JP5255327B2 - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
JP5255327B2
JP5255327B2 JP2008139519A JP2008139519A JP5255327B2 JP 5255327 B2 JP5255327 B2 JP 5255327B2 JP 2008139519 A JP2008139519 A JP 2008139519A JP 2008139519 A JP2008139519 A JP 2008139519A JP 5255327 B2 JP5255327 B2 JP 5255327B2
Authority
JP
Japan
Prior art keywords
thin plate
support member
peripheral
softening point
seal portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008139519A
Other languages
Japanese (ja)
Other versions
JP2009043709A (en
Inventor
誠 大森
夏己 下河
七瀧  努
正幸 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2008139519A priority Critical patent/JP5255327B2/en
Priority to EP08252437.2A priority patent/EP2017914B1/en
Priority to US12/174,668 priority patent/US8603696B2/en
Publication of JP2009043709A publication Critical patent/JP2009043709A/en
Application granted granted Critical
Publication of JP5255327B2 publication Critical patent/JP5255327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、固体酸化物型燃料電池(Solid Oxide Fuel Cell:SOFC)等の反応装置に係わり、特に、薄板体とその薄板体を支持する支持部材とが1つずつ交互に積層されてなる(平板)スタック構造を有するものに関する。   The present invention relates to a reaction apparatus such as a solid oxide fuel cell (SOFC), and in particular, a thin plate and a supporting member that supports the thin plate are alternately stacked one by one ( Flat plate) relating to a stack structure.

従来から、上記スタック構造を有する固体酸化物型燃料電池が知られている(例えば、特許文献1を参照)。この場合、薄板体(「単セル」とも称呼される。)として、ジルコニアから構成される固体電解質層と、その固体電解質層の上面に形成された燃料極層と、その固体電解質層の下面に形成された空気極層と、が積層されてなる焼成体が使用され得る。以下、各薄板体について、薄板体の上方、下方に隣接する支持部材(「インターコネクタ」とも称呼される。)をそれぞれ、「上方支持部材」、「下方支持部材」とも称呼するものとする。
特開2004−342584号公報
Conventionally, a solid oxide fuel cell having the above-described stack structure is known (see, for example, Patent Document 1). In this case, as a thin plate (also referred to as “single cell”), a solid electrolyte layer made of zirconia, a fuel electrode layer formed on the upper surface of the solid electrolyte layer, and a lower surface of the solid electrolyte layer A fired body formed by laminating the formed air electrode layer may be used. Hereinafter, for each thin plate member, the support members (also referred to as “interconnectors”) adjacent to the upper and lower portions of the thin plate member are also referred to as “upper support member” and “lower support member”, respectively.
JP 2004-342584 A

各薄板体について、薄板体の周縁部が上方支持部材の周縁部の下面と下方支持部材の周縁部の上面との間に挟持されることで、上方支持部材の周縁部よりも内側に位置する平面部の下面と薄板体の燃料極層の上面との間の空間に燃料ガスが供給される燃料流路が区画・形成されるとともに、下方支持部材の周縁部よりも内側に位置する平面部の上面と薄板体の空気極層の下面との間の空間に酸素を含むガス(空気)が供給される空気流路が区画・形成され得る。   About each thin plate body, the peripheral part of a thin plate body is pinched | interposed between the lower surface of the peripheral part of an upper supporting member, and the upper surface of the peripheral part of a lower supporting member, and is located inside the peripheral part of an upper supporting member. A fuel flow path for supplying fuel gas is defined and formed in a space between the lower surface of the planar portion and the upper surface of the fuel electrode layer of the thin plate member, and the planar portion is located on the inner side of the peripheral edge of the lower support member An air flow path through which oxygen-containing gas (air) is supplied can be defined and formed in a space between the upper surface of the thin plate member and the lower surface of the air electrode layer of the thin plate member.

係る構成にて、固体酸化物型燃料電池の作動温度(例えば、800℃、以下、単に「作動温度」と称呼する。)まで薄板体を加熱した状態で、燃料流路及び空気流路に燃料ガス及び空気がそれぞれ供給されることで、各薄板体の上面及び下面に燃料ガス及び空気がそれぞれ接触し、この結果、各薄板体にて発電反応が発生する。   With such a configuration, fuel is supplied to the fuel channel and the air channel while the thin plate member is heated to the operating temperature of the solid oxide fuel cell (for example, 800 ° C., hereinafter simply referred to as “operating temperature”). By supplying gas and air, respectively, the fuel gas and air come into contact with the upper and lower surfaces of each thin plate member, and as a result, a power generation reaction occurs in each thin plate member.

ところで、上記スタック構造を有する固体酸化物型燃料電池では、燃料流路内の燃料ガスと空気流路内の空気とが混ざらないように且つ外部に漏れないように、更には、燃料電池全体の形状を維持するため、一般に、各薄板体について、薄板体の周縁部、上方支持部材の周縁部、及び下方支持部材の周縁部がシール材により互いにシールされ且つ固定される。   By the way, in the solid oxide fuel cell having the above-described stack structure, the fuel gas in the fuel flow channel and the air in the air flow channel are not mixed and leaked to the outside. In order to maintain the shape, generally, for each thin plate member, the peripheral portion of the thin plate member, the peripheral portion of the upper support member, and the peripheral portion of the lower support member are sealed and fixed to each other by a sealing material.

支持部材は一般には金属で構成されていて、支持部材の熱膨張率は薄板体の熱膨張率よりも大きい場合が多い。例えば、支持部材の熱膨張率が薄板体の熱膨張率よりも大きい場合、常温から作動温度まで薄板体が昇温されると、平面方向に沿った方向において支持部材が薄板体よりもより伸長しようとする。しかしながら、上述のように、薄板体はシール材によりその周縁部において上方・下方支持部材の周縁部に固定されている。この結果、薄板体はその周縁部において上方・下方支持部材から平面方向に沿った方向の引っ張り力(熱応力)を受ける。また、燃料電池の急速起動時等、燃料電池内部において局所的に温度差が発生する場合も、薄板体はこの温度差に起因して上記と同様に熱応力を受け得る。   The support member is generally made of metal, and the thermal expansion coefficient of the support member is often larger than the thermal expansion coefficient of the thin plate member. For example, when the thermal expansion coefficient of the support member is larger than the thermal expansion coefficient of the thin plate body, when the thin plate body is heated from room temperature to the operating temperature, the support member extends more in the direction along the plane direction than the thin plate body. try to. However, as described above, the thin plate member is fixed to the peripheral portion of the upper and lower support members at the peripheral portion thereof by the sealing material. As a result, the thin plate body receives tensile force (thermal stress) in the direction along the plane direction from the upper and lower support members at the peripheral edge portion. Further, even when a temperature difference locally occurs inside the fuel cell, such as when the fuel cell is rapidly activated, the thin plate member can be subjected to thermal stress as described above due to this temperature difference.

ここで、上記シール材による固定が完全に相対移動不能になされている場合、薄板体が受ける上記引っ張り力(熱応力)が過大となって、薄板体に割れが発生する等の問題が発生し得る。係る問題は、薄板体の厚さが小さいほどより発生し易い。   Here, when the fixing by the sealing material is made completely impossible to move relative to each other, the tensile force (thermal stress) received by the thin plate body becomes excessive, and the thin plate body is cracked. obtain. Such a problem is more likely to occur as the thickness of the thin plate member is smaller.

以上より、本発明の目的は、薄板体と支持部材とが1つずつ交互に積層されてなる(平板)スタック構造を有する小型の反応装置において、常温から高温の作動温度まで薄板体が昇温された場合における熱応力に起因する薄板体の割れの発生を抑制し得るものを提供することにある。   In view of the above, an object of the present invention is to increase the temperature of a thin plate from a normal temperature to a high operating temperature in a small reactor having a (flat) stack structure in which thin plates and support members are alternately stacked one by one. An object of the present invention is to provide a material that can suppress the occurrence of cracks in the thin plate due to the thermal stress in the case of being applied.

上記目的を達成するための本発明による反応装置は、常温よりも高い作動温度にて化学反応がなされる1又は複数の薄板体と、前記1又は複数の薄板体を支持する複数の支持部材と、が1つずつ交互に積層されてなる。支持部材の熱膨張率は、薄板体の熱膨張率より大きくても小さくてもよい。ここで、反応装置全体を小型化する観点から、各薄板体の厚さは、20μm以上且つ500μm以下であり、且つ、薄板体全体に亘って均一であることが好ましい。   In order to achieve the above object, a reaction apparatus according to the present invention includes one or more thin plate bodies that perform a chemical reaction at an operating temperature higher than room temperature, and a plurality of support members that support the one or more thin plate bodies. Are alternately stacked one by one. The thermal expansion coefficient of the support member may be larger or smaller than the thermal expansion coefficient of the thin plate member. Here, from the viewpoint of reducing the size of the entire reaction apparatus, the thickness of each thin plate member is preferably 20 μm or more and 500 μm or less, and is preferably uniform over the entire thin plate member.

また、前記各薄板体について、前記薄板体の周縁部が前記上方支持部材の周縁部の下面と前記下方支持部材の周縁部の上面との間に挟持されるように、前記薄板体の周縁部、前記上方支持部材の周縁部、及び前記下方支持部材の周縁部がシール材により互いにシールされている。   Further, for each of the thin plate bodies, the peripheral edge portion of the thin plate body is sandwiched between the lower surface of the peripheral edge portion of the upper support member and the upper surface of the peripheral edge portion of the lower support member. The peripheral portion of the upper support member and the peripheral portion of the lower support member are sealed with each other by a sealing material.

上記本発明による反応装置の特徴は、前記シール材が占める領域内における位置によってシール材の材質が異なる点にある。即ち、前記シール材は、前記薄板体の周縁部の上面と前記上方支持部材の周縁部の下面、及び前記薄板体の周縁部の下面と前記下方支持部材の周縁部の上面をそれぞれシールする第1シール部と、前記上方支持部材の周縁部の下側端と前記下方支持部材の周縁部の上側端をシールする第2シール部とを有し、前記第1シール部において少なくとも前記薄板体の周縁部の上面及び下面と接触する部分は、前記作動温度よりも低い第1軟化点を有するガラスからなり、前記第2シール部において少なくとも前記上方支持部材の周縁部の下側端と前記下方支持部材の周縁部の上側端の間の部分は、前記第1軟化点よりも高い第2軟化点を有するガラス、又はセラミックスからなる。   The characteristic of the reactor according to the present invention is that the material of the sealing material differs depending on the position in the region occupied by the sealing material. That is, the sealing material seals the upper surface of the peripheral portion of the thin plate member and the lower surface of the peripheral portion of the upper support member, and the lower surface of the peripheral portion of the thin plate member and the upper surface of the peripheral portion of the lower support member. 1 seal part, and the 2nd seal part which seals the lower end of the peripheral part of the above-mentioned upper support member, and the upper end of the peripheral part of the above-mentioned lower support member, and at least the above-mentioned thin board object in the above-mentioned 1st seal part The portions contacting the upper and lower surfaces of the peripheral portion are made of glass having a first softening point lower than the operating temperature, and at least the lower end of the peripheral portion of the upper support member and the lower support in the second seal portion The part between the upper end of the peripheral part of a member consists of glass or ceramics which has a 2nd softening point higher than the said 1st softening point.

具体的には、例えば、前記シール材は以下のように構成され得る。即ち、前記第1シール部と前記第2シール部とが分離していて、前記第1シール部の全体が前記第1軟化点を有するガラスからなり、前記第2シール部の全体が前記第2軟化点を有するガラス、又はセラミックスからなる。前記第2シール部は、前記上側支持部材の周縁部の下面と前記下側支持部材の周縁部の上面の間の空間内に進入する進入部と、前記進入部と繋がっていて前記上側支持部材の周縁部の側面と前記下側支持部材の周縁部の側面とを覆う被覆部とを有する。或いは、前記第1シール部の全体が前記第1軟化点を有するガラスからなり、前記第2シール部の全体が前記第2軟化点を有するガラス、又はセラミックスからなっていて、前記第2シール部は、前記上側支持部材の周縁部の下面と前記下側支持部材の周縁部の上面の間の空間内に進入する進入部と、前記進入部と繋がっていて前記上側支持部材の周縁部の側面と前記下側支持部材の周縁部の側面とを覆う被覆部とを有し、前記第1シール部は、前記第2シール部の前記進入部と接触している。   Specifically, for example, the sealing material can be configured as follows. That is, the first seal portion and the second seal portion are separated, and the entire first seal portion is made of glass having the first softening point, and the entire second seal portion is the second seal portion. It consists of glass or ceramics having a softening point. The second seal portion is connected to the entry portion entering the space between the lower surface of the peripheral edge portion of the upper support member and the upper surface of the peripheral edge portion of the lower support member, and is connected to the entry portion, and the upper support member A covering portion that covers a side surface of the peripheral edge portion and a side surface of the peripheral edge portion of the lower support member. Alternatively, the entire first seal portion is made of glass having the first softening point, and the entire second seal portion is made of glass or ceramic having the second softening point, and the second seal portion. Is an entry portion that enters a space between the lower surface of the peripheral portion of the upper support member and the upper surface of the peripheral portion of the lower support member, and the side surface of the peripheral portion of the upper support member that is connected to the entry portion. And a covering portion that covers a side surface of the peripheral edge of the lower support member, and the first seal portion is in contact with the entry portion of the second seal portion.

これによれば、第1軟化点を有するガラスからなる第1シール部は、薄板体の周縁部上面と上方支持部材の周縁部下面(の間の空間、境界部分)、及び薄板体の周縁部下面と下方支持部材の周縁部上面(の間の空間、境界部分)をそれぞれシールする機能を発揮する。また、第1シール部は、その温度が第1軟化点未満の場合、薄板体の周縁部と上方・下方支持部材の周縁部とを完全に相対移動不能に固定し得る。一方、第1シール部は、その温度が第1軟化点以上の場合、第1シール部が軟化することで薄板体の周縁部が上方・下方支持部材の周縁部に対して相対移動することを許容する。加えて、第1軟化点は薄板体の作動温度よりも低い。   According to this, the 1st seal part which consists of glass which has the 1st softening point, the peripheral part upper surface of a thin plate body, and the peripheral part lower surface (space between and a boundary part) of an upper support member, and the peripheral part of a thin plate body The function of sealing the lower surface and the upper surface of the peripheral portion of the lower support member (the space between and the boundary portion) is exhibited. Further, when the temperature of the first seal portion is lower than the first softening point, the peripheral portion of the thin plate member and the peripheral portions of the upper and lower support members can be completely fixed so as not to be relatively movable. On the other hand, when the temperature of the first seal portion is equal to or higher than the first softening point, the peripheral portion of the thin plate member moves relative to the peripheral portion of the upper and lower support members by softening the first seal portion. Allow. In addition, the first softening point is lower than the operating temperature of the thin plate member.

従って、薄板体(従って、第1シール部)が常温から作動温度まで昇温する途中の段階で薄板体の周縁部が上方・下方支持部材の周縁部に対して相対移動可能となる。これにより、作動温度まで薄板体が昇温された場合において、薄板体が上方・下方支持部材から受ける上記引っ張り力(熱応力)が過大となることが抑制され得、薄板体に割れが発生する等の問題の発生が抑制され得る。   Therefore, the peripheral portion of the thin plate member can be moved relative to the peripheral portion of the upper and lower support members at a stage where the thin plate member (and hence the first seal portion) is heated from room temperature to the operating temperature. As a result, when the thin plate member is heated to the operating temperature, it is possible to prevent the tensile force (thermal stress) received by the thin plate member from the upper and lower support members from being excessive, and the thin plate member is cracked. The occurrence of such problems can be suppressed.

他方、第2軟化点を有するガラス、又はセラミックからなる第2シール部は、上方支持部材の周縁部の下側端と下方支持部材の周縁部の上側端(の間の空間、隙間)をシールする機能を発揮する。また、第2軟化点は第1軟化点より高く、例えば、第2軟化点は作動温度よりも高い。この場合、作動温度まで薄板体が昇温されてもなお、第2シール部は上方・下方支持部材の周縁部同士を完全に相対移動不能に固定し得る。   On the other hand, the second seal portion made of glass or ceramic having the second softening point seals the lower end of the peripheral portion of the upper support member and the upper end (the space, gap) of the peripheral portion of the lower support member. Demonstrate the function to do. The second softening point is higher than the first softening point, for example, the second softening point is higher than the operating temperature. In this case, even when the temperature of the thin plate member is raised to the operating temperature, the second seal portion can completely fix the peripheral portions of the upper and lower support members so that they cannot move relative to each other.

また、第2シール部を構成するガラスが結晶化温度(>第2軟化点)を有する場合、第2軟化点が作動温度より低い場合であっても、反応装置の製造過程での熱処理工程や反応装置の作動状態等において第2シール部が結晶化温度より高い温度まで少なくとも1回昇温された後では、第2シール部の一部又は全部が結晶化する。この結果、第2シール部は上方・下方支持部材の周縁部同士を完全に相対移動不能に固定し得る。以上より、反応装置全体の形状が維持され得る。   Further, when the glass constituting the second seal portion has a crystallization temperature (> second softening point), even if the second softening point is lower than the operating temperature, After the second seal part is heated at least once to a temperature higher than the crystallization temperature in the operating state of the reaction apparatus or the like, a part or all of the second seal part is crystallized. As a result, the second seal portion can completely fix the peripheral portions of the upper and lower support members so that they cannot move relative to each other. From the above, the overall shape of the reaction apparatus can be maintained.

以上のように、本発明に係るシール材では、第1シール部は、シール機能に加えて、薄板体の周縁部の上方・下方支持部材の周縁部に対する相対移動を許容する機能を有する。第2シール部は、シール機能に加えて、反応装置全体の形状を維持する機能を有する。このように、シール材が占める領域内における位置によってシール材の材質を異ならせることで、シール機能と反応装置全体の形状を維持する機能とが安定して発揮されつつ、作動温度まで薄板体が昇温された場合における薄板体の割れの発生が抑制され得る。   As described above, in the sealing material according to the present invention, the first seal portion has a function of allowing relative movement of the peripheral portion of the thin plate member relative to the peripheral portion of the upper and lower support members in addition to the sealing function. In addition to the sealing function, the second seal part has a function of maintaining the shape of the entire reaction apparatus. Thus, by making the material of the sealing material different depending on the position in the region occupied by the sealing material, the sealing function and the function of maintaining the overall shape of the reaction apparatus are stably exhibited, and the thin plate body is brought to the operating temperature. Generation of cracks in the thin plate member when the temperature is raised can be suppressed.

加えて、本発明による反応装置が有する(平板)スタック構造では、例えば、反応装置(例えば、固体酸化物型燃料電池等)の急速起動時等において、装置内部において積層方向(各薄板体の厚さ方向)にて一時的に大きな温度分布が生じ得る。この場合であっても、複数の薄板体のうちで温度が第1軟化点に達したものから順に対応する第1シール部の軟化により上記熱応力が開放されていく。換言すれば、薄板体毎に個別に熱応力が開放され得る構造となっている。従って、スタック構造において積層方向における熱応力の累積が発生し得ないから、熱応力に対する良好な耐久性を得ることができる。   In addition, in the (flat plate) stack structure of the reaction apparatus according to the present invention, for example, when the reaction apparatus (for example, a solid oxide fuel cell) is rapidly started, the stacking direction (the thickness of each thin plate body) is set inside the apparatus. A large temperature distribution can occur temporarily in the vertical direction). Even in this case, the thermal stress is released by the softening of the corresponding first seal portion in order from the one where the temperature has reached the first softening point among the plurality of thin plate members. In other words, the thermal stress can be released individually for each thin plate member. Therefore, since accumulation of thermal stress in the stacking direction cannot occur in the stack structure, good durability against thermal stress can be obtained.

上記本発明に係る反応装置は、例えば、固体酸化物型燃料電池であることが好適である。即ち、この場合、前記各薄板体は、固体電解質層と、前記固体電解質層の上面に形成された燃料極層と、前記固体電解質層の下面に形成された空気極層と、が積層・焼成されてなり、前記各薄板体について、前記上方支持部材の周縁部よりも内側に位置する平面部の下面と前記薄板体の燃料極層の上面との間の空間に燃料ガスが供給される燃料流路が区画・形成されるとともに、前記下方支持部材の周縁部よりも内側に位置する平面部の上面と前記薄板体の空気極層の下面との間の空間に酸素を含むガスが供給される空気流路が区画・形成される。   The reaction apparatus according to the present invention is preferably, for example, a solid oxide fuel cell. That is, in this case, each thin plate member is formed by laminating and firing a solid electrolyte layer, a fuel electrode layer formed on the upper surface of the solid electrolyte layer, and an air electrode layer formed on the lower surface of the solid electrolyte layer. In each of the thin plate bodies, the fuel gas is supplied to the space between the lower surface of the flat portion located inside the peripheral edge portion of the upper support member and the upper surface of the fuel electrode layer of the thin plate body. A flow path is defined and formed, and a gas containing oxygen is supplied to a space between the upper surface of the flat portion located inside the peripheral edge portion of the lower support member and the lower surface of the air electrode layer of the thin plate member. An air flow path is defined and formed.

固体酸化物型燃料電池の場合、一般に、前記作動温度は600℃以上900℃以下である。この場合、前記第1軟化点は400℃以上700℃以下であり、前記第2軟化点は600℃以上900℃以下であることが好ましい。これによれば、反応装置全体の形状を維持する機能が安定して発揮されつつ、作動温度まで薄板体が昇温された場合における薄板体の割れの発生が効果的に抑制され得ることが判明した。   In the case of a solid oxide fuel cell, the operating temperature is generally 600 ° C. or higher and 900 ° C. or lower. In this case, it is preferable that the first softening point is 400 ° C. or higher and 700 ° C. or lower, and the second softening point is 600 ° C. or higher and 900 ° C. or lower. According to this, it has been found that the occurrence of cracking of the thin plate can be effectively suppressed when the temperature of the thin plate is raised to the operating temperature while the function of maintaining the shape of the entire reactor is stably exerted. did.

また、上記本発明に係る反応装置においては、前記各薄板体について、前記上方支持部材の周縁部よりも内側に位置する平面部の下面と前記薄板体の上面との間の空間、及び、前記下方支持部材の周縁部よりも内側に位置する平面部の上面と前記薄板体の下面との間の空間のそれぞれにおいて、前記支持部材と前記薄板体との間の電気的接続を確保する集電部材が内装されていて、前記各集電部材は、積層方向において弾性を有するとともに、前記支持部材と前記薄板体とを前記積層方向において互いに引き離す方向の弾性力が発生するように内装されることが好適である。   In the reaction apparatus according to the present invention, for each of the thin plate bodies, a space between the lower surface of the flat portion located inside the peripheral edge portion of the upper support member and the upper surface of the thin plate body, and Current collecting that secures electrical connection between the support member and the thin plate member in each of the spaces between the upper surface of the flat portion located on the inner side of the peripheral portion of the lower support member and the lower surface of the thin plate member Each of the current collecting members has elasticity in the stacking direction, and is mounted so as to generate an elastic force in a direction that separates the support member and the thin plate member from each other in the stacking direction. Is preferred.

係る集電部材の内装により、隣接する支持部材と薄板体との間の電気的接続が確保され得る。更には、上述した第1シール部の軟化の作用に加えて、各薄板体が上下の集電部材からそれぞれ受ける弾性力の作用により、反応装置(例えば、固体酸化物型燃料電池等)の急速起動時等において、薄板体の割れがより一層発生し難くなることが判明した。   The electrical connection between the adjacent supporting member and the thin plate member can be ensured by the interior of the current collecting member. Further, in addition to the softening action of the first seal portion described above, the action of the elastic force that each thin plate member receives from the upper and lower current collecting members respectively causes the rapid reaction of the reaction apparatus (eg, solid oxide fuel cell). It has been found that cracking of the thin plate member is less likely to occur at the time of start-up and the like.

この場合(特に、上述した固体酸化物型燃料電池の場合であって各薄板体の厚さが20μm以上且つ500μm以下の場合)、前記各集電部材の前記弾性に関する弾性係数は、0.1〜8N/μmであることが好ましい。   In this case (particularly, in the case of the above-described solid oxide fuel cell and the thickness of each thin plate member is not less than 20 μm and not more than 500 μm), the elastic coefficient relating to the elasticity of each current collecting member is 0.1 It is preferably ˜8 N / μm.

検討によれば、各集電部材の弾性係数が8N/μmよりも大きい場合、反応装置(例えば、固体酸化物型燃料電池等)の急速起動時等において、薄板体の割れが却って発生し易くなることが判明した(詳細は後述する)。一方、各集電部材の弾性係数が0.1N/μmよりも小さい場合、集電部材と、支持部材又は薄板体との接点において接触不良が発生し易くなることが判明した(詳細は後述する)。   According to the study, when the elastic coefficient of each current collecting member is larger than 8 N / μm, the thin plate body is easily cracked at the time of rapid start-up of the reaction apparatus (for example, solid oxide fuel cell). (It will be described later in detail). On the other hand, when the elastic coefficient of each current collecting member is smaller than 0.1 N / μm, it has been found that poor contact is likely to occur at the contact point between the current collecting member and the support member or thin plate (details will be described later). ).

以上より、各集電部材の弾性係数が0.1〜8N/μmであると、隣接する支持部材と薄板体との間の電気的接続が確実に確保され得るとともに、反応装置(例えば、固体酸化物型燃料電池等)の急速起動時等において、薄板体の割れを発生し難くすることができる。   As described above, when the elastic coefficient of each current collecting member is 0.1 to 8 N / μm, electrical connection between the adjacent support member and the thin plate member can be reliably ensured, and the reaction apparatus (for example, a solid member) When the oxide fuel cell or the like is rapidly started, it is possible to make it difficult for the thin plate to crack.

以下、図面を参照しつつ本発明の実施形態に係る固体酸化物型燃料電池(反応装置)について説明する。   Hereinafter, a solid oxide fuel cell (reactor) according to an embodiment of the present invention will be described with reference to the drawings.

(燃料電池の全体構造)
図1は、本発明の一実施形態に係るデバイスである固体酸化物型燃料電池(以下、単に「燃料電池」と称呼する。)10の破断斜視図である。図2は、燃料電池10の部分分解斜視図である。燃料電池10は、薄板体11と支持部材12とが交互に積層されることにより形成されている。即ち、燃料電池10は、平板スタック構造を備えている。薄板体11は、燃料電池10の「単セル」とも称呼される。支持部材12は、「インターコネクタ」とも称呼される。
(Overall structure of fuel cell)
FIG. 1 is a cutaway perspective view of a solid oxide fuel cell (hereinafter simply referred to as “fuel cell”) 10 which is a device according to an embodiment of the present invention. FIG. 2 is a partially exploded perspective view of the fuel cell 10. The fuel cell 10 is formed by alternately laminating thin plate members 11 and support members 12. That is, the fuel cell 10 has a flat stack structure. The thin plate member 11 is also referred to as a “single cell” of the fuel cell 10. The support member 12 is also referred to as an “interconnector”.

図2の円A内に拡大して示したように、薄板体11は、電解質層(固体電解質層)11aと、電解質層11aの上(上面)に形成された燃料極層11bと、電解質層11a上の燃料極層11bとは反対の面(下面)に形成された空気極層11cと、を有している。薄板体11の平面形状は、互いに直交するx軸及びy軸の方向に沿う辺を有する正方形(1辺の長さ=A’)である。薄板体11は、x軸及びy軸に直交するz軸方向に厚み方向を有する板体である。   As shown in an enlarged circle A in FIG. 2, the thin plate member 11 includes an electrolyte layer (solid electrolyte layer) 11a, a fuel electrode layer 11b formed on the upper surface (upper surface), and an electrolyte layer. And an air electrode layer 11c formed on a surface (lower surface) opposite to the fuel electrode layer 11b on 11a. The planar shape of the thin plate member 11 is a square (length of one side = A ′) having sides along the x-axis and y-axis directions orthogonal to each other. The thin plate member 11 is a plate member having a thickness direction in the z-axis direction orthogonal to the x-axis and the y-axis.

本例において、電解質層11aはYSZ(イットリア安定化ジルコニア)の緻密な焼成体である。燃料極層11bは、Ni−YSZからなる焼成体であり、多孔質電極層である。空気極層11cはLSM(La(Sr)MnO3:ランタンストロンチウムマンガナイト)−YSZからなる焼成体であり、多孔質電極層である。電解質層11a、燃料極層11b、及び空気極層11cの常温から1000℃での平均熱膨張率はそれぞれ、およそ、10.8ppm/K、12.5ppm/K、及び11(10.8)ppm/Kである。また、空気極層11cは、LSCF(ランタンストロンチウムコバルトフェライト)からなる焼成体であってもよい。この場合、空気極層11cの常温から1000℃での平均熱膨張率は、12ppm/Kである。   In this example, the electrolyte layer 11a is a dense fired body of YSZ (yttria stabilized zirconia). The fuel electrode layer 11b is a fired body made of Ni—YSZ and is a porous electrode layer. The air electrode layer 11c is a fired body made of LSM (La (Sr) MnO3: lanthanum strontium manganite) -YSZ, and is a porous electrode layer. The average thermal expansion coefficients of the electrolyte layer 11a, the fuel electrode layer 11b, and the air electrode layer 11c from room temperature to 1000 ° C. are approximately 10.8 ppm / K, 12.5 ppm / K, and 11 (10.8) ppm, respectively. / K. The air electrode layer 11c may be a fired body made of LSCF (lanthanum strontium cobalt ferrite). In this case, the average thermal expansion coefficient of the air electrode layer 11c from room temperature to 1000 ° C. is 12 ppm / K.

薄板体11は、一対のセル貫通孔11d,11dを備えている。それぞれのセル貫通孔11dは、電解質層11a、燃料極層11b及び空気極層11cを貫通している。一対のセル貫通孔11d,11dは、薄板体11の一つの辺の近傍であってその辺の両端部近傍領域に形成されている。   The thin plate member 11 includes a pair of cell through holes 11d and 11d. Each cell through hole 11d passes through the electrolyte layer 11a, the fuel electrode layer 11b, and the air electrode layer 11c. The pair of cell through holes 11d and 11d are formed in the vicinity of one side of the thin plate member 11 and in the vicinity of both ends of the side.

図3は、図2においてx軸と平行な1−1線を含むとともにx−z平面と平行な平面に沿って支持部材12を切断した支持部材12の断面図である。   FIG. 3 is a cross-sectional view of the support member 12 taken along the plane including the 1-1 line parallel to the x axis and parallel to the xz plane in FIG. 2.

図2及び図3に示したように、支持部材12は、平面部12aと、上方枠体部12bと、下方枠体部12cと、を備えている。支持部材12の平面形状は、互いに直交するx軸及びy軸の方向に沿う辺を有する正方形(1辺の長さ=A、AはA’より若干大きい)である。   As shown in FIGS. 2 and 3, the support member 12 includes a flat surface portion 12 a, an upper frame portion 12 b, and a lower frame portion 12 c. The planar shape of the support member 12 is a square (side length = A, A is slightly larger than A ′) having sides along the x-axis and y-axis directions orthogonal to each other.

支持部材12は、Ni系耐熱合金(例えば、フェライト系SUS、インコネル600及びハステロイ等)から構成されている。支持部材12の常温から1000℃での平均熱膨張率は、例えばフェライト系SUSであるSUS430の場合、およそ12.5ppm/Kである。従って、支持部材12の熱膨張率は、薄板体11の平均熱膨張率よりも大きい。従って、燃料電池10の温度が変化したとき、薄板体11と支持部材12との間にて伸縮量差が生じる。   The support member 12 is made of a Ni-based heat-resistant alloy (for example, ferrite-based SUS, Inconel 600, Hastelloy, etc.). For example, in the case of SUS430, which is a ferrite SUS, the average thermal expansion coefficient of the support member 12 from room temperature to 1000 ° C. is approximately 12.5 ppm / K. Therefore, the thermal expansion coefficient of the support member 12 is larger than the average thermal expansion coefficient of the thin plate member 11. Accordingly, when the temperature of the fuel cell 10 changes, a difference in expansion and contraction occurs between the thin plate member 11 and the support member 12.

平面部12aは、z軸方向に厚み方向を有する薄い平板体である。平面部12aの平面形状は、x軸及びy軸方向に沿う辺を有する正方形(1辺の長さ=L(<A))である。   The flat surface portion 12a is a thin flat plate having a thickness direction in the z-axis direction. The planar shape of the flat surface portion 12a is a square (length of one side = L (<A)) having sides along the x-axis and y-axis directions.

上方枠体部12bは、平面部12aの周囲(4つの辺の近傍領域、即ち、外周近傍領域)において上方に向けて立設された枠体である。上方枠体部12bは、外周枠部12b1と段差形成部12b2とからなっている。   The upper frame body portion 12b is a frame body erected upward in the periphery of the flat surface portion 12a (a region near four sides, that is, a region near the outer periphery). The upper frame body portion 12b includes an outer peripheral frame portion 12b1 and a step forming portion 12b2.

外周枠部12b1は、支持部材12の最外周側に位置している。外周枠部12b1の縦断面(例えば、y軸方向に長手方向を有する外周枠部12b1をx−z平面に平行な平面に沿って切断した断面)の形状は長方形(又は正方形)である。   The outer peripheral frame portion 12 b 1 is located on the outermost peripheral side of the support member 12. The shape of the longitudinal section of the outer peripheral frame portion 12b1 (for example, a cross section obtained by cutting the outer peripheral frame portion 12b1 having a longitudinal direction in the y-axis direction along a plane parallel to the xz plane) is a rectangle (or a square).

段差形成部12b2は、平面部12aの四つの角部のうちの一つの角部において、外周枠部12b1の内周面から支持部材12の中央に向けて延設された部分である。段差形成部12b2の下面は平面部12aと連接している。段差形成部12b2の平面視における形状は略正方形である。段差形成部12b2の上面(平面)は、外周枠部12b1の上面(平面)と連続している。段差形成部12b2には、貫通孔THが形成されている。貫通孔THは、段差形成部12b2の下方に位置する平面部12aにも貫通している。   The step forming portion 12b2 is a portion that extends from the inner peripheral surface of the outer peripheral frame portion 12b1 toward the center of the support member 12 at one of the four corners of the flat surface portion 12a. The lower surface of the step forming portion 12b2 is connected to the flat portion 12a. The shape of the step forming portion 12b2 in plan view is substantially square. The upper surface (plane) of the step forming portion 12b2 is continuous with the upper surface (plane) of the outer peripheral frame portion 12b1. A through hole TH is formed in the step forming portion 12b2. The through hole TH also penetrates the flat surface portion 12a located below the step forming portion 12b2.

下方枠体部12cは、平面部12aの周囲(4つの辺の近傍領域、即ち、外周近傍領域)において下方に向けて立設された枠体である。下方枠体部12cは、平面部12aの厚さ方向の中心線CLに対して上方枠体部12bと対称形状を有している。従って、下方枠体部12cは、外周枠部12b1、及び段差形成部12b2とそれぞれ同一形状の外周枠部12c1、及び段差形成部12c2を備えている。但し、段差形成部12c2は、平面部12aの四つの角部のうち段差形成部12b2が形成されている角部と隣り合う2つの角部のうちの一方の角部に配置・形成されている。   The lower frame body portion 12c is a frame body erected downward around the flat surface portion 12a (a region near the four sides, that is, a region near the outer periphery). The lower frame part 12c has a symmetrical shape with the upper frame part 12b with respect to the center line CL in the thickness direction of the plane part 12a. Accordingly, the lower frame body portion 12c includes an outer peripheral frame portion 12c1 and a step forming portion 12c2 that have the same shape as the outer peripheral frame portion 12b1 and the step forming portion 12b2, respectively. However, the step forming portion 12c2 is arranged and formed at one corner portion of two corner portions adjacent to the corner portion where the step forming portion 12b2 is formed among the four corner portions of the flat surface portion 12a. .

図4は、薄板体11及び薄板体11を支持(挟持)した状態における一対の支持部材12を、図2においてy軸と平行な2−2線を含むとともにy−z平面と平行な平面に沿って切断した縦断面図である。上述したように、燃料電池10は、薄板体11と支持部材12とが交互に積層されることにより形成されている。   4 shows the thin plate body 11 and the pair of support members 12 in a state of supporting (holding) the thin plate body 11 in a plane that includes a 2-2 line parallel to the y axis in FIG. 2 and is parallel to the yz plane. It is the longitudinal cross-sectional view cut | disconnected along. As described above, the fuel cell 10 is formed by alternately laminating the thin plate members 11 and the support members 12.

ここで、この一対の支持部材12のうち、薄板体11に対してその下方・上方に隣接するものをそれぞれ、便宜上、下方支持部材121及び上方支持部材122と称呼する。図4に示したように、下方支持部材121及び上方支持部材122は、下方支持部材121の上方枠体部12bの上に上方支持部材122の下方枠体部12cが対向するように互いに同軸的に配置される。   Here, of the pair of support members 12, those adjacent to the thin plate member 11 below and above are respectively referred to as a lower support member 121 and an upper support member 122 for convenience. As shown in FIG. 4, the lower support member 121 and the upper support member 122 are coaxial with each other so that the lower frame body portion 12 c of the upper support member 122 faces the upper frame body portion 12 b of the lower support member 121. Placed in.

薄板体11は、その周縁部全周が、下方支持部材121の上方枠体部12b(周縁部)の上面と上方支持部材122の下方枠体部12c(周縁部)の下面との間に挟持される。このとき、薄板体11は、下方支持部材121の平面部12aの上面に空気極層11cが対向するように配置され、上方支持部材122の平面部12aの下面に燃料極層11bが対向するように配置される。   The entire periphery of the thin plate member 11 is sandwiched between the upper surface of the upper frame portion 12b (peripheral portion) of the lower support member 121 and the lower surface of the lower frame portion 12c (peripheral portion) of the upper support member 122. Is done. At this time, the thin plate member 11 is disposed so that the air electrode layer 11 c faces the upper surface of the flat portion 12 a of the lower support member 121, and the fuel electrode layer 11 b faces the lower surface of the flat portion 12 a of the upper support member 122. Placed in.

薄板体11の周縁部全周と、下方支持部材121の上方枠体部12bと、上方支持部材122の下方枠体部12cとは、シール材13により互いにシールされている。このシール材13については後述する。   The entire periphery of the thin plate member 11, the upper frame portion 12 b of the lower support member 121, and the lower frame portion 12 c of the upper support member 122 are sealed with each other by the sealing material 13. The sealing material 13 will be described later.

支持部材12の平面形状(=正方形)の1辺の長さAは、本例では、5mm以上且つ200mm以下である。支持部材12の平面部12aの平面形状(=正方形)の1辺の長さLは、本例では、4mm以上且つ190mm以下である。薄板体11の厚さtは、全体に渡って均一であり、本例では、20μm以上且つ500μm以下である。なお、電解質層11a、燃料極層11b、及び空気極層11cの厚さはそれぞれ、例えば、1μm以上且つ50μm以下、5μm以上且つ500μm以下、及び、5μm以上且つ200μm以下である。   The length A of one side of the planar shape (= square) of the support member 12 is 5 mm or more and 200 mm or less in this example. In this example, the length L of one side of the planar shape (= square) of the planar portion 12a of the support member 12 is 4 mm or more and 190 mm or less. The thickness t of the thin plate member 11 is uniform throughout, and is 20 μm or more and 500 μm or less in this example. The thicknesses of the electrolyte layer 11a, the fuel electrode layer 11b, and the air electrode layer 11c are, for example, 1 μm to 50 μm, 5 μm to 500 μm, and 5 μm to 200 μm, respectively.

以上により、図4に示したように、下方支持部材121の平面部12aの上面と、下方支持部材121の上方枠体部12b(外周枠部12b1及び段差形成部12b2)の内側壁面と、薄板体11の空気極層11cの下面と、により酸素を含む気体が供給される空気流路21が形成される。酸素を含む気体は、図4の破線の矢印により示したように、上方支持部材122の貫通孔THと薄板体11のセル貫通孔11dとを通して空気流路21に流入する。   As described above, as shown in FIG. 4, the upper surface of the flat portion 12a of the lower support member 121, the inner wall surface of the upper frame body portion 12b (the outer peripheral frame portion 12b1 and the step forming portion 12b2) of the lower support member 121, and the thin plate An air flow path 21 to which a gas containing oxygen is supplied is formed by the lower surface of the air electrode layer 11 c of the body 11. The gas containing oxygen flows into the air flow path 21 through the through hole TH of the upper support member 122 and the cell through hole 11d of the thin plate member 11 as indicated by the dashed arrows in FIG.

また、上方支持部材122の平面部12aの下面と、上方支持部材122の下方枠体部12c(外周枠部12c1及び段差形成部12c2)の内側壁面と、薄板体11の燃料極層11bの上面と、により水素を含む燃料が供給される燃料流路22が形成される。燃料は、図4の実線の矢印により示したように、下方支持部材121の貫通孔THと薄板体11のセル貫通孔11dとを通して燃料流路22に流入する。   Further, the lower surface of the flat portion 12 a of the upper support member 122, the inner wall surface of the lower frame portion 12 c (the outer peripheral frame portion 12 c 1 and the step forming portion 12 c 2) of the upper support member 122, and the upper surface of the fuel electrode layer 11 b of the thin plate member 11. Thus, a fuel flow path 22 to which a fuel containing hydrogen is supplied is formed. The fuel flows into the fuel flow path 22 through the through hole TH of the lower support member 121 and the cell through hole 11d of the thin plate member 11 as indicated by the solid arrow in FIG.

また、図4に示すように、空気流路21及び燃料流路22中において、集電用の金属メッシュ(例えば、エンボス構造の金属メッシュ)が内装されている。各金属メッシュは、積層方向において弾性を有する。加えて、各金属メッシュは、対応する支持部材12と薄板体11とを積層方向において互いに引き離す方向の弾性力が発生するように(即ち、プレ荷重が発生するように)内装されている。   As shown in FIG. 4, a current collecting metal mesh (for example, a metal mesh having an embossed structure) is internally provided in the air flow path 21 and the fuel flow path 22. Each metal mesh has elasticity in the stacking direction. In addition, each metal mesh is internally provided so as to generate an elastic force in a direction in which the corresponding support member 12 and the thin plate member 11 are separated from each other in the stacking direction (that is, a preload is generated).

これにより、下方支持部材121と薄板体11との電気的接続、及び上方支持部材122と薄板体11との電気的接続が確保される。加えて、係る金属メッシュの内装により、ガスの流通経路が規制される。この結果、空気流路21及び燃料流路22中において、平面視にてガスの流通により発電反応が実質的に発生し得る領域の面積(流通面積)が拡大され得、薄板体11にて発電反応が効果的に発生し得る。   Thereby, the electrical connection between the lower support member 121 and the thin plate member 11 and the electrical connection between the upper support member 122 and the thin plate member 11 are ensured. In addition, the gas distribution path is regulated by the interior of the metal mesh. As a result, in the air flow path 21 and the fuel flow path 22, the area (flow area) in which the power generation reaction can substantially occur due to the gas flow in a plan view can be expanded. The reaction can occur effectively.

以上のように構成された燃料電池10は、例えば、図5に示したように、薄板体11の燃料極層11bと支持部材12の平面部12aの下面との間に形成された燃料流路22に燃料が供給され、且つ、薄板体11の空気極層11cと支持部材12の平面部12aの上面との間に形成された空気流路21に空気が供給されることにより、以下に示す化学反応式(1)及び(2)に基づく発電を行う。
(1/2)・O+2e−→O2− (於:空気極層11c) …(1)
+O2−→HO+2e− (於:燃料極層11b) …(2)
The fuel cell 10 configured as described above includes, for example, a fuel flow path formed between the fuel electrode layer 11b of the thin plate member 11 and the lower surface of the flat surface portion 12a of the support member 12, as shown in FIG. The fuel is supplied to 22 and air is supplied to the air flow path 21 formed between the air electrode layer 11c of the thin plate member 11 and the upper surface of the flat surface portion 12a of the support member 12, and the following is shown. Power generation based on chemical reaction formulas (1) and (2) is performed.
(1/2) · O 2 +2 e− → O 2− (at: air electrode layer 11c) (1)
H 2 + O 2− → H 2 O + 2 e− (in the fuel electrode layer 11b) (2)

燃料電池(SOFC)10は、固体電解質層11aの酸素伝導度を利用して発電するので、燃料電池10としての作動温度は最低600℃以上であることが一般的である。このため、燃料電池10は、常温から作動温度(例えば800℃)まで外部の加熱機構(例えば、抵抗加熱ヒータ方式の加熱機構、或いは、燃料ガスを燃焼して得られる熱を利用する加熱機構等)により昇温された状態で使用される。   Since the fuel cell (SOFC) 10 generates power using the oxygen conductivity of the solid electrolyte layer 11a, the operating temperature of the fuel cell 10 is generally at least 600 ° C. or higher. For this reason, the fuel cell 10 has an external heating mechanism (for example, a resistance heater type heating mechanism or a heating mechanism that uses heat obtained by burning fuel gas) from normal temperature to an operating temperature (for example, 800 ° C.). ) Is used in a heated state.

(シール材13)
次に、シール材13について説明する。図6は、常温時において薄板体11及び薄板体11を支持(挟持)した状態における一対の支持部材12を、図2においてx軸と平行な3−3線を含むとともにx−z平面と平行な平面に沿って切断した縦断面の模式図である。3−3線は、支持部材12の平面形状(=正方形)の中心(=薄板体11の平面形状(=正方形)の中心)を通る線である。図6では、シール材13の形状を見やすくするため、シール材13の形状(特に、厚さ等)が誇張して描かれている。また、図6では、上述の金属メッシュの記載が省略されている。
(Sealing material 13)
Next, the sealing material 13 will be described. 6 shows the thin plate member 11 and the pair of support members 12 in a state of supporting (holding) the thin plate member 11 at room temperature, including a 3-3 line parallel to the x axis in FIG. 2 and parallel to the xz plane. It is a schematic diagram of the longitudinal cross-section cut | disconnected along the flat plane. A line 3-3 is a line passing through the center of the planar shape (= square) of the support member 12 (= center of the planar shape (= square) of the thin plate member 11). In FIG. 6, in order to make the shape of the sealing material 13 easy to see, the shape of the sealing material 13 (particularly the thickness) is exaggerated. Moreover, in FIG. 6, the description of the above metal mesh is omitted.

図6に示すように、シール材13は、薄板体11の周縁部の上面と上方支持部材122の下方枠体部12cの下面との間の空間(境界部分)、及び、薄板体11の周縁部の下面と下方支持部材121の上方枠体部12bの上面との間の空間(境界部分)をそれぞれシールする第1シール部13aを有する。以下、これらの空間を「第1空間」とも称呼する。   As shown in FIG. 6, the sealing material 13 includes a space (boundary portion) between the upper surface of the peripheral portion of the thin plate member 11 and the lower surface of the lower frame portion 12 c of the upper support member 122, and the peripheral portion of the thin plate member 11. 1st seal | sticker part 13a which seals the space (boundary part) between the lower surface of a part and the upper surface of the upper frame part 12b of the lower support member 121, respectively. Hereinafter, these spaces are also referred to as “first spaces”.

また、シール材13は、上方支持部材122の下方枠体部12cの下側端(側面の下端)と下方支持部材121の上方枠体部12bの上側端(側面の上端)との間の空間(隙間)をシールする、第1シール部13aとは分離した第2シール部13bを有する。以下、この空間を「第2空間」とも称呼する。具体的には、第2シール部13bは、上側支持部材122の下方枠体部12cの下面と下側支持部材121の上方枠体部12bの上面の間の空間内に進入する進入部13b1と、進入部13b1と繋がっていて上側支持部材122の下方枠体部12cの(外)側面と下側支持部材121の上方枠体部12bの(外)側面とを覆う被覆部13b2とを有する。この被覆部13b2は、スタック構造を有する燃料電池10の側面全域に亘って連続している。   The sealing material 13 is a space between the lower end (lower end of the side surface) of the lower frame body portion 12 c of the upper support member 122 and the upper end (upper end of the side surface) of the upper frame body portion 12 b of the lower support member 121. It has the 2nd seal part 13b separated from the 1st seal part 13a which seals (gap). Hereinafter, this space is also referred to as “second space”. Specifically, the second seal portion 13b includes an entry portion 13b1 that enters a space between the lower surface of the lower frame portion 12c of the upper support member 122 and the upper surface of the upper frame portion 12b of the lower support member 121. The cover portion 13b2 is connected to the entry portion 13b1 and covers the (outer) side surface of the lower frame portion 12c of the upper support member 122 and the (outer) side surface of the upper frame portion 12b of the lower support member 121. The covering portion 13b2 is continuous over the entire side surface of the fuel cell 10 having a stack structure.

第1シール部13aは、その全体が上記作動温度よりも低い第1軟化点を有するガラスからなる。第2シール部13bは、その全体が第1軟化点よりも高い軟化点(=第2軟化点)を有するガラス、又はセラミックス(具体的には、結晶化ガラス、ガラスセラミックス等、結晶質を含む材料、非晶質と結晶質とが混在していてもよい)からなる。第1、第2軟化点については後述する。   The 1st seal | sticker part 13a consists of glass which has the 1st softening point whose whole is lower than the said operating temperature. The second seal portion 13b includes a crystalline material such as glass or ceramics (specifically, crystallized glass, glass ceramics, etc.) having a softening point (= second softening point) higher than the first softening point. Material, amorphous and crystalline may be mixed). The first and second softening points will be described later.

以上より、第1シール部13aは、上記第1空間をシールする機能を発揮する。加えて、第1シール部13aは、燃料電池10の温度(具体的には、第1シール部13aの温度)が第1軟化点未満の場合、薄板体11の周縁部と、上方支持部材122の下方枠体部12c及び下方支持部材121の上方枠体部12b(以下、「一対の枠体部」とも称呼する。)とを完全に相対移動不能に固定する。   As described above, the first seal portion 13a exhibits a function of sealing the first space. In addition, when the temperature of the fuel cell 10 (specifically, the temperature of the first seal portion 13a) is lower than the first softening point, the first seal portion 13a and the upper support member 122 The lower frame body portion 12c and the upper frame body portion 12b of the lower support member 121 (hereinafter also referred to as “a pair of frame body portions”) are fixed so as not to be relatively movable.

一方、第1シール部13aは、燃料電池10の温度(具体的には、第1シール部13aの温度)が第1軟化点以上の場合、第1シール部13aが軟化することに起因して、薄板体11の周縁部が「一対の枠体部」に対して相対移動することを許容する。即ち、燃料電池10(従って、第1シール部13a)が常温から作動温度まで昇温する途中の段階で薄板体11の周縁部が「一対の枠体部」に対して相対移動可能となる。   On the other hand, when the temperature of the fuel cell 10 (specifically, the temperature of the first seal portion 13a) is equal to or higher than the first softening point, the first seal portion 13a is caused by the softening of the first seal portion 13a. The peripheral portion of the thin plate member 11 is allowed to move relative to the “pair of frame portions”. That is, the peripheral portion of the thin plate member 11 can be moved relative to the “pair of frame portions” while the fuel cell 10 (and hence the first seal portion 13a) is being heated from the normal temperature to the operating temperature.

上述したように、支持部材12の熱膨張率は、薄板体11の平均熱膨張率よりも大きい。従って、燃料電池10が常温から作動温度まで昇温されていくと、平面方向に沿った方向において支持部材12が薄板体11よりもより伸長しようとする。ここで、薄板体11の周縁部が「一対の枠体部」と完全に相対移動不能に固定され続けるものとすると、薄板体11はその周縁部において「一対の枠体部」から平面方向に沿った方向の過大な引っ張り力(熱応力)を受ける可能性がある。また、燃料電池10の急速起動時等、燃料電池10内部において局所的に温度差が発生する場合も、薄板体11はこの温度差に起因して上記と同様の熱応力を受け得る。   As described above, the thermal expansion coefficient of the support member 12 is larger than the average thermal expansion coefficient of the thin plate member 11. Therefore, as the fuel cell 10 is heated from normal temperature to the operating temperature, the support member 12 tends to extend more than the thin plate member 11 in the direction along the plane direction. Here, assuming that the peripheral portion of the thin plate member 11 continues to be fixed to the “pair of frame portions” so as not to be relatively movable, the thin plate member 11 extends from the “pair of frame portions” in the planar direction at the peripheral portion. There is a possibility of receiving an excessive tensile force (thermal stress) in the direction along the direction. Further, even when a temperature difference locally occurs inside the fuel cell 10 such as when the fuel cell 10 is rapidly activated, the thin plate member 11 can receive the same thermal stress as described above due to this temperature difference.

これに対し、本例では、燃料電池10の温度が作動温度に達するまでの途中の段階で薄板体11の周縁部が「一対の枠体部」に対して中央に向けて相対移動可能となる(図6中の黒矢印を参照)。従って、作動温度まで燃料電池10が昇温された場合において、薄板体11が「一対の枠体部」から受ける上記引っ張り力(熱応力)が過大となることが抑制され得る。この結果、薄板体11に熱応力に起因する割れが発生する等の問題の発生が抑制され得る。   On the other hand, in this example, the peripheral portion of the thin plate member 11 can move relative to the “pair of frame portions” toward the center in the middle of the temperature of the fuel cell 10 reaching the operating temperature. (See black arrow in FIG. 6). Therefore, when the temperature of the fuel cell 10 is raised to the operating temperature, it can be suppressed that the tensile force (thermal stress) received by the thin plate member 11 from the “pair of frame portions” is excessive. As a result, the occurrence of problems such as the occurrence of cracks due to thermal stress in the thin plate member 11 can be suppressed.

他方、第2シール部13bは、上記第2空間をシールする機能を発揮する。また、第2軟化点が作動温度よりも高い場合、第2シール部13bは、常温から作動温度の間に亘って軟化しない。また、第2シール部13bを構成するガラスが結晶化温度(>第2軟化点)を有する場合、第2軟化点が作動温度より低い場合であっても、第2シール部13bが結晶化温度より高い温度まで少なくとも1回昇温された後では、第2シール部13bの一部又は全部が結晶化する。従って、燃料電池10の温度が作動温度に達しても、第2シール部13bは「一対の枠体部」同士を完全に相対移動不能に固定し得る。即ち、燃料電池10全体の形状(スタック構造を有する形状)が維持され得る。   On the other hand, the 2nd seal | sticker part 13b exhibits the function to seal the said 2nd space. Further, when the second softening point is higher than the operating temperature, the second seal portion 13b does not soften between the normal temperature and the operating temperature. Further, when the glass constituting the second seal portion 13b has a crystallization temperature (> second softening point), the second seal portion 13b has a crystallization temperature even when the second softening point is lower than the operating temperature. After the temperature is raised at least once to a higher temperature, part or all of the second seal portion 13b is crystallized. Therefore, even if the temperature of the fuel cell 10 reaches the operating temperature, the second seal portion 13b can completely fix the “pair of frame portions” so as not to move relative to each other. That is, the overall shape of the fuel cell 10 (the shape having a stack structure) can be maintained.

以上のように、シール材13では、第1シール部13aは、上記第1空間のシール機能に加えて、薄板体の周縁部の「一対の枠体部」に対する相対移動を許容する機能を有する。第2シール部13bは、上記第2空間のシール機能に加えて、燃料電池10全体の形状を維持する機能を有する。   As described above, in the sealing material 13, the first seal portion 13 a has a function of allowing relative movement of the peripheral portion of the thin plate member with respect to the “pair of frame portions” in addition to the sealing function of the first space. . The second seal portion 13b has a function of maintaining the shape of the entire fuel cell 10 in addition to the sealing function of the second space.

このように、ガラスからなるシール材13が占める領域内における位置によってガラスの材質が異なっている。これにより、シール機能(具体的には、燃料流路22内の燃料ガスと空気流路21内の空気との混合及び外部への漏出を防止する機能)と、燃料電池10全体の形状を維持する機能とが安定して発揮されつつ、作動温度まで燃料電池10が昇温された場合における薄板体11の割れの発生が抑制され得る。   Thus, the material of glass changes with the position in the area | region which the sealing material 13 which consists of glass occupies. As a result, the sealing function (specifically, the function of preventing mixing of the fuel gas in the fuel flow path 22 and the air in the air flow path 21 and leakage to the outside) and the overall shape of the fuel cell 10 are maintained. The generation of cracks in the thin plate member 11 when the temperature of the fuel cell 10 is raised to the operating temperature can be suppressed while the function to perform is stably exhibited.

次に、燃料電池10の作動温度と、第1軟化点と、第2軟化点との好ましい関係について説明する。燃料電池10の作動温度が600℃以上900℃以下である場合、第1軟化点は400℃以上700℃以下であり、第2軟化点は600℃以上900℃以下であることが好ましい。これによれば、燃料電池10全体の形状を維持する機能が安定して発揮されつつ、作動温度まで燃料電池10が昇温された場合における薄板体11の割れの発生が効果的に抑制され得ることが判明した。   Next, a preferable relationship among the operating temperature of the fuel cell 10, the first softening point, and the second softening point will be described. When the operating temperature of the fuel cell 10 is 600 ° C. or higher and 900 ° C. or lower, the first softening point is preferably 400 ° C. or higher and 700 ° C. or lower, and the second softening point is preferably 600 ° C. or higher and 900 ° C. or lower. According to this, the generation of cracks in the thin plate member 11 when the temperature of the fuel cell 10 is raised to the operating temperature can be effectively suppressed while the function of maintaining the shape of the entire fuel cell 10 is stably exhibited. It has been found.

以下、これらを確認した試験の結果を表1、表2に示す。これらの試験では、薄板体として、平面視にて1辺の長さが30mmの正方形を呈していて、8YSZからなる電解質層(厚さ:3μm)、NiO−8YSZからなる燃料極層(厚さ:150μm)、及びLSCFからなる空気極層(厚さ:15μm)が積層された燃料極支持型(支持基板が燃料極層)のものが使用された。そして、この薄板体を使用して3層のスタックが作製され、この3層のスタックを用いて試験が行われた。   Tables 1 and 2 show the results of tests confirming these. In these tests, the thin plate has a square shape with a side length of 30 mm in plan view, an electrolyte layer made of 8YSZ (thickness: 3 μm), and a fuel electrode layer made of NiO-8YSZ (thickness). : 150 μm), and a fuel electrode support type (support substrate is the fuel electrode layer) in which an air electrode layer (thickness: 15 μm) made of LSCF was laminated. Then, a three-layer stack was prepared using this thin plate, and a test was performed using this three-layer stack.

Figure 0005255327
Figure 0005255327

表1は、燃料電池10の温度を常温からその作動温度である800℃まで10分間で急速に昇温させる試験を、第1シール部13aを構成するガラスの成分を順次変えて第1軟化点を変更しながら繰り返し行った場合の結果を示している。スタックの出力の低下は、電流を所定値で一定に維持した状態にて各薄板体の起電力を測定することで評価し、薄板体の破損の有無は、スタックへのガス流量の収支を測定することで評価した。   Table 1 shows a test in which the temperature of the fuel cell 10 is rapidly raised from room temperature to 800 ° C., which is its operating temperature, in 10 minutes. The first softening point is obtained by sequentially changing the components of the glass constituting the first seal portion 13a. The result when it is repeated while changing is shown. The decrease in the output of the stack is evaluated by measuring the electromotive force of each thin plate while keeping the current constant at a predetermined value, and whether the thin plate is damaged is measured by the balance of the gas flow rate to the stack. It was evaluated by doing.

表1に示すように、第1軟化点が400℃未満では、第1シール部13aを構成するガラス成分の薄板体11への飛散(被毒)が顕著となった。この結果、薄板体11の表面において反応に寄与し得る面積が低下することで、燃料電池10の出力が大きく低下した。本実験では、第1軟化点を下げるために第1シール部13aの材質中において低融点を有するPbOの配合割合が大きくされている。この結果、PbOによる薄板体11の被毒が顕著となったものと考えられる。   As shown in Table 1, when the first softening point was less than 400 ° C., the scattering (poisoning) of the glass component constituting the first seal portion 13a to the thin plate member 11 became significant. As a result, the area that can contribute to the reaction on the surface of the thin plate member 11 is reduced, so that the output of the fuel cell 10 is greatly reduced. In this experiment, in order to lower the first softening point, the blending ratio of PbO having a low melting point in the material of the first seal portion 13a is increased. As a result, it is considered that the poisoning of the thin plate member 11 by PbO became remarkable.

一方、第1軟化点が700℃を超えると、昇温過程において薄板体11に熱応力による破損(クラック)が生じた。これは、第1シール部13aの軟化開始時期が遅れることで応力開放の開始が遅れたことに起因すると考えられる。   On the other hand, when the first softening point exceeded 700 ° C., damage (crack) due to thermal stress occurred in the thin plate member 11 during the temperature rising process. This is considered to be due to the delay in the start of stress release due to the delay in the softening start timing of the first seal portion 13a.

他方、第1軟化点が400℃以上700℃以下である場合、薄板体11の被毒も顕著でなく、且つ薄板体11の応力開放が適切になされ得ることで薄板体11に破損が生じない。以上より、燃料電池10の作動温度が800℃である場合、第1軟化点は400℃以上700℃以下であることが好適である。   On the other hand, when the first softening point is 400 ° C. or more and 700 ° C. or less, the poisoning of the thin plate member 11 is not significant, and the thin plate member 11 can be appropriately relieved of stress so that the thin plate member 11 is not damaged. . From the above, when the operating temperature of the fuel cell 10 is 800 ° C., the first softening point is preferably 400 ° C. or more and 700 ° C. or less.

Figure 0005255327
Figure 0005255327

表2は、上述のものと同じ3層のスタックを用いて燃料電池10の温度を常温から作動温度である800℃まで急速昇温させる試験を、第2シール部13bを構成する材質を順次変えて(第2軟化点及び結晶化温度を変更しながら)繰り返し行った場合の結果を示している。第2シール部13bを構成する材質としては、第1軟化点よりも高い軟化点を有する結晶化ガラス(ガラス相の一部が結晶化したもの。結晶質と非晶質とが混在するが、広義にはセラミックスといえる。)が使用されている。   Table 2 shows a test in which the temperature of the fuel cell 10 is rapidly raised from room temperature to 800 ° C., which is the operating temperature, using the same three-layer stack as described above, and the materials constituting the second seal portion 13b are sequentially changed. (The second softening point and the crystallization temperature are changed). As a material constituting the second seal portion 13b, a crystallized glass having a softening point higher than the first softening point (one in which a glass phase is crystallized. Although crystalline and amorphous are mixed, In a broad sense, it can be said to be ceramics).

表2に示すように、第2軟化点が600℃未満では、第2シール部13bのシール性が不十分であった。即ち、作動温度800℃において、燃料電池10に供給されるガスの流量を増大させてガス流路内部と外部との圧力差を増大させると、第2シール部13bのシール部(具体的には、支持部材12の側面と被覆部13b2との境界部分)からガス漏れが発生した。なお、本例では、この第2シール部13bのシール部からのガス漏れは、第1シール部13aのシール部からガス漏れが発生していることが前提で発生し得る。   As shown in Table 2, when the second softening point was less than 600 ° C., the sealing performance of the second seal portion 13b was insufficient. That is, when the flow rate of gas supplied to the fuel cell 10 is increased at an operating temperature of 800 ° C. to increase the pressure difference between the inside and outside of the gas flow path, the seal portion (specifically, the second seal portion 13b) Further, gas leakage occurred from a boundary portion between the side surface of the support member 12 and the covering portion 13b2. In this example, the gas leakage from the seal portion of the second seal portion 13b may occur on the premise that the gas leak has occurred from the seal portion of the first seal portion 13a.

一方、第2軟化点が900℃を超えると、燃料電池10の温度を常温と作動温度(=800℃)との間で繰り返し往復させた場合において第2シール部13bの被覆部13b2に破損(クラック)が発生した。これにより、第2軟化点が600℃未満の場合と同様、第2シール部13bのシール性が不十分となった。   On the other hand, when the second softening point exceeds 900 ° C., the cover portion 13b2 of the second seal portion 13b is damaged when the temperature of the fuel cell 10 is repeatedly reciprocated between the normal temperature and the operating temperature (= 800 ° C.) ( Cracks) occurred. Thereby, like the case where the 2nd softening point is less than 600 degreeC, the sealing performance of the 2nd seal part 13b became inadequate.

他方、第2軟化点が600℃以上900℃以下である場合、第2シール部13bのシール性が不十分となる事態も発生せず、且つスタック形状が良好に維持されていた。以上より、燃料電池10の作動温度が800℃である場合、(第1軟化点よりも高い)第2軟化点は600℃以上900℃以下であることが好適である。   On the other hand, when the second softening point is 600 ° C. or higher and 900 ° C. or lower, the situation in which the sealing performance of the second seal portion 13b does not occur does not occur, and the stack shape is well maintained. From the above, when the operating temperature of the fuel cell 10 is 800 ° C., the second softening point (which is higher than the first softening point) is preferably 600 ° C. or more and 900 ° C. or less.

なお、上述の2つの試験結果では、燃料電池10の作動温度が800℃である場合のみが示されているが、燃料電池10の作動温度が600℃、700℃、900℃の場合であっても、上述と同様の理由により「第1軟化点は400℃以上700℃以下であり、第2軟化点は600℃以上900℃以下であることが好ましい」ことが確認できている。以上のことから、燃料電池10の作動温度が600℃以上900℃以下である場合において、第1軟化点は400℃以上700℃以下であり、第2軟化点は600℃以上900℃以下であることが好ましいということができる。   The above two test results show only the case where the operating temperature of the fuel cell 10 is 800 ° C., but the case where the operating temperature of the fuel cell 10 is 600 ° C., 700 ° C., and 900 ° C. However, for the same reason as described above, it is confirmed that “the first softening point is preferably 400 ° C. or higher and 700 ° C. or lower and the second softening point is preferably 600 ° C. or higher and 900 ° C. or lower”. From the above, when the operating temperature of the fuel cell 10 is 600 ° C. or higher and 900 ° C. or lower, the first softening point is 400 ° C. or higher and 700 ° C. or lower, and the second softening point is 600 ° C. or higher and 900 ° C. or lower. It can be said that it is preferable.

以下、上述した金属メッシュについて付言する。ここまでは、薄板体11が変形していない場合について説明した。しかしながら、薄板体11が極めて薄いこと、並びに、薄板体11を構成する上記3層の熱膨張率が相違すること等に起因して、実際には、図7に示すように、常温にて、薄板体11の中央部が下方向に(即ち、燃料極層11b側の表面が凹形状となる方向に)反る傾向がある。この反りの量(反り高さ)は、燃料電池10を常温から昇温させるにつれて減少していく(図7中の黒矢印を参照)。   Hereinafter, it adds about the metal mesh mentioned above. So far, the case where the thin plate 11 is not deformed has been described. However, due to the fact that the thin plate member 11 is extremely thin and that the thermal expansion coefficients of the three layers constituting the thin plate member 11 are different, actually, as shown in FIG. The central portion of the thin plate member 11 tends to warp downward (that is, in the direction in which the surface on the fuel electrode layer 11b side becomes concave). The amount of warpage (warpage height) decreases as the temperature of the fuel cell 10 is raised from room temperature (see the black arrow in FIG. 7).

即ち、常温からの昇温過程において(即ち、上記反り量が減少していく過程において)、薄板体11の上下に内装された金属メッシュの積層方向の高さが薄板体11の反り量の減少に追随してそれぞれ変化していく。このことに起因して、薄板体11が上下の金属メッシュとの接触部から受ける荷重(図7中の白矢印を参照)の大きさがそれぞれ変化していく。このような状況において、金属メッシュを内装しない場合に比して、上述のように金属メッシュを内装した場合の方が、燃料電池10の急速起動時等において、薄板体11の割れがより一層発生し難くなることが判明した。これは、上述した第1シール部13aの軟化の作用と、各薄板体11が上下の金属メッシュからそれぞれ受ける弾性力の変化の作用との相乗効果によるものと考えられる。   That is, in the process of raising the temperature from room temperature (that is, in the process of decreasing the amount of warpage), the height in the stacking direction of the metal meshes mounted on the upper and lower sides of the thin plate body 11 decreases the warpage amount of the thin plate body 11. Each changes as you follow. Due to this, the magnitude of the load (see the white arrow in FIG. 7) received by the thin plate member 11 from the contact portion with the upper and lower metal meshes changes. In such a situation, the thin plate member 11 is more cracked when the fuel cell 10 is rapidly started, etc., when the metal mesh is installed as described above than when the metal mesh is not provided. It turned out to be difficult. This is considered to be due to a synergistic effect of the above-described softening action of the first seal portion 13a and the elastic force change action that each thin plate member 11 receives from the upper and lower metal meshes.

次に、上述した金属メッシュの積層方向についての弾性係数(弾性領域内における、積層方向における金属メッシュの高さの変化に対する弾性力の変化割合)の好ましい範囲について説明する。上述した燃料電池10(薄板体11の厚さが20μm以上且つ500μm以下の場合)では、金属メッシュの弾性係数は、0.1〜8N/μmであることが好ましい。これによれば、隣接する支持部材12と薄板体11との間の電気的接続が確実に確保され得るとともに、燃料電池10の急速起動時において、薄板体11の割れが発生し難くなることが判明した。   Next, a preferable range of the elastic coefficient in the stacking direction of the metal mesh described above (the rate of change in elastic force with respect to the change in the height of the metal mesh in the stacking direction in the elastic region) will be described. In the fuel cell 10 described above (when the thickness of the thin plate member 11 is 20 μm or more and 500 μm or less), the elastic modulus of the metal mesh is preferably 0.1 to 8 N / μm. According to this, the electrical connection between the adjacent support member 12 and the thin plate body 11 can be ensured reliably, and cracking of the thin plate body 11 is less likely to occur at the time of rapid start-up of the fuel cell 10. found.

以下、これらを確認した試験の結果を表3に示す。この試験も、上述のものと同じ3層のスタックを用いて行われた。なお、金属メッシュの弾性係数は、メッシュの仕様(例えば、メッシュ材の線径、エンボス部の形状、エンボス部の配置ピッチ等)により任意に調整可能である。上述の3層のスタックの組み立ては、形状が付与された金属メッシュを支持部材側に(拡散接合、スポット溶接等により)接合した状態で実施された。   The results of tests that confirmed these are shown in Table 3. This test was also performed using the same three-layer stack as described above. The elastic modulus of the metal mesh can be arbitrarily adjusted according to the mesh specifications (for example, the wire diameter of the mesh material, the shape of the embossed portion, the arrangement pitch of the embossed portion, etc.). The assembly of the three-layer stack described above was performed in a state where the metal mesh provided with the shape was joined to the support member side (by diffusion bonding, spot welding, or the like).

Figure 0005255327
Figure 0005255327

表3は、燃料電池10の温度を常温からその作動温度である800℃まで5分間で急速に昇温させる試験を、金属メッシュの弾性係数を変更しながら繰り返し行った場合の結果を示している。なお、金属メッシュの弾性係数は、燃料極側と空気極側とで同じとした。なお、金属メッシュの弾性係数は、燃料側、空気側のそれぞれに対して個別に適正化が可能である。   Table 3 shows the results when the test of rapidly raising the temperature of the fuel cell 10 from normal temperature to 800 ° C., which is its operating temperature, in 5 minutes is repeated while changing the elastic modulus of the metal mesh. . The elastic modulus of the metal mesh was the same on the fuel electrode side and the air electrode side. The elastic modulus of the metal mesh can be individually optimized for the fuel side and the air side.

表3に示すように、金属メッシュの弾性係数が8N/μmよりも大きい場合、薄板体11の割れが却って発生し易くなることが判明した。これは、弾性係数が大きいと、上記反り量が減少していく過程における金属メッシュの弾性力の変化量が大きくなり、この結果、薄板体11の内部で局所的に応力が過大となる部分が発生し易くなることに起因するものと考えられる。   As shown in Table 3, it was found that when the elastic modulus of the metal mesh is larger than 8 N / μm, the thin plate member 11 is easily cracked. This is because when the elastic coefficient is large, the amount of change in the elastic force of the metal mesh in the process of decreasing the amount of warpage increases, and as a result, there is a portion where the stress is locally excessive inside the thin plate member 11. This is considered to be caused by the tendency to occur.

一方、金属メッシュの弾性係数が0.1N/μmよりも小さい場合、燃料電池10の出力密度が低下することが判明した。これは、弾性係数が小さいと、金属メッシュのプレ荷重が小さくなり、この結果、金属メッシュと、支持部材12又は薄板体11との接触部(接点)において接触不良が発生し易くなること起因するものと考えられる。   On the other hand, when the elastic modulus of the metal mesh is smaller than 0.1 N / μm, it has been found that the output density of the fuel cell 10 decreases. This is because when the elastic modulus is small, the preload of the metal mesh is reduced, and as a result, contact failure is likely to occur at the contact portion (contact point) between the metal mesh and the support member 12 or the thin plate member 11. It is considered a thing.

他方、金属メッシュの弾性係数が0.1〜8N/μmである場合、燃料電池10の出力密度の低下が発生せず、且つ、薄板体11の割れが発生しない。以上より、上述した燃料電池10(薄板体11の厚さが20μm以上且つ500μm以下の場合)では、金属メッシュの弾性係数は、0.1〜8N/μmであることが好適である。   On the other hand, when the elastic modulus of the metal mesh is 0.1 to 8 N / μm, the output density of the fuel cell 10 does not decrease and the thin plate 11 does not crack. From the above, in the above-described fuel cell 10 (when the thickness of the thin plate member 11 is 20 μm or more and 500 μm or less), the elastic coefficient of the metal mesh is preferably 0.1 to 8 N / μm.

次に、燃料電池10の製造方法の一例について簡単に説明する。先ず、薄板体11は、例えば、電解質支持型(支持基板が電解質層)の場合、グリーンシート法により作成したセラミックスシート(YSZのテープ)の上面にシート(燃料極層11bとなる層)を印刷法により形成してから1400℃・1時間にて焼成し、更に、その焼成体の下面にシート(空気極層11cとなる層)を同じく印刷法により形成してから1200℃・1時間にて焼成することにより形成される。   Next, an example of a method for manufacturing the fuel cell 10 will be briefly described. First, for example, in the case of an electrolyte support type (the support substrate is an electrolyte layer), the thin plate member 11 is printed with a sheet (a layer serving as the fuel electrode layer 11b) on the upper surface of a ceramic sheet (YSZ tape) prepared by the green sheet method. After being formed by the method, it is fired at 1400 ° C. for 1 hour, and further, a sheet (layer that becomes the air electrode layer 11c) is formed on the lower surface of the fired body by the same printing method, and then 1200 ° C. for 1 hour. It is formed by firing.

また、燃料極支持型(支持基板が燃料極層)の場合、薄板体11は、シート(燃料極層11bとなる層)の下面にグリーンシート法により作成したセラミックスシート(YSZのテープ)を積層してから1400℃・1時間にて焼成し、更に、その焼成体の下面にシート(空気極層11cとなる層)を印刷法により形成してから850℃・1時間にて焼成することにより形成される。この場合、薄板体11は、シート(燃料極層11bとなる層)の下面にセラミックスシートを印刷法により形成してから1400℃・1時間にて焼成し、更に、その焼成体の下面にシート(空気極層11cとなる層)を印刷法により形成してから850℃・1時間にて焼成することにより形成されてもよい。   In the case of the fuel electrode support type (support substrate is the fuel electrode layer), the thin plate member 11 is formed by laminating a ceramic sheet (YSZ tape) prepared by the green sheet method on the lower surface of the sheet (layer that becomes the fuel electrode layer 11b). And then firing at 1400 ° C. for 1 hour, and further forming a sheet (a layer that becomes the air electrode layer 11c) on the lower surface of the fired body by a printing method and firing at 850 ° C. for 1 hour. It is formed. In this case, the thin plate member 11 is fired at 1400 ° C. for one hour after the ceramic sheet is formed on the lower surface of the sheet (the layer serving as the fuel electrode layer 11b) by a printing method, and further, the sheet is formed on the lower surface of the fired member. It may be formed by firing at 850 ° C. for 1 hour after forming the layer that becomes the air electrode layer 11c by a printing method.

支持部材12は、エッチング、切削等により形成され得る。   The support member 12 can be formed by etching, cutting, or the like.

次に、各支持部材12の外周部において薄板体11を挟持する部分(即ち、下方枠体部12cの下面、及び上方枠体部12bの上面)に第1シール部13aを構成するガラス材料(ホウ酸珪ガラス)を印刷法によりそれぞれ塗布する。次いで、支持部材12と薄板体11とを交互に積層し、熱処理(800℃/1hr)を施してスタック構造を一体化する。その後、スタックの外周部に対し、第2シール部13bを構成する材料(ホウ酸珪系結晶化ガラス等)を塗布して熱処理(例えば850℃/1hr)して補強する。これにより、燃料電池10が完成する。   Next, a glass material that constitutes the first seal portion 13a in the portion (that is, the lower surface of the lower frame portion 12c and the upper surface of the upper frame portion 12b) that sandwiches the thin plate member 11 in the outer peripheral portion of each support member 12 ( (Boric silica glass) is applied by a printing method. Next, the support members 12 and the thin plate members 11 are alternately laminated, and heat treatment (800 ° C./1 hr) is performed to integrate the stack structure. Thereafter, the outer peripheral portion of the stack is reinforced by applying a material constituting the second seal portion 13b (silicic acid borate crystallized glass or the like) and heat-treating (for example, 850 ° C./1 hr). Thereby, the fuel cell 10 is completed.

以上、説明したように、本発明の実施形態に係るスタック構造を有する固体酸化物型燃料電池10では、各薄板体11について、薄板体10の周縁部全周と「一対の枠体部」とがガラスからなるシール材13により互いにシールされている。このシール材13では、第1シール部13aの軟化点が燃料電池10の作動温度よりも低く、第2シール部13bの軟化点が燃料電池10の作動温度よりも高く設定されている。これにより、シール機能(具体的には、燃料流路22内の燃料ガスと空気流路21内の空気との混合及び外部への漏出を防止する機能)と、燃料電池10全体の形状を維持する機能とが安定して発揮されつつ、作動温度まで燃料電池10が昇温された場合における薄板体11の割れの発生が抑制され得る。   As described above, in the solid oxide fuel cell 10 having the stack structure according to the embodiment of the present invention, for each thin plate body 11, the entire circumference of the thin plate body 10 and the “pair of frame body portions” Are sealed together by a sealing material 13 made of glass. In the sealing material 13, the softening point of the first seal portion 13 a is set lower than the operating temperature of the fuel cell 10, and the softening point of the second seal portion 13 b is set higher than the operating temperature of the fuel cell 10. As a result, the sealing function (specifically, the function of preventing mixing of the fuel gas in the fuel flow path 22 and the air in the air flow path 21 and leakage to the outside) and the overall shape of the fuel cell 10 are maintained. The generation of cracks in the thin plate member 11 when the temperature of the fuel cell 10 is raised to the operating temperature can be suppressed while the function to perform is stably exhibited.

加えて、空気流路21及び燃料流路22中において、金属メッシュが、対応する支持部材12と薄板体11とを積層方向において互いに引き離す方向の弾性力が発生するように(即ち、プレ荷重が発生するように)内装されている。この金属メッシュの積層方向の弾性係数は、0.1〜8N/μmに設定される。これにより、隣接する支持部材12と薄板体11との間の電気的接続が確実に確保され得るとともに、燃料電池10の急速起動時において、薄板体11の割れが発生し難くなる。   In addition, in the air flow path 21 and the fuel flow path 22, the metal mesh generates an elastic force in a direction in which the corresponding support member 12 and the thin plate body 11 are separated from each other in the stacking direction (that is, the preload is applied). It has been decorated). The elastic modulus in the stacking direction of the metal mesh is set to 0.1 to 8 N / μm. Thereby, the electrical connection between the adjacent support member 12 and the thin plate body 11 can be ensured reliably, and the thin plate body 11 is hardly cracked when the fuel cell 10 is rapidly started.

なお、本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態では、第2シール部13bは、第2軟化点及び結晶化温度を有するガラス等から形成されているが、(作動温度以下では軟化しない)無機物質(即ち、セラミックス)等から構成されていてもよい。   In addition, this invention is not limited to the said embodiment, A various modified example is employable within the scope of the present invention. For example, in the above-described embodiment, the second seal portion 13b is formed of glass having a second softening point and a crystallization temperature, but is made of an inorganic substance (that is, ceramic) that does not soften below the operating temperature. It may be configured.

また、上記実施形態においては、第1、第2シール部13a,13bが分離されているが、図8に示すように、第1、第2シール部13a,13bが繋がっていてもよい。図8では、上記「第1空間」をシールする第1シール部13aにおいて、薄板体11の周縁部の上面及び下面と接触する部分が第1軟化点を有するガラスからなり、上方支持部材122の下方枠体部12cの下面及び下方支持部材121の上方枠体部12bの上面と接触する部分が第2軟化点を有するガラスからなっている。また、第2軟化点を有するガラスからなる第2シール部13bの進入部13b1は、第1シール部13aにおいて第2軟化点を有するガラスからなる部分と繋がっている。   Moreover, in the said embodiment, although 1st, 2nd seal part 13a, 13b is isolate | separated, as shown in FIG. 8, 1st, 2nd seal part 13a, 13b may be connected. In FIG. 8, in the first seal portion 13 a that seals the “first space”, the portions that come into contact with the upper surface and the lower surface of the peripheral portion of the thin plate member 11 are made of glass having a first softening point. The portion of the lower frame portion 12c that contacts the lower surface of the lower frame portion 12c and the upper surface of the upper frame portion 12b of the lower support member 121 is made of glass having a second softening point. Further, the entry portion 13b1 of the second seal portion 13b made of glass having the second softening point is connected to a portion made of glass having the second softening point in the first seal portion 13a.

また、上記実施形態においては、第2シール部13bの被覆部13b2がスタック構造を有する燃料電池10の側面全域に亘って連続しているが、図9に示すように、被覆部13b2が薄板体11毎に分離していてもよい。   Moreover, in the said embodiment, although the coating | coated part 13b2 of the 2nd seal | sticker part 13b is continuing over the side surface whole region of the fuel cell 10 which has a stack structure, as shown in FIG. 9, the coating | coated part 13b2 is a thin plate body. 11 may be separated.

また、上記実施形態においては、第1、第2シール部13a,13bの材料として異なる組成のものが使用されているが、同一組成系の材料を使用することもできる。具体的には、同一組成系においてガラスの粒径に差を設けたり、同一組成系において微量添加物等に差を設けることで、結晶化の進行度を異ならせて両シール部13a,13bの機能を異ならせる。   Moreover, in the said embodiment, although the thing of a different composition is used as a material of 1st, 2nd seal part 13a, 13b, the material of the same composition type | system | group can also be used. Specifically, by providing a difference in the particle size of the glass in the same composition system, or providing a difference in a minute amount of additive or the like in the same composition system, the degree of progress of crystallization can be made different so that both the seal portions 13a and 13b Different functions.

例えば、第1シール部13aの材料として粒径の大きいガラス材料(例えば1μm程度)を使用し、第2シール部13bの材料として粒径の小さいガラス材料(例えば0.3μm以下)を使用する。これにより、スタック組立時におけるガラス接合のための熱処理温度時(例えば850℃)における結晶化の進行度に差を持たせることができる。即ち、粒径の大きい第1シール部13aでは結晶化が完全に進行せずに一部非晶質層が残留した半結晶状態が保持され、粒径の小さい第2シール部13bでは結晶化を完了させることができる。これにより、半結晶状態にある第1シール部13aには熱応力の緩衝機能を持たせ、結晶化が完了した第2シール部13bにはガスシール機能を持たせることができる。   For example, a glass material having a large particle size (for example, about 1 μm) is used as the material for the first seal portion 13a, and a glass material having a small particle size (for example, 0.3 μm or less) is used as the material for the second seal portion 13b. Thereby, it is possible to make a difference in the progress of crystallization at the heat treatment temperature (for example, 850 ° C.) for glass bonding during stack assembly. That is, in the first seal portion 13a having a large particle size, crystallization does not proceed completely and a semi-crystalline state in which a part of the amorphous layer remains is maintained, and in the second seal portion 13b having a small particle size, crystallization is performed. Can be completed. Accordingly, the first seal portion 13a in the semi-crystalline state can have a thermal stress buffer function, and the second seal portion 13b that has been crystallized can have a gas seal function.

このように、第1、第2シール部13a,13bの材料として同一組成系のものが使用される場合、組成系の異なる材料を使用した場合においてSOFC作動時にて熱履歴に起因して第1、第2シール部13a,13bが互いに接触して発生する接触部でのシール材の変質を抑制することができる。この結果、図10に示すように、第1シール部13aと第2シール部13bの進入部13b1とを予め接触させることも可能である。   As described above, when materials of the same composition system are used as the materials of the first and second seal portions 13a and 13b, when the materials having different composition systems are used, the first is caused by the thermal history during the SOFC operation. The deterioration of the sealing material at the contact portion generated when the second seal portions 13a and 13b come into contact with each other can be suppressed. As a result, as shown in FIG. 10, the first seal portion 13a and the entry portion 13b1 of the second seal portion 13b can be brought into contact in advance.

また、上記実施形態において、燃料極層11bは、白金、白金−ジルコニアサーメット、白金−酸化セリウムサーメット、ルテニウム、ルテニウム−ジルコニアサーメット等から構成することができる。   In the above embodiment, the fuel electrode layer 11b can be composed of platinum, platinum-zirconia cermet, platinum-cerium oxide cermet, ruthenium, ruthenium-zirconia cermet, or the like.

また、空気極層11cは、例えば、ランタンを含有するペロブスカイト型複合酸化物(例えば、上述のランタンマンガナイトのほか、ランタンコバルタイト)から構成することができる。ランタンコバルタイト及びランタンマンガナイトは、ストロンチウム、カルシウム、クロム、コバルト(ランタンマンガナイトの場合)、鉄、ニッケル、アルミニウム等をドープしたものであってよい。また、パラジウム、白金、ルテニウム、白金−ジルコニアサーメット、パラジウム−ジルコニアサーメット、ルテニウム−ジルコニアサーメット、白金−酸化セリウムサーメット、パラジウム−酸化セリウムサーメット、ルテニウム−酸化セリウムサーメットであってもよい。   The air electrode layer 11c can be made of, for example, a perovskite complex oxide containing lanthanum (for example, lanthanum cobaltite in addition to the lanthanum manganite described above). Lanthanum cobaltite and lanthanum manganite may be doped with strontium, calcium, chromium, cobalt (in the case of lanthanum manganite), iron, nickel, aluminum or the like. Further, palladium, platinum, ruthenium, platinum-zirconia cermet, palladium-zirconia cermet, ruthenium-zirconia cermet, platinum-cerium oxide cermet, palladium-cerium oxide cermet, ruthenium-cerium oxide cermet may be used.

また、上記実施形態においては、薄板体11及び支持部材12の平面形状は正方形であるが、長方形、円形、楕円形等であってもよい。   Moreover, in the said embodiment, although the planar shape of the thin plate body 11 and the supporting member 12 is a square, a rectangle, circular, an ellipse, etc. may be sufficient.

また、上記実施形態においては、反応装置として固体酸化物型燃料電池(SOFC)が採用されているが、セラミックリアクタ、例えば、排ガス浄化リアクタが採用されてもよい。   In the above embodiment, a solid oxide fuel cell (SOFC) is employed as the reaction device, but a ceramic reactor, for example, an exhaust gas purification reactor, may be employed.

本発明の実施形態に係る固体酸化物型燃料電池の破断斜視図である。1 is a cutaway perspective view of a solid oxide fuel cell according to an embodiment of the present invention. 図1に示した燃料電池の部分分解斜視図である。FIG. 2 is a partially exploded perspective view of the fuel cell shown in FIG. 1. 図2に示した1−1線を含むとともにx−z平面と平行な平面に沿って支持部材を切断した支持部材の断面図である。It is sectional drawing of the supporting member which cut | disconnected the supporting member along the plane parallel to an xz plane while including the 1-1 line | wire shown in FIG. 図1に示した薄板体及び薄板体を支持した状態における支持部材を、図2に示した2−2線を含むとともにy−z平面と平行な平面に沿って切断した縦断面図である。It is the longitudinal cross-sectional view which cut | disconnected the support member in the state which supported the thin plate body shown in FIG. 1 and a thin plate body along the 2-2 plane shown in FIG. 2, and parallel to a yz plane. 図1に示した燃料電池における燃料と空気の流通を説明する図である。It is a figure explaining the distribution | circulation of the fuel and air in the fuel cell shown in FIG. 図1に示した燃料電池のシール材周りを誇張して示した図4に対応する模式図である。FIG. 5 is a schematic view corresponding to FIG. 4 in which the periphery of the seal material of the fuel cell shown in FIG. 1 is exaggerated. 燃料流路及び空気流路中に内装された金属メッシュが薄板体に弾性力を付与する様子を示した図である。It is the figure which showed a mode that the metal mesh built in the fuel flow path and the air flow path gave an elastic force to a thin-plate body. 本発明の実施形態の変形例に係る固体酸化物型燃料電池のシール材周りを誇張して示した図4に対応する模式図である。FIG. 5 is a schematic view corresponding to FIG. 4 exaggeratingly showing the periphery of a sealing material of a solid oxide fuel cell according to a modification of the embodiment of the present invention. 本発明の実施形態の他の変形例に係る固体酸化物型燃料電池のシール材周りを誇張して示した図4に対応する模式図である。FIG. 6 is a schematic view corresponding to FIG. 4 exaggeratingly showing the periphery of a sealing material of a solid oxide fuel cell according to another modification of the embodiment of the present invention. 本発明の実施形態の他の変形例に係る固体酸化物型燃料電池のシール材周りを誇張して示した図4に対応する模式図である。FIG. 6 is a schematic view corresponding to FIG. 4 exaggeratingly showing the periphery of a sealing material of a solid oxide fuel cell according to another modification of the embodiment of the present invention.

符号の説明Explanation of symbols

10…燃料電池、11…薄板体、11a…ジルコニア固体電解質層、11b…燃料極層、11c…空気極層、12…支持部材、12a…平面部、12b…上方枠体部、12c…下方枠体部、13…シール材、13a…第1シール部、13b…第2シール部、13b1…進入部、13b2…被覆部、21…空気流路、22…燃料流路、121…下方支持部材、122…上方支持部材   DESCRIPTION OF SYMBOLS 10 ... Fuel cell, 11 ... Thin plate body, 11a ... Zirconia solid electrolyte layer, 11b ... Fuel electrode layer, 11c ... Air electrode layer, 12 ... Support member, 12a ... Planar part, 12b ... Upper frame part, 12c ... Lower frame Body part, 13 ... sealing material, 13a ... first sealing part, 13b ... second sealing part, 13b1 ... entry part, 13b2 ... covering part, 21 ... air flow path, 22 ... fuel flow path, 121 ... lower support member, 122. Upper support member

Claims (6)

常温よりも高い作動温度にて化学反応がなされる1又は複数の薄板体と、
前記1又は複数の薄板体を支持する複数の支持部材と、
を備え、前記薄板体と前記支持部材とが1つずつ交互に積層されてなる反応装置において、
前記各薄板体について、前記薄板体の周縁部が前記薄板体の上方に隣接する前記支持部材である上方支持部材の周縁部の下面と前記薄板体の下方に隣接する前記支持部材である下方支持部材の周縁部の上面との間に挟持されるように、前記薄板体の周縁部、前記上方支持部材の周縁部、及び前記下方支持部材の周縁部がシール材により互いにシールされていて、
前記シール材は、前記薄板体の周縁部の上面と前記上方支持部材の周縁部の下面、及び前記薄板体の周縁部の下面と前記下方支持部材の周縁部の上面をそれぞれシールする第1シール部と、前記上方支持部材の周縁部の下側端と前記下方支持部材の周縁部の上側端をシールする第2シール部とを有し、
前記第1シール部において少なくとも前記薄板体の周縁部の上面及び下面と接触する部分は、前記作動温度よりも低い第1軟化点を有するガラスからなり、前記第2シール部において少なくとも前記上方支持部材の周縁部の下側端と前記下方支持部材の周縁部の上側端の間の部分は、前記第1軟化点よりも高い第2軟化点を有するガラス、又はセラミックスからなる反応装置であって、
前記各薄板体は、固体電解質層と、前記固体電解質層の上面に形成された燃料極層と、前記固体電解質層の下面に形成された空気極層と、が積層・焼成されてなり、
前記各薄板体について、前記上方支持部材の周縁部よりも内側に位置する平面部の下面と前記薄板体の燃料極層の上面との間の空間に燃料ガスが供給される燃料流路が区画・形成されるとともに、前記下方支持部材の周縁部よりも内側に位置する平面部の上面と前記薄板体の空気極層の下面との間の空間に酸素を含むガスが供給される空気流路が区画・形成されていて、固体酸化物型燃料電池として機能する反応装置
One or more thin plates that undergo a chemical reaction at an operating temperature higher than room temperature;
A plurality of support members that support the one or more thin plate members;
In the reaction apparatus in which the thin plate member and the support member are alternately stacked one by one,
For each of the thin plate bodies, the peripheral portion of the thin plate member is the lower support of the upper support member that is the support member adjacent to the upper portion of the thin plate member, and the lower support that is the support member adjacent to the lower portion of the thin plate member. The peripheral portion of the thin plate member, the peripheral portion of the upper support member, and the peripheral portion of the lower support member are sealed with each other by a sealing material so as to be sandwiched between the upper surface of the peripheral portion of the member,
The seal material seals the upper surface of the peripheral portion of the thin plate member and the lower surface of the peripheral portion of the upper support member, and the lower surface of the peripheral portion of the thin plate member and the upper surface of the peripheral portion of the lower support member. A second seal portion that seals the lower end of the peripheral portion of the upper support member and the upper end of the peripheral portion of the lower support member,
In the first seal portion, at least portions that contact the upper and lower surfaces of the peripheral edge of the thin plate member are made of glass having a first softening point lower than the operating temperature, and at least the upper support member in the second seal portion. The part between the lower end of the peripheral edge of the lower support member and the upper end of the peripheral edge of the lower support member is a reaction device made of glass or ceramics having a second softening point higher than the first softening point ,
Each thin plate body is formed by laminating and firing a solid electrolyte layer, a fuel electrode layer formed on the upper surface of the solid electrolyte layer, and an air electrode layer formed on the lower surface of the solid electrolyte layer,
For each of the thin plate bodies, a fuel flow path for supplying fuel gas is defined in a space between the lower surface of the flat portion located inside the peripheral edge portion of the upper support member and the upper surface of the fuel electrode layer of the thin plate body. An air flow path in which oxygen-containing gas is supplied to a space formed between the upper surface of the flat portion located inside the peripheral edge portion of the lower support member and the lower surface of the air electrode layer of the thin plate member Is a reactor that functions as a solid oxide fuel cell .
請求項1に記載の反応装置において、
前記各薄板体の厚さは、20μm以上且つ500μm以下である反応装置。
The reactor according to claim 1,
The thickness of each said thin-plate body is a reactor which is 20 micrometers or more and 500 micrometers or less.
請求項1又は請求項2に記載の反応装置において、
前記作動温度は600℃以上900℃以下であり、前記第1軟化点は400℃以上700℃以下であり、前記第2軟化点は600℃以上900℃以下である反応装置。
In the reaction apparatus according to claim 1 or 2 ,
The reactor in which the operating temperature is from 600 ° C. to 900 ° C., the first softening point is from 400 ° C. to 700 ° C., and the second softening point is from 600 ° C. to 900 ° C.
請求項1乃至請求項3の何れか一項に記載の反応装置において、
前記第1シール部と前記第2シール部とは分離していて、前記第1シール部の全体が前記第1軟化点を有するガラスからなり、前記第2シール部の全体が前記第2軟化点を有するガラス、又はセラミックスからなり、
前記第2シール部は、前記上側支持部材の周縁部の下面と前記下側支持部材の周縁部の上面の間の空間内に進入する進入部と、前記進入部と繋がっていて前記上側支持部材の周縁部の側面と前記下側支持部材の周縁部の側面とを覆う被覆部とを有する反応装置。
In the reaction apparatus according to any one of claims 1 to 3 ,
The first seal portion and the second seal portion are separated from each other, and the entire first seal portion is made of glass having the first softening point, and the entire second seal portion is the second softening point. Made of glass or ceramics having
The second seal portion is connected to the entry portion entering the space between the lower surface of the peripheral edge portion of the upper support member and the upper surface of the peripheral edge portion of the lower support member, and is connected to the entry portion, and the upper support member The reaction apparatus which has a coating | coated part which covers the side surface of the peripheral part of this, and the side surface of the peripheral part of the said lower side support member.
請求項1乃至請求項3の何れか一項に記載の反応装置において、
前記第1シール部の全体が前記第1軟化点を有するガラスからなり、前記第2シール部の全体が前記第2軟化点を有するガラス、又はセラミックスからなっていて、
前記第2シール部は、前記上側支持部材の周縁部の下面と前記下側支持部材の周縁部の上面の間の空間内に進入する進入部と、前記進入部と繋がっていて前記上側支持部材の周縁部の側面と前記下側支持部材の周縁部の側面とを覆う被覆部とを有し、
前記第1シール部は、前記第2シール部の前記進入部と接触している反応装置。
In the reaction apparatus according to any one of claims 1 to 3 ,
The entire first seal portion is made of glass having the first softening point, and the entire second seal portion is made of glass having the second softening point, or ceramics,
The second seal portion is connected to the entry portion entering the space between the lower surface of the peripheral edge portion of the upper support member and the upper surface of the peripheral edge portion of the lower support member, and is connected to the entry portion, and the upper support member A covering portion that covers a side surface of the peripheral edge portion and a side surface of the peripheral edge portion of the lower support member,
The reaction device in which the first seal portion is in contact with the entry portion of the second seal portion.
請求項1乃至請求項5の何れか一項に記載の反応装置において、
前記各薄板体について、前記上方支持部材の周縁部よりも内側に位置する平面部の下面と前記薄板体の上面との間の空間、及び、前記下方支持部材の周縁部よりも内側に位置する平面部の上面と前記薄板体の下面との間の空間のそれぞれにおいて、前記支持部材と前記薄板体との間の電気的接続を確保する集電部材が内装されていて、
前記各集電部材は、積層方向において弾性を有するとともに、前記支持部材と前記薄板体とを前記積層方向において互いに引き離す方向の弾性力が発生するように内装されていて、
前記各集電部材の前記弾性に関する弾性係数は、0.1〜8N/μmである反応装置。
The reaction apparatus according to any one of claims 1 to 5 ,
About each said thin-plate body, it is located inside the space between the lower surface of the plane part located inside the peripheral part of the said upper support member, and the upper surface of the said thin plate body, and the peripheral part of the said lower support member. In each of the spaces between the upper surface of the flat portion and the lower surface of the thin plate body, a current collecting member that secures electrical connection between the support member and the thin plate body is provided,
Each of the current collecting members has elasticity in the stacking direction, and is provided so as to generate an elastic force in a direction of separating the support member and the thin plate member from each other in the stacking direction,
A reactor having an elasticity coefficient of 0.1 to 8 N / μm for each of the current collecting members.
JP2008139519A 2007-07-19 2008-05-28 Reactor Active JP5255327B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008139519A JP5255327B2 (en) 2007-07-19 2008-05-28 Reactor
EP08252437.2A EP2017914B1 (en) 2007-07-19 2008-07-17 Reactor
US12/174,668 US8603696B2 (en) 2007-07-19 2008-07-17 Reactor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007188539 2007-07-19
JP2007188539 2007-07-19
JP2008139519A JP5255327B2 (en) 2007-07-19 2008-05-28 Reactor

Publications (2)

Publication Number Publication Date
JP2009043709A JP2009043709A (en) 2009-02-26
JP5255327B2 true JP5255327B2 (en) 2013-08-07

Family

ID=40444197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008139519A Active JP5255327B2 (en) 2007-07-19 2008-05-28 Reactor

Country Status (1)

Country Link
JP (1) JP5255327B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11276864B2 (en) 2018-04-18 2022-03-15 Lg Chem, Ltd. Cartridge for firing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5927839B2 (en) * 2011-10-25 2016-06-01 日産自動車株式会社 Fuel cell stack
US9614230B2 (en) 2011-11-18 2017-04-04 Intelligent Energy Limited Perimeter coupling for planar fuel cell and related methods
JP5932394B2 (en) * 2012-02-29 2016-06-08 京セラ株式会社 Solid oxide fuel cell assembly, cell stack device, and fuel cell device
JP6139231B2 (en) * 2013-04-12 2017-05-31 株式会社東芝 Solid oxide electrochemical cell stack structure and hydrogen power storage system
CA3017288C (en) 2016-03-11 2020-05-26 Nissan Motor Co., Ltd. Solid oxide fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3494560B2 (en) * 1997-09-30 2004-02-09 三洋電機株式会社 Solid oxide fuel cell
JP4989028B2 (en) * 2005-01-14 2012-08-01 本田技研工業株式会社 Fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11276864B2 (en) 2018-04-18 2022-03-15 Lg Chem, Ltd. Cartridge for firing

Also Published As

Publication number Publication date
JP2009043709A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
JP5255327B2 (en) Reactor
JP5325017B2 (en) Solid oxide fuel cell and assembly method thereof
JP5117627B1 (en) Fuel cell structure
EP2017914B1 (en) Reactor
JP5093833B2 (en) Single cell for fuel cell
JP5727428B2 (en) Fuel cell with separator and fuel cell
JP2015035417A (en) Fuel cell stack structure
JP5280151B2 (en) Solid oxide fuel cell thin plate and solid oxide fuel cell
JP5208622B2 (en) Method for assembling a solid oxide fuel cell
JP5280173B2 (en) Reactor
JP2004273213A (en) Unit cell for fuel cells, its manufacturing method, and solid oxide fuel cell
EP1936725A2 (en) Device with ceramic thin plate member and metal thin plate member
JP5116182B1 (en) Fuel cell structure
JP5368062B2 (en) Solid oxide fuel cell
JP5378062B2 (en) Solid oxide fuel cell thin plate and solid oxide fuel cell
JP5237614B2 (en) Solid oxide fuel cell
JP2009048997A (en) Reactor
JP5981001B1 (en) Fuel cell
JP2005347175A (en) Solid electrolyte fuel cell
JP6827091B1 (en) Cell stack device
JP6917339B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP5732180B1 (en) Fuel cell
JP5981000B1 (en) Fuel cell
EP1998396A2 (en) Solid oxide fuel cell
JP2010182438A (en) Electrochemical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130419

R150 Certificate of patent or registration of utility model

Ref document number: 5255327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250