JP2005317241A - Supporting film type solid oxide fuel cell stack, and manufacturing method of the same - Google Patents

Supporting film type solid oxide fuel cell stack, and manufacturing method of the same Download PDF

Info

Publication number
JP2005317241A
JP2005317241A JP2004131065A JP2004131065A JP2005317241A JP 2005317241 A JP2005317241 A JP 2005317241A JP 2004131065 A JP2004131065 A JP 2004131065A JP 2004131065 A JP2004131065 A JP 2004131065A JP 2005317241 A JP2005317241 A JP 2005317241A
Authority
JP
Japan
Prior art keywords
fuel cell
solid oxide
oxide fuel
membrane type
support membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004131065A
Other languages
Japanese (ja)
Inventor
Kei Ogasawara
慶 小笠原
Yoshitaka Baba
好孝 馬場
Teruhiro Sakurai
輝浩 桜井
Hisataka Yakabe
久孝 矢加部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2004131065A priority Critical patent/JP2005317241A/en
Publication of JP2005317241A publication Critical patent/JP2005317241A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a supporting film type solid oxide fuel cell stack of which, the problem arisen when laminating and stacking sub-assemblies for a supporting film type SOFC stack is solved, and to provide the manufacturing method of the same. <P>SOLUTION: The sub-assembly is formed by wrapping whole unit cells of the supporting film type solid oxide fuel cell by alloy foil plates having an opening for an air electrode, a gas lead-in hole, and gas lead-out hole, of which, the part contacting a fuel electrode of the unit cell is formed so as to fit with the shape of the fuel electrode in advance. The supporting film type solid oxide fuel cell stack is formed by laminating the plurality of the sub-assemblies through an interconnector for gas flow and electric connection, and a jig having a shape corresponding to the shape of lower face of the sub-assembly is intercalated at the lower face of the sub-assembly at the lowest part. The manufacturing method of the supporting film type solid oxide fuel cell stack is provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、支持膜式固体酸化物形燃料電池スタック及びその作製方法に関し、また支持膜式固体酸化物形燃料電池スタックを構成するための治具に関する。   The present invention relates to a support membrane type solid oxide fuel cell stack and a manufacturing method thereof, and also relates to a jig for constituting the support membrane type solid oxide fuel cell stack.

固体酸化物形燃料電池(Solid Oxide Fuel Cell:以下適宜SOFCと略称する)の単電池すなわち単セルは、固体酸化物電解質を挟んでアノード(燃料極)及びカソード(空気極、酸化剤として酸素が用いられる場合は酸素極)が配置され、燃料極/電解質/空気極の3層ユニットで構成される。本明細書及び図面中、単セルを適宜「セル」とも言い、固体酸化物電解質を適宜「電解質」または「電解質膜」とも言う。また、カソードは、酸化剤として酸素が用いられる場合は酸素極であるが、本明細書及び特許請求の範囲においては、酸化剤として酸素または酸素富化空気が用いられる場合を含めて空気極と言う。   A single cell of a solid oxide fuel cell (hereinafter abbreviated as SOFC as appropriate), that is, a single cell, has an anode (fuel electrode) and a cathode (air electrode, oxygen as an oxidizing agent) with a solid oxide electrolyte in between. When used, an oxygen electrode) is disposed, and is composed of a fuel electrode / electrolyte / air electrode three-layer unit. In the present specification and drawings, the single cell is also referred to as “cell” as appropriate, and the solid oxide electrolyte is also referred to as “electrolyte” or “electrolyte membrane” as appropriate. In addition, the cathode is an oxygen electrode when oxygen is used as an oxidant. However, in the present specification and claims, the cathode includes an air electrode including a case where oxygen or oxygen-enriched air is used as an oxidant. say.

電解質材料としては、例えばイットリア安定化ジルコニア(YSZ)等のシート状焼結体が用いられ、燃料極としては、例えばニッケルとイットリア安定化ジルコニアの混合物(Ni/YSZサーメット)等の多孔質体が用いられ、空気極としては、例えばSrドープのLaMnO3等の多孔質体が用いられ、通常、電解質材料の両面に燃料極と空気極を焼き付けることにより単セルが構成される。その作動時に、空気極に導入される空気中の酸素は空気極で酸化物イオン(O2-)となり、電解質を通って燃料極に至る。ここで、燃料極に導入される燃料と反応して電子を放出し、電気と水、二酸化炭素等の反応生成物を生成する。空気極での利用済み空気は空気極オフガスとして排出され、燃料極での利用済み燃料は燃料極オフガスとして排出される。 As the electrolyte material, for example, a sheet-like sintered body such as yttria stabilized zirconia (YSZ) is used, and as the fuel electrode, a porous body such as a mixture of nickel and yttria stabilized zirconia (Ni / YSZ cermet) is used. As the air electrode, for example, a porous body such as Sr-doped LaMnO 3 is used, and a single cell is usually formed by baking a fuel electrode and an air electrode on both surfaces of the electrolyte material. During the operation, oxygen in the air introduced into the air electrode becomes oxide ions (O 2− ) at the air electrode, and reaches the fuel electrode through the electrolyte. Here, it reacts with the fuel introduced into the fuel electrode and emits electrons to generate reaction products such as electricity, water, and carbon dioxide. Used air at the air electrode is discharged as an air electrode off gas, and used fuel at the fuel electrode is discharged as a fuel electrode off gas.

ところで、従来のSOFCはその作動温度が1000〜800℃程度と高いが、最近ではそれ以下、800〜650℃程度の範囲、例えば750℃程度の温度で作動するSOFCが開発されつつある。図1はそのSOFCのセルの態様例を説明する図である。図1(a)は単セルの断面図、図1(b)は空気極側から見た斜視図である。図1(a)〜(b)のとおり、セルは、燃料極の上に電解質膜が配置され、電解質膜の上に空気極が配置されて構成される。   By the way, a conventional SOFC has a high operating temperature of about 1000 to 800 ° C., but recently, an SOFC operating at a temperature of about 800 to 650 ° C., for example, about 750 ° C. is being developed. FIG. 1 is a diagram illustrating an example of the SOFC cell mode. FIG. 1A is a cross-sectional view of a single cell, and FIG. 1B is a perspective view seen from the air electrode side. As shown in FIGS. 1A to 1B, the cell is configured by disposing an electrolyte membrane on the fuel electrode and an air electrode on the electrolyte membrane.

固体酸化物電解質として例えばジルコニア系やLaGaO3系などの電解質材料が用いられ、これを膜厚の厚い燃料極で支持するように構成されており、支持膜式と称される。支持膜式においては、電解質膜の膜厚を薄く構成でき、その膜厚が例えば10μm程度となり、800〜650℃という低温で運転できる。このため、その構成材料として耐熱合金、例えばステンレス鋼などの安価な材料の使用を可能とし、また小型化が可能であるなど各種利点を有する。 For example, a zirconia-based or LaGaO 3 -based electrolyte material is used as the solid oxide electrolyte, which is configured to be supported by a thick fuel electrode, and is called a support membrane type. In the support membrane type, the thickness of the electrolyte membrane can be reduced. The thickness of the membrane is, for example, about 10 μm, and it can be operated at a low temperature of 800 to 650 ° C. For this reason, it is possible to use a heat-resistant alloy, for example, an inexpensive material such as stainless steel as the constituent material, and there are various advantages such as being able to reduce the size.

図2は、そのようにして構成された単セルを組み込んだSOFCスタックの構成例である。ここで、空気極とセパレータAとの間に空気が流通し、空気極とセパレータAの間は電気的に接触している必要がある。このため、空気極とセパレータAの間には、空気流通用の溝を有し且つ導電性のインターコネクタが設けられるが、図示は省略している。インターコネクタは、セパレータAとは別個に設けてもよく、それと一体に設けてもよい。   FIG. 2 is a configuration example of an SOFC stack incorporating a single cell configured as described above. Here, air flows between the air electrode and the separator A, and the air electrode and the separator A need to be in electrical contact. For this reason, a conductive interconnector having a groove for air circulation is provided between the air electrode and the separator A, but the illustration is omitted. The interconnector may be provided separately from the separator A or may be provided integrally therewith.

図2のとおり、支持膜式SOFCスタックは、上部から下部へ順次セパレータA、セパレータB、セパレータC、セル、セパレータDが配置される。このうちセパレータCはセルサポートフォイルとも言われる。セパレータAの上部には集電板等が配置されるが、図示は省略している。セパレータA〜Dはステンレス鋼等の耐熱合金で構成される。なお、図2中、燃料極と集電板との間に間隙を置いて示しているが、両者は電気的に接触している必要がある。このため、燃料極の下面と集電板を直かに接するようにしてもよく、両者間にニッケルフェルト等を介在させてもよい。燃料極は多孔質体であるので、燃料は燃料極中やその下面を流通しながら発電に寄与する。   As shown in FIG. 2, in the support membrane SOFC stack, the separator A, the separator B, the separator C, the cell, and the separator D are sequentially arranged from the upper part to the lower part. Among these, the separator C is also called a cell support foil. A current collector plate and the like are disposed on the upper part of the separator A, but the illustration is omitted. Separators A to D are made of a heat-resistant alloy such as stainless steel. In FIG. 2, a gap is provided between the fuel electrode and the current collector plate. However, both need to be in electrical contact. For this reason, the lower surface of the fuel electrode and the current collector plate may be in direct contact with each other, or nickel felt or the like may be interposed therebetween. Since the fuel electrode is a porous body, the fuel contributes to power generation while circulating in the fuel electrode and its lower surface.

ところで、上記のような低温作動の支持膜式SOFCにおいても、単セル一個の電圧は低いため、通常、単セルを複数層電気的に直列に積層して構成される。単セルをセルサポートフォイル(すなわち図2中セパレータC)に接合し、それをマニホールド(図2中セパレータB、D)に納まるように配置、接合したものをユニットとし、これを耐熱合金製のインターコネクタを介して次のユニットに接合することによりスタックが形成される。加えて、SOFCスタックを流通する燃料、空気、燃料極オフガス、空気極オフガスはすべて気体であることからガス封止をするが、その封止性を高めるために各部材間にはシール材を挟み込む必要があるなど、SOFCスタックを構成するには数多くの部材に加え、煩鎖で数多くの工程を必要とする。   By the way, also in the support membrane type SOFC operated at a low temperature as described above, since the voltage of one single cell is low, the single cell is usually configured by stacking a plurality of layers electrically in series. A single cell is joined to a cell support foil (ie, separator C in FIG. 2), and is placed and joined so as to fit in a manifold (separators B and D in FIG. 2). A stack is formed by joining to the next unit via a connector. In addition, since the fuel, air, fuel electrode off-gas, and air electrode off-gas flowing through the SOFC stack are all gases, gas sealing is performed. In order to improve the sealing performance, a sealing material is sandwiched between the members. In order to construct an SOFC stack, for example, it is necessary, in addition to a large number of members, a large number of processes are required.

本発明者らは、そのような数多くの部材や煩鎖で数多くの工程を経ることなく構成でき、且つ、ガス封止部を格段に減じてなる支持膜式SOFCスタック構成用サブアセンブリ(以下“A”とする)、これを用いた支持膜式SOFCスタック(以下“B”とする)及びモジュールを先に開発している(特願2003−112202号:平成15年4月16日出願)。以下、これらサブアセンブリ、スタック、モジュールについてその概略を順次説明する。   The inventors of the present invention have a sub-assembly for supporting membrane type SOFC stack (hereinafter referred to as “hereinafter referred to as“ subassembly ”) which can be configured without many processes with such a large number of members and chains, and which has a significantly reduced gas sealing portion. A ”), a supporting membrane type SOFC stack (hereinafter referred to as“ B ”) and a module using the same have been developed (Japanese Patent Application No. 2003-112202: filed on April 16, 2003). The outline of these subassemblies, stacks, and modules will be sequentially described below.

特願2003−112202号Japanese Patent Application No. 2003-112202

〈A:支持膜式SOFCスタック構成用サブアセンブリについて〉
支持膜式SOFCスタック構成用サブアセンブリは、支持膜式固体酸化物形燃料電池の単セル全体を、空気極用の開口並びにガスの導入用の孔(開口)及び導出用の孔(開口)を備えた合金箔板で包み込んでなる支持膜式SOFCスタック構成用サブアセンブリである。図3〜4はその構成例を示す図である。図3(a)は第1合金箔板1を示す図、図3(b)は第2合金箔板2を示す図であり、合金箔板を短冊状の形状に形成した例であるが、合金箔板は矩形状のほか、四角形状その他適宜の形状とすることができる。
<A: Sub-assembly for supporting membrane SOFC stack configuration>
The sub-assembly for the support membrane type SOFC stack structure comprises a single cell of the support membrane type solid oxide fuel cell, an opening for the air electrode, a hole for introducing gas (opening), and a hole for opening (opening). It is a sub-assembly for constituting a support membrane type SOFC stack, which is wrapped with the provided alloy foil plate. 3 to 4 are diagrams showing examples of the configuration. 3 (a) is a diagram showing the first alloy foil plate 1, FIG. 3 (b) is a diagram showing the second alloy foil plate 2, and is an example in which the alloy foil plate is formed in a strip shape. The alloy foil plate may have a rectangular shape, a square shape, or any other appropriate shape.

図3(a)のとおり、第1の短冊状合金箔板1は、その中央部に空気極用の開口(窓)3と長手方向の両端に燃料流通用開口4、4を設けるとともに、その長手方向に対する左右両端に図3(b)に示す第2の短冊状合金箔板2との接合部5、5を設けて構成される。第2の短冊状合金箔板2は、その長手方向の両端に燃料流通用開口7、7を設けるとともに、その短冊状合金箔板の長手方向に対する左右両端に図3(a)に示す第1の短冊状合金箔板1との接合部6、6を設けて構成される。   As shown in FIG. 3 (a), the first strip-shaped alloy foil plate 1 is provided with an opening (window) 3 for an air electrode at the center thereof and openings 4 and 4 for fuel circulation at both ends in the longitudinal direction. Joining portions 5 and 5 with the second strip-shaped alloy foil plate 2 shown in FIG. 3B are provided at both left and right ends with respect to the longitudinal direction. The second strip-shaped alloy foil plate 2 is provided with fuel flow openings 7 and 7 at both ends in the longitudinal direction, and the first strip shown in FIG. 3 (a) at the left and right ends with respect to the longitudinal direction of the strip-shaped alloy foil plate. The joint portions 6 and 6 with the strip-shaped alloy foil plate 1 are provided.

ここで、第2の短冊状合金箔板2の接合部6、6はその端部を折曲げて構成し、第1の短冊状合金箔板1の接合部5、5はその端部を2回折り曲げ、第2の短冊状合金箔板2の接合部6、6で係止されるように構成しているが、その形状は、第2の短冊状合金箔板2の接合部6、6と第1の短冊状合金箔板1の接合部5、5とが接合し得る適宜の形状に構成することができる。その接合は溶接や、接合材により接合することができる。接合材としては金属ろうやガラス接合材等が用いられる。   Here, the joint portions 6 and 6 of the second strip-shaped alloy foil plate 2 are formed by bending the end portions thereof, and the joint portions 5 and 5 of the first strip-shaped alloy foil plate 1 have two end portions thereof. Although it is configured to be bent and locked at the joints 6 and 6 of the second strip-shaped alloy foil plate 2, the shape thereof is the joints 6 and 6 of the second strip-shaped alloy foil plate 2. And the first strip-shaped alloy foil plate 1 can be formed in an appropriate shape that can be joined to the joint portions 5 and 5. The joining can be joined by welding or a joining material. As the bonding material, a metal brazing material, a glass bonding material, or the like is used.

図3(c)は、上記のように構成した第1の短冊状合金箔板1及び第2の短冊状合金箔板2と、前述図1に示すような支持膜式SOFCの単セル10と、スペーサ8、8を用いて支持膜式SOFCスタック構成用サブアセンブリを構成する例を示す図である。ここで、SOFCの単セル10は空気極を上にして配置される。スペーサ8、8は、第1の短冊状合金箔板1の長手方向の両端に設けられた開口4、4及び第2の短冊状合金箔板2の長手方向の両端に設けられた開口7、7に対応した開口を有し、両短冊状合金箔板と同様の合金部材で構成される。スペーサ8、8には内部に向けてガスが通るように開口部側面に複数の孔9が設けてある。   FIG. 3C shows the first strip-shaped alloy foil plate 1 and the second strip-shaped alloy foil plate 2 configured as described above, and the single membrane 10 of the support membrane type SOFC as shown in FIG. FIG. 5 is a view showing an example in which a sub-assembly for supporting membrane SOFC stack configuration is configured using spacers 8 and 8. Here, the SOFC single cell 10 is disposed with the air electrode facing upward. The spacers 8, 8 are openings 4, 4 provided at both ends in the longitudinal direction of the first strip-shaped alloy foil plate 1 and openings 7 provided at both ends in the longitudinal direction of the second strip-shaped alloy foil plate 2, 7 and an alloy member similar to both strip-shaped alloy foil plates. The spacers 8 and 8 are provided with a plurality of holes 9 on the side surface of the opening so that the gas passes inward.

図3(c)のとおり、まず第2の短冊状合金箔板2の中央部に単セル10を載置する。そして、第1の短冊状合金箔板1と第2の短冊状合金箔板2との間で、第1の短冊状合金箔板1の長手方向の両端開口4、4と第2の短冊状合金箔板2の長手方向の両端開口7、7に対応した位置にスペーサ8、8を配置する。その後、第2の短冊状合金箔板2の接合部6、6で第1の短冊状合金箔板1の接合部5、5を係止し、その間を接合材で接合する。   As shown in FIG. 3C, first, the single cell 10 is placed in the center of the second strip-shaped alloy foil plate 2. And between the 1st strip-shaped alloy foil board 1 and the 2nd strip-shaped alloy foil board 2, both ends opening 4 and 4 of the longitudinal direction of the 1st strip-shaped alloy foil board 1, and 2nd strip shape Spacers 8 and 8 are disposed at positions corresponding to both end openings 7 and 7 in the longitudinal direction of the alloy foil plate 2. Thereafter, the joint portions 5 and 5 of the first strip-shaped alloy foil plate 1 are locked by the joint portions 6 and 6 of the second strip-shaped alloy foil plate 2, and the portion is joined by a joining material.

図4は、こうして構成された支持膜式SOFCスタック構成用サブアセンブリ11を示し、図4(a)は空気極側すなわち表面側から見た斜視図、図4(b)は燃料極側すなわち裏面側から見た斜視図である。図4のとおり、本サブアセンブリは、支持膜式SOFCの単セル全体を、空気極用の開口並びにガスの導入用の孔(開口)及び導出用の孔(開口)を備えた合金箔板で包み込んで構成される。図4に示すような支持膜式SOFCスタック構成用サブアセンブリは、一枚の合金箔板を折曲げて単セルを包み込むことでも作製することもできる。一枚の合金箔板を折曲げて単セルを包み込む構成によれば、接合する箇所が合金箔板の折曲部と相対する端部だけであるので、その工作上も簡単且つ容易であり、よりガスシール性の優れた支持膜式SOFCスタック構成用サブアセンブリとすることができる。   FIG. 4 shows the sub-assembly 11 for constructing the support membrane type SOFC stack constructed as described above, FIG. 4 (a) is a perspective view seen from the air electrode side, that is, the front surface side, and FIG. It is the perspective view seen from the side. As shown in FIG. 4, this subassembly is an alloy foil plate having an air electrode opening, a gas introduction hole (opening), and a discharge hole (opening) for the entire single cell of the support membrane type SOFC. Wrapped and configured. The sub-assembly for supporting membrane SOFC stack construction as shown in FIG. 4 can also be produced by folding a single alloy foil plate and wrapping a single cell. According to the configuration in which a single cell is wrapped by folding a single alloy foil plate, the only part to be joined is the end portion facing the bent portion of the alloy foil plate, and the work is simple and easy. A sub-assembly for constructing a support membrane type SOFC stack having better gas sealing performance can be obtained.

〈B:支持膜式SOFCスタック構成用サブアセンブリAを用いたスタックについて〉
支持膜式SOFCスタック構成用サブアセンブリAを用いてスタックが構成される。構成部材としては、以上のようにして作製した支持膜式SOFCスタック構成用サブアセンブリと絶縁体部材とインターコネクタを用いる。絶縁体部材は、スタック構成用サブアセンブリの開口と対応した開口を有し、例えば雲母等の耐熱性材料で構成され、インターコネクタは例えばステンレス鋼等の耐熱性合金で構成される。
<B: Stack using sub-assembly A for supporting SOFC stack configuration>
A stack is constructed using the sub-assembly A for constructing the support membrane SOFC stack. As the constituent members, the support membrane SOFC stack constituent subassembly, the insulator member, and the interconnector manufactured as described above are used. The insulator member has an opening corresponding to the opening of the stack subassembly, and is made of a heat resistant material such as mica, and the interconnector is made of a heat resistant alloy such as stainless steel.

インターコネクタは通常波状に構成され、その波状部により空気流通(つまりガス流通)及び電気的接続が行われる。すなわち、インターコネクタは、空気流通及び電気的接続用の波状部を備えて構成し、これを単セルの空気極に対応する部位に配置する。インターコネクタは、その点を基本とし、空気流通及び電気的接続用の波状部をその両側に延長し、その両端部に絶縁体部材の開口及びサブアセンブリの開口に対応した開口を備えて構成してもよい。この場合にも、空気流通及び電気的接続用の波状部を単セルの空気極に対応する部位に配置する。   The interconnector is normally configured in a wave shape, and air flow (that is, gas flow) and electrical connection are performed by the wave-shaped portion. That is, the interconnector is configured to include a wave-like portion for air circulation and electrical connection, and this is disposed at a portion corresponding to the air electrode of the single cell. The interconnector is based on that point, and is constructed by extending the corrugated part for air flow and electrical connection to both sides and having openings corresponding to the opening of the insulator member and the opening of the subassembly at both ends. May be. Also in this case, the corrugated portion for air circulation and electrical connection is arranged at a portion corresponding to the air electrode of the single cell.

図5は、図4に示すような支持膜式SOFCスタック構成用サブアセンブリ11を用いた支持膜式SOFCスタックの構成過程を示す図である。インターコネクタとして、上記空気流通及び電気的接続用の波状部からその両側に面状に延長し、その両端部に絶縁体部材の開口及びサブアセンブリの開口に対応した開口を備えたインターコネクタを用いる場合を示している。図5のとおり、インターコネクタ13は、その両端に絶縁体部材12、12の開口及びサブアセンブリ11の開口4(7)、4(7)に対応した開口14、14を備え、その中央部の単セル10の空気極に対応する部位に空気流通及び電気的接続用の波状部(溝)15が設けてある。   FIG. 5 is a diagram showing a configuration process of a support membrane SOFC stack using the support membrane SOFC stack configuration subassembly 11 as shown in FIG. As an interconnector, an interconnector is used which extends in a planar shape on both sides from the airflow and electrical connection corrugated portion and has openings corresponding to the opening of the insulator member and the opening of the subassembly at both ends thereof. Shows the case. As shown in FIG. 5, the interconnector 13 includes openings 14 and 14 corresponding to the openings of the insulator members 12 and 12 and the openings 4 (7) and 4 (7) of the subassembly 11 at both ends. A corrugated portion (groove) 15 for air circulation and electrical connection is provided at a portion corresponding to the air electrode of the single cell 10.

支持膜式SOFCスタック構成用サブアセンブリ11に、その長手方向両端の開口部4(7)、4(7)に対応した開口を有する絶縁体部材12、12を載置し、その上にインターコネクタ13を載置することにより支持膜式SOFCスタックが形成される。図5中、矢印(↓)はその載置方向を示すものである。こうして作製した支持膜式SOFCスタックは上下両面に集電板を配し、ケーシング内に納めて使用される。図6はこうして構成された支持膜式SOFCスタックの長手方向中央部の断面図である。
以上は単セル一個を配置したスタックであるが、当該スタックの複数個を積層して複数個の単セルを備えた支持膜式SOFCスタックが構成される。なお、前述特願2003−112202号では、そのように複数個を積層したものを支持膜式SOFCモジュールと称している。
Insulator members 12 and 12 having openings corresponding to the openings 4 (7) and 4 (7) at both ends in the longitudinal direction are placed on the support membrane type SOFC stack constituting subassembly 11, and the interconnector is mounted thereon. By mounting 13, a support membrane type SOFC stack is formed. In FIG. 5, an arrow (↓) indicates the mounting direction. The support membrane type SOFC stack produced in this way is used by arranging current collecting plates on both the upper and lower surfaces and placing it in a casing. FIG. 6 is a cross-sectional view of the central portion in the longitudinal direction of the support membrane SOFC stack constructed as described above.
The above is a stack in which one single cell is arranged. A support membrane SOFC stack having a plurality of single cells is formed by stacking a plurality of the stacks. In the above-mentioned Japanese Patent Application No. 2003-112202, such a laminated structure is called a support membrane type SOFC module.

ところが、以上のような支持膜式SOFCスタック構成用サブアセンブリ及びこれを用いた支持膜式SOFCスタックについても、以下のような問題点がある。支持膜式SOFCの単セルを模式的に示せば前述図1のように平面になる。しかし、単セルは、その作製に際して焼成工程を必須とする上、燃料極や電解質などの部材間の熱膨張係数の差が原因で完全な平面乃至スタック化するに際して許容できる範囲の平面にはなり難く、図7〜9に示すように、反りや歪みが生じる。図7は断面図、図8は空気極側すなわち表面から見た斜視図、図9は燃料極側すなわち裏面から見た斜視図である。   However, the support membrane SOFC stack subassembly as described above and the support membrane SOFC stack using the subassembly also have the following problems. If a single cell of a support membrane type SOFC is schematically shown, it becomes a plane as shown in FIG. However, a single cell requires a firing step for its production, and it becomes a flat surface that is acceptable for stacking from a complete flat surface due to a difference in thermal expansion coefficient between members such as a fuel electrode and an electrolyte. It is difficult to cause warping or distortion as shown in FIGS. 7 is a cross-sectional view, FIG. 8 is a perspective view seen from the air electrode side, that is, the front surface, and FIG. 9 is a perspective view seen from the fuel electrode side, that is, the back surface.

〈問題点1〉
まず、単セルの燃料極側すなわちその裏面は、図7、図9に示すように、中央部が凹み(窪み)、周縁部に向けて漸次湾曲して反りないし歪みが生じる。すると、支持膜式SOFCの単セルを合金箔板で包み込む形式のスタック構成用サブアセンブリでは、その裏面に配置される合金箔板が平板であると、電気的接触にむらが生じて接触抵抗が増大し、発電性能を低下させてしまう。
<Problem 1>
First, as shown in FIGS. 7 and 9, the fuel cell side of the single cell, that is, the back surface thereof, has a central portion that is recessed (dented) and gradually curves toward the peripheral portion, causing warping or distortion. Then, in the stack structure subassembly in which the single cell of the support membrane type SOFC is wrapped with the alloy foil plate, if the alloy foil plate disposed on the back surface is a flat plate, uneven electrical contact occurs and the contact resistance is reduced. It increases and power generation performance decreases.

〈問題点2〉
一方、単セルの空気極側すなわちその表面は、図7〜8に示すように、中央部が膨らみ、周縁部に向けて漸次湾曲して反りないし歪みが生じる。このセルをインターコネクタを介してスタック化する際には、その空気極面に図5〜6に示すようにインターコネクタの波状部15を当接させるが、その反りないし歪みにより、空気極面とインターコネクタの波状部15間の接触が阻害され、電気的接触にむらが生じて接触抵抗を増大させ、発電性能を低下させてしまう。
<Problem 2>
On the other hand, on the air electrode side of the single cell, that is, the surface thereof, as shown in FIGS. 7 to 8, the central portion swells and gradually curves toward the peripheral portion, causing warping or distortion. When stacking the cells via the interconnector, the corrugated portion 15 of the interconnector is brought into contact with the air electrode surface as shown in FIGS. Contact between the corrugated portions 15 of the interconnector is obstructed, resulting in uneven electrical contact, increasing contact resistance, and reducing power generation performance.

〈問題点3〉
また、セルをインターコネクタを介してスタック化した場合、インターコネクタの波状部15で形成される空隙が空気の流通路となる。波状部15のうち、セルの空気極に面する側の流路(空気極面の側の流路)を流れる空気は発電に寄与するが、波状部15のうち、セルの空気極に面しない側の流路(空気極面と反対側の流路)を流れる空気は空気極面を流通しないことになり、発電に寄与しないことになる。
<Problem 3>
When cells are stacked via an interconnector, a gap formed by the corrugated portion 15 of the interconnector serves as an air flow path. Of the undulating portion 15, the air flowing through the flow passage on the side facing the air electrode of the cell (the flow passage on the air electrode surface side) contributes to power generation, but does not face the air electrode of the cell in the undulating portion 15. The air flowing through the flow path on the side (the flow path on the side opposite to the air electrode surface) does not flow through the air electrode surface and does not contribute to power generation.

本発明者らは、以上の問題点1〜3を解決してなる支持膜式固体酸化物形燃料電池スタック構成用サブアセンブリを先に開発している(特願2003−329197号:平成15年9月19日出願)。図10〜12はそれら問題点1〜3のうち問題点1を解決してなるそのサブアセンブリを説明する図である。   The present inventors have previously developed a sub-assembly for supporting a solid oxide fuel cell stack structure that solves the above problems 1 to 3 (Japanese Patent Application No. 2003-329197: 2003). Filed September 19). 10 to 12 are diagrams for explaining the subassembly formed by solving the first problem among the first to third problems.

特願2003−329197号Japanese Patent Application No. 2003-329197

前述のとおり、支持膜式SOFC単セルの燃料極側すなわち裏面は中央部が凹み、周縁部に向けて漸次湾曲して反りないし歪みが生じる。そこで、図10(b)〜(c)のように、単セルの燃料極に接する合金箔板すなわち第2の合金箔板2を予め燃料極の形状に合わせて、中央部が凹み(窪み)、周縁部に向けて漸次湾曲するように加工する。そして、その加工面を燃料極面に当接して配置する。   As described above, the fuel electrode side, that is, the back surface of the support membrane type SOFC single cell has a concave central portion, and gradually curves toward the peripheral portion, causing warping or distortion. Therefore, as shown in FIGS. 10B to 10C, the alloy foil plate in contact with the fuel electrode of the single cell, that is, the second alloy foil plate 2 is preliminarily matched with the shape of the fuel electrode, and the central portion is recessed (recessed). Then, it is processed so as to be gradually curved toward the peripheral edge. Then, the processed surface is disposed in contact with the fuel electrode surface.

これにより、燃料極面と合金箔板面をむらなく当接させ、両者間で均等な電気的接触を達成することができる。これら以外の工程、構成は、前述図3〜4を基に説明したとおりである。図11はこうして構成した支持膜式SOFCスタック構成用サブアセンブリを裏面側(すなわち燃料極側)から見た斜視図、図12はこうして構成した支持膜式SOFCスタック構成用サブアセンブリを表面側(すなわち空気極側)から見た斜視図である。図11〜12のとおり、予め燃料極の形状に合わせた合金箔板を燃料極面に当接して配置しているので、燃料極面と合金箔板面をむらなく当接させ、両者間で均等な電気的接触を達成することができる。   Thereby, a fuel electrode surface and an alloy foil board surface are made to contact | abut uniformly, and an equal electrical contact can be achieved between both. Other processes and configurations are the same as those described with reference to FIGS. FIG. 11 is a perspective view of the sub-assembly for supporting membrane type SOFC stack configured as described above, as viewed from the back side (that is, the fuel electrode side), and FIG. 12 is a perspective view of the sub-assembly for supporting membrane type SOFC stack configured as described above. It is the perspective view seen from the air electrode side. As shown in FIGS. 11 to 12, since the alloy foil plate that has been preliminarily matched to the shape of the fuel electrode is disposed in contact with the fuel electrode surface, the fuel electrode surface and the alloy foil plate surface are contacted uniformly, An even electrical contact can be achieved.

こうして構成した支持膜式SOFCスタック構成用サブアセンブリはその一個でスタックを構成してもよいが、その複数個をガス流通及び電気的接続を行うインターコネクタを介して積層することにより支持膜式SOFCスタックを構成する。図13〜14はその態様を説明する図で、各部材の配置関係を示すため、各部材を間隔を置いて示している。図13〜14では、サブアセンブリの三個を積層する場合を示しているが、サブアセンブリの二個、また四個以上を積層する場合についても同様である。   The sub-assembly for supporting membrane type SOFC stack construction thus configured may constitute a stack, but the supporting membrane type SOFC is formed by stacking a plurality of them through an interconnector that performs gas flow and electrical connection. Configure the stack. 13-14 is a figure explaining the aspect, and in order to show the arrangement | positioning relationship of each member, it has shown each member at intervals. 13 to 14 show a case where three subassemblies are stacked, the same applies to a case where two subassemblies or four or more subassemblies are stacked.

図13のとおり、下部台20の上に順次、絶縁スペーサ22を介して、サブアセンブリ11、インターコネクタ23、サブアセンブリ11、インターコネクタ23、サブアセンブリ11、インターコネクタ23を配置する。そして上部から荷重をかけることでSOFCスタックが構成される。また、図14の態様では、下部台20上の中央部に集電用電流端子21を置き、同様にしてSOFCスタックが構成される。この場合、前述のとおり、サブアセンブリ11を予め燃料極の形状に合わせた合金箔板を燃料極面に当接して配置しているので、サブアセンブリ11を積層してスタック化した場合にも、燃料極面と合金箔板面をむらなく当接させるのに加え、サブアセンブリ11−インターコネクタ23−サブアセンブリ11・・・という層間につていも、むら無く積層できるので、両者間で均等な電気的接触を達成することができる。   As shown in FIG. 13, the subassembly 11, the interconnector 23, the subassembly 11, the interconnector 23, the subassembly 11, and the interconnector 23 are sequentially arranged on the lower base 20 via the insulating spacer 22. The SOFC stack is configured by applying a load from the top. Further, in the embodiment of FIG. 14, a current collecting current terminal 21 is placed at the center of the lower base 20, and the SOFC stack is configured in the same manner. In this case, as described above, since the sub-assembly 11 is arranged in contact with the fuel electrode surface in advance with the alloy foil plate that has been matched to the shape of the fuel electrode, even when the sub-assembly 11 is stacked and stacked, In addition to contacting the fuel electrode surface and the alloy foil plate surface evenly, even between the sub-assembly 11-interconnector 23-sub-assembly 11... Electrical contact can be achieved.

しかし、こうして構成したSOFCスタックをよく観察すると、さらに改良の余地があることが分かった。すなわち、図13のとおり、サブアセンブリ11を積層してスタック化した場合、その最下層は、上層のサブアセンブリ11−インターコネクタ23−サブアセンブリ11・・・という層間とは異なり、空隙Sが存在するだけであり、集電抵抗が高くなることが分かった。また、図14の態様では、空隙Sとその空隙Sに集電のための電流端子21が存在するだけであり、このため、集電用電流端子21に対する上部から荷重のかかりが不十分となり、集電抵抗が高くなることが分かった。そこで、最下部のサブアセンブリ11の下面を集電用電流端子21に当接させるために、セルの反りを矯正しようと過大な荷重をかけると、セルが割れてしまう。   However, a close observation of the SOFC stack constructed in this way revealed that there was room for further improvement. That is, when the subassemblies 11 are stacked and stacked as shown in FIG. 13, the lowermost layer is different from the upper sublayer 11-interconnector 23-subassembly 11. It was found that the current collection resistance was high. Further, in the embodiment of FIG. 14, there is only a gap S and a current terminal 21 for current collection in the gap S. Therefore, the load on the current collector current terminal 21 is not sufficiently applied from above, It turned out that current collection resistance becomes high. Therefore, if an excessive load is applied to correct the warpage of the cell in order to bring the lower surface of the lowermost subassembly 11 into contact with the current collecting current terminal 21, the cell will break.

本発明は、支持膜式SOFCスタック構成用サブアセンブリを積層してスタック化するに際して生じる上記問題点を解決するためになされたものであり、最下層のサブアセンブリの下面と下部台との間、また、その下面と集電用電流端子と下部台との間を均一に当接できるようにしてなるSOFCスタック、その作製方法及びそのための治具を提供することをも目的とするものである。   The present invention has been made in order to solve the above-described problems that occur when stacking and stacking support membrane SOFC stack constituent subassemblies, and between the lower surface and the lower base of the lowermost subassembly, It is another object of the present invention to provide a SOFC stack that can uniformly contact the lower surface, the current collecting current terminal, and the lower base, a manufacturing method thereof, and a jig for the SOFC stack.

本発明は、(1)支持膜式固体酸化物形燃料電池の単セル全体を、空気極用の開口並びにガスの導入用の孔及び導出用の孔を備え、且つ、単セルの燃料極に接する部分の合金箔板が予め燃料極の形状に合わせて加工してなる合金箔板で包み込んでなるサブアセンブリの複数個を、ガス流通及び電気的接続を行う波状部を有するインターコネクタを介して積層してなる支持膜式固体酸化物形燃料電池スタックであって、最下部のサブアセンブリの下面に該サブアセンブリの下面の面に対応した形状を有する治具を介在させてなることを特徴とする支持膜式固体酸化物形燃料電池スタックを提供する。   The present invention includes (1) an entire single cell of a support membrane type solid oxide fuel cell, which is provided with an opening for an air electrode, a hole for introducing a gas, and a hole for deriving a gas. A plurality of subassemblies in which the alloy foil plate in contact with the alloy foil plate, which is processed in advance according to the shape of the fuel electrode, is wrapped with an interconnector having a corrugated portion that performs gas flow and electrical connection. A stacked support membrane solid oxide fuel cell stack, characterized in that a jig having a shape corresponding to the surface of the lower surface of the subassembly is interposed on the lower surface of the lowermost subassembly. A supported membrane solid oxide fuel cell stack is provided.

本発明は、(2)支持膜式固体酸化物形燃料電池の単セル全体を、空気極用の開口並びにガスの導入用の孔及び導出用の孔を備え、且つ、単セルの燃料極に接する部分の合金箔板が予め燃料極の形状に合わせて加工してなる合金箔板で包み込んでなるサブアセンブリの複数個を、ガス流通及び電気的接続を行う波状部を有するインターコネクタを介して積層するとともに、最下部のサブアセンブリの下に集電用電流端子を配置してなる支持膜式固体酸化物形燃料電池スタックであって、集電用電流端子の下面に該サブアセンブリの下面の面に対応した形状を有する治具を介在させてなることを特徴とする支持膜式固体酸化物形燃料電池スタックを提供する。   The present invention includes (2) an entire single cell of a support membrane type solid oxide fuel cell having an opening for an air electrode, a hole for introducing a gas, and a hole for leading out, and the fuel electrode of a single cell. A plurality of subassemblies in which the alloy foil plate in contact with the alloy foil plate, which is processed in advance according to the shape of the fuel electrode, is wrapped with an interconnector having a corrugated portion that performs gas flow and electrical connection. And a support membrane type solid oxide fuel cell stack in which a current collecting current terminal is disposed under the lowermost subassembly, and the lower surface of the current collecting current terminal is formed on the lower surface of the subassembly. Provided is a support membrane type solid oxide fuel cell stack comprising a jig having a shape corresponding to a surface.

本発明は、(3)支持膜式固体酸化物形燃料電池の単セル全体を、空気極用の開口並びにガスの導入用の孔及び導出用の孔を備え、且つ、単セルの燃料極に接する部分の合金箔板が予め燃料極の形状に合わせて加工してなる合金箔板で包み込んでなるサブアセンブリの複数個を、ガス流通及び電気的接続を行うインターコネクタを介して積層してなる支持膜式固体酸化物形燃料電池スタックの作製方法であって、最下部のサブアセンブリの下面に該サブアセンブリの下面の面に対応した形状の治具を介在させて積層することを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法を提供する。   The present invention comprises (3) an entire single cell of a support membrane type solid oxide fuel cell having an opening for an air electrode, a hole for introducing gas, and a hole for leading out, and the fuel electrode of the single cell A plurality of sub-assemblies, in which the alloy foil plates in contact with each other are wrapped with an alloy foil plate that has been processed according to the shape of the fuel electrode in advance, are stacked via an interconnector that performs gas flow and electrical connection. A method of manufacturing a support membrane type solid oxide fuel cell stack, characterized by laminating a lower surface of a lowermost subassembly with a jig having a shape corresponding to the surface of the lower surface of the subassembly. A method for producing a supported membrane solid oxide fuel cell stack is provided.

本発明は、(4)支持膜式固体酸化物形燃料電池の単セル全体を、空気極用の開口並びにガスの導入用の孔及び導出用の孔を備え、且つ、単セルの燃料極に接する部分の合金箔板が予め燃料極の形状に合わせて加工してなる合金箔板で包み込んでなるサブアセンブリの複数個を、ガス流通及び電気的接続を行うインターコネクタを介して積層するとともに、最下部のサブアセンブリの下に集電用電流端子を配置してなる支持膜式固体酸化物形燃料電池スタックの作製方法であって、集電用電流端子の下面に該サブアセンブリの下面の面に対応した形状を有する治具を介在させてなることを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法を提供する。   The present invention provides (4) an entire single cell of a support membrane type solid oxide fuel cell having an opening for an air electrode, a hole for introducing a gas, and a hole for deriving a gas. Laminating a plurality of subassemblies encased in an alloy foil plate in which the alloy foil plate in contact with the shape of the fuel electrode is processed in advance through an interconnector that performs gas flow and electrical connection, A method of manufacturing a support membrane type solid oxide fuel cell stack in which a current collecting current terminal is disposed under a lowermost subassembly, wherein a lower surface of the subassembly is disposed on a lower surface of the current collecting current terminal. A support membrane type solid oxide fuel cell stack is produced by interposing a jig having a shape corresponding to the above.

本発明は、(5)支持膜式固体酸化物形燃料電池の単セル全体を、空気極用の開口並びにガスの導入用の孔及び導出用の孔を備え、且つ、単セルの燃料極に接する部分の合金箔板が予め燃料極の形状に合わせて加工してなる合金箔板で包み込んでなる支持膜式固体酸化物形燃料電池スタック構成用サブアセンブリの複数個を、ガス流通及び電気的接続を行うインターコネクタを介して積層してなる支持膜式固体酸化物形燃料電池スタックを構成するための治具であって、最下部のサブアセンブリの下面の面に対応した形状の治具であることを特徴とする支持膜式固体酸化物形燃料電池スタックを構成するための治具を提供する。   The present invention provides (5) an entire single cell of a support membrane type solid oxide fuel cell having an opening for an air electrode, a hole for introducing a gas, and a hole for leading out, and the fuel electrode of a single cell. A plurality of sub-assemblies for supporting membrane type solid oxide fuel cell stacks, in which the alloy foil plates in contact with each other are encased in an alloy foil plate that has been processed according to the shape of the fuel electrode in advance, are used for gas flow and electrical A jig for constructing a support membrane type solid oxide fuel cell stack that is laminated via an interconnector for connection, and having a shape corresponding to the lower surface of the lowermost subassembly There is provided a jig for constituting a support membrane type solid oxide fuel cell stack.

本発明は、(6)支持膜式固体酸化物形燃料電池の単セル全体を、空気極用の開口並びにガスの導入用の孔及び導出用の孔を備え、且つ、単セルの燃料極に接する部分の合金箔板が予め燃料極の形状に合わせて加工してなる合金箔板で包み込んでなる支持膜式固体酸化物形燃料電池スタック構成用サブアセンブリの複数個を、ガス流通及び電気的接続を行うインターコネクタを介して積層するとともに、最下部のサブアセンブリの下に集電用電流端子を配置してなる支持膜式固体酸化物形燃料電池スタックを構成するための治具であって、サブアセンブリの下面の面に対応した形状の治具であることを特徴とする支持膜式固体酸化物形燃料電池スタックを構成するための治具を提供する。   The present invention provides (6) an entire single cell of a support membrane type solid oxide fuel cell having an opening for an air electrode, a hole for introducing a gas, and a hole for leading out, and the fuel electrode of a single cell. A plurality of sub-assemblies for supporting membrane type solid oxide fuel cell stacks, in which the alloy foil plates in contact with each other are encased in an alloy foil plate that has been processed according to the shape of the fuel electrode in advance, are used for gas flow and electrical A jig for constructing a support membrane type solid oxide fuel cell stack in which current collector terminals are arranged under the lowermost subassembly while being stacked via interconnectors for connection. A jig for forming a support membrane type solid oxide fuel cell stack, characterized in that it is a jig having a shape corresponding to the lower surface of the subassembly.

本発明によれば、空気極用の開口並びにガスの導入用の孔及び導出用の孔を備え、且つ、単セルの燃料極に接する部分の合金箔板が予め燃料極の形状に合わせて加工してなる合金箔板で包み込んでなる支持膜式固体酸化物形燃料電池スタック構成用サブアセンブリの複数個を、ガス流通及び電気的接続を行うインターコネクタを介して積層して支持膜式固体酸化物形燃料電池スタックを構成するに際して、最下部のサブアセンブリの下面と下部台、またはその下面と集電用電流端子と下部台との間を均一に当接することができる。本発明は支持膜式固体酸化物形燃料電池スタックを実用化するに際して有用である。   According to the present invention, an opening for the air electrode, a hole for introducing and a hole for introducing the gas, and a portion of the alloy foil plate in contact with the fuel electrode of the single cell are processed in advance according to the shape of the fuel electrode. A plurality of sub-assemblies for supporting membrane type solid oxide fuel cell stacks, which are wrapped with an alloy foil plate, are stacked through an interconnector for gas flow and electrical connection, and supporting membrane type solid oxidation When the physical fuel cell stack is configured, the lower surface and the lower base of the lowermost subassembly, or the lower surface, the current collecting current terminal, and the lower base can be uniformly contacted. The present invention is useful in putting a support membrane type solid oxide fuel cell stack into practical use.

本発明(1)〜(2)は、支持膜式固体酸化物形燃料電池の単セル全体を、空気極用の開口並びにガスの導入用の孔及び導出用の孔を備え、且つ、単セルの燃料極に接する部分の合金箔板が予め燃料極の形状に合わせて加工してなる合金箔板で包み込んでなる支持膜式固体酸化物形燃料電池スタック構成用サブアセンブリの複数個を、ガス流通及び電気的接続を行うインターコネクタを介して積層するとともに、最下部のサブアセンブリの下面、または最下部のサブアセンブリの下に集電用電流端子を配置してなる支持膜式固体酸化物形燃料電池スタックである。そして、最下部のサブアセンブリの下面、または集電用電流端子の下面に該サブアセンブリの下面の面に対応した形状の治具を介在させてなることを特徴とする。   The present invention (1)-(2) includes a single cell of a support membrane type solid oxide fuel cell, comprising an opening for an air electrode, a hole for introducing gas, and a hole for leading out, and a single cell. A plurality of sub-assemblies for constituting a support membrane type solid oxide fuel cell stack, in which an alloy foil plate in contact with the fuel electrode is wrapped with an alloy foil plate previously processed according to the shape of the fuel electrode, A support membrane type solid oxide formed by stacking via an interconnector for distribution and electrical connection, and by arranging a current collecting current terminal on the lower surface of the lowermost subassembly or under the lowermost subassembly It is a fuel cell stack. A jig having a shape corresponding to the surface of the lower surface of the subassembly is interposed on the lower surface of the lowermost subassembly or the current collector current terminal.

本発明(3)〜(4)は、支持膜式固体酸化物形燃料電池の単セル全体を、空気極用の開口並びにガスの導入用の孔及び導出用の孔を備え、且つ、単セルの燃料極に接する部分の合金箔板が予め燃料極の形状に合わせて加工してなる合金箔板で包み込んでなる支持膜式固体酸化物形燃料電池スタック構成用サブアセンブリの複数個を、ガス流通及び電気的接続を行うインターコネクタを介して積層するとともに、最下部のサブアセンブリの下面、または最下部のサブアセンブリの下に集電用電流端子を配置してなる支持膜式固体酸化物形燃料電池スタックの作製方法である。そして、最下部のサブアセンブリの下面、または集電用電流端子の下面に該サブアセンブリの下面の面に対応した形状の治具を介在させて積層することを特徴とする。   In the present invention (3) to (4), the entire single cell of the support membrane type solid oxide fuel cell is provided with an opening for the air electrode, a hole for introducing gas, and a hole for leading out, and the single cell A plurality of sub-assemblies for constituting a support membrane type solid oxide fuel cell stack, in which an alloy foil plate in contact with the fuel electrode is wrapped with an alloy foil plate previously processed according to the shape of the fuel electrode, A support membrane type solid oxide formed by stacking via an interconnector for distribution and electrical connection, and by arranging a current collecting current terminal on the lower surface of the lowermost subassembly or under the lowermost subassembly This is a method for producing a fuel cell stack. The lower assembly of the lowermost subassembly or the current collector current terminal is laminated with a jig having a shape corresponding to the surface of the lower surface of the subassembly.

本発明(5)〜(6)は、支持膜式固体酸化物形燃料電池の単セル全体を、空気極用の開口並びにガスの導入用の孔及び導出用の孔を備え、且つ、単セルの燃料極に接する部分の合金箔板が予め燃料極の形状に合わせて加工してなる合金箔板で包み込んでなる支持膜式固体酸化物形燃料電池スタック構成用サブアセンブリの複数個を、ガス流通及び電気的接続を行うインターコネクタを介して積層するとともに、最下部のサブアセンブリの下面、または最下部のサブアセンブリの下に集電用電流端子を配置してなる支持膜式固体酸化物形燃料電池スタックを構成するための治具である。そして、当該治具は、最下部のサブアセンブリの下面の面に対応した形状の治具であることを特徴とする。   The present inventions (5) to (6) comprise an entire single cell of a support membrane type solid oxide fuel cell, comprising an opening for an air electrode, a hole for introducing gas, and a hole for leading out, and a single cell. A plurality of sub-assemblies for constituting a support membrane type solid oxide fuel cell stack, in which an alloy foil plate in contact with the fuel electrode is wrapped with an alloy foil plate previously processed according to the shape of the fuel electrode, A support membrane type solid oxide formed by stacking via an interconnector for distribution and electrical connection, and by arranging a current collecting current terminal on the lower surface of the lowermost subassembly or under the lowermost subassembly It is a jig | tool for comprising a fuel cell stack. And the said jig | tool is a jig | tool of the shape corresponding to the surface of the lower surface of the lowermost subassembly.

〈サブアセンブリの下面の面に対応した形状の治具の構成態様〉
サブアセンブリの下面は前述図11に示すように湾曲状の凹部となる。本発明の治具は、その湾曲状凹部に対応した湾曲状凸部を有するように構成する。図15は本治具24の構造を示す図で、図15(a)は平面図、図15(b)は図15(a)中A−A線断面図、図15(c)は斜視図である。図15(b)〜(c)中25として示すように、上部に湾曲状に膨らんだ形状に構成する。そして、その湾曲状凸部25が、サブアセンブリの下面の面に対応した面となる。本治具の下面26は平面状であり、下部台20の上面に配置される。本治具の構成材料は、電気伝電性材料でも絶縁性材料でもよく、例えばステンレス鋼等の耐熱性合金が用いられる。
<Structure aspect of jig having a shape corresponding to the lower surface of the sub-assembly>
The lower surface of the subassembly becomes a curved recess as shown in FIG. The jig of the present invention is configured to have a curved convex portion corresponding to the curved concave portion. 15A and 15B are views showing the structure of the jig 24. FIG. 15A is a plan view, FIG. 15B is a cross-sectional view taken along line AA in FIG. 15A, and FIG. It is. As shown as 25 in FIG.15 (b)-(c), it comprises in the shape swelled in the upper part curvedly. And the curved convex part 25 turns into a surface corresponding to the surface of the lower surface of a subassembly. The lower surface 26 of the jig is planar and is disposed on the upper surface of the lower base 20. The constituent material of the jig may be an electrically conductive material or an insulating material, and for example, a heat resistant alloy such as stainless steel is used.

〈サブアセンブリの下面の面に対応した形状の治具による支持膜式SOFCスタックの構成態様〉
図16〜17は、本発明の治具を用いて、支持膜式SOFCスタック構成用サブアセンブリの複数個をガス流通及び電気的接続を行うインターコネクタを介して積層して支持膜式SOFCスタックを構成する態様を説明する図である。これら図16〜17では、各部材の配置関係を示すため各部材を間隔を置いて示し、また、サブアセンブリの三個を積層する場合を示しているが、サブアセンブリの二個、四個以上を積層する場合についても同様である。
<Structure aspect of support membrane type SOFC stack with jig having a shape corresponding to the lower surface of the sub-assembly>
FIGS. 16 to 17 show a support membrane type SOFC stack by stacking a plurality of sub membrane assembly for supporting membrane type SOFC stack through an interconnector for gas flow and electrical connection, using the jig of the present invention. It is a figure explaining the aspect to comprise. In FIGS. 16 to 17, each member is shown with an interval in order to show the arrangement relationship of each member, and the case where three subassemblies are stacked is shown. However, two, four or more subassemblies are shown. The same applies to the case of stacking layers.

図16のとおり、下部台20上の中央部に治具24を置く。その上に順次、サブアセンブリ11、絶縁スペーサ22、インターコネクタ23、サブアセンブリ11、絶縁スペーサ22、インターコネクタ23、サブアセンブリ11、絶縁スペーサ22、インターコネクタ23を配置する。そして、上部から荷重をかけることでSOFCスタックが構成される。図17の態様では、治具24の上に集電用電流端子21を置き、同様にしてSOFCスタックが構成される。   As shown in FIG. 16, the jig 24 is placed at the center of the lower base 20. A subassembly 11, an insulating spacer 22, an interconnector 23, a subassembly 11, an insulating spacer 22, an interconnector 23, a subassembly 11, an insulating spacer 22, and an interconnector 23 are sequentially disposed thereon. And a SOFC stack is comprised by applying a load from the upper part. In the embodiment of FIG. 17, the current collecting current terminal 21 is placed on the jig 24, and the SOFC stack is configured in the same manner.

図16の態様では、治具24を最下層のサブアセンブリの下面の面に対応した面となるように構成しているので、セルを割らない程度の荷重においても、サブアセンブリの下面との接触性が向上し、発電時の接触抵抗が低減する。この態様では、最下層のサブアセンブリの下面に電流端子のケーブルが接続される。また、図17のように最下層のサブアセンブリの下面に集電用電流端子21を配する態様では、サブアセンブリの下面と集電用電流端子21との接触性が向上し、発電時の接触抵抗が低減する。この態様では、集電用電流端子21にケーブルが接続される。本発明においては、これにより、SOFCスタック全体の発電出力が向上する。また、積層時に荷重が掛かった場合でも、治具24がセルの変形を防ぐため、セルの割れを防ぐことができる。   In the embodiment of FIG. 16, since the jig 24 is configured to be a surface corresponding to the surface of the lower surface of the lowermost subassembly, contact with the lower surface of the subassembly even at a load that does not break the cell. The contact resistance during power generation is reduced. In this embodiment, a current terminal cable is connected to the lower surface of the lowermost subassembly. Further, in the aspect in which the current collecting current terminal 21 is arranged on the lower surface of the lowermost subassembly as shown in FIG. 17, the contact between the lower surface of the subassembly and the current collecting current terminal 21 is improved, and the contact during power generation is improved. Resistance is reduced. In this embodiment, a cable is connected to the current collecting current terminal 21. In the present invention, this improves the power generation output of the entire SOFC stack. Even when a load is applied during lamination, the jig 24 prevents the cell from being deformed, so that the cell can be prevented from cracking.

〈本発明に係る治具に関連する支持膜式SOFCスタックの構成部材〉
本発明に係る治具を用いて支持膜式SOFCスタックを構成するに際しては、支持膜式SOFCの形状に対応した構成を備えたインターコネクタを用いることが有用である。以下、そのインターコネクタの構成について順次説明する。
<Constituent Member of Support Film Type SOFC Stack Related to Jig According to the Present Invention>
When a support membrane SOFC stack is configured using the jig according to the present invention, it is useful to use an interconnector having a configuration corresponding to the shape of the support membrane SOFC. Hereinafter, the configuration of the interconnector will be sequentially described.

インターコネクタの波状部における波状の形状は各種形状を採ることができる。図18はその形状の態様例を示す図である。図18(a)は断面波状の形状、図18(b)は断面ジグザグ状の形状、図18(c)は断面マシュマロ状の形状、図18(d)は断面台形状の形状、図18(e)は断面コ字状の形状であり、さらにはこれらの変形形状を採ることができる。ここで、本明細書及び特許請求の範囲における、インターコネクタの波状部あるいはその波状とは、図18(a)に示すような断面波状の形状そのものを意味するほか、当該断面波状の形状を含む上記各種形状のものを包括した意味でも用いている。   The wavy shape of the waved portion of the interconnector can take various shapes. FIG. 18 is a diagram showing an example of the shape. 18A is a cross-sectional wave shape, FIG. 18B is a cross-sectional zigzag shape, FIG. 18C is a cross-sectional marshmallow shape, FIG. 18D is a cross-sectional trapezoidal shape, and FIG. e) is a U-shaped cross-section, and these deformation shapes can be adopted. Here, the wavy portion of the interconnector or the wavy shape of the interconnector in the present specification and claims means not only the wavy shape of the cross section as shown in FIG. 18 (a) but also includes the wavy shape of the cross section. Also used in a comprehensive sense of the above-mentioned various shapes.

支持膜式SOFC単セルの表面すなわち空気極面は、図7〜9のように、中央部が膨らみ、周縁部に向けて漸次湾曲して反りないし歪みが生じる。すると、スタック作製に際して、その空気極面に図13〜14、図16〜17に示すようにインターコネクタの波状部を当接させる場合、その反りないし歪みにより、図19中、非接触部分として示すように、空気極面とインターコネクタの波状部間の接触が阻害され、電気的接触にむらが生じて接触抵抗を増大させ、発電性能を低下させてしまう。そこで、インターコネクタの波状部に、その波方向と平行にスリットを入れて構成する。図20はその態様を示す図である。   As shown in FIGS. 7 to 9, the surface of the support membrane SOFC single cell, that is, the air electrode surface, bulges at the center and gradually curves toward the peripheral edge, causing warping or distortion. Then, when the stack is manufactured, when the corrugated portion of the interconnector is brought into contact with the air electrode surface as shown in FIGS. 13 to 14 and FIGS. 16 to 17, it is shown as a non-contact portion in FIG. As described above, the contact between the air electrode surface and the corrugated portion of the interconnector is obstructed, causing uneven electrical contact, increasing the contact resistance, and reducing the power generation performance. Therefore, a slit is formed in the corrugated portion of the interconnector in parallel with the wave direction. FIG. 20 is a diagram showing this aspect.

図20のとおり、その波状部に、その波方向と平行にスリットを入れる。これにより、支持膜式SOFC単セルの空気極面とインターコネクタの波状部をむらなく接触させ、両者間で均等な電気的接触を達成することができる。本スリットは、図20に示す断面波状の形状とは限らず、図18(b)〜(e)に示すような、断面ジグザグ状、断面マシュマロ状、断面台形状、断面コ字状の形状の波状部のほか、これらの変形形状の波状部にも適用することができる。   As shown in FIG. 20, a slit is made in the wavy portion in parallel with the wave direction. As a result, the air electrode surface of the support membrane SOFC single cell and the corrugated portion of the interconnector can be brought into contact evenly, and uniform electrical contact can be achieved between them. This slit is not limited to the corrugated shape shown in FIG. 20, but has a zigzag cross section, a marshmallow cross section, a trapezoidal cross section, and a U-shaped cross section as shown in FIGS. In addition to the wavy portion, the present invention can also be applied to the wavy portions having these deformed shapes.

支持膜式SOFCの単セルをインターコネクタを介してスタック化した場合、その空気極面とインターコネクタの波状部の位置関係は図21(a)〜(b)に示すようになる。そして、インターコネクタの波状部の空隙が空気の流通路となるが、図21(a)に示すように、波状部のうちセルの空気極面に面する側の流路を流れる空気は発電に寄与するが、図21(b)に示すように、波状部のうちセルの空気極面に面しない側の流路を流れる空気は空気極面を流通しないことになり、発電に寄与しないことになる。そこで、インターコネクタの波状部に複数個の孔を設ける。図22〜23はその態様を示す図である。   When stacking single cells of a support membrane type SOFC via an interconnector, the positional relationship between the air electrode surface and the corrugated portion of the interconnector is as shown in FIGS. And the air gap of the corrugated part of the interconnector becomes the air flow passage, but as shown in FIG. 21 (a), the air flowing through the flow path on the side facing the air electrode surface of the cell is generated for the power generation. Although it contributes, as shown in FIG. 21 (b), the air flowing through the flow path on the side of the wavy portion that does not face the air electrode surface of the cell does not flow through the air electrode surface, and does not contribute to power generation. Become. Therefore, a plurality of holes are provided in the corrugated portion of the interconnector. 22-23 is a figure which shows the aspect.

図22〜23のとおり、インターコネクタの波状部に複数個の孔を設ける。図22は、スリットを設けない波状部に複数個の孔を設ける態様、図23は、前述図20に示すようにスリットを設けた波状部に複数個の孔を設ける態様である。この孔により、波状部のうち、セルの空気極面に面しない側の流路を流れる空気を空気極側に流通させ、空気極に接触させて発電に寄与させることができる。複数個の孔は、図22〜23に示す断面波状の形状とは限らず、図18(b)〜(e)に示すような、断面ジグザグ状、断面マシュマロ状、断面台形状、断面コ字状の形状の波状部のほか、これらの変形形状の波状部にも適用することができる。   As shown in FIGS. 22 to 23, a plurality of holes are provided in the corrugated portion of the interconnector. FIG. 22 is a mode in which a plurality of holes are provided in a wave-like portion without a slit, and FIG. 23 is a mode in which a plurality of holes are provided in a wave-like portion having a slit as shown in FIG. With this hole, the air flowing through the flow path on the side of the undulating portion that does not face the air electrode surface of the cell can be circulated to the air electrode side and brought into contact with the air electrode to contribute to power generation. The plurality of holes are not limited to the corrugated shape shown in FIGS. 22 to 23, but are a zigzag cross section, a marshmallow cross section, a trapezoidal cross section, and a U-shaped cross section as shown in FIGS. 18 (b) to 18 (e). In addition to the wavy portions having a shape, the present invention can also be applied to the wavy portions having these deformed shapes.

本発明における支持膜式SOFCスタック構成用サブアセンブリやスタックを構成する合金箔板及びインターコネクタの構成材料としてはステンレス鋼等の耐熱性合金が用いられる。また、スタックに供給する燃料としては、炭化水素、都市ガス、LPガス、天然ガス、ガソリン、軽油、灯油、ディーゼル油、アルコール類(メチルアルコール、エチルアルコール等)、ジメチルエーテル(DME)などが用いられる。   A heat-resistant alloy such as stainless steel is used as the constituent material of the support membrane type SOFC stack constituting subassembly, the alloy foil plate constituting the stack, and the interconnector in the present invention. Moreover, hydrocarbons, city gas, LP gas, natural gas, gasoline, light oil, kerosene, diesel oil, alcohols (methyl alcohol, ethyl alcohol, etc.), dimethyl ether (DME), etc. are used as fuel to be supplied to the stack. .

SOFCのセルの態様例を説明する図The figure explaining the example of the aspect of the cell of SOFC 単セルを組み込んだSOFCスタックの構成例を示す図Diagram showing a configuration example of a SOFC stack incorporating a single cell 支持膜式SOFCの単セル全体を、空気極用の開口並びにガスの導入用の孔及び導出用の孔を備えた合金箔板で包み込んでなる支持膜式SOFCスタック構成用サブアセンブリを示す図The figure which shows the sub-assembly for supporting membrane type SOFC stack which encloses the whole single cell of supporting membrane type SOFC with the alloy foil board provided with the opening for air electrodes, the hole for gas introduction, and the hole for extraction. 支持膜式SOFCの単セル全体を、空気極用の開口並びにガスの導入用の孔及び導出用の孔を備えた合金箔板で包み込んでなる支持膜式SOFCスタック構成用サブアセンブリを示す図The figure which shows the sub-assembly for supporting membrane type SOFC stack which encloses the whole single cell of supporting membrane type SOFC with the alloy foil board provided with the opening for air electrodes, the hole for gas introduction, and the hole for extraction. 図4に示すような支持膜式SOFCスタック構成用サブアセンブリを用いた支持膜式SOFCスタックの構成過程を示す図FIG. 4 is a diagram showing a configuration process of a support membrane SOFC stack using a support membrane SOFC stack configuration subassembly as shown in FIG. 図5のようにして構成された支持膜式SOFCスタックの長手方向中央部の断面図FIG. 5 is a cross-sectional view of the central portion in the longitudinal direction of the support membrane SOFC stack configured as shown in FIG. 支持膜式SOFCの単セルで生じる問題を説明する図Diagram explaining problems that occur in a single cell of a support membrane SOFC 支持膜式SOFCの単セルで生じる問題を説明する図Diagram explaining problems that occur in a single cell of a support membrane SOFC 支持膜式SOFCの単セルで生じる問題を説明する図Diagram explaining problems that occur in a single cell of a support membrane SOFC 支持膜式SOFCの単セルで生じる問題を解決してなるそのサブアセンブリを説明する図The figure explaining the subassembly which solves the problem which arises with the single cell of support membrane type SOFC 支持膜式SOFCの単セルで生じる問題を解決してなるそのサブアセンブリを説明する図The figure explaining the subassembly which solves the problem which arises with the single cell of support membrane type SOFC 支持膜式SOFCの単セルで生じる問題を解決してなるそのサブアセンブリを説明する図The figure explaining the subassembly which solves the problem which arises with the single cell of support membrane type SOFC 支持膜式SOFCスタック構成用サブアセンブリを用いて支持膜式SOFCスタックを構成する態様を説明する図The figure explaining the aspect which comprises a support membrane type SOFC stack using the subassembly for support membrane type SOFC stack composition 支持膜式SOFCスタック構成用サブアセンブリを用いて支持膜式SOFCスタックを構成する態様を説明する図The figure explaining the aspect which comprises a support membrane type SOFC stack using the subassembly for support membrane type SOFC stack composition 本発明に係る治具の構造を示す図The figure which shows the structure of the jig concerning this invention 本発明の治具を用いて、支持膜式SOFCスタック構成用サブアセンブリの複数個を積層して支持膜式SOFCスタックを構成する態様を説明する図The figure explaining the aspect which laminates | stacks the subassembly for support membrane type | mold SOFC stack structure, and comprises a support membrane type | mold SOFC stack using the jig | tool of this invention. 本発明の治具を用いて、支持膜式SOFCスタック構成用サブアセンブリの複数個を積層して支持膜式SOFCスタックを構成する態様を説明する図The figure explaining the aspect which laminates | stacks the subassembly for support membrane type | mold SOFC stack structure, and comprises a support membrane type | mold SOFC stack using the jig | tool of this invention. 本発明の支持膜式SOFCスタック構成用に用いるインターコネクタの波状部における波状の形状の態様例を示す図The figure which shows the example of a wave-like shape in the wave-like part of the interconnector used for support membrane type SOFC stack structure of this invention 支持膜式SOFC単電池の空気極面形状に起因する問題を説明する図The figure explaining the problem resulting from the air electrode surface shape of a support membrane type SOFC cell 支持膜式SOFC単電池の空気極面形状に起因する問題を解決するインターコネクタの態様を示す図The figure which shows the aspect of the interconnector which solves the problem resulting from the air electrode surface shape of a support membrane type SOFC cell 支持膜式SOFC単電池の空気極面形状に起因する問題を説明する図The figure explaining the problem resulting from the air electrode surface shape of a support membrane type SOFC cell 支持膜式SOFC単電池の空気極面形状に起因する問題を解決するインターコネクタの態様を示す図The figure which shows the aspect of the interconnector which solves the problem resulting from the air electrode surface shape of a support membrane type SOFC cell 支持膜式SOFC単電池の空気極面形状に起因する問題を解決するインターコネクタの態様を示す図The figure which shows the aspect of the interconnector which solves the problem resulting from the air electrode surface shape of a support membrane type SOFC cell

符号の説明Explanation of symbols

1 第1合金箔板
2 第2合金箔板
3 空気極用の開口(窓)
4、4 燃料流通用開口
5、5 接合部
6、6 接合部
7、7 開口
8、8 スペーサ
9 複数の孔
10 単セル
11 支持膜式SOFCスタック構成用サブアセンブリ
12、12 絶縁体部材
13 インターコネクタ
14、14 開口
15 波状部(溝)
20 下部台
21 集電用電流端子
22 絶縁スペーサ
23 インターコネクタ
24 サブアセンブリの下面の面に対応した形状の治具
25 治具24の上部の湾曲状の膨らみ部分
26 治具24の下面
DESCRIPTION OF SYMBOLS 1 1st alloy foil board 2 2nd alloy foil board 3 Opening (window) for air electrodes
4, 4 Openings for fuel flow 5, 5 Joints 6, 6 Joints 7, 7 Openings 8, 8 Spacers 9 Multiple holes 10 Single cell 11 Sub-assembly for supporting membrane type SOFC stack 12, 12 Insulator member 13 Inter Connector 14, 14 Opening 15 Waved part (groove)
DESCRIPTION OF SYMBOLS 20 Lower stand 21 Current collecting current terminal 22 Insulating spacer 23 Interconnector 24 Jig of shape corresponding to the surface of the lower surface of the subassembly 25 Curved bulging portion of the upper portion of the jig 24 26 Lower surface of the jig 24

Claims (19)

支持膜式固体酸化物形燃料電池の単セル全体を、空気極用の開口並びにガスの導入用の孔及び導出用の孔を備え、且つ、単セルの燃料極に接する部分の合金箔板が予め燃料極の形状に合わせて加工してなる合金箔板で包み込んでなるサブアセンブリの複数個を、ガス流通及び電気的接続を行う波状部を有するインターコネクタを介して積層してなる支持膜式固体酸化物形燃料電池スタックであって、最下部のサブアセンブリの下面に該サブアセンブリの下面の面に対応した形状を有する治具を介在させてなることを特徴とする支持膜式固体酸化物形燃料電池スタック。   The entire single cell of the support membrane type solid oxide fuel cell is provided with an opening for the air electrode, a hole for introducing gas, and a hole for leading out, and an alloy foil plate in a portion in contact with the fuel electrode of the single cell. A support membrane type in which a plurality of subassemblies wrapped with an alloy foil plate previously processed according to the shape of the fuel electrode are laminated via an interconnector having a wave-like portion for gas flow and electrical connection A support membrane type solid oxide comprising a solid oxide fuel cell stack, wherein a jig having a shape corresponding to a surface of a lower surface of the subassembly is interposed on a lower surface of a lowermost subassembly Fuel cell stack. 支持膜式固体酸化物形燃料電池の単セル全体を、空気極用の開口並びにガスの導入用の孔及び導出用の孔を備え、且つ、単セルの燃料極に接する部分の合金箔板が予め燃料極の形状に合わせて加工してなる合金箔板で包み込んでなるサブアセンブリの複数個を、ガス流通及び電気的接続を行う波状部を有するインターコネクタを介して積層するとともに、最下部のサブアセンブリの下に集電用電流端子を配置してなる支持膜式固体酸化物形燃料電池スタックであって、集電用電流端子の下面に該サブアセンブリの下面の面に対応した形状を有する治具を介在させてなることを特徴とする支持膜式固体酸化物形燃料電池スタック。   The entire single cell of the support membrane type solid oxide fuel cell is provided with an opening for the air electrode, a hole for introducing gas, and a hole for leading out, and an alloy foil plate in a portion in contact with the fuel electrode of the single cell. A plurality of subassemblies wrapped with an alloy foil plate that has been processed to match the shape of the fuel electrode in advance are stacked via an interconnector having a wave-like portion for gas flow and electrical connection, and A support membrane type solid oxide fuel cell stack in which current collecting current terminals are arranged under a subassembly, the lower surface of the current collecting current terminals having a shape corresponding to the surface of the lower surface of the subassembly A support membrane type solid oxide fuel cell stack comprising a jig. 請求項1または2に記載の支持膜式固体酸化物形燃料電池スタックにおいて、前記サブアセンブリの下面の面に対応した形状の治具の構成材料が耐熱性合金であることを特徴とする支持膜式固体酸化物形燃料電池スタック。   3. The support membrane type solid oxide fuel cell stack according to claim 1 or 2, wherein the constituent material of the jig having a shape corresponding to the lower surface of the subassembly is a heat resistant alloy. Type solid oxide fuel cell stack. 請求項1〜3のいずれか1項に記載の支持膜式固体酸化物形燃料電池スタックにおいて、前記合金箔板が短冊状の箔板であることを特徴とする支持膜式固体酸化物形燃料電池スタック。   The support membrane type solid oxide fuel cell stack according to any one of claims 1 to 3, wherein the alloy foil plate is a strip-like foil plate. Battery stack. 請求項1〜4のいずれか1項に記載の支持膜式固体酸化物形燃料電池スタックにおいて、前記合金箔板の構成材料が耐熱性合金であることを特徴とする支持膜式固体酸化物形燃料電池スタック。   The support membrane type solid oxide fuel cell stack according to any one of claims 1 to 4, wherein a constituent material of the alloy foil plate is a heat resistant alloy. Fuel cell stack. 請求項1〜5のいずれか1項に記載の支持膜式固体酸化物形燃料電池スタックにおいて、前記インターコネクタの波状部の形状が断面ジグザグ状、断面マシュマロ状、断面台形状または断面コ字状であることを特徴とする支持膜式固体酸化物形燃料電池スタック。   The support membrane type solid oxide fuel cell stack according to any one of claims 1 to 5, wherein the shape of the wavy portion of the interconnector is a zigzag cross section, a marshmallow cross section, a trapezoidal cross section, or a U-shaped cross section. A supported membrane solid oxide fuel cell stack, characterized in that 請求項6に記載の支持膜式固体酸化物形燃料電池スタックにおいて、前記インターコネクタが、空気極と接する部分に波状部を備え且つその波状部にその波方向と平行にスリットを入れてなるインターコネクタであることを特徴とする支持膜式固体酸化物形燃料電池スタック。   The support membrane type solid oxide fuel cell stack according to claim 6, wherein the interconnector includes a corrugated portion in a portion in contact with the air electrode, and a slit is formed in the corrugated portion in parallel with the wave direction. A support membrane type solid oxide fuel cell stack characterized by being a connector. 請求項6に記載の支持膜式固体酸化物形燃料電池スタックにおいて、前記インターコネクタが、空気極と接する部分に波状部を備え且つその波状部に複数個の孔を設けてなるインターコネクタであることを特徴とする支持膜式固体酸化物形燃料電池スタック。   7. The support membrane type solid oxide fuel cell stack according to claim 6, wherein the interconnector includes a corrugated portion in a portion in contact with the air electrode and a plurality of holes in the corrugated portion. A supported membrane solid oxide fuel cell stack. 支持膜式固体酸化物形燃料電池の単セル全体を、空気極用の開口並びにガスの導入用の孔及び導出用の孔を備え、且つ、単セルの燃料極に接する部分の合金箔板が予め燃料極の形状に合わせて加工してなる合金箔板で包み込んでなるサブアセンブリの複数個を、ガス流通及び電気的接続を行う波状部を有するインターコネクタを介して積層してなる支持膜式固体酸化物形燃料電池スタックの作製方法であって、最下部のサブアセンブリの下面に該サブアセンブリの下面の面に対応した形状の治具を介在させて積層することを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法。   The entire single cell of the support membrane type solid oxide fuel cell is provided with an opening for the air electrode, a hole for introducing gas, and a hole for leading out, and an alloy foil plate in a portion in contact with the fuel electrode of the single cell. A support membrane type in which a plurality of subassemblies wrapped with an alloy foil plate previously processed according to the shape of the fuel electrode are laminated via an interconnector having a wave-like portion for gas flow and electrical connection A method for producing a solid oxide fuel cell stack, comprising a lower membrane of a lowermost subassembly, and a stack having a shape corresponding to the surface of the lower surface of the subassembly, and laminating the support membrane type A method for producing a solid oxide fuel cell stack. 支持膜式固体酸化物形燃料電池の単セル全体を、空気極用の開口並びにガスの導入用の孔及び導出用の孔を備え、且つ、単セルの燃料極に接する部分の合金箔板が予め燃料極の形状に合わせて加工してなる合金箔板で包み込んでなるサブアセンブリの複数個を、ガス流通及び電気的接続を行う波状部を有するインターコネクタを介して積層するとともに、最下部のサブアセンブリの下に集電用電流端子を配置してなる支持膜式固体酸化物形燃料電池スタックの作製方法であって、集電用電流端子の下面に該サブアセンブリの下面の面に対応した形状を有する治具を介在させてなることを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法。   The entire single cell of the support membrane type solid oxide fuel cell is provided with an opening for the air electrode, a hole for introducing gas, and a hole for leading out, and an alloy foil plate in a portion in contact with the fuel electrode of the single cell. A plurality of subassemblies wrapped with an alloy foil plate that has been processed to match the shape of the fuel electrode in advance are stacked via an interconnector having a wave-like portion for gas flow and electrical connection, and A method of manufacturing a support membrane type solid oxide fuel cell stack in which a current collecting current terminal is arranged under a subassembly, corresponding to a lower surface of the subassembly on a lower surface of the current collecting current terminal A support membrane type solid oxide fuel cell stack manufacturing method characterized by interposing a jig having a shape. 請求項9または10に記載の支持膜式固体酸化物形燃料電池スタックの作製方法において、前記サブアセンブリの下面の面に対応した形状の治具の構成材料が耐熱性合金であることを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法。   11. The method of manufacturing a support membrane type solid oxide fuel cell stack according to claim 9 or 10, wherein the constituent material of the jig having a shape corresponding to the lower surface of the subassembly is a heat resistant alloy. A manufacturing method of a support membrane type solid oxide fuel cell stack. 請求項9〜11のいずれか1項に記載の支持膜式固体酸化物形燃料電池スタックの作製方法において、前記合金箔板が短冊状の箔板であることを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法。   The method for producing a support membrane type solid oxide fuel cell stack according to any one of claims 9 to 11, wherein the alloy foil plate is a strip-like foil plate. A method for manufacturing a physical fuel cell stack. 請求項9〜12のいずれか1項に記載の支持膜式固体酸化物形燃料電池スタックの作製方法において、前記合金箔板の構成材料が耐熱性合金であることを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法。   The method for producing a support membrane type solid oxide fuel cell stack according to any one of claims 9 to 12, wherein the constituent material of the alloy foil plate is a heat resistant alloy. A method for manufacturing an oxide fuel cell stack. 請求項9〜13のいずれか1項に記載の支持膜式固体酸化物形燃料電池スタックの作製方法において、前記インターコネクタの波状部の形状が断面ジグザグ状、断面マシュマロ状、断面台形状または断面コ字状であることを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法。   14. The method for manufacturing a support membrane solid oxide fuel cell stack according to claim 9, wherein the wavy portion of the interconnector has a zigzag cross section, a marshmallow cross section, a trapezoidal cross section, or a cross section. A manufacturing method of a support membrane type solid oxide fuel cell stack characterized by being U-shaped. 請求項14に記載の支持膜式固体酸化物形燃料電池スタックの作製方法において、前記インターコネクタが、空気極と接する部分に波状部を備え且つその波状部にその波方向と平行にスリットを入れてなるインターコネクタであることを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法。   15. The method of manufacturing a support membrane type solid oxide fuel cell stack according to claim 14, wherein the interconnector includes a corrugated portion in a portion in contact with the air electrode, and a slit is formed in the corrugated portion in parallel with the wave direction. A method of manufacturing a support membrane type solid oxide fuel cell stack, characterized by comprising: 請求項14に記載の支持膜式固体酸化物形燃料電池スタックの作製方法において、前記インターコネクタが、空気極と接する部分に波状部を備え且つその波状部に複数個の孔を設けてなるインターコネクタであることを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法。   15. The manufacturing method of a support membrane type solid oxide fuel cell stack according to claim 14, wherein the interconnector includes a corrugated portion in a portion in contact with the air electrode and a plurality of holes in the corrugated portion. A manufacturing method of a support membrane type solid oxide fuel cell stack, which is a connector. 支持膜式固体酸化物形燃料電池の単セル全体を、空気極用の開口並びにガスの導入用の孔及び導出用の孔を備え、且つ、単セルの燃料極に接する部分の合金箔板が予め燃料極の形状に合わせて加工してなる合金箔板で包み込んでなる支持膜式固体酸化物形燃料電池スタック構成用サブアセンブリの複数個を、ガス流通及び電気的接続を行う波状部を有するインターコネクタを介して積層してなる支持膜式固体酸化物形燃料電池スタックを構成するための治具であって、最下部のサブアセンブリの下面の面に対応した形状の治具であることを特徴とする支持膜式固体酸化物形燃料電池スタックを構成するための治具。   The entire single cell of the support membrane type solid oxide fuel cell is provided with an opening for the air electrode, a hole for introducing gas, and a hole for leading out, and an alloy foil plate in a portion in contact with the fuel electrode of the single cell. A plurality of sub-assemblies for supporting membrane type solid oxide fuel cell stack construction, which are encased in an alloy foil plate that has been previously processed according to the shape of the fuel electrode, have corrugated portions for gas flow and electrical connection. A jig for constructing a support membrane type solid oxide fuel cell stack laminated through an interconnector, and having a shape corresponding to the lower surface of the lowermost subassembly. A jig for constituting a support membrane type solid oxide fuel cell stack. 支持膜式固体酸化物形燃料電池の単セル全体を、空気極用の開口並びにガスの導入用の孔及び導出用の孔を備え、且つ、単セルの燃料極に接する部分の合金箔板が予め燃料極の形状に合わせて加工してなる合金箔板で包み込んでなる支持膜式固体酸化物形燃料電池スタック構成用サブアセンブリの複数個を、ガス流通及び電気的接続を行う波状部を有するインターコネクタを介して積層するとともに、最下部のサブアセンブリの下に集電用電流端子を配置してなる支持膜式固体酸化物形燃料電池スタックを構成するための治具であって、サブアセンブリの下面の面に対応した形状の治具であることを特徴とする支持膜式固体酸化物形燃料電池スタックを構成するための治具。   The entire single cell of the support membrane type solid oxide fuel cell is provided with an opening for the air electrode, a hole for introducing gas, and a hole for leading out, and an alloy foil plate in a portion in contact with the fuel electrode of the single cell. A plurality of sub-assemblies for supporting membrane type solid oxide fuel cell stack construction, which are encased in an alloy foil plate that has been previously processed according to the shape of the fuel electrode, have corrugated portions for gas flow and electrical connection. A jig for constructing a support membrane type solid oxide fuel cell stack in which a current collecting current terminal is disposed under a lowermost subassembly while being stacked via an interconnector. A jig for constituting a support membrane type solid oxide fuel cell stack, characterized in that the jig has a shape corresponding to the surface of the lower surface of the fuel cell. 請求項17または18に記載の支持膜式固体酸化物形燃料電池スタックを構成するための治具において、治具の構成材料が耐熱性合金であることを特徴とする支持膜式固体酸化物形燃料電池スタックを構成するための治具。
19. A jig for constituting the support membrane type solid oxide fuel cell stack according to claim 17 or 18, wherein the constituent material of the jig is a heat resistant alloy. Jig for configuring the fuel cell stack.
JP2004131065A 2004-04-27 2004-04-27 Supporting film type solid oxide fuel cell stack, and manufacturing method of the same Pending JP2005317241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004131065A JP2005317241A (en) 2004-04-27 2004-04-27 Supporting film type solid oxide fuel cell stack, and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004131065A JP2005317241A (en) 2004-04-27 2004-04-27 Supporting film type solid oxide fuel cell stack, and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2005317241A true JP2005317241A (en) 2005-11-10

Family

ID=35444453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004131065A Pending JP2005317241A (en) 2004-04-27 2004-04-27 Supporting film type solid oxide fuel cell stack, and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2005317241A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009737A (en) * 2007-06-26 2009-01-15 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell and its manufacturing method
JP2009245687A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and method of manufacturing solid oxide fuel cell
WO2013001777A1 (en) * 2011-06-28 2013-01-03 日本特殊陶業株式会社 Solid oxide fuel cell and inter-connector
JP2013168227A (en) * 2012-02-14 2013-08-29 Nippon Telegr & Teleph Corp <Ntt> Method of manufacturing solid oxide fuel cell
WO2014123150A1 (en) * 2013-02-07 2014-08-14 日本特殊陶業株式会社 Fuel cell and method for manufacturing same
US9761888B2 (en) 2012-01-30 2017-09-12 Ngk Spark Plug Co., Ltd. Fuel cell
WO2021210231A1 (en) * 2020-04-15 2021-10-21 住友電気工業株式会社 Electrochemical cell device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009737A (en) * 2007-06-26 2009-01-15 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell and its manufacturing method
JP2009245687A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and method of manufacturing solid oxide fuel cell
US9455454B2 (en) 2011-06-28 2016-09-27 Ngk Spark Plug Co., Ltd. Solid oxide fuel cell and inter-connector
WO2013001777A1 (en) * 2011-06-28 2013-01-03 日本特殊陶業株式会社 Solid oxide fuel cell and inter-connector
US20140212784A1 (en) * 2011-06-28 2014-07-31 Ngk Spark Plug Co., Ltd. Solid oxide fuel cell and inter-connector
JP2014157834A (en) * 2011-06-28 2014-08-28 Ngk Spark Plug Co Ltd Solid oxide fuel cell and inter-connector
JPWO2013001777A1 (en) * 2011-06-28 2015-02-23 日本特殊陶業株式会社 Solid oxide fuel cell and interconnector
US9761888B2 (en) 2012-01-30 2017-09-12 Ngk Spark Plug Co., Ltd. Fuel cell
JP2013168227A (en) * 2012-02-14 2013-08-29 Nippon Telegr & Teleph Corp <Ntt> Method of manufacturing solid oxide fuel cell
JPWO2014123150A1 (en) * 2013-02-07 2017-02-02 日本特殊陶業株式会社 Fuel cell and manufacturing method thereof
WO2014123150A1 (en) * 2013-02-07 2014-08-14 日本特殊陶業株式会社 Fuel cell and method for manufacturing same
US10224553B2 (en) 2013-02-07 2019-03-05 Ngk Spark Plug Co., Ltd. Fuel cell comprising connection members having different thickness for each of cell units and method for manufacturing same
WO2021210231A1 (en) * 2020-04-15 2021-10-21 住友電気工業株式会社 Electrochemical cell device

Similar Documents

Publication Publication Date Title
JP6868051B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
US9455453B2 (en) Fuel cell, and fuel cell stack
US20180040906A1 (en) Fuel cell stack
US9640804B2 (en) Fuel cell, and fuel cell stack
JP4963195B2 (en) Separator and flat solid oxide fuel cell
JP2005317241A (en) Supporting film type solid oxide fuel cell stack, and manufacturing method of the same
JP6917416B2 (en) Electrochemical reaction cell stack
JP2005317291A (en) Supporting film type solid oxide fuel cell stack, and manufacturing method of the same
JP6835768B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP6294134B2 (en) Fuel cell stack
JP6756549B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP6893126B2 (en) Electrochemical reaction cell stack
JPH04298964A (en) Solid electrolyte type fuel cell and manufacture thereof
JP5448917B2 (en) Cell stack device, fuel cell module and fuel cell device
JP7082954B2 (en) Electrochemical reaction cell stack
JP4271538B2 (en) Support membrane type solid oxide fuel cell stack and manufacturing method thereof
JP6773470B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP6917193B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP6867852B2 (en) Current collector-electrochemical reaction single cell complex and battery chemical reaction cell stack
JP4184139B2 (en) Support membrane type solid oxide fuel cell stack and manufacturing method thereof
JP6773600B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP6773526B2 (en) Interconnector-electrochemical reaction single cell complex and electrochemical reaction cell stack
JP6690996B2 (en) Electrochemical reaction cell stack
JP6773472B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP2005317292A (en) Supporting film type solid oxide fuel cell stack