JP4470474B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP4470474B2
JP4470474B2 JP2003412426A JP2003412426A JP4470474B2 JP 4470474 B2 JP4470474 B2 JP 4470474B2 JP 2003412426 A JP2003412426 A JP 2003412426A JP 2003412426 A JP2003412426 A JP 2003412426A JP 4470474 B2 JP4470474 B2 JP 4470474B2
Authority
JP
Japan
Prior art keywords
frame
fuel cell
solid oxide
oxide fuel
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003412426A
Other languages
Japanese (ja)
Other versions
JP2005174714A (en
Inventor
文紀 佐藤
圭子 櫛引
靖志 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003412426A priority Critical patent/JP4470474B2/en
Publication of JP2005174714A publication Critical patent/JP2005174714A/en
Application granted granted Critical
Publication of JP4470474B2 publication Critical patent/JP4470474B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、平板型の固体電解質を挟むように燃料極と空気極の各電極を形成して発電部を形成し、発電部の外周側に接合材を用いて枠部を接合した固体電解質型燃料電池に関する。   The present invention provides a solid electrolyte type in which each electrode of a fuel electrode and an air electrode is formed so as to sandwich a flat plate type solid electrolyte to form a power generation unit, and a frame portion is bonded to the outer peripheral side of the power generation unit using a bonding material The present invention relates to a fuel cell.

例えば、下記特許文献1には、平板型固体電解質の両側に燃料極と空気極とをそれぞれ配置し、さらに平板型固体電解質の外周側の空気極側の面に保持薄板枠を取り付ける構成が開示されている。
特開2000−331692号公報
For example, Patent Document 1 below discloses a configuration in which a fuel electrode and an air electrode are arranged on both sides of a flat solid electrolyte, and a holding thin plate frame is attached to the air electrode side surface on the outer peripheral side of the flat solid electrolyte. Has been.
JP 2000-331692 A

上記した従来の固体電解質型燃料電池においては、固体電解質を挟むように燃料極と空気極の各電極を形成した発電部に、保持薄板枠を取り付けることにより、発電部をセパレータと積層した場合に、セパレータと発電部との隙間を塞ぎ、燃料ガスと酸化ガスとの混合を防止するとともに、セパレータおよび発電部を多数積層することによるスタック化で発生する応力や、スタック内において発電部と他の構成部材との熱膨張係数差による熱応力を、保持薄板枠によって吸収する構造としている。   In the above-described conventional solid oxide fuel cell, when the power generation unit is laminated with the separator by attaching the holding thin plate frame to the power generation unit in which the fuel electrode and the air electrode are formed so as to sandwich the solid electrolyte, In addition to closing the gap between the separator and the power generation unit and preventing mixing of the fuel gas and the oxidizing gas, the stress generated by stacking by stacking a large number of separators and power generation units, and the power generation unit and other components in the stack The structure is such that the thermal stress due to the difference in thermal expansion coefficient from the constituent members is absorbed by the holding thin plate frame.

そのため、保持薄板枠による応力をより下げるために、保持薄板枠の厚さをできるだけ薄くすることが望ましい。しかし、この保持薄板枠と発電部とを接合する場合、主に金属を主成分とする金属ロウや酸化ケイ素などを主成分とするガラスシール材を用いて接合することになるが、これらの接合材は固体電解質型燃料電池を構成している金属酸化物セラミックや耐熱金属とは熱膨張係数が大きく異なり、金属ロウは1.2から2倍程度、逆にガラスシール材では半分から8割程度である。   Therefore, in order to further reduce the stress due to the holding thin plate frame, it is desirable to make the thickness of the holding thin plate frame as thin as possible. However, when this holding thin plate frame and the power generation part are joined, the joining is mainly performed using a glass sealing material mainly composed of metal brazing or silicon oxide mainly composed of metal. The material is greatly different in coefficient of thermal expansion from metal oxide ceramics and refractory metals that make up solid oxide fuel cells, metal brazing is about 1.2 to 2 times, and glass sealing material is about half to 80%. It is.

特に、固体電解質型燃料電池においては、常温と動作温度との差が大きいため、この接合材により発生する熱応力も大きく、発電部の破損の原因となるほか、保持薄板枠を破損させる、もしくは保持薄板枠に歪を発生させたりする。   In particular, in a solid oxide fuel cell, since the difference between the normal temperature and the operating temperature is large, the thermal stress generated by this bonding material is also large, which may cause damage to the power generation unit, damage the holding thin plate frame, or Causes the holding thin frame to be distorted.

発電部や保持薄板枠に破損が発生すると、燃料電池の内部でガスリークが発生し、燃料ガスと空気とが混合・燃焼して燃料利用率の低下、出力の低下を招くことになる。また、保持薄板枠の歪も同様で、積層部層間からのガスリークの原因となり、同様の悪影響を引き起こす。さらにこのガスが混合・燃焼により局所的な温度上昇、熱応力分布の不均一を起こし、各種部品の歪やクラックの原因となり、ついには燃料電池として寿命が短くなり、信頼性の低下を招くことになる。   When the power generation unit or the holding thin plate frame is damaged, a gas leak occurs inside the fuel cell, and the fuel gas and air are mixed and burned, resulting in a decrease in fuel utilization rate and a decrease in output. In addition, the strain of the holding thin plate frame is the same, which causes gas leakage from the laminated portion layers and causes the same adverse effect. In addition, this gas causes local temperature rise and non-uniform thermal stress distribution due to mixing and combustion, causing distortion and cracks in various parts, eventually shortening the life of the fuel cell and reducing reliability. become.

そこで、この発明は、発電部と枠部との接合部での熱応力を低減し接合部の信頼性を向上することを目的としている。   Therefore, an object of the present invention is to reduce the thermal stress at the joint between the power generation unit and the frame and improve the reliability of the joint.

本発明は、平板型の固体電解質を挟むように燃料極と空気極の各電極を形成して発電部を形成し、この発電部の外周側に接合材を用いて枠部を接合する接合部を備えるとともに、この枠部を接合した発電部およびセパレータを積層してなる固体電解質型燃料電池において、前記枠部は、前記接合部と反対側の面に突起部を備えて前記接合部に対応する部分の厚さが他の部分の厚さより厚く、前記枠部の前記発電部との接合部に対応する面に、前記枠部に沿って連続する凹部を設け、この凹部に前記接合材を設けて前記接合部とし、前記接合材が酸化雰囲気もしくは還元雰囲気に対して曝される領域を狭めたことを最も主要な特徴とする。 The present invention forms a power generation part by forming each electrode of a fuel electrode and an air electrode so as to sandwich a flat solid electrolyte, and joins a frame part using a joining material on the outer peripheral side of the power generation part In the solid oxide fuel cell formed by stacking the power generation unit and the separator bonded to each other, the frame includes a protrusion on the surface opposite to the bonding and corresponds to the bonding. the thickness of the portion that is rather thick than the thickness of the other portions, the corresponding surface at the junction of the said power generating portion of the frame portion, a recess continuously extending along said frame portion, the bonding material in the recess The main feature is that the region where the bonding material is exposed to an oxidizing atmosphere or a reducing atmosphere is narrowed .

本発明によれば、枠部の接合部に対応する部分の厚さが他の部分の厚さより厚いので、発電部と枠部との接合部から発生する熱応力が低減し、接合部の信頼性を向上することができる。
また、枠部の発電部との接合部に対応する面に、枠部に沿って連続する凹部を設け、この凹部に接合材を設けて接合部としたため、接合材を凹部に封じ込めることにより、接合材が酸化雰囲気もしくは還元雰囲気に対しても曝される領域を狭めることができ、接合材の劣化を防止することができる。
According to the present invention, since the thickness of the portion corresponding to the joint portion of the frame portion is thicker than the thickness of the other portion, the thermal stress generated from the joint portion between the power generation portion and the frame portion is reduced, and the reliability of the joint portion is reduced. Can be improved.
Also, on the surface corresponding to the joint portion of the frame portion with the power generation portion, a concave portion that is continuous along the frame portion is provided, and the joint material is provided in the concave portion to form the joint portion. A region where the bonding material is exposed to an oxidizing atmosphere or a reducing atmosphere can be narrowed, and deterioration of the bonding material can be prevented.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1(a)は、この発明の第1の参考例を示す固体電解質型燃料電池の基本構成を示す平面図、図1(b)は、図1(a)のA−A断面図、図1(c)は、図1(b)のB部の拡大図である。 FIG. 1A is a plan view showing a basic configuration of a solid oxide fuel cell according to a first reference example of the present invention, and FIG. 1B is a cross-sectional view taken along line AA in FIG. 1 (c) is an enlarged view of a portion B in FIG. 1 (b).

この固体電解質型燃料電池は、図1(b)に示すように、基材となる平板型の固体電解質1を挟むように、その両側に燃料極3と空気極5とをそれぞれ配置して発電部としての単セル7を構成している。   As shown in FIG. 1 (b), this solid oxide fuel cell is configured to generate power by arranging a fuel electrode 3 and an air electrode 5 on both sides thereof so as to sandwich a flat solid electrolyte 1 as a base material. A unit cell 7 is configured as a unit.

例えば固体電解質1にはイットリア安定化ジルコニア(以下YSZ)、燃料極3にはNiO/YSZサーメット、空気極には(LaxSr1-x)CoO3(以下LSC)をそれぞれ用い、この各電極材料を基材(固体電解質1)のYSZに高温で焼き付けている。 For example, yttria-stabilized zirconia (hereinafter YSZ) is used for the solid electrolyte 1, NiO / YSZ cermet is used for the fuel electrode 3, and (LaxSr1-x) CoO 3 (hereinafter LSC) is used for the air electrode. It is baked at high temperature on YSZ of the material (solid electrolyte 1).

上記した固体電解質1は、燃料極3および空気極5に対して外周側部分が全周にわたり突出しており、この突出した部分の空気極5側に枠部としてのフレーム9を取り付けてある。   The above-described solid electrolyte 1 has an outer peripheral portion protruding over the entire circumference with respect to the fuel electrode 3 and the air electrode 5, and a frame 9 as a frame portion is attached to the protruding portion on the air electrode 5 side.

フレーム9は、固体電解質1を構成する材料に熱膨張係数が近く、また耐熱性にも優れるフェライト系ステンレス合金の薄板からなり、中央部に単セル7の空気極5の領域よりも大きな開口11を形成してある。またフレーム9の周囲四方には、酸化ガスおよび燃料ガスを、単セル7に供給・排気するため酸化ガス供給口13・同排気口15、燃料ガス供給口17・同排気口19を貫通して設けてある。   The frame 9 is made of a ferritic stainless steel thin plate having a thermal expansion coefficient close to that of the material constituting the solid electrolyte 1 and excellent in heat resistance, and has an opening 11 larger than the region of the air electrode 5 of the single cell 7 at the center. Is formed. Further, in the four directions around the frame 9, the oxidizing gas and the fuel gas are supplied to and discharged from the single cell 7 through the oxidizing gas supply port 13 and the exhaust port 15, and the fuel gas supply port 17 and the exhaust port 19. It is provided.

そして、上記した固体電解質1とフレーム9との接合部21は、図1(c)に示すように、例えば金,銀,ニッケル,パラジュウムなどを主成分とする接合温度の高い金属系のロウ材からなる接合材23を用いて接合している。このフレーム9は接合材23と反対側の面に突起部9iを形成し、これにより、フレーム9の接合部21に対応する部分の厚さが、他の部分の厚さより厚くなっている。   Then, as shown in FIG. 1C, the joining portion 21 between the solid electrolyte 1 and the frame 9 is a metallic brazing material having a high joining temperature, for example, mainly composed of gold, silver, nickel, palladium. It joins using the joining material 23 which consists of. The frame 9 has a projection 9 i formed on the surface opposite to the bonding material 23, so that the portion corresponding to the bonding portion 21 of the frame 9 is thicker than the other portions.

なお、このフレーム9の突起部9iを除く部分の厚さは数10μm程度であり、突起部9iは、幅数mm程度、高さ(厚さ)数10から100μm程度であり、フレーム9の内側全周にわたり設けてある。このような構造のフレーム9は、圧延加工などにより薄肉化したステンレス合金箔をプレス加工、もしくはエッチング加工などにより作製する。   The thickness of the frame 9 excluding the protrusion 9i is about several tens of μm. The protrusion 9i has a width of about several mm and a height (thickness) of about several tens to 100 μm. It is provided all around. The frame 9 having such a structure is manufactured by pressing or etching a stainless alloy foil thinned by rolling or the like.

上記図1に示した単セル7にフレーム9を接合した構造体を、以下の説明ではセル板25と呼ぶ。図2は、上記セル板25を含む燃料電池全体の構成部材を示す分解斜視図である。   The structure in which the frame 9 is joined to the single cell 7 shown in FIG. 1 is referred to as a cell plate 25 in the following description. FIG. 2 is an exploded perspective view showing components of the entire fuel cell including the cell plate 25.

セル板25の図2中で上下両側には、いずれも電気絶縁性材料からなるスペーサ27およびスペーサ29をそれぞれ配置する。   Spacers 27 and 29 made of an electrically insulating material are disposed on both the upper and lower sides of the cell plate 25 in FIG.

上部側のスペーサ27は、セル板25の酸化ガス供給口13・同排気口15間をつなぎ、かつ単セル7の空気極5の表面に酸化ガスを供給するための開口31を中央に備えるとともに、セル板25の燃料ガス供給口17・同排気口19にそれぞれ整合する貫通孔33・35を、前記開口31の外側にそれぞれ備える。   The upper spacer 27 connects between the oxidizing gas supply port 13 and the exhaust port 15 of the cell plate 25 and has an opening 31 in the center for supplying oxidizing gas to the surface of the air electrode 5 of the single cell 7. In addition, through holes 33 and 35 respectively aligned with the fuel gas supply port 17 and the exhaust port 19 of the cell plate 25 are provided outside the opening 31.

一方、下部側のスペーサ29は、セル板25の燃料ガス供給口17・同排気口19間をつなぎ、かつ単セル7の燃料極3の表面に燃料ガスを供給するための開口37を備えるとともに、セル板25の酸化ガス供給口13・同排気口15にそれぞれ整合する貫通孔39・41を、前記開口37の外側に備える。   On the other hand, the spacer 29 on the lower side has an opening 37 for connecting the fuel gas supply port 17 and the exhaust port 19 of the cell plate 25 and supplying fuel gas to the surface of the fuel electrode 3 of the single cell 7. In addition, through holes 39 and 41 respectively aligned with the oxidizing gas supply port 13 and the exhaust port 15 of the cell plate 25 are provided outside the opening 37.

また、スペーサ27のセル板25と反対側(もしくはスペーサ29のセル板25と反対側)には、導電性を有しかつガス分離が可能な材料、例えばLaCrO3などのセラミックからなるセパレータ43を配置する。 On the side opposite to the cell plate 25 of the spacer 27 (or on the side opposite to the cell plate 25 of the spacer 29), a separator 43 made of a conductive material capable of gas separation, for example, ceramic such as LaCrO 3 is provided. Deploy.

このセパレータ43は、セル板25の酸化ガス供給口13・同排気口15および燃料ガス供給口17・同排気口19に、それぞれ整合する貫通孔45,47,49,51をそれぞれ備えている。   The separator 43 includes through holes 45, 47, 49, and 51 that are aligned with the oxidizing gas supply port 13 and the exhaust port 15 and the fuel gas supply port 17 and the exhaust port 19 of the cell plate 25, respectively.

さらに、単セル7における燃料極3および空気極5の表面には、集電のための金属メッシュ53および55をそれぞれ配置し、積層する複数の単セル7は、この金属メッシュ53,55およびセパレータ43により直列に接続することになる。   Further, metal meshes 53 and 55 for current collection are arranged on the surfaces of the fuel electrode 3 and the air electrode 5 in the single cell 7, respectively, and the plurality of single cells 7 to be stacked include the metal meshes 53 and 55 and separators. 43 is connected in series.

図3は、単セル7を二つ積層して組み付けた場合の、図2に示したセパレータ43におけるC−C線断面に相当する断面図、図4は、同D−D線断面に相当する断面図である。   3 is a cross-sectional view corresponding to a cross section taken along the line C-C in the separator 43 shown in FIG. 2 when two single cells 7 are stacked and assembled, and FIG. 4 is equivalent to a cross section taken along the line D-D. It is sectional drawing.

すなわち、図3は燃料ガスの流れを示し、セル板25の燃料ガス供給口17,スペーサ27の貫通孔33,スペーサ29の開口37,セパレータ43の貫通孔49で構成する燃料ガス入口マニホールド57から燃料ガスを供給し、この燃料が各単セル7の燃料極3を通過して発電に消費される。その後、セル板25の燃料ガス排気口19,スペーサ27の貫通孔35,スペーサ29の開口37,セパレータ43の貫通孔51で構成する燃料ガス出口マニホールド59から余剰の燃料ガスを排気する。   3 shows the flow of the fuel gas from the fuel gas inlet manifold 57 constituted by the fuel gas supply port 17 of the cell plate 25, the through hole 33 of the spacer 27, the opening 37 of the spacer 29, and the through hole 49 of the separator 43. Fuel gas is supplied, and this fuel passes through the fuel electrode 3 of each single cell 7 and is consumed for power generation. Thereafter, surplus fuel gas is exhausted from the fuel gas outlet manifold 59 formed by the fuel gas exhaust port 19 of the cell plate 25, the through hole 35 of the spacer 27, the opening 37 of the spacer 29, and the through hole 51 of the separator 43.

また、図4は酸化ガスの流れを示し、セル板25の酸化ガス供給口13,スペーサ27の開口31,スペーサ29の貫通孔39,セパレータ43の貫通孔45で構成する酸化ガス入口マニホールド61から酸化ガスを供給し、この酸化ガスが各単セル7の空気極5を通過して発電に消費される。その後、セル板25の酸化ガス排気口15,スペーサ27の開口31,スペーサ29の貫通孔41,セパレータ43の貫通47で構成する酸化ガス出口マニホールド63から余剰の酸化ガスを排気する。   4 shows the flow of the oxidizing gas, from the oxidizing gas inlet manifold 61 constituted by the oxidizing gas supply port 13 of the cell plate 25, the opening 31 of the spacer 27, the through hole 39 of the spacer 29, and the through hole 45 of the separator 43. An oxidizing gas is supplied, and this oxidizing gas passes through the air electrode 5 of each single cell 7 and is consumed for power generation. Thereafter, excess oxidizing gas is exhausted from an oxidizing gas outlet manifold 63 constituted by the oxidizing gas exhaust port 15 of the cell plate 25, the opening 31 of the spacer 27, the through hole 41 of the spacer 29, and the through 47 of the separator 43.

このような燃料ガスおよび酸化ガスの流れが発生することで、各単セル7にて発電がなされ、燃料電池が起動する。このとき、特に固体酸化物型燃料電池の場合には、その動作原理による制約から動作温度が800℃程度の高温となる。   By generating such a flow of fuel gas and oxidizing gas, power is generated in each single cell 7 and the fuel cell is started. At this time, particularly in the case of a solid oxide fuel cell, the operating temperature is as high as about 800 ° C. due to the limitation due to its operating principle.

ここで、フレーム9は単セル7への燃料電池全体からの応力を緩和するために介在しているが、このフレーム9により応力をより下げるためにはフレーム9の厚さをできるだけ薄くすることが望ましい。しかし、フレーム9と発電部(単セル7)を接合する場合、主に金属を主成分とする金属ロウや酸化ケイ素などを主成分とするガラスシール材を用いて接合することになるが、これらの材料は固体電解質型燃料電池を構成している金属酸化物セラミックや耐熱金属とは熱膨張係数が大きく異なるため、この接合材により発生する熱応力も大きく、発電部の破損の原因となる。   Here, the frame 9 is interposed in order to relieve the stress from the whole fuel cell to the single cell 7, but in order to further reduce the stress by this frame 9, the thickness of the frame 9 should be made as thin as possible. desirable. However, when the frame 9 and the power generation unit (single cell 7) are joined, they are joined using a glass sealing material mainly composed of metal brazing or silicon oxide mainly composed of metal. This material has a large thermal expansion coefficient different from that of the metal oxide ceramic or heat-resistant metal constituting the solid oxide fuel cell, so that the thermal stress generated by this bonding material is also large, which causes damage to the power generation section.

このため、上記した第1の参考例においては、図1(c)に示すように、フレーム9の内側の端部に補強部としての突起部9iを設けることにより、フレーム9全体の厚さをそのままにしながら、接合部21に対応する部位のみ厚くすることで、接合部21の強度を向上させている。これにより接合材23の温度変化による膨張、収縮をフレーム9の強度により押さえ込み、接合部21の破損を防止する他、薄いフレーム9の破損防止、フレーム9の変形防止が可能となる
この結果、接合部21からのガスリークの発生を防止することができ、燃料ガスと酸化ガスとの混合・燃焼による燃料利用率の低下、出力の低下を防止できるとともに、上記燃焼による局所的な温度上昇、熱応力分布の不均一を防止し、燃料電池としての高寿命化を達成することができる。
For this reason, in the first reference example described above, as shown in FIG. 1 (c), the protrusion 9i as a reinforcing portion is provided at the inner end of the frame 9, thereby reducing the thickness of the entire frame 9. The strength of the joint portion 21 is improved by increasing the thickness of only the portion corresponding to the joint portion 21 while keeping it as it is. As a result, the expansion and contraction due to the temperature change of the bonding material 23 are suppressed by the strength of the frame 9 to prevent the bonding portion 21 from being damaged, and the thin frame 9 can be prevented from being damaged and the frame 9 can be prevented from being deformed .
As a result, the occurrence of gas leakage from the joint 21 can be prevented, the fuel utilization rate can be prevented from lowering due to the mixing / combustion of the fuel gas and the oxidizing gas, and the output can be prevented from being lowered. It is possible to prevent the rise and non-uniformity of thermal stress distribution, and to achieve a long life as a fuel cell.

図5(a)は、本発明の第2の参考例を示す固体電解質型燃料電池の平面図、図5(b)は、図5(a)の拡大したE−E断面図である。なお、図5(a)では、前記図1(a)に示してある酸化ガス供給口13・同排気口15、燃料ガス供給口17・同排気口19は省略してある。第2の参考例は、補強部として2本の突起部9i1,9i2を互いに並行するよう全周に設けている。このような突起部は、3本以上設けてもよい。 FIG. 5 (a) is a plan view of a solid oxide fuel cell showing a second reference example of the present invention, and FIG. 5 (b) is an enlarged EE cross-sectional view of FIG. 5 (a). In FIG. 5A, the oxidizing gas supply port 13, the exhaust port 15, the fuel gas supply port 17, and the exhaust port 19 shown in FIG. 1A are omitted. In the second reference example , two protrusions 9i1 and 9i2 are provided on the entire circumference so as to be parallel to each other as reinforcing portions. Three or more such protrusions may be provided.

図6(a)は、本発明の第3の参考例を示す固体電解質型燃料電池の要部の平面図、図6(b)は、図6(a)のF−F断面図である。この参考例は、図5に示した第2の参考例における2本の突起部9i1,9i2相互を連結突起部9jで連結している。連結突起部9jは、突起部9i1,9i2の延長方向に沿って等間隔に全周にわたり設け、これら突起部9i1,9i2および連結突起部9jにより、図6(a)に示すような梯子状に形成する。突起部9i1,9i2および連結突起部9jは、図6(b)に示すように高さは互いに同一であり、これらによって補強部を構成している。 FIG. 6A is a plan view of the main part of a solid oxide fuel cell according to a third reference example of the present invention, and FIG. 6B is a cross-sectional view taken along line FF in FIG. In this reference example , the two protrusions 9i1 and 9i2 in the second reference example shown in FIG. 5 are connected to each other by a connecting protrusion 9j. The connecting projections 9j are provided over the entire circumference at equal intervals along the extending direction of the projections 9i1 and 9i2, and the projections 9i1 and 9i2 and the connecting projections 9j form a ladder shape as shown in FIG. Form. As shown in FIG. 6B, the protrusions 9i1 and 9i2 and the connection protrusion 9j have the same height, and constitute a reinforcing part.

図7(a)は、本発明の第4の参考例を示す固体電解質型燃料電池の要部の平面図、図7(b)は、図7(a)のG−G断面図である。この参考例は、図6に示した第3の参考例における連結突起部9j相互の間隔を広くした上で、隣接する連結突起部9j相互間に互いに交差する交差突起部9m,9nを設け、これら突起部9i1,9i2,連結突起部9jおよび交差突起部9m,9nにより、図7(a)に示すような梁構造に形成する。突起部9i1,9i2,連結突起部9jおよび交差突起部9m,9nは、図7(b)に示すように高さは互いに同一であり、これらによって補強部を構成している。 FIG. 7A is a plan view of the main part of a solid oxide fuel cell showing a fourth reference example of the present invention, and FIG. 7B is a cross-sectional view taken along the line GG of FIG. This reference example is provided with cross projections 9m and 9n that intersect with each other between adjacent connection projections 9j after widening the interval between the connection projections 9j in the third reference example shown in FIG. These projecting portions 9i1, 9i2, connecting projecting portions 9j and intersecting projecting portions 9m, 9n form a beam structure as shown in FIG. The protrusions 9i1, 9i2, the connecting protrusion 9j, and the cross protrusions 9m, 9n have the same height as shown in FIG. 7B, and constitute a reinforcing part.

このように、上記した図5〜図7に示した各参考例のように、補強部を2本の突起部9i1,9i2に分割したり、あるいは梯子状や梁構造とすることで、強度を確保しつつ第1の実施形態のように幅の広い1本の突起部9iを設ける場合に比べて軽量化を達成でき、また高さも低くするなどにより軽量化できる。 In this way, as in each of the reference examples shown in FIGS. 5 to 7 described above, the reinforcing portion is divided into two protrusions 9i1 and 9i2, or a ladder shape or a beam structure is used to increase the strength. While securing, it is possible to reduce the weight as compared with the case where one wide protruding portion 9i is provided as in the first embodiment, and the weight can be reduced by reducing the height.

なお、上記した各参考例では、単セル7およびフレーム9を、いずれも方形としているが、他の形状、例えば円形や楕円形としてもよく、また、1枚のフレーム9に複数の開口11を設け、この各開口11に対応して単セル7をそれぞれ配置する構成、すなわち単セル7を並列配置した構成にも、本発明を適用できる。 In each of the reference examples described above, the single cell 7 and the frame 9 are both rectangular, but other shapes such as a circle or an ellipse may be used, and a plurality of openings 11 may be formed in one frame 9. The present invention can also be applied to a configuration in which the single cells 7 are arranged corresponding to the openings 11, that is, a configuration in which the single cells 7 are arranged in parallel.

図8は、本発明の第の実施形態を示す、前記図1(c)に対応する断面図である。図8(a)の例は、図1(c)に示した第1の参考例に対し、フレーム9の開口11側の縁部に、固体電解質1に向けて突出する凸部9aを設け、これにより凸部9aの外側部分のフレーム9に凹部9bを有するものとなる。凸部9aは、開口11の全周に設けてあり、その外側の凹部9bの固体電解質1に対向する部位に接合材23を設けてここを接合部21としている。 FIG. 8 is a cross-sectional view corresponding to FIG. 1C, showing the first embodiment of the present invention. The example of FIG. 8A is provided with a convex portion 9a that protrudes toward the solid electrolyte 1 at the edge on the opening 11 side of the frame 9 with respect to the first reference example shown in FIG. Thereby, the frame 9 in the outer part of the convex portion 9a has the concave portion 9b. The convex portion 9 a is provided on the entire circumference of the opening 11, and a bonding material 23 is provided at a portion of the concave portion 9 b on the outer side facing the solid electrolyte 1, and this is used as the bonding portion 21.

燃料電池の起動時には、特に固体酸化物型燃料電池の場合には、前述したようにその動作原理による制約から動作温度が800℃程度の高温となる。   When the fuel cell is started up, particularly in the case of a solid oxide fuel cell, the operating temperature becomes as high as about 800 ° C. due to the limitation due to its operating principle as described above.

ところが、上記した図8(a)の例においては、フレーム9の内側の端部に凸部9aを設けて接合材23を覆っているので、金属ロウからなる接合材23が、空気極5における高温酸化雰囲気に曝されることを防止でき、金属材料には避けられない高温酸化雰囲気下での酸化の進行を抑えることができる。   However, in the example of FIG. 8A described above, the projection 9 a is provided at the inner end of the frame 9 to cover the bonding material 23, so that the bonding material 23 made of metal brazing is in the air electrode 5. Exposure to a high-temperature oxidizing atmosphere can be prevented, and the progress of oxidation in a high-temperature oxidizing atmosphere unavoidable for metal materials can be suppressed.

これにより、接合材23の腐食・侵食といった劣化を抑え、接合部21でのシール性の低下を防止でき、接合部21からのガスリークの発生を防止することができる。また、ガスリークの発生を防止することで、燃料ガスと酸化ガスとの混合・燃焼による燃料利用率の低下、出力の低下を防止できるとともに、上記燃焼による局所的な温度上昇、熱応力分布の不均一を防止し、燃料電池としての高寿命化を達成することができる。   Thereby, deterioration such as corrosion and erosion of the bonding material 23 can be suppressed, deterioration of the sealing performance at the bonding portion 21 can be prevented, and occurrence of gas leakage from the bonding portion 21 can be prevented. In addition, by preventing the occurrence of gas leaks, it is possible to prevent a decrease in fuel utilization and output due to mixing and combustion of fuel gas and oxidant gas, as well as local temperature increase due to the above-mentioned combustion, and a lack of thermal stress distribution. Uniformity can be prevented and a long life as a fuel cell can be achieved.

図8(b)の例は、図1(c)に示した第1の参考例に対し、フレーム9の開口11側に凹部9cを設け、凹部9cより外側のフレームの当接面9dを固体電解質1に接触させている。これにより、この例では当接面9dを固体電解質1に接触させることによって、接合材23が、燃料極3側の還元雰囲気に曝されることを防止することができる。そのため、接合材23にガラスなどの酸化物系を主成分とした材料を用いた場合、還元雰囲気による酸化物系の接合材23が還元されることを防止できる。 8B is different from the first reference example shown in FIG. 1C in that a recess 9c is provided on the opening 11 side of the frame 9, and the contact surface 9d of the frame outside the recess 9c is solid. It is in contact with the electrolyte 1. Thereby, in this example, the contact surface 9d is brought into contact with the solid electrolyte 1, whereby the bonding material 23 can be prevented from being exposed to the reducing atmosphere on the fuel electrode 3 side. Therefore, when a material mainly composed of an oxide such as glass is used for the bonding material 23, it is possible to prevent the oxide-based bonding material 23 from being reduced in a reducing atmosphere.

これにより、接合材23を酸化物系とした場合でも、接合材23の劣化を防止してガスリークの発生を防止できるという図8(a)の例と同様の効果を得ることができる。   Thereby, even when the bonding material 23 is made of an oxide, it is possible to obtain the same effect as in the example of FIG. 8A that the deterioration of the bonding material 23 can be prevented and the occurrence of gas leak can be prevented.

図8(c)の例は、図8(a)と図8(b)の例を組み合わせたもので、フレーム9の固体電解質1に対向する部位に凹部としての溝9eを設け、溝9eの内側の凸部9aを固体電解質1に接触させるとともに、溝9eの外側の当接面9dを固体電解質1に接触させている。   The example of FIG. 8C is a combination of the examples of FIG. 8A and FIG. 8B. A groove 9e as a recess is provided in a portion of the frame 9 facing the solid electrolyte 1, and the groove 9e The inner convex portion 9 a is in contact with the solid electrolyte 1, and the outer contact surface 9 d of the groove 9 e is in contact with the solid electrolyte 1.

すなわち、凸部9aと当接面9dとで接合材23の内側および外側の双方を覆って封じ込める構造であり、接合材23が酸化雰囲気・還元雰囲気どちらに対しても曝されることを防止できる。   In other words, the convex portion 9a and the contact surface 9d cover and confine both the inside and outside of the bonding material 23, and the bonding material 23 can be prevented from being exposed to both the oxidizing atmosphere and the reducing atmosphere. .

このため図8(c)の例では、図8(a),(b)の例と同様の効果が得られる上、どちらの雰囲気にも曝されにくいから、接合材23の選択において雰囲気に対する耐性を考慮する優先順位を下げることができ、接合材23の選択肢が広がることとなり、より安価な接合材23や取り扱いの簡単な接合材23の採用が可能となる。   For this reason, in the example of FIG. 8C, the same effect as the example of FIGS. 8A and 8B can be obtained, and since it is difficult to be exposed to either atmosphere, resistance to the atmosphere is selected in the selection of the bonding material 23. Therefore, the choice of the bonding material 23 can be expanded, and a cheaper bonding material 23 and an easy-to-handle bonding material 23 can be employed.

図9は、本発明の第の実施形態を示している。この実施形態は、前記図8(c)の例に対し、固体電解質1に対向する部位に設ける溝9fを2本とし、2本の溝9f内に接合材23を設けてここを接合部21としている。 Figure 9 shows a second embodiment of the present invention. In this embodiment, with respect to the example of FIG. 8C, two grooves 9f are provided in a portion facing the solid electrolyte 1, and a bonding material 23 is provided in the two grooves 9f, which are connected to the bonding portion 21. It is said.

接合部21において、信頼性を確保するにためには幅を広く設定することが望ましいが、広くしすぎると、図10に示すように、周方向だけでなく幅方向(F)にも大きな応力が発生し、この2つの方向の応力により単セル7の破損やフレーム9の歪を招く恐れがある。しかし、第6の実施形態によれば、接合材23を2分割して幅を狭くすることにより、図10(b)のように、幅方向の応力が低減し、接合材23のそれぞれの列から発生する応力を低下させることができる。また、接合材23を複数列とすることで信頼性も確保できる。   In order to ensure reliability in the joint portion 21, it is desirable to set the width wide. However, if the width is excessively large, as shown in FIG. 10, a large stress is generated not only in the circumferential direction but also in the width direction (F). May occur, and the stress in the two directions may cause damage to the single cell 7 or distortion of the frame 9. However, according to the sixth embodiment, by dividing the bonding material 23 into two parts to reduce the width, the stress in the width direction is reduced as shown in FIG. The stress generated from can be reduced. Further, reliability can be ensured by forming the bonding material 23 in a plurality of rows.

図11(a)は、本発明の第の実施形態を示す、フレーム9の固体電解質1側から見た平面図で、図11(b)は、図11(a)のH−H線断面に相当する、前記図9に対応する断面図である。この実施形態は、フレーム9の固体電解質1に対向する部位に設けた溝9gを1本とし、この溝9gを直線的に形成せずフレーム9に沿って折れ曲がるように、直線部分を小分けにする構造としている点が、図8(c)の例と異なっている。 FIG. 11A is a plan view of the frame 9 as viewed from the solid electrolyte 1 side, showing a third embodiment of the present invention, and FIG. 11B is a cross-sectional view taken along line HH in FIG. FIG. 10 is a cross-sectional view corresponding to FIG. In this embodiment, a single groove 9g is provided in a portion of the frame 9 that faces the solid electrolyte 1, and the straight line portion is subdivided so that the groove 9g is not formed linearly but is bent along the frame 9. The structure is different from the example of FIG.

前記図8(c)のように溝9eを直線的にすると、図12(a)に示すように、全体に発生する応力Fが大きいものとなるが、図11のように溝9gを折れ曲がる構造とすることで、図12(b)に示すように、温度変化による寸法変化も分断され、発生する応力Fも小さくなる。   When the groove 9e is linearized as shown in FIG. 8C, the stress F generated in the whole is large as shown in FIG. 12A, but the structure in which the groove 9g is bent as shown in FIG. By doing so, as shown in FIG. 12B, the dimensional change due to the temperature change is also divided, and the generated stress F is also reduced.

このように第の実施形態では、周方向に発生するマクロな応力を直線部を分断することで低減することが可能となる。 As described above, in the third embodiment, it is possible to reduce macro stress generated in the circumferential direction by dividing the linear portion.

図13(a)は、本発明の第参考例を示す、前記図1(b)に対応するセル板25の断面図である。この参考例は、燃料極30を基材として、その上に固体電解質1を、さらにその上に空気極5を配置した、いわゆる電極支持型の単セル70を使用している。 FIG. 13A is a cross-sectional view of the cell plate 25 corresponding to FIG. 1B, showing a fifth reference example of the present invention. This reference example uses a so-called electrode-supported single cell 70 in which the fuel electrode 30 is a base material, the solid electrolyte 1 is disposed thereon, and the air electrode 5 is disposed thereon.

図13(b)は、図13(a)におけるフレーム9と固体電解質1との接合部21の詳細を示す断面図で、固体電解質1の外周側の端部は燃料極30の同端部より内側に位置し、この状態で固体電解質1の外周側の端部を覆うように、フレーム9と固定電解質1との間および、フレーム9と燃料極30との間に、接合材23を設けている。   FIG. 13B is a cross-sectional view showing details of the joint portion 21 between the frame 9 and the solid electrolyte 1 in FIG. 13A, and the end portion on the outer peripheral side of the solid electrolyte 1 is from the same end portion of the fuel electrode 30. The bonding material 23 is provided between the frame 9 and the stationary electrolyte 1 and between the frame 9 and the fuel electrode 30 so as to be located inside and to cover the outer peripheral end of the solid electrolyte 1 in this state. Yes.

図13(c)は、前記図5(b)のように、フレーム9に補強部として2本の突起部9i1,9i2を設けた例である。   FIG. 13C shows an example in which two protrusions 9i1 and 9i2 are provided as reinforcing portions on the frame 9 as shown in FIG. 5B.

図13(d)は、フレーム9の固体電解質1に対向する部位に溝9eを設けた第4の実施形態であり、この溝9eおよび固体電解質1の外周側に、接合材23を設けている。 FIG. 13D shows a fourth embodiment in which a groove 9 e is provided in a portion of the frame 9 that faces the solid electrolyte 1, and a bonding material 23 is provided on the outer periphery side of the groove 9 e and the solid electrolyte 1. .

図14(a),(b),(c)は、上記図13と同様な電極支持型の単セル70による第参考例を示す。この参考例は、図14(a)に示すように、燃料極30の固体電解質1と反対側にフレーム9を接合部21を介して接合している。さらに、この例では、接合部21の外側に燃料極30の側部を覆うように、固体電解質1からフレーム9にわたり封止材65を設けている。 Figure 14 (a), (b) , (c) shows a sixth reference example according to the diagram 13 and the same electrode support type single cell 70. In this reference example , as shown in FIG. 14A, the frame 9 is joined to the fuel electrode 30 on the side opposite to the solid electrolyte 1 via a joining portion 21. Further, in this example, a sealing material 65 is provided from the solid electrolyte 1 to the frame 9 so as to cover the side portion of the fuel electrode 30 outside the joint portion 21.

図14(b)は、図14(a)におけるフレーム9と燃料極30との接合部21の詳細を示す断面図で、図1(c)と同様に、フレーム9の接合材23と反対側に突起部9iを設けている。   FIG. 14B is a cross-sectional view showing details of the joint portion 21 between the frame 9 and the fuel electrode 30 in FIG. 14A, and is the opposite side of the joint material 23 of the frame 9 as in FIG. Is provided with a protrusion 9i.

図14(c)は、補強部として2本の突起部9i1,9i2を設けている。   In FIG. 14C, two projecting portions 9i1 and 9i2 are provided as reinforcing portions.

図14(d)は、フレーム9の固体電解質1に対向する部位に溝9eを設けた第5の実施形態であり、この溝9eに接合材23を設けている。 FIG. 14D shows a fifth embodiment in which a groove 9e is provided in a portion of the frame 9 facing the solid electrolyte 1, and a bonding material 23 is provided in the groove 9e.

本発明によれば、前記枠部の接合部と反対側の面に補強部を設けることで、発電部と枠部との接合部から発生する熱応力が低減し、接合部の信頼性を向上することができる。   According to the present invention, by providing the reinforcing portion on the surface opposite to the joint portion of the frame portion, the thermal stress generated from the joint portion between the power generation portion and the frame portion is reduced, and the reliability of the joint portion is improved. can do.

前記補強部を、前記枠部の接合部と反対側の面に設けた突起部とすることで、発電部と枠部との接合部から発生する熱応力が低減し、接合部の信頼性を向上することができる。   By making the reinforcing part a protrusion provided on the surface opposite to the joint part of the frame part, thermal stress generated from the joint part between the power generation part and the frame part is reduced, and the reliability of the joint part is improved. Can be improved.

前記突起部は、前記枠部に沿って連続しているため、発電部と枠部との接合部から発生する熱応力が確実に低減し、接合部の信頼性を確実に向上することができる。   Since the protrusion is continuous along the frame portion, the thermal stress generated from the joint between the power generation portion and the frame can be reliably reduced, and the reliability of the joint can be reliably improved. .

前記枠部の前記発電部との接合部に対応する面に、前記枠部に沿って連続する凹部を設け、この凹部に前記接合材を設けて前記接合部としたため、接合材を前記凹部に封じ込めることにより、接合材が酸化雰囲気もしくは還元雰囲気に対しても曝される領域を狭めることができ、接合材の劣化を防止することができる。   A concave portion that is continuous along the frame portion is provided on a surface corresponding to a joint portion of the frame portion with the power generation portion, and the bonding material is provided in the concave portion to form the joint portion. By enclosing, the region where the bonding material is exposed to an oxidizing atmosphere or a reducing atmosphere can be narrowed, and deterioration of the bonding material can be prevented.

前記凹部を溝で構成し、この溝を前記枠部に沿って複数列設けたため、接合材を複数に分割して幅を狭くすることができ、それぞれの接合材の列から発生する応力を低下させることができる。また、接合材を複数列とすることで信頼性も確保できる。   Since the concave portion is constituted by a groove, and the groove is provided in a plurality of rows along the frame portion, the bonding material can be divided into a plurality of portions to reduce the width, and the stress generated from each row of the bonding material is reduced. Can be made. Further, reliability can be ensured by arranging the bonding materials in a plurality of rows.

前記凹部を溝で構成し、この溝を前記枠部に沿って折れ曲がる形状とし、周方向に発生するマクロな応力を直線部分を分断することで低減することが可能となる。   It is possible to reduce the macro stress generated in the circumferential direction by dividing the linear portion by forming the concave portion with a groove and bending the groove along the frame portion.

(a)は本発明の第1の参考例を示す固体電解質型燃料電池の基本構成を示す平面図(b)は(a)のA−A断面図、(c)は(b)のB部の拡大図である。(A) is a plan view showing a basic configuration of a solid oxide fuel cell according to a first reference example of the present invention, (b) is a cross-sectional view taken along line AA in (a), and (c) is a portion B in (b). FIG. 第1の参考例によるセル板を含む燃料電池全体の構成部材を示す分解斜視図である。It is a disassembled perspective view which shows the structural member of the whole fuel cell containing the cell board by a 1st reference example . 第1の参考例による単セルを二つ積層して組み付けた場合の、図2に示したセパレータにおけるC−C線断面に相当する断面図である。FIG. 3 is a cross-sectional view corresponding to a cross section taken along the line CC of the separator shown in FIG. 2 when two single cells according to the first reference example are stacked and assembled. 第1の参考例による単セルを二つ積層して組み付けた状態の、図2のセパレータにおけるD−D線断面に相当する断面図である。It is sectional drawing equivalent to the DD sectional view in the separator of FIG. 2 of the state which laminated | stacked and assembled two single cells by the 1st reference example . (a)は本発明の第2の参考例を示す固体電解質型燃料電池の平面図、(b)は(a)の拡大したE−E断面図である。(A) is a top view of the solid oxide fuel cell which shows the 2nd reference example of this invention, (b) is expanded EE sectional drawing of (a). (a)は本発明の第3の参考例を示す固体電解質型燃料電池の要部の平面図、(b)は(a)のF−F断面図である。(A) is a top view of the principal part of the solid oxide fuel cell which shows the 3rd reference example of this invention, (b) is FF sectional drawing of (a). (a)は本発明の第4の参考例を示す固体電解質型燃料電池の要部の平面図、(b)は(a)のG−G断面図である。(A) is a top view of the principal part of the solid oxide fuel cell which shows the 4th reference example of this invention, (b) is GG sectional drawing of (a). 本発明の第の実施形態を示す、図1(c)に対応する断面図である。Shows a first embodiment of the present invention, it is a cross-sectional view corresponding in Figure 1 (c). 本発明の第の実施形態を示す、図1(c)に対応する断面図である。It is sectional drawing corresponding to FIG.1 (c) which shows the 2nd Embodiment of this invention. の実施形態の補足説明図である。It is supplementary explanatory drawing of 2nd Embodiment. (a)は本発明の第の実施形態を示す、フレームの固体電解質側から見た平面図、(b)は(a)のH−H線断面に相当する、図9に対応する断面図である。(A) is the top view seen from the solid electrolyte side of the flame | frame which shows the 3rd Embodiment of this invention, (b) is sectional drawing corresponding to the HH line | wire cross section of (a), and corresponding to FIG. It is. の実施形態の補足説明図である。It is supplementary explanatory drawing of 3rd Embodiment. (a)は本発明の第参考例を示す、図1(b)に対応するセル板の断面図、(b)は(a)におけるフレームと固体電解質との接合部の詳細を示す断面図、(c)は第参考例の他の例を示す断面図、(d)は第の実施形態を示す断面図である。(A) is a cross-sectional view of a cell plate corresponding to FIG. 1 (b), showing a fifth reference example of the present invention, and (b) is a cross-section showing details of the joint between the frame and the solid electrolyte in (a). FIG, (c) is a sectional view, (d) is shown to cross-sectional view of a fourth embodiment shaped state showing another example of the fifth reference example. (a)は本発明の第参考例を示す、図1(b)に対応するセル板の断面図、(b)は(a)におけるフレームと固体電解質との接合部の詳細を示す断面図、(c)は第参考例の他の例を示す断面図、(d)は第の実施形態を示す断面図である。(A) is a cross-sectional view of a cell plate corresponding to FIG. 1 (b), showing a sixth reference example of the present invention, and (b) is a cross-section showing details of the joint between the frame and the solid electrolyte in (a). FIG, (c) is a sectional view, (d) is shown to cross-sectional view of a fifth embodiment forms state of showing another example of the sixth embodiment.

符号の説明Explanation of symbols

1 固体電解質
3,30 燃料極
5 空気極
7,70 単セル(発電部)
9 フレーム(枠部)
9b,9c 凹部
9e,9f,9g 溝(凹部)
9i 突起部(補強部)
9j 連結突起部(補強部)
9m,9n 交差突起部(補強部)
21 接合部
23 接合材
43 セパレータ
1 Solid electrolyte 3,30 Fuel electrode 5 Air electrode 7,70 Single cell (power generation unit)
9 frame (frame part)
9b, 9c Recess 9e, 9f, 9g Groove (recess)
9i Protruding part (reinforcing part)
9j Connecting protrusion (reinforcing part)
9m, 9n Intersection protrusion (reinforcement part)
21 Joining part 23 Joining material 43 Separator

Claims (4)

平板型の固体電解質を挟むように燃料極と空気極の各電極を形成して発電部を形成し、この発電部の外周側に接合材を用いて枠部を接合する接合部を備えるとともに、この枠部を接合した発電部およびセパレータを積層してなる固体電解質型燃料電池において、前記枠部は、前記接合部と反対側の面に突起部を備えて前記接合部に対応する部分の厚さが他の部分の厚さより厚く、前記枠部の前記発電部との接合部に対応する面に、前記枠部に沿って連続する凹部を設け、この凹部に前記接合材を設けて前記接合部とし、前記接合材が酸化雰囲気もしくは還元雰囲気に対して曝される領域を狭めたことを特徴とする固体電解質型燃料電池。 Forming each electrode of the fuel electrode and the air electrode so as to sandwich the solid electrolyte of the flat plate type to form a power generation part, and provided with a joint part for joining the frame part using a joining material on the outer peripheral side of this power generation part, In the solid oxide fuel cell formed by laminating the power generation unit and the separator bonded to the frame portion , the frame portion includes a protrusion on the surface opposite to the bonding portion and has a thickness corresponding to the bonding portion. Saga rather thickness than the thickness of the other portions, the corresponding surface at the junction of the said power generating portion of the frame portion, the concave portion continuously extending along the frame part is provided, said the bonding material disposed in the recess A solid oxide fuel cell, characterized in that a region where the bonding material is exposed to an oxidizing atmosphere or a reducing atmosphere is narrowed . 前記突起部は、前記枠部に沿って連続していることを特徴とする請求項記載の固体電解質型燃料電池。 The protrusions solid oxide fuel cell according to claim 1, characterized in that in succession along said frame portion. 前記凹部を溝で構成し、この溝を前記枠部に沿って複数列設けたことを特徴とする請求項1または2記載の固体電解質型燃料電池。 3. The solid oxide fuel cell according to claim 1, wherein the concave portion is constituted by a groove, and a plurality of the grooves are provided along the frame portion. 前記凹部を溝で構成し、この溝を前記枠部に沿って折れ曲がる形状としたことを特徴とする請求項1または2記載の固体電解質型燃料電池。 3. The solid oxide fuel cell according to claim 1, wherein the concave portion is constituted by a groove, and the groove is bent along the frame portion.
JP2003412426A 2003-12-10 2003-12-10 Solid oxide fuel cell Expired - Lifetime JP4470474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003412426A JP4470474B2 (en) 2003-12-10 2003-12-10 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003412426A JP4470474B2 (en) 2003-12-10 2003-12-10 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2005174714A JP2005174714A (en) 2005-06-30
JP4470474B2 true JP4470474B2 (en) 2010-06-02

Family

ID=34732868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003412426A Expired - Lifetime JP4470474B2 (en) 2003-12-10 2003-12-10 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP4470474B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8440367B2 (en) * 2006-12-05 2013-05-14 Corning Incorporated Solutions for solid oxide fuel cell seal failures
WO2009088397A1 (en) * 2007-08-08 2009-07-16 Corning Incorporated Solid oxide fuel cell devices with serpentine seal geometry
JP6199697B2 (en) * 2013-10-29 2017-09-20 日本特殊陶業株式会社 Fuel cell single cell with separator, fuel cell stack, and manufacturing method thereof
JP6463203B2 (en) * 2015-03-31 2019-01-30 大阪瓦斯株式会社 Electrochemical element, electrochemical module including the same, electrochemical device and energy system
JP6518821B1 (en) * 2018-06-06 2019-05-22 日本碍子株式会社 Cell stack device
JP6578457B1 (en) * 2019-01-10 2019-09-18 日本碍子株式会社 Fuel cell

Also Published As

Publication number Publication date
JP2005174714A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP5679893B2 (en) Solid oxide fuel cell and method for producing the same
WO2013001777A1 (en) Solid oxide fuel cell and inter-connector
JP6286223B2 (en) Fuel cell stack
WO2005112165A2 (en) Fuel cell assemblies using metallic bipolar separators
JP5093833B2 (en) Single cell for fuel cell
KR102023324B1 (en) Planar fuel cell apparatus
JP4438295B2 (en) Fuel cell
JP6131426B2 (en) Fuel cell seal structure
US7601450B2 (en) Hybrid interconnect for a solid-oxide fuel cell stack
JP5727428B2 (en) Fuel cell with separator and fuel cell
JP4470474B2 (en) Solid oxide fuel cell
JP5113350B2 (en) Gas sealing method and structure for SOFC
JP4123479B2 (en) Single cell for fuel cell, method for producing the same, and solid oxide fuel cell
JP4900364B2 (en) Fuel cell
JP4192715B2 (en) Solid oxide fuel cell
JP6667682B1 (en) Fuel cell
JP4470475B2 (en) Solid oxide fuel cell
JP2023072685A (en) Fuel cell column including stress mitigation structures
JP5727915B2 (en) Solid oxide fuel cell, solid oxide fuel cell main body, and method for producing solid oxide fuel cell
JP6945035B1 (en) Electrochemical reaction cell stack
JPH1116585A (en) Flat solid electrolyte fuel cell and its layering method
JP2005317241A (en) Supporting film type solid oxide fuel cell stack, and manufacturing method of the same
JP7232224B2 (en) Electrochemical reaction cell stack
JP2002231271A (en) Solid electrolyte fuel cell
US11489187B2 (en) Cell stack device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4470474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

EXPY Cancellation because of completion of term