JPH04179061A - Method for forming laminate film - Google Patents

Method for forming laminate film

Info

Publication number
JPH04179061A
JPH04179061A JP2305302A JP30530290A JPH04179061A JP H04179061 A JPH04179061 A JP H04179061A JP 2305302 A JP2305302 A JP 2305302A JP 30530290 A JP30530290 A JP 30530290A JP H04179061 A JPH04179061 A JP H04179061A
Authority
JP
Japan
Prior art keywords
solid electrolyte
laminate film
electrode
film
laminated film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2305302A
Other languages
Japanese (ja)
Inventor
Hiroshi Tsukuda
洋 佃
Hiroshi Notomi
納富 啓
Hideo Tsunoda
英雄 角田
Tatsuro Miyazaki
達郎 宮崎
Tatsuo Kahata
達雄 加幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2305302A priority Critical patent/JPH04179061A/en
Publication of JPH04179061A publication Critical patent/JPH04179061A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To lessen warp of a laminate film at the time of combustion and prevent drop of the performance of a solid electrolyte fuel cell by laminating a fuel electrode material, solid electrolyte material, and oxygen electrode material one over another, followed by baking process to provide a laminate film, heating this film at a certain temp., and pressing it with a specified surface pressure load with a ZrO material interposed. CONSTITUTION:A laminate film is formed from solid electrolyte 15 and electrodes 14, 16 and subjected to a baking process, and re-heating is made at a temp. below the baking temp. while a load is applied in order to flatten warps generated in the film. Therein a material is interposed which has less reactivity in order to prevent reaction of the electrodes 14, 16 with an object 12 to be placed on the film for the purpose of applying load. That is, the laminate film consisting of the fuel electrode material 14, solid electrolyte material 15, and oxygen electrode material 16, which were laminated and baked, is heated to a temp. between 1100-1250 deg.C, and pressure is applied with a surface pressure load between 4-7gf/cm<2> with ZrO material interposed. Thereby warp of laminate film at the time of combustion is lessened, and the solid electrolyte fuel cell is prevented from drop in the performance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、燃料電極材と固体電解質材と酸素電極材とを
積層し焼結させた積層膜を平滑にする積層膜の形成方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a laminated film for smoothing a laminated film in which a fuel electrode material, a solid electrolyte material, and an oxygen electrode material are laminated and sintered.

[従来の技術] 第4図は、燃料電極の概略説明図である。[Conventional technology] FIG. 4 is a schematic explanatory diagram of the fuel electrode.

図中のla、lbは、夫々ZrO□からなるブロックで
ある。これらのブロックla、lb間には、電解質2及
び電極3a、3bがはさみこんである。また、電極3a
、3bには、夫々穴をあけ゛たpt箔4a、4bがはり
付けられている。これは、電気の流れをスムーズに行う
ためである。発電は、空気極側5から酸素イオンが電解
質2中を移動し、燃料(H2,Co等)極側6に達し、
ここで燃料と反応してH2,CO2が生成する。この時
、酸素イオンは電子を放出するので、燃料極側6に電子
が過剰に存在する。逆に、空気極側5では電子が不足す
る。そこで、各電極をpt線等電子を通す材料でつなげ
ると、pt線中に電気が流れ、上記の反応はスムーズに
進む。
In the figure, la and lb are blocks each made of ZrO□. An electrolyte 2 and electrodes 3a and 3b are sandwiched between these blocks la and lb. In addition, the electrode 3a
, 3b are pasted with PT foils 4a, 4b with holes formed therein, respectively. This is to ensure smooth flow of electricity. In power generation, oxygen ions move through the electrolyte 2 from the air electrode side 5 and reach the fuel (H2, Co, etc.) electrode side 6.
Here, it reacts with the fuel to generate H2 and CO2. At this time, since the oxygen ions release electrons, an excess of electrons exists on the fuel electrode side 6. Conversely, there is a shortage of electrons on the air electrode side 5. Therefore, if each electrode is connected with a material that allows electrons to pass, such as a PT wire, electricity will flow through the PT wire, and the above reaction will proceed smoothly.

燃料電池は、上記のように燃料の化学エネルギーを電気
エネルギーに直接変換するシステムである。但し、この
システムは、空気が直接燃料側に流れ込むと正常には働
かず、単に燃焼反応が生じるのみである。また、第5図
のように電極/電解質/電極が曲がっていると、燃料、
空気のもれ出しが大きく、発電システムとして作動しな
い。
A fuel cell is a system that directly converts the chemical energy of fuel into electrical energy, as described above. However, this system does not work properly if air flows directly into the fuel side, and only a combustion reaction occurs. Also, if the electrode/electrolyte/electrode is bent as shown in Figure 5, the fuel
Air leaks out so much that it does not work as a power generation system.

[発明が解決しようとする課題] 固体電解質燃料電池の固体電解質と電極の積層膜は、性
能上の要求のため、第4図に示すように燃料と酸素(あ
るいは空気)を分離する必要がある。また、固体電解質
と電極は、脱脂焼成前に積層し一体として脱脂焼成する
。このとき、固体電解質と電極は、脱脂仮定の焼結によ
る収縮挙動の違い、温度分布の違いにより焼き上りの際
第5図に示すように1000μm程度の反りが発生する
。この反りは、漏れの原因となり、燃料と酸素(あるい
は空気)の分離を難しくする。
[Problem to be solved by the invention] Due to performance requirements of the solid electrolyte and electrode laminated membrane of a solid electrolyte fuel cell, it is necessary to separate fuel and oxygen (or air) as shown in Figure 4. . Moreover, the solid electrolyte and the electrode are laminated and degreased and fired as a unit before being degreased and fired. At this time, the solid electrolyte and the electrode are warped by about 1000 μm during baking as shown in FIG. 5 due to the difference in shrinkage behavior due to sintering assuming degreasing and the difference in temperature distribution. This warpage causes leakage and makes it difficult to separate the fuel and oxygen (or air).

本発明は上記事情に鑑みてなされたもので、燃料電極材
と固体電解質材と酸素電極材とを積層し焼結させた積層
膜を適宜な温度で加熱するとともにZrOを材を介して
適宜な面圧荷重で押圧することにより、上記積層膜の燃
焼時の反りを小さくして、固体電解質燃料電池の性能低
下を防止しえる積層膜の形成方法を提供することを目的
とする。
The present invention was made in view of the above circumstances, and involves heating a laminated film in which a fuel electrode material, a solid electrolyte material, and an oxygen electrode material are laminated and sintered at an appropriate temperature, and applying ZrO through the material to an appropriate temperature. It is an object of the present invention to provide a method for forming a laminated membrane that can reduce the warping of the laminated membrane during combustion by pressing with a surface pressure load, and can prevent performance deterioration of a solid electrolyte fuel cell.

[課題を解決するための手段〕 本発明では、焼成後の固体電解質と電極の積層膜の反り
を平面化(平坦化)するため荷重をかけながら、再度焼
成温度以下の温度に加熱する。この時、荷重をかけるた
めに、積層膜上に載せる物と電極の反応を防ぐため反応
性の少ない材料をはさむかあるいは荷重をかける物自体
として反応性の少ない物質を用いる。つまり、本発明は
、燃料電極材と固体電解質材と酸素電極材とを積層し焼
結させた積層膜を、1100℃から1250℃に加熱す
るとともにZrO材を介して4gf/cs2〜7gf/
c12の面圧荷重で押圧することを特徴とする積層膜の
形成方法である。
[Means for Solving the Problems] In the present invention, in order to planarize (flatten) the warpage of the laminated film of solid electrolyte and electrodes after firing, the laminated film is heated again to a temperature equal to or lower than the firing temperature while applying a load. At this time, in order to apply a load, in order to prevent a reaction between the material placed on the laminated film and the electrode, a less reactive material is sandwiched, or a less reactive material is used as the material to which the load is applied. In other words, in the present invention, a laminated film in which a fuel electrode material, a solid electrolyte material, and an oxygen electrode material are laminated and sintered is heated from 1100°C to 1250°C and 4 gf/cs2 to 7 gf/cs is heated via the ZrO material.
This is a method for forming a laminated film characterized by pressing with a surface pressure load of c12.

本発明において、積層膜の反りはT(電極材間の距離)
−1(積層膜の厚み)で表わされ、本発明でいう平滑と
はT−t<200μmの場合をいう。
In the present invention, the warpage of the laminated film is T (distance between electrode materials)
-1 (thickness of the laminated film), and smooth as used in the present invention refers to the case where T-t<200 μm.

[作 用] 固体電解質と電極の積層膜は変形しにくい材料であるが
、高温において荷重をかけると変形が生じる。本発明で
は、この現象を利用して積層膜の焼成時の反りを平坦化
する。
[Function] Although the laminated film of solid electrolyte and electrode is a material that does not easily deform, deformation occurs when a load is applied at high temperatures. In the present invention, this phenomenon is utilized to flatten the warpage during firing of the laminated film.

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

[実施例1] 第1図を参照する。[Example 1] Please refer to FIG.

図中のllaは、上部に多孔質なZrO2シート12a
を形成した第1AJz03 (アルミナ)板である。ま
た、Ilbは下部に多孔質なZrO2シート12bを形
成し、上部に重り13を載せた第2アルミナ板である。
lla in the figure is a porous ZrO2 sheet 12a on the top.
This is the first AJz03 (alumina) plate formed with. Further, Ilb is a second alumina plate on which a porous ZrO2 sheet 12b is formed on the lower part and a weight 13 is placed on the upper part.

実施例1では、前記第1・第2アルミナ板をシート面が
向きあうように対向させて、これらのアルミナ板間に第
1電極14.固体電解質15及び第2電極15からなる
積層膜を挟みこみ、重り13で荷重を加え、加熱し平坦
化した。ここで、第1電極の材質はNiOで、厚さIo
oamである。前記固体電解質15はの材質は85oi
1%のT2O,の安定化ZrO2で、厚さ300μmで
ある。第2電極の材質はL a o、 ass r o
、 +sM n Osで、厚さ100μmである。
In the first embodiment, the first and second alumina plates are arranged so that their sheet surfaces face each other, and the first electrode 14 is placed between these alumina plates. A laminated film consisting of the solid electrolyte 15 and the second electrode 15 was sandwiched, a load was applied with the weight 13, and the film was heated and flattened. Here, the material of the first electrode is NiO, and the thickness Io
It is oam. The material of the solid electrolyte 15 is 85 oi.
1% T2O, stabilized ZrO2, 300 μm thick. The material of the second electrode is L ao, ass r o
, +sM n Os and has a thickness of 100 μm.

しかして、実施例1によれば、第1電極14.固体電解
質15及び第2電極15からなる積層膜を1100℃か
ら1250℃に加熱するとともに、ZrO2シー)12
a、 12bを介して4〜7gf/cm2の面圧荷重で
押圧するため、積層膜の反りを小さくできる。
According to the first embodiment, the first electrode 14. The laminated film consisting of the solid electrolyte 15 and the second electrode 15 is heated from 1100°C to 1250°C, and at the same time
Since the pressure is applied with a surface pressure load of 4 to 7 gf/cm2 via a and 12b, the warpage of the laminated film can be reduced.

また、電極と反応性が小さいZrO2シート12a。Furthermore, the ZrO2 sheet 12a has low reactivity with the electrode.

12bを積層膜と接触させているため、積層膜に反応層
等の劣化も生じない。
Since 12b is brought into contact with the laminated film, no deterioration of the reaction layer or the like occurs in the laminated film.

後掲する第1表は、矯正時温度を12[10’C1矯正
時間を15時間として矯正時圧力を3gf/e■2がら
8gf/c■2まで変えた結果を示す。矯正圧力が低い
場合には、十分な矯正ができず、高い場合には積層膜が
割れる結果となった。
Table 1 below shows the results of changing the straightening temperature from 3 gf/e2 to 8 gf/c2 with a straightening temperature of 12[10'C1 and a straightening time of 15 hours. When the straightening pressure was low, sufficient straightening was not possible, and when it was high, the laminated film was cracked.

後掲する第2表は、矯正圧力を5 g f /cm’ 
Table 2 below shows that the straightening pressure is 5 g f /cm'
.

矯正時間を15時間として矯正温度を1050”Cがら
1300℃まで変えた結果を示す。矯正温度が低い場合
には、反りが矯正ができず、高い場合には積層膜が割れ
た。
The results are shown in which the straightening time was set to 15 hours and the straightening temperature was changed from 1050''C to 1300°C.When the straightening temperature was low, the warp could not be straightened, and when the straightening temperature was high, the laminated film was cracked.

後掲する第3表は、矯正時圧力を5 g f /cs2
゜矯正温度を1200℃として矯正時間を3時間がら1
5時間まで変えた結果を示す。強制時間が3時間では強
制が十分でなく、4時間以上で良好な結果となった。
Table 3 below shows the pressure during correction of 5 g f /cs2.
゜The straightening temperature is 1200℃ and the straightening time is 3 hours to 1
The results are shown after changing the time up to 5 hours. When the forcing time was 3 hours, the forcing was not sufficient, and when the forcing time was 4 hours or more, good results were obtained.

[実施例2コ 第2図を参照する。[Example 2 See Figure 2.

実施例2では、焼成後の第1電極(N i O。In Example 2, the first electrode (NiO.

厚さ100 u m) 14/固体電解質(8tioD
%のY2O3の安定化ZrO2、厚さ300μm)/第
2電極(L a o、ssS r 0. +5M n 
O3、厚さ100、czm)15の積層膜を、8 ta
o(1%Y2O3粉体21に挾み5gf/cm2の圧力
をかけ、1200℃に加熱し、15時間保持した。処理
前の焼成体の反りは900μmであったが、矯正時の反
りは140μmであった。
Thickness: 100 μm) 14/Solid electrolyte (8tioD
% Y2O3 stabilization ZrO2, thickness 300 μm)/second electrode (L a o, ssS r 0. +5M n
O3, thickness 100, czm) 15 laminated film, 8 ta
o (1% Y2O3 powder 21 was sandwiched and a pressure of 5 gf/cm2 was applied, heated to 1200 ° C., and held for 15 hours. The warp of the fired body before treatment was 900 μm, but the warp after straightening was 140 μm. Met.

[実施例3] 第3図を参照する。[Example 3] See Figure 3.

実施例3では、焼成後の第1電極(N i O,厚さ1
00 μm) 14/固体電解質(8mof)%のY2
O、の安定化ZrO2、厚さ300 μm) /第2電
極(Lao8.s ro1gMn03 、厚さ10(1
8m)15の積層膜を、緻密な8mol)%Y2O3安
定化ZrO2板31に挟み、5gf/cm2の圧力をか
け、1200℃に加熱し、15時間保持した。処理前の
焼成体の反りは1100μmであったが、矯正時の反り
は160μmであった。
In Example 3, the first electrode (N i O, thickness 1
00 μm) 14/solid electrolyte (8mof)% Y2
Stabilization of ZrO2, thickness 300 μm) / second electrode (Lao8.s ro1gMn03, thickness 10 (1
8m)15 laminated films were sandwiched between dense 8mol)% Y2O3 stabilized ZrO2 plates 31, and a pressure of 5gf/cm2 was applied, heated to 1200°C, and held for 15 hours. The warpage of the fired body before treatment was 1100 μm, but the warp after straightening was 160 μm.

[発明の効果] 以上詳述した如く本発明によれば、燃料電極材と固体電
解質材と酸素電極材とを積層し焼結させた積層膜を適宜
な温度で加熱するとともにZrO材を介して適宜な面圧
荷重で押圧することにより、上記積層膜の燃焼時の反り
を小さくして、固体電解質燃料電池の性能低下を防止し
え、また積層膜に反応層等の劣化も生じない積層膜の形
成方法を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, a laminated film in which a fuel electrode material, a solid electrolyte material, and an oxygen electrode material are laminated and sintered is heated at an appropriate temperature and By pressing with an appropriate surface pressure load, the warping of the laminated membrane during combustion can be reduced, thereby preventing performance deterioration of solid electrolyte fuel cells, and also preventing deterioration of reaction layers etc. in the laminated membrane. It is possible to provide a method for forming.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1に係る積層膜の形成方法の説
明図、第2図は本発明の実施例2に係る積層膜の形成方
法の説明図、第3図は本発明の実施例3に係る積層膜の
形成方法の説明図、第4図は燃料電池の概略説明図、第
5図は電解質と電極が沿った場合の燃料電池の概略説明
図である。 11a 、 llb −Al120 iで板、12a 
、 12b −・・ZrO2シート、l 3 ・・・重
り、21−Y 203粉体、31−Z r 02板。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 13図 第4図
FIG. 1 is an explanatory diagram of a method of forming a laminated film according to Example 1 of the present invention, FIG. 2 is an explanatory diagram of a method of forming a laminated film according to Example 2 of the present invention, and FIG. 3 is an explanatory diagram of a method of forming a laminated film according to Example 2 of the present invention. FIG. 4 is a schematic diagram of a fuel cell, and FIG. 5 is a schematic diagram of a fuel cell in which an electrolyte and an electrode are aligned. 11a, llb-Al120 i plate, 12a
, 12b--ZrO2 sheet, l3...weight, 21-Y203 powder, 31-Zr02 plate. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 13 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 燃料電極材と固体電解質材と酸素電極材とを積層し焼結
させた積層膜を、1100℃から1250℃に加熱する
とともにZrO材を介して4gf/cm^2〜7gf/
cm^2の面圧荷重で押圧することを特徴とする積層膜
の形成方法。
A laminated film in which a fuel electrode material, a solid electrolyte material, and an oxygen electrode material are laminated and sintered is heated from 1100°C to 1250°C and heated at 4 gf/cm^2 to 7 gf/ through a ZrO material.
A method for forming a laminated film, characterized by pressing with a surface pressure load of cm^2.
JP2305302A 1990-11-09 1990-11-09 Method for forming laminate film Pending JPH04179061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2305302A JPH04179061A (en) 1990-11-09 1990-11-09 Method for forming laminate film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2305302A JPH04179061A (en) 1990-11-09 1990-11-09 Method for forming laminate film

Publications (1)

Publication Number Publication Date
JPH04179061A true JPH04179061A (en) 1992-06-25

Family

ID=17943468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2305302A Pending JPH04179061A (en) 1990-11-09 1990-11-09 Method for forming laminate film

Country Status (1)

Country Link
JP (1) JPH04179061A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003061931A2 (en) * 2002-01-22 2003-07-31 E.I. Du Pont De Nemours And Company Compression mould for making a membrane electrode assembly
JP2009004353A (en) * 2007-05-22 2009-01-08 Ngk Insulators Ltd Solid oxide fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003061931A2 (en) * 2002-01-22 2003-07-31 E.I. Du Pont De Nemours And Company Compression mould for making a membrane electrode assembly
WO2003061931A3 (en) * 2002-01-22 2003-11-13 Du Pont Compression mould for making a membrane electrode assembly
JP2009004353A (en) * 2007-05-22 2009-01-08 Ngk Insulators Ltd Solid oxide fuel cell

Similar Documents

Publication Publication Date Title
KR100849994B1 (en) Pressure Device for manufacturing Solid Oxide Fuel Cell and Manufacturing Method Using the Same
EP3716379B1 (en) Apparatus and method for plasticizing solid oxide fuel cell
JP7261562B2 (en) Fuel cell, fuel cell stack, and method of making same
JP2003163016A (en) Electrochemical equipment and conductive connector therefor
JPH04179061A (en) Method for forming laminate film
KR101150836B1 (en) The structure of solid oxide fuel cell and manufacturing method thereof
JP3434883B2 (en) Method for manufacturing fuel cell
JPH10172590A (en) Solid electrolyte type fuel cell
JPH05190184A (en) Electrode-electrolyte joint body, manufacture thereof, and fuel cell using thereof
JP6965041B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP3040645B2 (en) Dimple type solid electrolyte cell
KR101178527B1 (en) Separator for solid oxide fuel cell and manufacturing method thereof and fuel cell with separator
JP2704071B2 (en) Method for manufacturing single cell of solid oxide fuel cell
JPH0411985B2 (en)
JPH06203851A (en) Method and device for bonding solid polyelectrolyte film to electrode
JPH06310156A (en) Flat solid electrolyte type fuel cell
JP7287473B2 (en) Electrolyte sheet for solid oxide fuel cell, method for producing electrolyte sheet for solid oxide fuel cell, and single cell for solid oxide fuel cell
JP2004214001A (en) Jointing method and jointing device for electrode and solid polyelectrolyte membrane
JPH0689727A (en) Solid electrolyte type fuel cell
KR102100257B1 (en) Plate-type unit cell for solid oxide fuel cell with high strength
JPH01124964A (en) Flat plate type solid electrolyte fuel cell
KR101511582B1 (en) Method for manufacturing metal support for solid oxide fuel cell and solid oxide fuel cell comprising the same
JP2024140137A (en) Method and apparatus for manufacturing non-aqueous secondary battery
JPH05182681A (en) Method for baking lanthanum chromite molded body
JP2022145222A (en) Solid oxide type fuel cell and manufacturing method thereof