermal expansion coefficient of the electrolyte layer 11a, and the thermal expansion coefficient of the air electrode layer 11c is substantially equal to the thermal expansion coefficient of the electrolyte layer 11a. Therefore, when the temperature of the fuel cell 10 changes, a difference in expansion and contraction occurs between the layers in the thin plate member 11.

薄板体11は、一対のセル貫通孔11d,11dを備えている。それぞれのセル貫通孔11dは、電解質層11a、燃料極層11b及び空気極層11cを貫通している。一対のセル貫通孔11d,11dは、薄板体11の一つの辺の近傍であってその辺の両端部近傍領域に形成されている。   The thin plate member 11 includes a pair of cell through holes 11d and 11d. Each cell through hole 11d passes through the electrolyte layer 11a, the fuel electrode layer 11b, and the air electrode layer 11c. The pair of cell through holes 11d and 11d are formed in the vicinity of one side of the thin plate member 11 and in the vicinity of both ends of the side.

図3は、図2においてx軸と平行な1−1線を含むとともにx−z平面と平行な平面に沿って支持部材12を切断した支持部材12の断面図である。   FIG. 3 is a cross-sectional view of the support member 12 taken along the plane including the 1-1 line parallel to the x axis and parallel to the xz plane in FIG. 2.

図2及び図3に示したように、支持部材12は、平面部12aと、上方枠体部12bと、下方枠体部12cと、を備えている。上方枠体部12b、及び下方枠体部12cは、前記「枠体部」に対応する。支持部材12の平面形状は、互いに直交するx軸及びy軸の方向に沿う辺を有する正方形(1辺の長さ=A)であり、薄板体11の平面形状と同形である。   As shown in FIGS. 2 and 3, the support member 12 includes a flat surface portion 12 a, an upper frame portion 12 b, and a lower frame portion 12 c. The upper frame body portion 12b and the lower frame body portion 12c correspond to the “frame body portion”. The planar shape of the supporting member 12 is a square (side length = A) having sides along the x-axis and y-axis directions orthogonal to each other, and is the same shape as the planar shape of the thin plate member 11.

支持部材12は、Ni系耐熱合金(例えば、フェライト系SUS、インコネル600及びハステロイ等)から構成されている。支持部材12の常温から1000℃での平均熱膨張率は、例えばフェライト系SUSであるSUS430の場合、およそ12.5ppm/Kである。従って、支持部材12の熱膨張率は、薄板体11の平均熱膨張率よりも大きい。従って、燃料電池10の温度が変化したとき、薄板体11と支持部材12との間にて伸縮量差が生じる。   The support member 12 is made of a Ni-based heat-resistant alloy (for example, ferrite-based SUS, Inconel 600, Hastelloy, etc.). For example, in the case of SUS430, which is a ferrite SUS, the average thermal expansion coefficient of the support member 12 from room temperature to 1000 ° C. is approximately 12.5 ppm / K. Therefore, the thermal expansion coefficient of the support member 12 is larger than the average thermal expansion coefficient of the thin plate member 11. Accordingly, when the temperature of the fuel cell 10 changes, a difference in expansion and contraction occurs between the thin plate member 11 and the support member 12.

平面部12aは、z軸方向に厚み方向を有する薄い平板体である。平面部12aの平面形状は、x軸及びy軸方向に沿う辺を有する正方形(1辺の長さ=L(<A))である。   The flat surface portion 12a is a thin flat plate having a thickness direction in the z-axis direction. The planar shape of the flat surface portion 12a is a square (length of one side = L (<A)) having sides along the x-axis and y-axis directions.

上方枠体部12bは、平面部12aの周囲(4つの辺の近傍領域、即ち、外周近傍領域)において上方に向けて立設された枠体である。上方枠体部12bは、外周枠部12b1と段差形成部12b2とからなっている。   The upper frame body portion 12b is a frame body erected upward in the periphery of the flat surface portion 12a (a region near four sides, that is, a region near the outer periphery). The upper frame body portion 12b includes an outer peripheral frame portion 12b1 and a step forming portion 12b2.

外周枠部12b1は、支持部材12の最外周側に位置している。外周枠部12b1の縦断面(例えば、y軸方向に長手方向を有する外周枠部12b1をx−z平面に平行な平面に沿って切断した断面)の形状は長方形(又は正方形)である。   The outer peripheral frame portion 12 b 1 is located on the outermost peripheral side of the support member 12. The shape of the longitudinal section of the outer peripheral frame portion 12b1 (for example, a cross section obtained by cutting the outer peripheral frame portion 12b1 having a longitudinal direction in the y-axis direction along a plane parallel to the xz plane) is a rectangle (or a square).

段差形成部12b2は、平面部12aの四つの角部のうちの一つの角部において、外周枠部12b1の内周面から支持部材12の中央に向けて延設された部分である。段差形成部12b2の下面は平面部12aと連接している。段差形成部12b2の平面視における形状は略正方形である。段差形成部12b2の上面(平面)は、外周枠部12b1の上面(平面)と連続している。段差形成部12b2には、貫通孔THが形成されている。貫通孔THは、段差形成部12b2の下方に位置する平面部12aにも貫通している。   The step forming portion 12b2 is a portion that extends from the inner peripheral surface of the outer peripheral frame portion 12b1 toward the center of the support member 12 at one of the four corners of the flat surface portion 12a. The lower surface of the step forming portion 12b2 is connected to the flat portion 12a. The shape of the step forming portion 12b2 in plan view is substantially square. The upper surface (plane) of the step forming portion 12b2 is continuous with the upper surface (plane) of the outer peripheral frame portion 12b1. A through hole TH is formed in the step forming portion 12b2. The through hole TH also penetrates the flat surface portion 12a located below the step forming portion 12b2.

下方枠体部12cは、平面部12aの周囲(4つの辺の近傍領域、即ち、外周近傍領域)において下方に向けて立設された枠体である。下方枠体部12cは、平面部12aの厚さ方向の中心線CLに対して上方枠体部12bと対称形状を有している。従って、下方枠体部12cは、外周枠部12b1、及び段差形成部12b2とそれぞれ同一形状の外周枠部12c1、及び段差形成部12c2を備えている。但し、段差形成部12c2は、平面部12aの四つの角部のうち段差形成部12b2が形成されている角部と隣り合う2つの角部のうちの一方の角部に配置・形成されている。   The lower frame body portion 12c is a frame body erected downward around the flat surface portion 12a (a region near the four sides, that is, a region near the outer periphery). The lower frame part 12c has a symmetrical shape with the upper frame part 12b with respect to the center line CL in the thickness direction of the plane part 12a. Accordingly, the lower frame body portion 12c includes an outer peripheral frame portion 12c1 and a step forming portion 12c2 that have the same shape as the outer peripheral frame portion 12b1 and the step forming portion 12b2, respectively. However, the step forming portion 12c2 is arranged and formed at one corner portion of two corner portions adjacent to the corner portion where the step forming portion 12b2 is formed among the four corner portions of the flat surface portion 12a. .

図4は、薄板体11及び薄板体11を支持(挟持)した状態における一対の支持部材12を、図2においてy軸と平行な2−2線を含むとともにy−z平面と平行な平面に沿って切断した縦断面図である。上述したように、燃料電池10は、薄板体11と支持部材12とが交互に積層されることにより形成されている。   4 shows the thin plate body 11 and the pair of support members 12 in a state of supporting (holding) the thin plate body 11 in a plane that includes a 2-2 line parallel to the y axis in FIG. 2 and is parallel to the yz plane. It is the longitudinal cross-sectional view cut | disconnected along. As described above, the fuel cell 10 is formed by alternately laminating the thin plate members 11 and the support members 12.

ここで、この一対の支持部材12のうち、薄板体11に対してその下方・上方に隣接するものをそれぞれ、便宜上、下方支持部材121及び上方支持部材122と称呼する。図4に示したように、下方支持部材121及び上方支持部材122は、下方支持部材121の上方枠体部12bの上に上方支持部材122の下方枠体部12cが対向するように互いに同軸的に配置される。   Here, of the pair of support members 12, those adjacent to the thin plate member 11 below and above are respectively referred to as a lower support member 121 and an upper support member 122 for convenience. As shown in FIG. 4, the lower support member 121 and the upper support member 122 are coaxial with each other so that the lower frame body portion 12 c of the upper support member 122 faces the upper frame body portion 12 b of the lower support member 121. Placed in.

薄板体11は、その外周部全周が、下方支持部材121の上方枠体部12bと上方支持部材122の下方枠体部12cとの間に挟持される。このとき、薄板体11は、下方支持部材121の平面部12aの上面に空気極層11cが対向するように配置され、上方支持部材122の平面部12aの下面に燃料極層11bが対向するように配置される。   The entire periphery of the thin plate member 11 is sandwiched between the upper frame portion 12 b of the lower support member 121 and the lower frame portion 12 c of the upper support member 122. At this time, the thin plate member 11 is disposed so that the air electrode layer 11 c faces the upper surface of the flat portion 12 a of the lower support member 121, and the fuel electrode layer 11 b faces the lower surface of the flat portion 12 a of the upper support member 122. Placed in.

薄板体11の外周部下面(即ち、空気極層11cの外周部下面)は、下方支持部材121の上方枠体部12bの上面(具体的には、外周枠部12b1及び段差形成部12b2の上面)と当接し、且つ、この上方枠体部12bに対して導電性の所定の接合剤等により接合・固定されている。同様に、薄板体11の外周部上面(即ち、燃料極層11bの外周部上面)は、上方支持部材122の下方枠体部12cの下面(具体的には、外周枠部12c1及び段差形成部12c2の下面)と当接し、且つ、この下方枠体部12cに対して導電性の所定の接合剤等により接合・固定されている。   The lower surface of the outer peripheral portion of the thin plate member 11 (that is, the lower surface of the outer peripheral portion of the air electrode layer 11c) is the upper surface of the upper frame portion 12b of the lower support member 121 (specifically, the upper surfaces of the outer peripheral frame portion 12b1 and the step forming portion 12b2). ) And is bonded and fixed to the upper frame 12b by a predetermined conductive bonding agent or the like. Similarly, the upper surface of the outer peripheral portion of the thin plate member 11 (that is, the upper surface of the outer peripheral portion of the fuel electrode layer 11b) is the lower surface of the lower frame body portion 12c of the upper support member 122 (specifically, the outer peripheral frame portion 12c1 and the step forming portion). 12c2 and the lower frame portion 12c is bonded and fixed to the lower frame portion 12c by a predetermined conductive bonding agent or the like.

換言すると、薄板体11は、その外周部全周の上下面において、上方支持部材122の下方枠体部12c、及び下方支持部材121の上方枠体部12bに接合・固定されている。なお、係る接合・固定は、薄板体11が支持部材11に対して、完全に相対移動不能になされてもよいし、所定の温度以上でのみ或る程度相対移動可能になされてもよい。   In other words, the thin plate member 11 is joined and fixed to the lower frame portion 12c of the upper support member 122 and the upper frame portion 12b of the lower support member 121 on the upper and lower surfaces of the entire outer periphery. Note that the joining / fixing may be such that the thin plate member 11 is completely immovable relative to the support member 11 or may be relatively movable only at a predetermined temperature or higher.

以上により、図4に示したように、下方支持部材121の平面部12aの上面と、下方支持部材121の上方枠体部12b(外周枠部12b1及び段差形成部12b2)の内側壁面と、薄板体11の空気極層11cの下面と、により酸素を含む気体が供給される空気流路21が形成される。酸素を含む気体は、図4の破線の矢印により示したように、上方支持部材122の貫通孔THと薄板体11のセル貫通孔11dとを通して空気流路21に流入する。   As described above, as shown in FIG. 4, the upper surface of the flat portion 12a of the lower support member 121, the inner wall surface of the upper frame body portion 12b (the outer peripheral frame portion 12b1 and the step forming portion 12b2) of the lower support member 121, and the thin plate An air flow path 21 to which a gas containing oxygen is supplied is formed by the lower surface of the air electrode layer 11 c of the body 11. The gas containing oxygen flows into the air flow path 21 through the through hole TH of the upper support member 122 and the cell through hole 11d of the thin plate member 11 as indicated by the dashed arrows in FIG.

また、上方支持部材122の平面部12aの下面と、上方支持部材122の下方枠体部12c(外周枠部12c1及び段差形成部12c2)の内側壁面と、薄板体11の燃料極層11bの上面と、により水素を含む燃料が供給される燃料流路22が形成される。燃料は、図4の実線の矢印により示したように、下方支持部材121の貫通孔THと薄板体11のセル貫通孔11dとを通して燃料流路22に流入する。   Further, the lower surface of the flat portion 12 a of the upper support member 122, the inner wall surface of the lower frame portion 12 c (the outer peripheral frame portion 12 c 1 and the step forming portion 12 c 2) of the upper support member 122, and the upper surface of the fuel electrode layer 11 b of the thin plate member 11. Thus, a fuel flow path 22 to which a fuel containing hydrogen is supplied is formed. The fuel flows into the fuel flow path 22 through the through hole TH of the lower support member 121 and the cell through hole 11d of the thin plate member 11 as indicated by the solid arrow in FIG.

以上のように構成された燃料電池10は、例えば、図5に示したように、薄板体11の燃料極層11bと支持部材12の平面部12aの下面との間に形成された燃料流路22に燃料が供給され、且つ、薄板体11の空気極層11cと支持部材12の平面部12aの上面との間に形成された空気流路21に空気が供給されることにより、以下に示す化学反応式(1)及び(2)に基づく発電を行う。
(1/2)・O+2e−→O2− (於:空気極層11c) …(1)
+O2−→HO+2e− (於:燃料極層11b) …(2)
The fuel cell 10 configured as described above includes, for example, a fuel flow path formed between the fuel electrode layer 11b of the thin plate member 11 and the lower surface of the flat surface portion 12a of the support member 12, as shown in FIG. The fuel is supplied to 22 and air is supplied to the air flow path 21 formed between the air electrode layer 11c of the thin plate member 11 and the upper surface of the flat surface portion 12a of the support member 12, and the following is shown. Power generation based on chemical reaction formulas (1) and (2) is performed.
(1/2) · O 2 +2 e− → O 2− (at: air electrode layer 11c) (1)
H 2 + O 2− → H 2 O + 2 e− (in the fuel electrode layer 11b) (2)

(薄板体11の反り)
次に、薄板体11の反りについて説明する。図6は、常温時において薄板体11及び薄板体11を支持(挟持)した状態における一対の支持部材12を、図2においてx軸と平行な3−3線を含むとともにx−z平面と平行な平面に沿って切断した縦断面の模式図である。3−3線は、支持部材12の平面形状(=正方形)の中心(=薄板体11の平面形状(=正方形)の中心)を通る線である。
(War of thin plate 11)
Next, the warp of the thin plate member 11 will be described. 6 shows the thin plate member 11 and the pair of support members 12 in a state of supporting (holding) the thin plate member 11 at room temperature, including a 3-3 line parallel to the x axis in FIG. 2 and parallel to the xz plane. It is a schematic diagram of the longitudinal cross-section cut | disconnected along the flat plane. A line 3-3 is a line passing through the center of the planar shape (= square) of the support member 12 (= center of the planar shape (= square) of the thin plate member 11).

薄板体11の平面形状(=正方形)の1辺の長さAは、本例では、5mm以上且つ200mm以下である。薄板体11の厚さtは、全体に渡って均一であり、本例では、20μm以上且つ500μm以下である。なお、電解質層11a、燃料極層11b、及び空気極層11cの厚さはそれぞれ、例えば、1μm以上且つ50μm以下、5μm以上且つ500μm以下、及び、5μm以上且つ200μm以下である。   In this example, the length A of one side of the planar shape (= square) of the thin plate member 11 is not less than 5 mm and not more than 200 mm. The thickness t of the thin plate member 11 is uniform throughout, and is 20 μm or more and 500 μm or less in this example. The thicknesses of the electrolyte layer 11a, the fuel electrode layer 11b, and the air electrode layer 11c are, for example, 1 μm to 50 μm, 5 μm to 500 μm, and 5 μm to 200 μm, respectively.

また、薄板体11の平面方向(以下、単に「平面方向」とも称呼する。)に垂直な方向における空気流路21の高さT1は、下方支持部材121における平面部12aの上面と上方枠体部12bの上面との間の平面方向に垂直な方向における距離と等しく、本例では、50μm以上且つ700μm以下である。なお、本例では、燃料流路22の高さT2(即ち、上方支持部材122における平面部12aの下面と下方枠体部12cの下面との間の平面方向に垂直な方向における距離)は、上記空気流路21の高さT1よりも小さい。また、支持部材12の平面部12aの平面形状(=正方形)の1辺の長さLは、本例では、4mm以上且つ190mm以下である。   The height T1 of the air flow path 21 in the direction perpendicular to the planar direction of the thin plate member 11 (hereinafter also simply referred to as “planar direction”) is the upper surface of the planar portion 12a of the lower support member 121 and the upper frame body. It is equal to the distance in the direction perpendicular to the planar direction between the upper surface of the portion 12b and in this example, it is 50 μm or more and 700 μm or less. In this example, the height T2 of the fuel flow path 22 (that is, the distance in the direction perpendicular to the plane direction between the lower surface of the flat portion 12a and the lower surface of the lower frame portion 12c in the upper support member 122) is It is smaller than the height T1 of the air flow path 21. Further, the length L of one side of the planar shape (= square) of the planar portion 12a of the support member 12 is 4 mm or more and 190 mm or less in this example.

図6から理解できるように、薄板体11は、常温時(且つ、ガスが供給されていない状態)において、その平面形状(正方形)の中心が最低点(底部)となるように、下方(即ち、空気極層11c側)に向けて反っている。以下、常温時における薄板体11の下方への反り高さ(具体的には、薄板体11の外周部と上記底部との平面方向に垂直な方向における距離)を「常温反り高さX1」と称呼する(図6を参照、X1>0)。   As can be understood from FIG. 6, the thin plate member 11 is positioned downward (that is, the center of the planar shape (square) is the lowest point (bottom) at room temperature (and no gas is supplied) (that is, the bottom). The air electrode layer 11c side). Hereinafter, the downward warping height of the thin plate member 11 at room temperature (specifically, the distance in the direction perpendicular to the planar direction between the outer peripheral portion of the thin plate member 11 and the bottom portion) is referred to as “normal temperature warp height X1”. (Refer to FIG. 6, X1> 0).

以上のように構成された燃料電池10は、上記(1)及び(2)式に従った化学反応を利用して発電を行う。しかしながら、燃料電池(SOFC)10は、固体電解質層11aの酸素伝導度を利用して発電するので、燃料電池10としての作動温度は最低600℃以上であることが一般的である。このため、燃料電池10は、常温から作動温度(例えば800℃)まで外部の加熱機構(例えば、抵抗加熱ヒータ方式の加熱機構、或いは、燃料ガスを燃焼して得られる熱を利用する加熱機構等)により昇温される。   The fuel cell 10 configured as described above generates power using a chemical reaction according to the above formulas (1) and (2). However, since the fuel cell (SOFC) 10 generates power using the oxygen conductivity of the solid electrolyte layer 11a, the operating temperature of the fuel cell 10 is generally at least 600 ° C. or higher. For this reason, the fuel cell 10 has an external heating mechanism (for example, a resistance heater type heating mechanism or a heating mechanism that uses heat obtained by burning fuel gas) from normal temperature to an operating temperature (for example, 800 ° C.). ).

ここで、上述したように、薄板体11内の層間には熱膨張率の大小関係(燃料極層11bの熱膨張率>電解質層11aの熱膨張率≒空気極層11cの熱膨張率)が存在する。このため、上述の昇温過程において、平面方向に沿った方向における薄板体11の伸長量が薄板体11の上側面(燃料極層11b側面)において下側面(空気極層11c側面)よりも大きくなる。この結果、薄板体11の内部において、内部応力(熱応力)の変化に起因して図7に黒矢印で示すように上向きの力が発生する。これにより、薄板体11の下方への反り高さが次第に小さくなっていく。   Here, as described above, there is a relationship between the thermal expansion coefficients between the layers in the thin plate member 11 (thermal expansion coefficient of the fuel electrode layer 11b> thermal expansion coefficient of the electrolyte layer 11a≈thermal expansion coefficient of the air electrode layer 11c). Exists. For this reason, in the above temperature rising process, the extension amount of the thin plate member 11 in the direction along the plane direction is larger on the upper side surface (fuel electrode layer 11b side surface) of the thin plate member 11 than on the lower side surface (air electrode layer 11c side surface). Become. As a result, an upward force is generated inside the thin plate member 11 due to a change in internal stress (thermal stress) as shown by a black arrow in FIG. Thereby, the downward warping height of the thin plate member 11 is gradually reduced.

加えて、上述したように、支持部材12と薄板体11との間にも、熱膨張率の大小関係(支持部材12の熱膨張率>薄板体11の熱膨張率)が存在する。このため、上述の昇温過程において、平面方向に沿った方向における支持部材12の伸長量が平面方向に沿った方向における薄板体11の伸長量よりも大きくなる。しかしながら、薄板体11はその外周部の全周において支持部材12に接合・固定されている。この結果、図7に白矢印で示すように、薄板体11は支持部材12から平面方向に沿った方向の引っ張り力を受ける。これによっても、薄板体11の下方への反り高さが次第に小さくなっていく。   In addition, as described above, a thermal expansion coefficient magnitude relationship (the thermal expansion coefficient of the support member 12> the thermal expansion coefficient of the thin plate member 11) also exists between the support member 12 and the thin plate member 11. For this reason, in the above temperature rising process, the extension amount of the support member 12 in the direction along the plane direction is larger than the extension amount of the thin plate member 11 in the direction along the plane direction. However, the thin plate member 11 is joined and fixed to the support member 12 in the entire outer periphery. As a result, as indicated by white arrows in FIG. 7, the thin plate member 11 receives a tensile force in the direction along the plane direction from the support member 12. Also by this, the downward warp height of the thin plate member 11 is gradually reduced.

即ち、上述の昇温過程において、薄板体11内の層間の熱膨張率の大小関係と、支持部材12と薄板体11との間の熱膨張率の大小関係とに起因して、薄板体11の下方への反り高さは次第に小さくなっていく。しかしながら、燃料電池10の温度が作動温度に達しても、(ガスが供給されていない状態において)薄板体11はなおも下方に向けて反っている。即ち、作動温度時(且つ、ガスが供給されていない状態)における薄板体11の下方への反り高さを「作動温度反り高さX2」と称呼するものとすると(図7を参照)、0<X2<X1が成立する。   That is, in the above temperature rising process, the thin plate body 11 is caused by the relationship between the thermal expansion coefficients between the layers in the thin plate body 11 and the thermal expansion coefficient between the support member 12 and the thin plate body 11. The downward warp height gradually decreases. However, even if the temperature of the fuel cell 10 reaches the operating temperature, the thin plate member 11 still warps downward (in a state where no gas is supplied). That is, assuming that the height of warping of the thin plate member 11 at the operating temperature (and the state where no gas is supplied) is referred to as “operating temperature warp height X2” (see FIG. 7), 0 <X2 <X1 holds.

このように、本例では、図7に示すように作動温度時において薄板体11が下方(即ち、空気極層11c側)に向けて反っている。この結果、図8に示すように作動温度時において薄板体11が反っていない構成を有する燃料電池に比して、作動温度時において、薄板体11が平面方向に垂直な方向の外力を受けた場合に薄板体11は変形し難い(反りによる変形抑制効果)。   Thus, in this example, as shown in FIG. 7, the thin plate body 11 warps downward (that is, on the air electrode layer 11c side) at the operating temperature. As a result, as shown in FIG. 8, the thin plate member 11 received an external force in a direction perpendicular to the plane direction at the operating temperature, as compared with the fuel cell having a configuration in which the thin plate member 11 is not warped at the operating temperature. In this case, the thin plate member 11 is hardly deformed (deformation suppressing effect by warping).

従って、空気流路21を流れる空気及び燃料流路22を流れる燃料ガスとの間に圧力差が生じたことでその圧力差が外力となって薄板体11へ作用した場合であっても、薄板体11が変形し難い。   Therefore, even if a pressure difference is generated between the air flowing through the air flow path 21 and the fuel gas flowing through the fuel flow path 22, the pressure difference acts as an external force on the thin plate body 11. The body 11 is difficult to deform.

ここで、上述した化学反応式(1)及び(2)にて消費される酸素と水素との分子数比率、及び、空気中における酸素の分子数比率を鑑みると、一般に、空気流路21に供給される空気の流量が燃料流路22に供給される燃料ガスの流量よりも大きい値に設定されるから、空気流路21に供給される空気の圧力が燃料流路22に供給される燃料ガスの圧力よりも大きくなる。この場合、薄板体11には、圧力差に起因して上方へ向いた外力(即ち、空気極層11c側から燃料極層11b側へ向いた外力)が作用する。   Here, in view of the molecular number ratio of oxygen and hydrogen consumed in the above chemical reaction formulas (1) and (2) and the molecular number ratio of oxygen in the air, Since the flow rate of the supplied air is set to a value larger than the flow rate of the fuel gas supplied to the fuel flow path 22, the pressure of the air supplied to the air flow path 21 is the fuel supplied to the fuel flow path 22. It becomes larger than the gas pressure. In this case, an external force directed upward due to the pressure difference (that is, an external force directed from the air electrode layer 11c side to the fuel electrode layer 11b side) acts on the thin plate member 11.

他方、本例のように、薄板体11が下方(即ち、空気極層11c側)に向けて反っている場合、薄板体11に対して下方へ向いた外力が作用した場合よりも上方へ向いた外力が作用した場合に「反りによる変形抑制効果」がより一層発揮され得る。以上より、本例では、空気流路21に供給される空気の流量が燃料流路22に供給される燃料ガスの流量よりも大きい値に設定される場合、「反りによる変形抑制効果」がより一層発揮され得る。   On the other hand, when the thin plate member 11 is warped downward (that is, on the air electrode layer 11c side) as in this example, the thin plate member 11 is directed upward as compared with the case where an external force directed downward is applied to the thin plate member 11. When the applied external force is applied, the “deformation suppressing effect by warping” can be further exhibited. As described above, in this example, when the flow rate of the air supplied to the air flow path 21 is set to a value larger than the flow rate of the fuel gas supplied to the fuel flow path 22, the “deformation suppressing effect due to warpage” is further increased. It can be further demonstrated.

この結果、スタック構造を有する燃料電池10内において複数の薄板体11間において圧力差にばらつきが発生しても、圧力差のばらつきに起因する薄板体11間における薄板体11の変形量のばらつきが抑制され得る。よって、燃料電池10全体として所期の発電特性を安定して得ることができる。   As a result, even if the pressure difference varies among the plurality of thin plate bodies 11 in the fuel cell 10 having the stack structure, the variation in the deformation amount of the thin plate bodies 11 between the thin plate bodies 11 due to the pressure difference variation. Can be suppressed. Therefore, the desired power generation characteristics can be stably obtained for the fuel cell 10 as a whole.

次に、常温反り高さX1と空気流路21の高さT1との好ましい関係について説明する。この検討のため、値(X1/T1)を導入する。以下、この値を「常温反り高さ割合」と称呼する。   Next, a preferable relationship between the room temperature warp height X1 and the height T1 of the air flow path 21 will be described. For this study, a value (X1 / T1) is introduced. Hereinafter, this value is referred to as “room temperature warp height ratio”.

常温反り高さ割合は、0.05以上且つ0.8以下であることが好ましい。これは以下の理由に基づく。即ち、常温反り高さ割合が0.05未満では、作動温度反り高さX2が非常に小さくなり、上記圧力差に基づく外力に対する薄板体11の変形抑制効果が十分に発揮され得ないということが判明した。一方、常温反り高さ割合が0.8を超えると、作動温度反り高さX2がなおも十分に大きくて、空気流路21の断面積が小さくなることで空気が空気流路21を流れる際の圧力損失が非常に大きくなるということが判明した。   The room temperature warp height ratio is preferably 0.05 or more and 0.8 or less. This is based on the following reason. That is, when the room temperature warp height ratio is less than 0.05, the operating temperature warp height X2 becomes very small, and the effect of suppressing the deformation of the thin plate member 11 against the external force based on the pressure difference cannot be sufficiently exhibited. found. On the other hand, when the room temperature warp height ratio exceeds 0.8, the operating temperature warp height X2 is still sufficiently large, and the cross-sectional area of the air channel 21 is reduced, so that air flows through the air channel 21. It has been found that the pressure loss of becomes very large.

以下、このことを確認した実験について説明する。この実験は、1辺の長さA=30mm、電解質層、燃料極層、及び空気極層の厚さがそれぞれ30um、15um、及び15umである平面視にて正方形の薄板体(電解質支持型のセル)を用いて、常温反り高さ割合が異なる複数のサンプルを作製して行われた。なお、常温反り高さ割合の調整は、薄板体の外周部と上方・下方支持部材の各枠体部との接合・固定に使用される接合剤の性状(温度に対する粘度特性、熱膨張率、厚さ、ヤング率等)を変更することで行われた。   Hereinafter, an experiment for confirming this will be described. In this experiment, a square thin plate body (electrolyte-supported type) having a side length A = 30 mm and the thicknesses of the electrolyte layer, the fuel electrode layer, and the air electrode layer being 30 μm, 15 μm, and 15 μm, respectively. A plurality of samples having different ratios of room temperature warp height were used. In addition, the adjustment of the room temperature warp height ratio is the property of the bonding agent used for joining / fixing the outer peripheral part of the thin plate member and each frame part of the upper and lower support members (viscosity characteristics with respect to temperature, thermal expansion coefficient, (Thickness, Young's modulus, etc.)

常温反り高さ割合が0.05未満では、薄板体の凸形状による上記変形抑制効果が不十分のため、ガス流量を急激に変更した場合(即ち、上記圧力差の急激な変動があった場合)における薄板体の変形量の変化が大きく、薄板体の破損が生じた。一方、常温反り高さ割合が0.05以上では、薄板体の破損等も発生せずに、薄板体の凸形状による変形抑制効果が確認された。   When the room temperature warp height ratio is less than 0.05, the deformation suppression effect due to the convex shape of the thin plate member is insufficient, so the gas flow rate is changed rapidly (that is, when the pressure difference changes rapidly). The deformation amount of the thin plate member in) was large, and the thin plate member was damaged. On the other hand, at a room temperature warp height ratio of 0.05 or more, the deformation suppressing effect due to the convex shape of the thin plate member was confirmed without causing damage or the like of the thin plate member.

他方、常温反り高さ割合が0.8を超えると、空気流路の断面積の最小値が小さくなり、空気流路内での圧力損失が顕著に大きくなった。加えて、空気流路の断面積の最大値と最小値の差が大きくなることに起因して、空気流路内での空気の流れが不均一になり、平面視における単位面積当たりの発電効率が顕著に低下することもわかった。一方、常温反り高さ割合が0.8以下では、空気流路内での圧力損失の顕著な増大、及び発電効率の顕著な低下も発生しなかった。以上より、常温反り高さ割合は、0.05以上且つ0.8以下であることが好ましい。   On the other hand, when the room temperature warp height ratio exceeded 0.8, the minimum value of the cross-sectional area of the air channel was reduced, and the pressure loss in the air channel was significantly increased. In addition, since the difference between the maximum and minimum values of the cross-sectional area of the air flow path becomes large, the air flow in the air flow path becomes uneven, and the power generation efficiency per unit area in plan view It was also found that was significantly reduced. On the other hand, when the room temperature warp height ratio was 0.8 or less, neither a significant increase in pressure loss nor a significant decrease in power generation efficiency occurred in the air flow path. From the above, the normal temperature warp height ratio is preferably 0.05 or more and 0.8 or less.

上記の実験は、薄板体の厚さが一定の条件で行われている。他方、薄板体の厚さが20μm〜500μmの範囲内にある場合において、同様の理由により、常温反り高さ割合が0.05以上且つ0.8以下であることが好ましいことも判明している。以下、このことを確認した実験について説明する。なお、この実験は、薄板体として電解質支持型セルと燃料極支持型セルとを用いて、薄板体の厚さをパラメータとして行われた。   The above experiment is performed under the condition that the thickness of the thin plate member is constant. On the other hand, when the thickness of the thin plate member is in the range of 20 μm to 500 μm, it has also been found that for the same reason, it is preferable that the normal temperature warp height ratio is 0.05 or more and 0.8 or less. . Hereinafter, an experiment for confirming this will be described. This experiment was performed using an electrolyte support cell and a fuel electrode support cell as the thin plate, and the thickness of the thin plate as a parameter.

この実験は、薄板体の厚さを種々変更しながら1層の(薄板体が1枚の)スタックを作成して行われた。薄板体と支持部材との接合(シール)は、薄板体の外周部と支持部材の枠体部との接合面については軟化ガラスを使用し、スタックの外側面の被覆については結晶化ガラスを使用して、850℃の熱処理を施すことで行われた。   This experiment was performed by creating a stack of one layer (one thin plate) while varying the thickness of the thin plate. For bonding (seal) between the thin plate and the support member, softened glass is used for the joint surface between the outer periphery of the thin plate and the frame of the support member, and crystallized glass is used for covering the outer surface of the stack. The heat treatment was performed at 850 ° C.

スタック完成後の薄板体の常温反り高さX1は、ガラスの接合条件、1層のスタック内に形成された2つのガス流路(燃料流路及び空気流路)内に配設された集電用のメッシュの形状・硬さ等を変更することで調整された。薄板体の常温反り高さX1の確認は、完成したスタック内の2つのガス流路内に硬化樹脂を流し込んで薄板体の形状を保持・拘束した状態で、スタックを垂直面に沿った平面で切断して得られる薄板体の断面を観察することで行われた。   The room temperature warp height X1 of the thin plate after completion of the stack is determined based on the glass bonding conditions, and the current collector disposed in the two gas flow paths (fuel flow path and air flow path) formed in the single-layer stack. It was adjusted by changing the shape and hardness of the mesh. Confirmation of the room temperature warp height X1 of the thin plate is done by pouring the cured resin into the two gas flow paths in the completed stack to hold and restrain the shape of the thin plate, and the stack in a plane along the vertical plane. This was done by observing the cross section of the thin plate obtained by cutting.

この実験では、上記「圧力差」に対する薄板体の形状安定性が評価された。この評価方法は以下のとおりである。即ち、燃料流路を流通するガスの流量が一定に維持される。この状態で、空気流路を流通するガスの流量を変化させ、燃料流路の流入孔と流出孔との圧力差(圧力損失)の変化がモニタされる。この圧力損失の変化が小さいことは、上記「圧力差」の変化に対する薄板体の変形量の変化が小さくて「圧力差」に対する薄板体の形状安定性が高い(即ち、上記「反りによる変形抑制効果」が高い)ことを意味する。   In this experiment, the shape stability of the thin plate against the above “pressure difference” was evaluated. This evaluation method is as follows. That is, the flow rate of the gas flowing through the fuel flow path is kept constant. In this state, the flow rate of the gas flowing through the air flow path is changed, and the change in the pressure difference (pressure loss) between the inflow hole and the outflow hole of the fuel flow path is monitored. The small change in the pressure loss means that the change in the deformation amount of the thin plate body with respect to the change in the “pressure difference” is small and the shape stability of the thin plate body with respect to the “pressure difference” is high. It means "effective").

この評価は常温で行われ、評価に使用されるガスとしては、燃料流路及び空気流路共に窒素が使用された。SOFCの実使用環境では、上述のように、作動温度が高温(600〜800℃程度)であり、燃料流路には水素ガスが、空気流路には空気が流される。しかしながら、この実験では、実験の利便性を考慮して、上記のSOFCの実使用環境を常温にて再現する手法が採られた。   This evaluation was performed at room temperature, and nitrogen was used as the gas used for the evaluation in both the fuel flow path and the air flow path. In the actual use environment of SOFC, as described above, the operating temperature is high (about 600 to 800 ° C.), hydrogen gas is flowed through the fuel flow path, and air is flowed through the air flow path. However, in this experiment, in consideration of the convenience of the experiment, a method of reproducing the actual use environment of the above SOFC at normal temperature was adopted.

即ち、高温での流路内圧力損失を常温で再現できるように、実使用環境でのガスの粘性係数と流量を乗じた値と、常温での模擬ガス(窒素)の粘性係数と流量を乗じた値とが同じになるように、ガス流量条件が決定された。   In other words, in order to reproduce the pressure loss in the flow path at high temperatures at room temperature, multiply the value obtained by multiplying the viscosity coefficient and flow rate of the gas in the actual use environment by the viscosity coefficient and flow rate of the simulated gas (nitrogen) at room temperature. The gas flow rate conditions were determined so that the values were the same.

具体的には、常温にて、燃料流路側の窒素の流量が250sccmで一定とされた状態で、空気流路側の窒素の流量を250〜2000sccmの範囲で変更しながら、燃料流路の圧力損失の変化(安定性)が評価された。この評価結果を表1に示す。   Specifically, the pressure loss of the fuel flow path is changed while the flow rate of nitrogen on the air flow path side is changed in the range of 250 to 2000 sccm while the flow rate of nitrogen on the fuel flow path side is constant at 250 sccm at normal temperature. Change (stability) was evaluated. The evaluation results are shown in Table 1.

Figure 0005237614
Figure 0005237614

この表1から理解できるように、常温反り高さ割合が0.05未満では、上記圧力損失の変動が大きくて、上記「反りによる変形抑制効果」が不十分である。一方、常温反り高さ割合が0.05以上では、上記圧力損失の変動が小さく上記圧力損失が安定していて、上記「反りによる変形抑制効果」が十分に発揮され得ることが確認された。   As can be understood from Table 1, when the room temperature warp height ratio is less than 0.05, the pressure loss fluctuates greatly and the “deformation suppressing effect due to warp” is insufficient. On the other hand, it was confirmed that when the normal temperature warp height ratio is 0.05 or more, the fluctuation of the pressure loss is small and the pressure loss is stable, and the “deformation suppressing effect due to warp” can be sufficiently exhibited.

他方、常温反り高さ割合が0.8を超えると、空気流路側での圧力損失が顕著に大きくなった。一方、常温反り高さ割合が0.8以下では、空気流路側での圧力損失の顕著な増大がみられないことが確認された。以上より、薄板体の厚さが20μm〜500μmの範囲内にある場合において、常温反り高さ割合が0.05以上且つ0.8以下であることが好ましいということができる。   On the other hand, when the room temperature warp height ratio exceeded 0.8, the pressure loss on the air flow path side was significantly increased. On the other hand, it was confirmed that when the room temperature warp height ratio was 0.8 or less, no significant increase in pressure loss on the air flow path side was observed. From the above, when the thickness of the thin plate member is in the range of 20 μm to 500 μm, it can be said that the room temperature warp height ratio is preferably 0.05 or more and 0.8 or less.

ところで、図9に示すように、平面視にて、空気流路が四角形(正方形)であって流入孔及び流出孔(上記の貫通孔TH等に相当)が対角線の両端に対応する角部に配設されている場合(即ち、流入孔と流出孔とを結ぶ線分が空気流路の中央部を通過するように流入孔及び流出孔が配置されている場合)を考える。図9に示した例では、薄板体11が反っておらず、従って、空気流路の高さが空気流路内にて均一となっている。なお、図9において、矢印の太さは空気流速(従って、空気流量)の大きさを表す(図10も同様)。   By the way, as shown in FIG. 9, in plan view, the air flow path is square (square), and the inflow holes and outflow holes (corresponding to the above-mentioned through holes TH and the like) are at the corners corresponding to the opposite ends of the diagonal line. Consider a case in which the inflow hole and the outflow hole are arranged so that the line connecting the inflow hole and the outflow hole passes through the central portion of the air flow path. In the example shown in FIG. 9, the thin plate member 11 is not warped, and therefore the height of the air flow path is uniform in the air flow path. In FIG. 9, the thickness of the arrow represents the magnitude of the air flow rate (and hence the air flow rate) (the same applies to FIG. 10).

この場合、図9に示すように、平面視にて、空気流路の中央部では空気流速が最も大きく、中央部から離れるほど空気流速が小さくなる。即ち、空気流路内にて空気流速における不均一が発生し得る。このような流速の不均一の程度が大きい場合、図11に特性線L1にて示すように、空気利用率Uaが小さい状況ではSOFCの出力密度に対して影響しないが、空気利用率Uaが大きい状況ではSOFCの出力密度が低下し易いことが判明した。これは、空気流速の不均一の程度が大きい場合、発電反応に対する空気の利用効率が低いことに起因するものと思われる。   In this case, as shown in FIG. 9, in plan view, the air flow velocity is greatest at the central portion of the air flow path, and the air flow velocity decreases as the distance from the central portion increases. That is, nonuniformity in the air flow rate can occur in the air flow path. When the degree of non-uniformity in the flow velocity is large, as shown by the characteristic line L1 in FIG. 11, there is no effect on the SOFC output density in a situation where the air utilization rate Ua is small, but the air utilization rate Ua is large. It turned out that the power density of SOFC tends to decrease in the situation. This is considered to be due to the low efficiency of air utilization for power generation reaction when the degree of non-uniformity of the air flow rate is large.

一方、図10に示すように、薄板体11が下方(空気極層側)に反っていて、空気流路の高さが中央部に近づくほど小さくなっている場合を考える。この場合、図9に示す薄板体11が反っていない場合に比して、平面視にて、空気流路の中央部での空気流速が低下するとともにその周りの部分の空気流速が上がる作用が生じ得る。この結果、図10に示すように、空気流路内での空気流速の不均一性の程度が抑制され得る。   On the other hand, as shown in FIG. 10, a case is considered where the thin plate member 11 is warped downward (air electrode layer side) and the height of the air flow path becomes smaller as it approaches the center. In this case, as compared with the case where the thin plate member 11 shown in FIG. 9 is not warped, the air flow velocity at the central portion of the air flow path is lowered and the air flow velocity at the surrounding portions is increased in a plan view. Can occur. As a result, as shown in FIG. 10, the degree of non-uniformity of the air flow rate in the air flow path can be suppressed.

このように流速の不均一の程度が小さい場合、図11に特性線L2にて示すように、空気利用率Uaが小さい状況に加えて空気利用率Uaが大きい状況であっても、SOFCの出力密度が低下し難いことが判明した。換言すれば、薄板体11が下方(空気極層側)に反っていると、空気利用率Uaが大きい場合におけるSOFCの出力密度が向上する。この効果を、「反りによる出力向上効果」と称呼する。これは、空気流速の不均一の程度を小さくすると、発電反応に対する空気の利用効率が高くなることに起因するものと思われる。   When the non-uniformity of the flow velocity is small in this way, as shown by the characteristic line L2 in FIG. 11, even if the air utilization rate Ua is large in addition to the small air utilization rate Ua, the SOFC output It was found that the density was difficult to decrease. In other words, when the thin plate member 11 is warped downward (air electrode layer side), the output density of the SOFC when the air utilization rate Ua is large is improved. This effect is referred to as “output improvement effect due to warpage”. This seems to be due to the fact that when the degree of non-uniformity in the air flow rate is reduced, the efficiency of using air for the power generation reaction increases.

そして、「反りによる出力向上効果」の観点からも、常温反り高さ割合が0.05以上且つ0.8以下であることが好ましいことも判明している。以下、このことを確認した実験について説明する。   It has also been found that the room temperature warp height ratio is preferably 0.05 or more and 0.8 or less also from the viewpoint of the “output improvement effect due to warp”. Hereinafter, an experiment for confirming this will be described.

この実験では、燃料流路を流通する燃料ガスが潤沢にある状態で、燃料の利用率が十分に低い5%に固定される。この状態で、空気流路を流通する空気の利用率Uaを変化させてSOFCの出力特性が評価された。具体的には、電流を5Aで一定に調整した状態で、空気の供給量を変化させてSOFCの出力電圧が測定され、その測定結果から得られる空気利用率Ua=50%での出力電圧を利用してSOFCの出力特性が評価された。この出力電圧が小さいこと(即ち、SOFCの出力(=電圧×電流)が小さいこと)は、「反りによる出力向上効果」が小さいことを意味する。   In this experiment, the fuel utilization rate is fixed at 5%, which is sufficiently low, with abundant fuel gas flowing through the fuel flow path. In this state, the output characteristic of SOFC was evaluated by changing the utilization factor Ua of the air flowing through the air flow path. Specifically, the SOFC output voltage is measured by changing the air supply amount in a state where the current is constantly adjusted at 5 A, and the output voltage at the air utilization rate Ua = 50% obtained from the measurement result is calculated. The output characteristics of SOFC were evaluated. This small output voltage (that is, a small SOFC output (= voltage × current)) means that the “output improvement effect due to warping” is small.

この評価は、薄板体として厚さが一定の燃料極支持型セルを用いて、常温反り高さ割合を種々変更しながら、800℃の環境下にて行われた。この評価結果を表2に示す。   This evaluation was performed in an environment of 800 ° C. using a fuel electrode-supporting cell having a constant thickness as a thin plate body and variously changing the room temperature warp height ratio. The evaluation results are shown in Table 2.

Figure 0005237614
Figure 0005237614

この表2から理解できるように、常温反り高さ割合が0.05未満では、出力の向上が認められず、上記「反りによる出力向上効果」が不十分である。一方、常温反り高さ割合が0.05以上では、出力の向上が十分認められ、且つ、空気利用率Uaの増加に対する出力の低下の程度も小さくて(出力が安定していて)、上記「反りによる出力向上効果」が十分に発揮され得ることが確認された。   As can be understood from Table 2, when the room temperature warp height ratio is less than 0.05, no improvement in output is observed, and the “output improvement effect due to warp” is insufficient. On the other hand, when the room temperature warp height ratio is 0.05 or more, the output is sufficiently improved, and the degree of the decrease in the output with respect to the increase in the air utilization rate Ua is small (the output is stable). It was confirmed that the “output improvement effect due to warping” can be sufficiently exhibited.

他方、常温反り高さ割合が0.8を超えると、上述と同様、空気流路側での圧力損失が顕著に大きくなった。一方、常温反り高さ割合が0.8以下では、空気流路側での圧力損失の顕著な増大がみられないことが確認された。以上より、「反りによる変形抑制効果」の観点に加えて「反りによる出力向上効果」の観点からも、常温反り高さ割合が0.05以上且つ0.8以下であることが好ましいということができる。   On the other hand, when the room temperature warp height ratio exceeded 0.8, the pressure loss on the air flow path side was significantly increased as described above. On the other hand, it was confirmed that when the room temperature warp height ratio was 0.8 or less, no significant increase in pressure loss on the air flow path side was observed. From the above, it is preferable that the room temperature warp height ratio is preferably 0.05 or more and 0.8 or less from the viewpoint of the “output improvement effect by warping” in addition to the “deformation suppressing effect by warping”. it can.

次に、上述のように常温にて下方(空気極層11c側)に反った薄板体11の製造方法の一例について簡単に説明する。薄板体11として電解質支持型セルが製造される場合、グリーンシート法により作成したセラミックスシート(YSZのテープ)の上面にシート(燃料極層11bとなる層)を印刷法により形成してから1400℃・1時間にて焼成し、更に、その焼成体の下面にシート(空気極層11cとなる層)を同じく印刷法により形成してから1200℃・1時間にて焼成することにより形成される。また、薄板体11として燃料極支持型セルが製造される場合、グリーンシート法により作成したシート(燃料極層11bとなる層)の下面にセラミックスシート(YSZのテープ)を積層・一体化してから1400℃・1時間にて焼成し、更に、その焼成体の下面にシート(空気極層11cとなる層)を印刷法により形成してから1200℃・1時間にて焼成することにより形成される。   Next, an example of a method for manufacturing the thin plate member 11 warped downward (at the air electrode layer 11c side) at normal temperature as described above will be briefly described. When an electrolyte-supporting cell is manufactured as the thin plate member 11, a sheet (a layer that becomes the fuel electrode layer 11 b) is formed on the upper surface of a ceramic sheet (YSZ tape) prepared by the green sheet method, and then 1400 ° C. It is formed by firing in 1 hour and, further, by firing a sheet (a layer to be the air electrode layer 11c) on the lower surface of the fired body by the same printing method and firing at 1200 ° C. for 1 hour. When a fuel electrode supporting cell is manufactured as the thin plate member 11, a ceramic sheet (YSZ tape) is laminated and integrated on the lower surface of a sheet (layer that becomes the fuel electrode layer 11 b) prepared by the green sheet method. It is formed by firing at 1400 ° C. for 1 hour, and further forming a sheet (a layer that becomes the air electrode layer 11c) on the lower surface of the fired body by a printing method and then firing at 1200 ° C. for 1 hour. .

ここで、上述したように、薄板体11内の層間には熱膨張率の大小関係(燃料極層11bの熱膨張率>電解質層11aの熱膨張率≒空気極層11cの熱膨張率)が存在する。このため、焼成時の降温過程において、平面方向に沿った方向における薄板体11の収縮量が薄板体11の上側面(燃料極層11b側面)において下側面(空気極層11c側面)よりも大きくなる。この原理を利用すれば、焼成時の降温過程後において、常温にて下方(即ち、空気極層11c側)に反った薄板体11を容易に製造することができる。   Here, as described above, there is a relationship between the thermal expansion coefficients between the layers in the thin plate member 11 (thermal expansion coefficient of the fuel electrode layer 11b> thermal expansion coefficient of the electrolyte layer 11a≈thermal expansion coefficient of the air electrode layer 11c). Exists. For this reason, in the temperature lowering process at the time of firing, the contraction amount of the thin plate member 11 in the direction along the plane direction is larger on the upper side surface (fuel electrode layer 11b side surface) than the lower side surface (air electrode layer 11c side surface). Become. By utilizing this principle, it is possible to easily manufacture the thin plate 11 that warps downward (that is, on the air electrode layer 11c side) at room temperature after the temperature lowering process during firing.

以上、説明したように、本発明の実施形態に係る固体酸化物型燃料電池10は、作動温度時において薄板体11が下方(即ち、空気極層11c側)に向けて反っている(図7を参照)。従って、作動温度時において薄板体11が反っていない構成を有する燃料電池(図8を参照)に比して、作動温度時において、薄板体11が平面方向に垂直な方向の外力を受けても薄板体11は変形し難い。この結果、スタック構造を有する燃料電池10内において複数の薄板体11間において空気流路21を流れる空気及び燃料流路22を流れる燃料ガスとの間の圧力差にばらつきが発生しても、圧力差のばらつきに起因する薄板体11間における薄板体11の変形量のばらつきが抑制され得る。よって、燃料電池10全体として所期の発電特性を安定して得ることができる。加えて、薄板体11が下方(即ち、空気極層11c側)に向けて反っていることで、上記「反りによる出力向上効果」により、空気利用率が高い場合であってもSOFCの出力が低下し難くなる効果も奏する。   As described above, in the solid oxide fuel cell 10 according to the embodiment of the present invention, the thin plate member 11 warps downward (that is, on the air electrode layer 11c side) at the operating temperature (FIG. 7). See). Therefore, as compared with a fuel cell having a configuration in which the thin plate member 11 is not warped at the operating temperature (see FIG. 8), even when the thin plate member 11 receives an external force in a direction perpendicular to the plane direction at the operating temperature. The thin plate 11 is not easily deformed. As a result, even if the pressure difference between the air flowing through the air flow path 21 and the fuel gas flowing through the fuel flow path 22 varies between the plurality of thin plate bodies 11 in the fuel cell 10 having the stack structure, Variations in the deformation amount of the thin plate members 11 between the thin plate members 11 due to the variation in the difference can be suppressed. Therefore, the desired power generation characteristics can be stably obtained for the fuel cell 10 as a whole. In addition, since the thin plate member 11 is warped downward (that is, on the air electrode layer 11c side), the output of the SOFC is increased even when the air utilization rate is high due to the “output improvement effect due to warpage”. There is also an effect that it is difficult to decrease.

なお、本発明は上記実施形態及び変形例に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、燃料極層11bは、白金、白金−ジルコニアサーメット、白金−酸化セリウムサーメット、ルテニウム、ルテニウム−ジルコニアサーメット等から構成することができる。   In addition, this invention is not limited to the said embodiment and modification, A various modification can be employ | adopted within the scope of the present invention. For example, the fuel electrode layer 11b can be composed of platinum, platinum-zirconia cermet, platinum-cerium oxide cermet, ruthenium, ruthenium-zirconia cermet, or the like.

また、空気極層11cは、例えば、ランタンを含有するペロブスカイト型複合酸化物(例えば、上述のランタンマンガナイトのほか、ランタンコバルタイト)から構成することができる。ランタンコバルタイト及びランタンマンガナイトは、ストロンチウム、カルシウム、クロム、コバルト(ランタンマンガナイトの場合)、鉄、ニッケル、アルミニウム等をドープしたものであってよい。また、パラジウム、白金、ルテニウム、白金−ジルコニアサーメット、パラジウム−ジルコニアサーメット、ルテニウム−ジルコニアサーメット、白金−酸化セリウムサーメット、パラジウム−酸化セリウムサーメット、ルテニウム−酸化セリウムサーメットであってもよい。   The air electrode layer 11c can be made of, for example, a perovskite complex oxide containing lanthanum (for example, lanthanum cobaltite in addition to the lanthanum manganite described above). Lanthanum cobaltite and lanthanum manganite may be doped with strontium, calcium, chromium, cobalt (in the case of lanthanum manganite), iron, nickel, aluminum or the like. Further, palladium, platinum, ruthenium, platinum-zirconia cermet, palladium-zirconia cermet, ruthenium-zirconia cermet, platinum-cerium oxide cermet, palladium-cerium oxide cermet, ruthenium-cerium oxide cermet may be used.

また、薄板体11及び支持部材12の平面形状は、長方形、円形、楕円形等であってもよい。例えば、図12は、薄板体11及び支持部材の平面形状が、短辺の長さがAであり長辺の長さがBの長方形である場合における、燃料電池30の部分分解斜視図である。燃料電池30では、支持部材12の平面部12aの平面形状は、短辺の長さがLであり長辺の長さがMの長方形である。   The planar shape of the thin plate member 11 and the support member 12 may be a rectangle, a circle, an ellipse, or the like. For example, FIG. 12 is a partially exploded perspective view of the fuel cell 30 when the planar shape of the thin plate member 11 and the support member is a rectangle having a short side length A and a long side length B. . In the fuel cell 30, the planar shape of the planar portion 12 a of the support member 12 is a rectangle having a short side length L and a long side length M.

燃料電池30では、常温時において薄板体11及び薄板体11を支持(挟持)した状態における一対の支持部材12を、図12においてx軸と平行な4−4線を含むとともにx−z平面と平行な平面に沿って切断した縦断面に現れる薄板体11の反りの態様は、図6に示した燃料電池10における薄板体11の反りの態様と類似したものとなる。なお、4−4線は、支持部材12の平面形状(=長方形)の中心(=薄板体11の平面形状(=長方形)の中心)を通る線である。これは、この4−4線を含む縦断面が上述した支持部材12の平面部12aにおける上記「最小幅縦断面」に対応し、且つ、薄板体11に発生する主たる反りの態様を表す形状は、この「最小幅縦断面」を含む平面に沿って薄板体11を切断して得られる薄板体11の縦断面において現れる傾向があるからである。   In the fuel cell 30, the thin plate member 11 and the pair of support members 12 in a state of supporting (holding) the thin plate member 11 at normal temperature include a 4-4 line parallel to the x axis in FIG. The warp of the thin plate 11 appearing in the longitudinal section cut along the parallel plane is similar to the warp of the thin plate 11 in the fuel cell 10 shown in FIG. The line 4-4 is a line passing through the center of the planar shape (= rectangle) of the support member 12 (= the center of the planar shape (= rectangle) of the thin plate member 11). This corresponds to the above-mentioned “minimum width longitudinal section” in the flat surface portion 12a of the support member 12 described above, and the shape representing the main warpage that occurs in the thin plate member 11 is the longitudinal section including the line 4-4. This is because there is a tendency to appear in the longitudinal section of the thin plate body 11 obtained by cutting the thin plate body 11 along the plane including the “minimum width longitudinal section”.

この燃料電池30において、上記燃料電池10と同様、上記常温反り高さ割合が0.05以上且つ0.8以下であって、空気流路21の高さTが50μm以上且つ700μm以下である場合を考える。この場合、「最小幅縦断面」の幅と一致する上記長方形の短辺の長さLが、4mm以上且つ190mm以下であることが好ましい。これによれば、薄板体11の主たる反りの程度(曲率)に大きく影響を与える「最小幅縦断面」の幅を上記実施形態に係る燃料電池10の場合と同程度とすることができる。従って、作動温度時において、薄板体11の反りの程度(曲率)を上記実施形態に係る燃料電池10の場合と同程度とすることができる。   In the fuel cell 30, as in the fuel cell 10, the normal temperature warp height ratio is 0.05 or more and 0.8 or less, and the height T of the air channel 21 is 50 μm or more and 700 μm or less. think of. In this case, it is preferable that the length L of the short side of the rectangle corresponding to the width of the “minimum width longitudinal section” is 4 mm or more and 190 mm or less. According to this, the width of the “minimum width longitudinal section” that greatly affects the degree of main warpage (curvature) of the thin plate member 11 can be made the same as that of the fuel cell 10 according to the above-described embodiment. Therefore, at the operating temperature, the degree of curvature (curvature) of the thin plate member 11 can be made the same as that of the fuel cell 10 according to the above embodiment.

同様に、上記常温反り高さ割合が0.05以上且つ0.8以下であって、空気流路21の高さTが50μm以上且つ700μm以下である場合において、薄板体11及び支持部材12の平面部12aの平面形状が円形、或いは楕円形である場合、「最小幅縦断面」の幅と一致する円形の直径、或いは、楕円形の短径の長さが、4mm以上且つ190mm以下であることが好ましい。これによっても、「最小幅縦断面」の幅を燃料電池10の場合と同程度とすることができ、作動温度時において、薄板体11の反りの程度(曲率)を燃料電池10の場合と同程度とすることができる。   Similarly, in the case where the normal temperature warp height ratio is 0.05 or more and 0.8 or less and the height T of the air channel 21 is 50 μm or more and 700 μm or less, the thin plate member 11 and the support member 12 When the planar shape of the planar portion 12a is circular or elliptical, the diameter of the circle that matches the width of the “minimum width longitudinal section” or the length of the minor axis of the elliptical is 4 mm or more and 190 mm or less. It is preferable. This also allows the width of the “minimum width longitudinal section” to be the same as that of the fuel cell 10, and the degree of curvature (curvature) of the thin plate member 11 at the operating temperature is the same as that of the fuel cell 10. Can be about.

本発明の一実施形態に係る固体酸化物型燃料電池の破断斜視図である。1 is a cutaway perspective view of a solid oxide fuel cell according to an embodiment of the present invention. 図1に示した燃料電池の部分分解斜視図である。FIG. 2 is a partially exploded perspective view of the fuel cell shown in FIG. 1. 図2に示した1−1線を含むとともにx−z平面と平行な平面に沿って支持部材を切断した支持部材の断面図である。It is sectional drawing of the supporting member which cut | disconnected the supporting member along the plane parallel to an xz plane while including the 1-1 line | wire shown in FIG. 図1に示した薄板体及び薄板体を支持した状態における支持部材を、図2に示した2−2線を含むとともにy−z平面と平行な平面に沿って切断した縦断面図である。It is the longitudinal cross-sectional view which cut | disconnected the support member in the state which supported the thin plate body shown in FIG. 1 and a thin plate body along the 2-2 plane shown in FIG. 2, and parallel to a yz plane. 図1に示した燃料電池における燃料と空気の流通を説明する図である。It is a figure explaining the distribution | circulation of the fuel and air in the fuel cell shown in FIG. 図1に示した燃料電池の常温時における薄板体の反りの態様を示した図4に対応する模式図である。FIG. 5 is a schematic view corresponding to FIG. 4 showing a state of warping of the thin plate at the normal temperature of the fuel cell shown in FIG. 1. 図1に示した燃料電池の作動温度時における薄板体の反りの態様を示した図4に対応する模式図である。FIG. 5 is a schematic view corresponding to FIG. 4 showing a state of warping of the thin plate at the operating temperature of the fuel cell shown in FIG. 1. 比較例として作動温度時において薄板体に反りが発生しない場合を示した図4に対応する模式図である。FIG. 5 is a schematic diagram corresponding to FIG. 4 illustrating a case where the thin plate member is not warped at the operating temperature as a comparative example. 薄板体が反っていない場合における、空気流路内の空気の流速分布を示した模式図である。It is the schematic diagram which showed the flow velocity distribution of the air in an air flow path in case the thin plate body is not warped. 薄板体が反っている場合における、空気流路内の空気の流速分布を示した模式図である。It is the schematic diagram which showed the flow velocity distribution of the air in an air flow path in case the thin plate body is curving. 空気利用率とSOFCの出力との関係を示したグラフである。It is the graph which showed the relationship between an air utilization factor and the output of SOFC. 本発明の一実施形態の変形例に係る固体酸化物型燃料電池の部分分解斜視図である。It is a partial exploded perspective view of the solid oxide fuel cell concerning the modification of one embodiment of the present invention.

符号の説明Explanation of symbols

10…燃料電池、11…薄板体、11a…ジルコニア固体電解質層、11b…燃料極層、11c…空気極層、11d…セル貫通孔、12…支持部材、12a…平面部、12b…上方枠体部、12b1…外周枠部、12b2…段差形成部、12c…下方枠体部、12c1…外周枠部、12c2…段差形成部、21…空気流路、22…燃料流路、121…下方支持部材、122…上方支持部材   DESCRIPTION OF SYMBOLS 10 ... Fuel cell, 11 ... Thin plate body, 11a ... Zirconia solid electrolyte layer, 11b ... Fuel electrode layer, 11c ... Air electrode layer, 11d ... Cell through-hole, 12 ... Support member, 12a ... Planar part, 12b ... Upper frame Part, 12b1 ... outer peripheral frame part, 12b2 ... step forming part, 12c ... lower frame body part, 12c1 ... outer peripheral frame part, 12c2 ... step forming part, 21 ... air flow path, 22 ... fuel flow path, 121 ... lower support member 122 upper support member

Claims (5)

固体電解質層と、前記固体電解質層の上面に形成された燃料極層と、前記固体電解質層の下面に形成された空気極層と、が積層・焼成されてなる1又は複数の薄板体と、
平面部と、前記平面部の外周部の全周に設けられた同平面部よりも厚さが大きい枠体部と、を有するとともに前記1又は複数の薄板体を支持する複数の支持部材と、
を備え、前記薄板体と前記支持部材とが1つずつ交互に積層されてなる固体酸化物型燃料電池において、
前記各薄板体について、前記薄板体の外周部の全周が前記薄板体の上方に隣接する前記支持部材である上方支持部材の枠体部と前記薄板体の下方に隣接する前記支持部材である下方支持部材の枠体部との間に挟持されることにより、前記上方支持部材の平面部の下面と前記上方支持部材の枠体部の内側壁面と前記薄板体の燃料極層の上面とで燃料ガスが供給される燃料流路が区画・形成されるとともに、前記下方支持部材の平面部の上面と前記下方支持部材の枠体部の内側壁面と前記薄板体の空気極層の下面とで酸素を含むガスが供給される空気流路が区画・形成され、
前記各薄板体は、常温時においても常温よりも高い前記固体酸化物型燃料電池の作動温度時においても下方に向けて反っていて、前記薄板体の平面方向に垂直な方向における前記各薄板体の反り高さは、常温時よりも前記作動温度時の方が小さい固体酸化物型燃料電池であって、
前記各薄板体について、前記薄板体の反り高さがゼロであると仮定した場合における前記薄板体の平面方向に垂直な方向の前記空気流路の高さ(T1)に対する常温時における前記薄板体の反り高さ(X1)の割合(X1/T1)は、0.05以上且つ0.8以下である固体酸化物型燃料電池
One or a plurality of thin plate bodies formed by laminating and firing a solid electrolyte layer, a fuel electrode layer formed on the upper surface of the solid electrolyte layer, and an air electrode layer formed on the lower surface of the solid electrolyte layer;
A plurality of support members having a flat surface portion and a frame body portion having a thickness larger than that of the flat surface portion provided on the entire circumference of the outer peripheral portion of the flat surface portion, and supporting the one or more thin plate members,
A solid oxide fuel cell in which the thin plate member and the support member are alternately stacked one by one,
For each of the thin plate bodies, the entire circumference of the outer peripheral portion of the thin plate body is a frame body portion of an upper support member that is the support member adjacent to the upper side of the thin plate body and the support member adjacent to the lower side of the thin plate body. By being sandwiched between the frame portion of the lower support member, the lower surface of the flat portion of the upper support member, the inner wall surface of the frame portion of the upper support member, and the upper surface of the fuel electrode layer of the thin plate member A fuel flow path for supplying fuel gas is defined and formed, and the upper surface of the flat portion of the lower support member, the inner wall surface of the frame portion of the lower support member, and the lower surface of the air electrode layer of the thin plate member An air flow path to which a gas containing oxygen is supplied is defined and formed.
Each of the thin plate bodies is warped downward both at normal temperature and at an operating temperature of the solid oxide fuel cell that is higher than normal temperature, and each of the thin plate bodies in a direction perpendicular to the planar direction of the thin plate body. The warp height of the solid oxide fuel cell is smaller at the operating temperature than at normal temperature ,
For each of the thin plate bodies, the thin plate body at normal temperature with respect to the height (T1) of the air flow path in the direction perpendicular to the plane direction of the thin plate body when the warp height of the thin plate body is assumed to be zero. The ratio (X1 / T1) of the warp height (X1) of the solid oxide fuel cell is 0.05 or more and 0.8 or less .
請求項1に記載の固体酸化物型燃料電池において、
前記空気流路の高さ(T1)は、50μm以上且つ700μm以下である固体酸化物型燃料電池。
The solid oxide fuel cell according to claim 1 , wherein
The solid oxide fuel cell, wherein the height (T1) of the air flow path is 50 μm or more and 700 μm or less.
請求項2に記載の固体酸化物型燃料電池において、
平面視にて前記支持部材の平面部の形状は、正方形、長方形、円形、又は楕円形であり、前記正方形の1片の長さ、前記長方形の短辺の長さ、前記円形の直径、又は前記楕円形の短径(L)は、4mm以上且つ190mm以下である固体酸化物型燃料電池。
The solid oxide fuel cell according to claim 2 , wherein
The shape of the planar portion of the support member in plan view is a square, a rectangle, a circle, or an ellipse, and the length of one piece of the square, the length of the short side of the rectangle, the diameter of the circle, or The elliptical minor axis (L) is a solid oxide fuel cell having a length of 4 mm or more and 190 mm or less.
請求項1乃至請求項3の何れか一項に記載の固体酸化物型燃料電池において、
前記各薄板体の厚さは、20μm以上且つ500μm以下の厚さである固体酸化物型燃料電池。
The solid oxide fuel cell according to any one of claims 1 to 3 ,
The thickness of each thin plate member is a solid oxide fuel cell having a thickness of 20 μm or more and 500 μm or less.
請求項1乃至請求項4の何れか一項に記載の固体酸化物型燃料電池において、
前記各薄板体について、前記燃料極層の熱膨張率は前記固体電解質層の熱膨張率よりも大きく且つ前記空気極層の熱膨張率は前記固体電解質層の熱膨張率と略等しく、
前記支持部材の熱膨張率は前記薄板体の平均熱膨張率よりも大きい固体酸化物型燃料電池。
The solid oxide fuel cell according to any one of claims 1 to 4 , wherein
For each thin plate, the thermal expansion coefficient of the fuel electrode layer is larger than the thermal expansion coefficient of the solid electrolyte layer, and the thermal expansion coefficient of the air electrode layer is substantially equal to the thermal expansion coefficient of the solid electrolyte layer,
A solid oxide fuel cell in which a thermal expansion coefficient of the support member is larger than an average thermal expansion coefficient of the thin plate member.
JP2007305173A 2007-05-22 2007-11-27 Solid oxide fuel cell Active JP5237614B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007305173A JP5237614B2 (en) 2007-05-22 2007-11-27 Solid oxide fuel cell
EP08250700.5A EP1998396B1 (en) 2007-05-22 2008-02-29 Solid oxide fuel cell
US12/039,790 US7968246B2 (en) 2007-05-22 2008-02-29 Solid oxide fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007135426 2007-05-22
JP2007135426 2007-05-22
JP2007305173A JP5237614B2 (en) 2007-05-22 2007-11-27 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2009004353A JP2009004353A (en) 2009-01-08
JP5237614B2 true JP5237614B2 (en) 2013-07-17

Family

ID=40320485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305173A Active JP5237614B2 (en) 2007-05-22 2007-11-27 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5237614B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5365050B2 (en) * 2008-03-31 2013-12-11 大日本印刷株式会社 Solid oxide fuel cell
JP5486743B2 (en) * 2010-04-05 2014-05-07 日本特殊陶業株式会社 Fuel cell and fuel cell stack or fuel cell device
KR101135367B1 (en) * 2010-04-09 2012-04-16 포항공과대학교 산학협력단 Large Scale Stacks of Flat Tube Type Solid Oxide Fuel Cells and their Manufacturing Methods

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179061A (en) * 1990-11-09 1992-06-25 Mitsubishi Heavy Ind Ltd Method for forming laminate film
JPH04237962A (en) * 1991-01-18 1992-08-26 Matsushita Electric Ind Co Ltd Flat type solid electrolyte fuel cell
JPH1012252A (en) * 1996-06-26 1998-01-16 Fujikura Ltd Solid electrolyte fuel cell and manufacture therefor
JP3466960B2 (en) * 1999-05-20 2003-11-17 東京瓦斯株式会社 Flat cell with holding thin frame and fuel cell using the same
JP2004152569A (en) * 2002-10-30 2004-05-27 Jatco Ltd Fuel cell
US7244526B1 (en) * 2003-04-28 2007-07-17 Battelle Memorial Institute Solid oxide fuel cell anodes and electrodes for other electrochemical devices
JP2005317291A (en) * 2004-04-27 2005-11-10 Tokyo Gas Co Ltd Supporting film type solid oxide fuel cell stack, and manufacturing method of the same

Also Published As

Publication number Publication date
JP2009004353A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
JP4587659B2 (en) Manufacturing method of fuel cell stack
JP5172207B2 (en) Thin plate for single cell of solid oxide fuel cell
US10714782B2 (en) Cell stack device, module, and module housing device
JP5111036B2 (en) Fuel cell stack and fuel cell
JP5325017B2 (en) Solid oxide fuel cell and assembly method thereof
JP2009224299A (en) Cell stack device, and fuel battery module
JP5255327B2 (en) Reactor
JP5237614B2 (en) Solid oxide fuel cell
JP5280151B2 (en) Solid oxide fuel cell thin plate and solid oxide fuel cell
JP5208622B2 (en) Method for assembling a solid oxide fuel cell
US20090023045A1 (en) Reactor
JP5255324B2 (en) Reactor
JP5368062B2 (en) Solid oxide fuel cell
JP5100036B2 (en) Fuel cell stack device, fuel cell stack coupling device and fuel cell
US20090169940A1 (en) Reactor
JP5378062B2 (en) Solid oxide fuel cell thin plate and solid oxide fuel cell
JP5100094B2 (en) Fuel cell stack and fuel cell
JP4470474B2 (en) Solid oxide fuel cell
US7968246B2 (en) Solid oxide fuel cell
JP2008053107A (en) Device equipped with ceramic thin plate
JP6976876B2 (en) Fuel cell cell unit
JP6762112B2 (en) Fuel cell reformer, fuel cell module and module accommodating device
JP2022049810A (en) Electrochemical reaction cell stack
JP2013012398A (en) Member with coating film, collector member, and fuel battery cell device
JP2010182438A (en) Electrochemical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130329

R150 Certificate of patent or registration of utility model

Ref document number: 5237614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250