JP2005317291A - Supporting film type solid oxide fuel cell stack, and manufacturing method of the same - Google Patents

Supporting film type solid oxide fuel cell stack, and manufacturing method of the same Download PDF

Info

Publication number
JP2005317291A
JP2005317291A JP2004132121A JP2004132121A JP2005317291A JP 2005317291 A JP2005317291 A JP 2005317291A JP 2004132121 A JP2004132121 A JP 2004132121A JP 2004132121 A JP2004132121 A JP 2004132121A JP 2005317291 A JP2005317291 A JP 2005317291A
Authority
JP
Japan
Prior art keywords
fuel cell
oxide fuel
solid oxide
cell stack
support membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004132121A
Other languages
Japanese (ja)
Inventor
Kei Ogasawara
慶 小笠原
Yoshitaka Baba
好孝 馬場
Teruhiro Sakurai
輝浩 桜井
Hisataka Yakabe
久孝 矢加部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2004132121A priority Critical patent/JP2005317291A/en
Publication of JP2005317291A publication Critical patent/JP2005317291A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supporting film type SOFC stack capable solving the problem of minor warping, distortion, and variations of the thickness of cells, and the problem of accumulation of displacement caused by increasing the number of lamination, arisen when laminating and stacking the sub-assembly, and to provide a manufacturing method of the same. <P>SOLUTION: The supporting film type solid oxide fuel cell stack is formed by laminating a plurality of sub-assemblies formed by wrapping the whole of unit cells of the supporting film type solid oxide fuel cell by an alloy foil provided with an opening for cathode, a gas lead-in hole, and a gas lead-out hole, through an interconnector and an insulation spacer having a wave-shaped part for gas-flow and electric connection. A flat separation plate having a gas flow passage is arranged after laminating a certain number of sub-assemblies, and one or a plurality of sub-assemblies are arranged and laminated again on the separation plate. The manufacturing method of the supporting film type solid oxide fuel cell stack is provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、支持膜式固体酸化物形燃料電池スタック及びその作製方法に関する。   The present invention relates to a support membrane type solid oxide fuel cell stack and a method for producing the same.

固体酸化物形燃料電池(Solid Oxide Fuel Cell:以下適宜「SOFC」と略称する)の単電池すなわち単セルは、固体酸化物電解質を挟んでアノード及びカソードが配置され、アノード/電解質/カソードの3層ユニットで構成される。本明細書中、単セルを適宜「セル」とも言い、固体酸化物電解質を適宜「電解質」または「電解質膜」とも言う。   In a single cell of a solid oxide fuel cell (hereinafter abbreviated as “SOFC” where appropriate), an anode and a cathode are arranged with a solid oxide electrolyte in between, and anode / electrolyte / cathode 3 Consists of layer units. In the present specification, a single cell is also referred to as “cell” as appropriate, and a solid oxide electrolyte is also referred to as “electrolyte” or “electrolyte membrane” as appropriate.

電解質材料としては、例えばイットリア安定化ジルコニア(YSZ)等のシート状焼結体が用いられ、アノードとしては、例えばニッケルとイットリア安定化ジルコニアの混合物(Ni/YSZサーメット)等の多孔質体が用いられ、カソードとしては、例えばSrドープのLaMnO3等の多孔質体が用いられ、通常、電解質材料の両面にアノードとカソードを焼き付けることにより単セルが構成される。その作動時に、カソードに導入される空気中の酸素はカソードで酸化物イオン(O2-)となり、電解質を通ってアノードに至る。ここで、アノードに導入される燃料と反応して電子を放出し、電気と水、二酸化炭素等の反応生成物を生成する。カソードでの利用済み空気はカソードオフガスとして排出され、アノードでの利用済み燃料はアノードオフガスとして排出される。 As the electrolyte material, a sheet-like sintered body such as yttria stabilized zirconia (YSZ) is used, and as the anode, a porous body such as a mixture of nickel and yttria stabilized zirconia (Ni / YSZ cermet) is used. For example, a porous body such as Sr-doped LaMnO 3 is used as the cathode, and a single cell is usually formed by baking the anode and the cathode on both surfaces of the electrolyte material. During the operation, oxygen in the air introduced into the cathode becomes oxide ions (O 2− ) at the cathode and reaches the anode through the electrolyte. Here, it reacts with the fuel introduced into the anode and emits electrons to generate reaction products such as electricity, water and carbon dioxide. Spent air at the cathode is discharged as cathode offgas, and spent fuel at the anode is discharged as anode offgas.

ところで、従来のSOFCはその作動温度が1000〜800℃程度と高いが、最近ではそれ以下、800〜650℃程度の範囲、例えば750℃程度の温度で作動するSOFCが開発されつつある。図1はそのSOFCのセルの態様例を説明する図である。図1(a)は単セルの断面図、図1(b)はカソード側から見た斜視図である。図1(a)〜(b)のとおり、セルは、アノードの上に電解質膜が配置され、電解質膜の上にカソードが配置されて構成される。   By the way, a conventional SOFC has a high operating temperature of about 1000 to 800 ° C., but recently, an SOFC operating at a temperature of about 800 to 650 ° C., for example, about 750 ° C. is being developed. FIG. 1 is a diagram illustrating an example of the SOFC cell mode. 1A is a cross-sectional view of a single cell, and FIG. 1B is a perspective view seen from the cathode side. As shown in FIGS. 1A to 1B, the cell is configured such that an electrolyte membrane is disposed on an anode and a cathode is disposed on the electrolyte membrane.

固体酸化物電解質として例えばジルコニア系やLaGaO3系などの電解質材料が用いられ、これを膜厚の厚いアノードで支持するように構成されており、支持膜式と称される。支持膜式においては、電解質膜の膜厚を薄く構成でき、その膜厚が例えば10μm程度となり、800〜650℃という低温で運転できる。このため、その構成材料として耐熱合金、例えばステンレス鋼などの安価な材料の使用を可能とし、また小型化が可能であるなど各種利点を有する。 For example, a zirconia-based or LaGaO 3 -based electrolyte material is used as the solid oxide electrolyte, which is configured to be supported by a thick anode, and is called a support membrane type. In the support membrane type, the thickness of the electrolyte membrane can be reduced. The thickness of the membrane is, for example, about 10 μm, and it can be operated at a low temperature of 800 to 650 ° C. For this reason, it is possible to use a heat-resistant alloy, for example, an inexpensive material such as stainless steel as the constituent material, and there are various advantages such as being able to reduce the size.

図2は、そのようにして構成された単セルを組み込んだSOFCスタックの構成例である。ここで、カソードとセパレータAとの間に空気が流通し、カソードとセパレータAの間は電気的に接触している必要がある。このため、カソードとセパレータAの間には、空気流通用の溝を有し且つ導電性のインターコネクタが設けられるが、図示は省略している。インターコネクタは、セパレータAとは別個に設けてもよく、それと一体に設けてもよい。   FIG. 2 is a configuration example of an SOFC stack incorporating a single cell configured as described above. Here, it is necessary that air flows between the cathode and the separator A and that the cathode and the separator A are in electrical contact. For this reason, a conductive interconnector having a groove for air circulation is provided between the cathode and the separator A, but the illustration is omitted. The interconnector may be provided separately from the separator A or may be provided integrally therewith.

図2のとおり、支持膜式SOFCスタックは、上部から下部へ順次セパレータA、セパレータB、セパレータC、セル、セパレータDが配置される。このうちセパレータCはセルサポートフォイルともいわれる。セパレータAの上部には集電板等が配置されるが、図示は省略している。セパレータA〜Dはステンレス鋼等の耐熱合金で構成される。なお、図2中、アノードと集電板との間に間隙を置いて示しているが、両者は電気的に接触している必要がある。このため、アノード下面と集電板を直かに接するようにしてもよく、両者間にニッケルフェルト等を介在させてもよい。アノードは多孔質体であるので、燃料はアノード中やその下面を流通しながら発電に寄与する。   As shown in FIG. 2, in the support membrane SOFC stack, the separator A, the separator B, the separator C, the cell, and the separator D are sequentially arranged from the upper part to the lower part. Among these, the separator C is also called a cell support foil. A current collector plate and the like are disposed on the upper part of the separator A, but the illustration is omitted. Separators A to D are made of a heat-resistant alloy such as stainless steel. In FIG. 2, a gap is provided between the anode and the current collector plate, but the two need to be in electrical contact. For this reason, the anode lower surface and the current collector plate may be in direct contact with each other, or nickel felt or the like may be interposed between them. Since the anode is a porous body, fuel contributes to power generation through the anode and its lower surface.

ところで、上記のような低温作動の支持膜式SOFCにおいても、単セル一個の電圧は低いため、通常、単セルを複数層電気的に直列に積層して構成される。単セルをセルサポートフォイル(すなわち図2中セパレータC)に接合し、それをマニホールド(図2中セパレータB、D)に納まるように配置、接合したものをユニットとし、これを耐熱合金製のインターコネクタを介して次のユニットに接合することによりスタックが形成される。加えて、SOFCスタックを流通する燃料、空気、アノードオフガス、カソードオフガスはすべて気体であることからガス封止をするが、その封止性を高めるために各部材間にはシール材を挟み込む必要があるなど、SOFCスタックを構成するには数多くの部材に加え、煩鎖で数多くの工程を必要とする。   By the way, also in the support membrane type SOFC operated at a low temperature as described above, since the voltage of one single cell is low, the single cell is usually configured by stacking a plurality of layers electrically in series. A single cell is joined to a cell support foil (ie, separator C in FIG. 2), and is placed and joined so as to fit in a manifold (separators B and D in FIG. 2). A stack is formed by joining to the next unit via a connector. In addition, the fuel, air, anode off-gas, and cathode off-gas flowing through the SOFC stack are all gas, so gas sealing is performed, but it is necessary to sandwich a sealing material between the members in order to improve the sealing performance. For example, in order to construct an SOFC stack, many steps are required in addition to many members.

本発明者らは、そのような数多くの部材や煩鎖で数多くの工程を経ることなく構成でき、且つ、ガス封止部を格段に減じてなる支持膜式SOFCスタック構成用サブアセンブリ(以下“A”とする)、これを用いた支持膜式SOFCスタック(以下“B”とする)及びモジュールを先に開発している(特願2003−112202号:平成15年4月16日出願)。以下、これらサブアセンブリ、スタック、モジュールについてその概略を順次説明する。   The inventors of the present invention have a sub-assembly for supporting membrane type SOFC stack (hereinafter referred to as “hereinafter referred to as“ subassembly ”) which can be configured without many processes with such a large number of members and chains, and which has a significantly reduced gas sealing portion. A ”), a supporting membrane type SOFC stack (hereinafter referred to as“ B ”) and a module using the same have been developed (Japanese Patent Application No. 2003-112202: filed on April 16, 2003). The outline of these subassemblies, stacks, and modules will be sequentially described below.

特願2003−112202号Japanese Patent Application No. 2003-112202

〈A:支持膜式SOFCスタック構成用サブアセンブリについて〉
支持膜式SOFCスタック構成用サブアセンブリは、支持膜式固体酸化物形燃料電池の単セル全体を、カソード用の開口並びにガスの導入用の孔(開口)及び導出用の孔(開口)を備えた合金箔板で包み込んでなる支持膜式SOFCスタック構成用サブアセンブリである。図3〜4はその構成例を示す図である。図3(a)は第1合金箔板1を示す図、図3(b)は第2合金箔板2を示す図であり、合金箔板を短冊状の形状に形成した例であるが、合金箔板は矩形状のほか、四角形状その他適宜の形状とすることができる。
<A: Sub-assembly for supporting membrane SOFC stack configuration>
The sub-assembly for supporting membrane type SOFC stack construction is provided with a single cell of a supporting membrane type solid oxide fuel cell, an opening for cathode, a hole for introducing gas (opening), and a hole for opening (opening). 2 is a sub-assembly for constructing a support membrane SOFC stack, which is wrapped with an alloy foil plate. 3 to 4 are diagrams showing examples of the configuration. FIG. 3 (a) is a diagram showing the first alloy foil plate 1, FIG. 3 (b) is a diagram showing the second alloy foil plate 2, and is an example in which the alloy foil plate is formed in a strip shape. The alloy foil plate may have a rectangular shape, a square shape, or any other appropriate shape.

図3(a)のとおり、第1の短冊状合金箔板1は、その中央部にカソード用の開口(窓)3と長手方向の両端に燃料流通用開口(孔)4、4を設けるとともに、その長手方向に対する左右両端に図3(b)に示す第2の短冊状合金箔板2との接合部5、5を設けて構成される。第2の短冊状合金箔板2は、その長手方向の両端に燃料流通用開口(孔)7、7を設けるとともに、その短冊状合金箔板の長手方向に対する左右両端に図3(a)に示す第1の短冊状合金箔板1との接合部6、6を設けて構成される。   As shown in FIG. 3A, the first strip-shaped alloy foil plate 1 is provided with a cathode opening (window) 3 at the center and fuel circulation openings (holes) 4 and 4 at both ends in the longitudinal direction. The joints 5 and 5 with the second strip-shaped alloy foil plate 2 shown in FIG. 3B are provided at the left and right ends of the longitudinal direction. The second strip-shaped alloy foil plate 2 is provided with fuel distribution openings (holes) 7 and 7 at both ends in the longitudinal direction, and at the left and right ends with respect to the longitudinal direction of the strip-shaped alloy foil plate as shown in FIG. The first strip-shaped alloy foil plate 1 shown in FIG.

ここで、第2の短冊状合金箔板2の接合部6、6はその端部を折曲げて構成し、第1の短冊状合金箔板1の接合部5、5はその端部を2回折り曲げ、第2の短冊状合金箔板2の接合部6、6で係止されるように構成しているが、その形状は、第2の短冊状合金箔板2の接合部6、6と第1の短冊状合金箔板1の接合部5、5とが接合材により接合し得る適宜の形状に構成することができる。その接合は溶接や、接合材により接合することができ、接合材としては金属ろうやガラス接合材等が用いられる。   Here, the joint portions 6 and 6 of the second strip-shaped alloy foil plate 2 are formed by bending the end portions thereof, and the joint portions 5 and 5 of the first strip-shaped alloy foil plate 1 have two end portions thereof. Although it is configured to be bent and locked at the joints 6 and 6 of the second strip-shaped alloy foil plate 2, the shape thereof is the joints 6 and 6 of the second strip-shaped alloy foil plate 2. And the joints 5 and 5 of the first strip-shaped alloy foil plate 1 can be configured in an appropriate shape that can be joined by a joining material. The bonding can be performed by welding or a bonding material. As the bonding material, a metal brazing material, a glass bonding material, or the like is used.

図3(c)は、上記のように構成した第1の短冊状合金箔板1及び第2の短冊状合金箔板2と、前述図1に示すような支持膜式SOFCの単セル10と、スペーサ8、8を用いて支持膜式SOFCスタック構成用サブアセンブリを構成する例を示す図である。ここで、SOFCの単セル10はカソードを上にして配置される。スペーサ8、8は、第1の短冊状合金箔板1の長手方向の両端に設けられた開口(孔)4、4及び第2の短冊状合金箔板2の長手方向の両端に設けられた開口(孔)7、7に対応した開口を有し、両短冊状合金箔板と同様の合金部材で構成される。スペーサ8、8には内部に向けてガスが通るように開口部側面に複数の孔9が設けてある。   FIG. 3C shows the first strip-shaped alloy foil plate 1 and the second strip-shaped alloy foil plate 2 configured as described above, and the single membrane 10 of the support membrane type SOFC as shown in FIG. FIG. 5 is a view showing an example in which a sub-assembly for supporting membrane SOFC stack configuration is configured using spacers 8 and 8. Here, the SOFC single cell 10 is arranged with the cathode facing upward. The spacers 8, 8 are provided at openings (holes) 4, 4 provided at both ends in the longitudinal direction of the first strip-shaped alloy foil plate 1 and at both ends in the longitudinal direction of the second strip-shaped alloy foil plate 2. It has openings corresponding to the openings (holes) 7 and 7 and is made of an alloy member similar to both strip-shaped alloy foil plates. The spacers 8 and 8 are provided with a plurality of holes 9 on the side surface of the opening so that the gas passes inward.

図3(c)のとおり、まず第2の短冊状合金箔板2の中央部に単セル10を載置する。そして、第1の短冊状合金箔板1と第2の短冊状合金箔板2との間で、第1の短冊状合金箔板1の長手方向の両端開口(孔)4、4と第2の短冊状合金箔板2の長手方向の両端開口(孔)7、7に対応した位置にスペーサ8、8を配置する。その後、第2の短冊状合金箔板2の接合部6、6で第1の短冊状合金箔板1の接合部5、5を係止し、その間を接合材で接合する。   As shown in FIG. 3C, first, the single cell 10 is placed in the center of the second strip-shaped alloy foil plate 2. And between the 1st strip-shaped alloy foil board 1 and the 2nd strip-shaped alloy foil board 2, both ends opening (hole) 4, 4 of the longitudinal direction of the 1st strip-shaped alloy foil board 1 and 2nd The spacers 8 and 8 are arranged at positions corresponding to the openings (holes) 7 and 7 in the longitudinal direction of the strip-shaped alloy foil plate 2. Thereafter, the joint portions 5 and 5 of the first strip-shaped alloy foil plate 1 are locked by the joint portions 6 and 6 of the second strip-shaped alloy foil plate 2, and the portion is joined by a joining material.

図4は、こうして構成された支持膜式SOFCスタック構成用サブアセンブリ11を示し、図4(a)はカソード側すなわち表面側から見た斜視図、図4(b)はアノード側すなわち裏面側から見た斜視図である。図4のとおり、本サブアセンブリは、支持膜式SOFCの単セル全体を、カソード用の開口並びにガスの導入用の孔(開口)及び導出用の孔(開口)を備えた合金箔板で包み込んで構成される。図4に示すような支持膜式SOFCスタック構成用サブアセンブリは、一枚の合金箔板を折曲げて単セルを包み込むことでも作製することもできる。一枚の合金箔板を折曲げて単セルを包み込む構成によれば、接合する箇所が合金箔板の折曲部と相対する端部だけであるので、その工作上も簡単且つ容易であり、ガスシール性の優れた支持膜式SOFCスタック構成用サブアセンブリとすることができる。   FIG. 4 shows the sub-assembly 11 for supporting membrane SOFC stack constructed as described above, FIG. 4 (a) is a perspective view seen from the cathode side, ie, the front side, and FIG. 4 (b) is from the anode side, ie, the back side. FIG. As shown in FIG. 4, this subassembly wraps the entire single membrane of the support membrane type SOFC with an alloy foil plate having an opening for the cathode and a hole for introducing gas (opening) and a hole for opening (opening). Consists of. The sub-assembly for supporting membrane type SOFC stack construction as shown in FIG. 4 can also be produced by folding a single alloy foil plate and wrapping a single cell. According to the configuration in which a single cell is wrapped by folding a single alloy foil plate, the only part to be joined is the end portion facing the bent portion of the alloy foil plate, and the work is simple and easy. It is possible to provide a sub-assembly for supporting membrane type SOFC stack having excellent gas sealing performance.

〈B:支持膜式SOFCスタック構成用サブアセンブリAを用いたスタックについて〉
支持膜式SOFCスタック構成用サブアセンブリAを用いてスタックが構成される。構成部材としては、以上のようにして作製した支持膜式SOFCスタック構成用サブアセンブリと絶縁体部材とインターコネクタを用いる。絶縁体部材は、スタック構成用サブアセンブリの開口と対応した開口を有し、例えば雲母等の耐熱性材料で構成され、インターコネクタは例えばステンレス鋼等の耐熱性合金で構成される。
<B: Stack using sub-assembly A for supporting SOFC stack configuration>
A stack is constructed using the sub-assembly A for constructing the support membrane SOFC stack. As the constituent members, the support membrane SOFC stack constituent subassembly, the insulator member, and the interconnector manufactured as described above are used. The insulator member has an opening corresponding to the opening of the stack subassembly, and is made of a heat resistant material such as mica, and the interconnector is made of a heat resistant alloy such as stainless steel.

インターコネクタは通常波状に構成され、その波状部により空気流通(つまりガス流通)及び電気的接続が行われる。すなわち、インターコネクタは、空気流通及び電気的接続用の波状部を備えて構成し、これを単セルのカソードに対応する部位に配置する。インターコネクタは、その点を基本とし、空気流通及び電気的接続用の波状部をその両側に延長し、その両端部に絶縁体部材の開口及びサブアセンブリの開口に対応した開口を備えて構成してもよい。この場合にも、空気流通及び電気的接続用の波状部を単セルのカソードに対応する部位に配置する。   The interconnector is normally configured in a wave shape, and air flow (that is, gas flow) and electrical connection are performed by the wave-shaped portion. That is, the interconnector is configured to include a wave-like portion for air circulation and electrical connection, and this is disposed at a portion corresponding to the cathode of the single cell. The interconnector is based on that point, and is constructed by extending the corrugated part for air flow and electrical connection to both sides and having openings corresponding to the opening of the insulator member and the opening of the subassembly at both ends. May be. In this case as well, the corrugated portion for air circulation and electrical connection is arranged at a portion corresponding to the cathode of the single cell.

図5は、図4に示すような支持膜式SOFCスタック構成用サブアセンブリ11を用いた支持膜式SOFCスタックの構成過程を示す図である。インターコネクタとして、上記空気流通及び電気的接続用の波状部からその両側に面状に延長し、その両端部に絶縁体部材の開口及びサブアセンブリの開口に対応した開口を備えたインターコネクタを用いる場合を示している。図5のとおり、インターコネクタ13は、その両端に絶縁体部材12、12の開口及びサブアセンブリ11の開口(孔)4(7)、4(7)に対応した開口14、14を備え、その中央部の単セル10のカソードに対応する部位に空気流通及び電気的接続用の波状部(溝)15が設けてある。   FIG. 5 is a diagram showing a configuration process of a support membrane SOFC stack using the support membrane SOFC stack configuration subassembly 11 as shown in FIG. As an interconnector, an interconnector is used which extends in a planar shape on both sides from the airflow and electrical connection corrugated portion and has openings corresponding to the opening of the insulator member and the opening of the subassembly at both ends thereof. Shows the case. As shown in FIG. 5, the interconnector 13 is provided with openings 14 and 14 corresponding to the openings of the insulator members 12 and 12 and the openings (holes) 4 (7) and 4 (7) of the subassembly 11 at both ends thereof. A corrugated portion (groove) 15 for air circulation and electrical connection is provided at a portion corresponding to the cathode of the single cell 10 in the central portion.

支持膜式SOFCスタック構成用サブアセンブリ11に、その長手方向両端の開口部4(7)、4(7)に対応した開口を有する絶縁体部材12、12を載置し、その上にインターコネクタ13を載置することにより支持膜式SOFCスタックが形成される。図5中、矢印(↓)はその載置方向を示すものである。こうして作製した支持膜式SOFCスタックは上下両面に集電板を配し、ケーシング内に納めて使用される。図6はこうして構成された支持膜式SOFCスタックの長手方向中央部の断面図である。
以上は単セル一個を配置したスタックであるが、当該スタックの複数個を積層して複数個の単セルを備えた支持膜式SOFCスタックが構成される。なお、前述特願2003−112202号では、そのように複数個を積層したものを支持膜式SOFCモジュールと称している。
Insulator members 12 and 12 having openings corresponding to the openings 4 (7) and 4 (7) at both ends in the longitudinal direction are placed on the support membrane type SOFC stack constituting subassembly 11, and the interconnector is mounted thereon. By mounting 13, a support membrane type SOFC stack is formed. In FIG. 5, an arrow (↓) indicates the mounting direction. The support membrane type SOFC stack produced in this way is used by arranging current collecting plates on both the upper and lower surfaces and placing it in a casing. FIG. 6 is a cross-sectional view of the central portion in the longitudinal direction of the support membrane SOFC stack constructed as described above.
The above is a stack in which one single cell is arranged. A support membrane SOFC stack having a plurality of single cells is formed by stacking a plurality of the stacks. In the above-mentioned Japanese Patent Application No. 2003-112202, such a laminated structure is called a support membrane type SOFC module.

ところが、以上のような支持膜式SOFCスタック構成用サブアセンブリ及びこれを用いた支持膜式SOFCスタックについても、以下のような問題点がある。支持膜式SOFCの単セルを模式的に示せば前述図1のように平面になる。しかし、単セルは、その作製に際して焼成工程を必須とする上、アノードや電解質などの部材間の熱膨張係数の差が原因で完全な平面乃至スタック化するに際して許容できる範囲の平面にはなり難く、図7〜9に示すように、反りや歪みが生じる。図7は断面図、図8はカソード側すなわち表面から見た斜視図、図9はアノード側すなわち裏面から見た斜視図である。   However, the support membrane SOFC stack subassembly as described above and the support membrane SOFC stack using the subassembly also have the following problems. If a single cell of a support membrane type SOFC is schematically shown, it becomes a plane as shown in FIG. However, a single cell requires a firing step for its production, and it is difficult to achieve a complete flat surface or an acceptable flat surface for stacking due to a difference in thermal expansion coefficient between members such as an anode and an electrolyte. As shown in FIGS. 7 to 9, warping and distortion occur. 7 is a cross-sectional view, FIG. 8 is a perspective view seen from the cathode side, that is, the front surface, and FIG. 9 is a perspective view seen from the anode side, that is, the back surface.

こうして構成した支持膜式SOFCスタック構成用サブアセンブリはその一個でスタックを構成してもよいが、その複数個をガス流通及び電気的接続を行うインターコネクタを介して積層することにより支持膜式SOFCスタックを構成する。図10はその態様を説明する図で、各部材の配置関係を示すため、各部材を間隔を置いて示している。図10では、サブアセンブリの三個を積層する場合を示しているが、サブアセンブリの二個、四個以上を積層する場合についても同様である。   The sub-assembly for supporting membrane type SOFC stack construction thus configured may constitute a stack, but the supporting membrane type SOFC is formed by stacking a plurality of them through an interconnector that performs gas flow and electrical connection. Configure the stack. FIG. 10 is a diagram for explaining the mode, and shows the members at intervals in order to show the positional relationship between the members. Although FIG. 10 shows a case where three subassemblies are stacked, the same applies to the case where two subassemblies, four or more subassemblies are stacked.

図10のとおり、下部台20の上に順次、サブアセンブリ11、絶縁スペーサ21、インターコネクタ22、サブアセンブリ11、絶縁スペーサ21、インターコネクタ22、サブアセンブリ11、絶縁スペーサ21、インターコネクタ22を配置する。そして上部から荷重をかけることでSOFCスタックが構成される。   As shown in FIG. 10, the subassembly 11, the insulating spacer 21, the interconnector 22, the subassembly 11, the insulating spacer 21, the interconnector 22, the subassembly 11, the insulating spacer 21, and the interconnector 22 are sequentially arranged on the lower base 20. To do. The SOFC stack is configured by applying a load from the top.

しかし、こうして構成したSOFCスタックをよく観察すると、さらに改良の余地があることが分かった。図7〜9に示すようにセルには若干反りや歪みが存在し、また厚みにもばらつきがある。マニホールドや絶縁スペーサ、波状インターコネクタの高さが均等な場合でも、積層数を増やすことにより、ガスシール部(図10中左右の部分)と集電部分(図10中中央部分)の厚みの微小差による変位が蓄積される。そのため、上層部のサブアセンブリの変形量が大きくなりすぎ、セルの割れや集電不良があることが分かった。   However, a close observation of the SOFC stack constructed in this way revealed that there was room for further improvement. As shown in FIGS. 7 to 9, the cell is slightly warped and distorted, and the thickness varies. Even when the height of the manifold, insulating spacer, and corrugated interconnector is uniform, increasing the number of layers increases the thickness of the gas seal part (left and right parts in FIG. 10) and the current collecting part (center part in FIG. 10). The displacement due to the difference is accumulated. For this reason, it was found that the amount of deformation of the sub-assembly in the upper layer portion was too large, and there were cracks in the cells and poor current collection.

そこで、本発明は、支持膜式SOFCスタック構成用サブアセンブリを積層してスタック化するに際して生じる上記問題点を解決してなる支持膜式固体酸化物形燃料電池スタック及びその作製方法を提供することを目的とするものである。   SUMMARY OF THE INVENTION Accordingly, the present invention provides a support membrane type solid oxide fuel cell stack and a method for manufacturing the same, which solve the above-mentioned problems that occur when stacking the subassembly for supporting membrane type SOFC stack. It is intended.

本発明は、(1)支持膜式固体酸化物形燃料電池の単セル全体を、カソード用の開口並びにガスの導入用の孔及び導出用の孔を備えた合金箔板で包み込んでなるサブアセンブリの複数個を、ガス流通及び電気的接続を行う波状部を有するインターコネクタ及び絶縁スペーサを介して積層してなる支持膜式固体酸化物形燃料電池スタックであって、サブアセンブリの一定数を積層した後に、ガス流路を備えた平滑な仕切板を配置し、その上に再びサブアセンブリの所定数を配置、積層してなることを特徴とする支持膜式固体酸化物形燃料電池スタックを提供する。   The present invention is (1) a subassembly in which an entire single cell of a support membrane type solid oxide fuel cell is wrapped with an alloy foil plate having an opening for a cathode, a hole for introducing gas, and a hole for discharging gas. Is a support membrane type solid oxide fuel cell stack formed by stacking a plurality of the above via an interconnector having an undulating portion for gas flow and electrical connection and an insulating spacer, and a certain number of subassemblies are stacked After that, a support membrane type solid oxide fuel cell stack is provided, in which a smooth partition plate having a gas flow path is disposed, and a predetermined number of subassemblies are disposed and laminated again thereon. To do.

本発明は、(2)支持膜式固体酸化物形燃料電池の単セル全体を、カソード用の開口並びにガスの導入用の孔及び導出用の孔を備えた合金箔板で包み込んでなるサブアセンブリの複数個を、ガス流通及び電気的接続を行う波状部を有するインターコネクタ及び絶縁スペーサを介して積層してなる支持膜式固体酸化物形燃料電池スタックの作製方法であって、サブアセンブリの一定数を積層した後に、ガス流路を備えた平滑な仕切板を配置し、その上に再びサブアセンブリの所定数を配置、積層することを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法を提供する。   The present invention is (2) a subassembly in which an entire single cell of a support membrane type solid oxide fuel cell is wrapped with an alloy foil plate having an opening for a cathode and a hole for introducing and a hole for introducing a gas. Of the support membrane type solid oxide fuel cell stack, in which a plurality of the above are stacked via an interconnector having an undulating portion for gas flow and electrical connection and an insulating spacer, After the number is stacked, a smooth partition plate having a gas flow path is disposed, and a predetermined number of subassemblies are again disposed and stacked thereon, and the support membrane type solid oxide fuel cell stack is characterized in that A manufacturing method is provided.

本発明によれば、支持膜式SOFCスタック構成用のサブアセンブリの複数個を、ガス流通及び電気的接続を行うインターコネクタ及び絶縁スペーサを介して積層してスタック化するに際して、サブアセンブリの一定数を積層した後に、ガス流路を備えた平滑な仕切板を配置し、その上に再びサブアセンブリを配置、積層することにより、高積層化による変位の蓄積が初期化され、セル割れや集電不良の不具合を回避することができる。また、本発明によれば、上層部のサブアセンブリの変形量を少なくし、セルの割れや集電不良を無くして、所望の積層数の高積層スタックを作製することができる。   According to the present invention, when a plurality of sub-assemblies for supporting membrane SOFC stack configuration are stacked and stacked via an interconnector and an insulating spacer that perform gas flow and electrical connection, a certain number of sub-assemblies are formed. After stacking, a smooth partition plate with a gas flow path is placed, and a subassembly is placed and stacked again on top of it, so that accumulation of displacement due to high stacking is initialized, cell cracking and current collection Defective defects can be avoided. Further, according to the present invention, it is possible to produce a high stack having a desired number of stacks by reducing the amount of deformation of the sub-assembly in the upper layer portion, eliminating cell cracking and current collection failure.

本発明(1)は、支持膜式固体酸化物形燃料電池の単セル全体を、カソード用の開口並びにガスの導入用の孔及び導出用の孔を備えた合金箔板で包み込んでなるサブアセンブリの複数個を、ガス流通及び電気的接続を行うインターコネクタ及び絶縁スペーサを介して積層してなる支持膜式固体酸化物形燃料電池スタックである。そして、サブアセンブリの一定数を積層した後に、ガス流路を備えた平滑な仕切板を配置し、その上に再びサブアセンブリの所定数を配置、積層してなることを特徴とする。   The present invention (1) is a subassembly in which an entire single cell of a support membrane type solid oxide fuel cell is wrapped with an alloy foil plate having a cathode opening, a gas introduction hole, and a lead-out hole. Is a support membrane type solid oxide fuel cell stack formed by stacking a plurality of these via an interconnector and an insulating spacer that perform gas flow and electrical connection. And after laminating | stacking a fixed number of subassemblies, the smooth partition plate provided with the gas flow path is arrange | positioned, and the predetermined number of subassembly is arrange | positioned again and laminated | stacked thereon, It is characterized by the above-mentioned.

本発明(2)は、支持膜式固体酸化物形燃料電池の単セル全体を、カソード用の開口並びにガスの導入用の孔及び導出用の孔を備えた合金箔板で包み込んでなるサブアセンブリの複数個を、ガス流通及び電気的接続を行うインターコネクタ及び絶縁スペーサを介して積層してなる支持膜式固体酸化物形燃料電池スタックの作製方法である。そして、サブアセンブリの一定数を積層した後に、ガス流路を備えた平滑な仕切板を配置し、その上に再びサブアセンブリの所定数を配置、積層することを特徴とする。   The present invention (2) is a subassembly in which the entire single cell of a support membrane type solid oxide fuel cell is wrapped with an alloy foil plate having an opening for a cathode and a hole for introducing and a hole for introducing a gas. Is a method of manufacturing a support membrane type solid oxide fuel cell stack in which a plurality of the above are stacked through an interconnector and an insulating spacer for gas flow and electrical connection. And after laminating | stacking a fixed number of subassemblies, the smooth partition plate provided with the gas flow path is arrange | positioned, and the predetermined number of subassembly is arrange | positioned and laminated | stacked again on it.

ここで、本発明(1)〜(2)における、ガス流路を備えた平滑な仕切板の上に再びサブアセンブリの所定数を配置、積層する、その積層段の数は一段のほか、必要に応じて二段、三段、あるいは四段以上と積層するものであり、上記“サブアセンブリの一定数を積層した後に、ガス流路を備えた平滑な仕切板を配置し、その上に再びサブアセンブリの所定数を配置、積層してなる”とは、必要に応じて二段、三段、あるいは四段以上と積層してなる態様を含む意味である。   Here, in the present inventions (1) to (2), a predetermined number of subassemblies are arranged and stacked again on the smooth partition plate having the gas flow path. 2 layers, 3 layers, or 4 layers or more, depending on the above, after laminating a certain number of sub-assemblies, a smooth partition plate with gas flow paths is placed on it and again “A predetermined number of subassemblies are arranged and stacked” means to include a mode in which two, three, or four or more layers are stacked as necessary.

〈サブアセンブリの一定数を積層した後に、ガス流路を備えた平滑な仕切板を配置し、その上に再びサブアセンブリを配置、積層する支持膜式SOFCスタックの構成態様〉
図11は、本発明において、サブアセンブリの一定数を積層した後に、ガス流路を備えた平滑な仕切板を配置し、その上に再びサブアセンブリを配置、積層する態様を説明する図である。各部材の配置関係を示すため、各部材を間隔を置いて示している。図11では、サブアセンブリの四個を積層する場合を示しているが、サブアセンブリの三個、五個以上を積層する場合についても同様である。
<Constitution Mode of Support Film Type SOFC Stack in which after a certain number of subassemblies are laminated, a smooth partition plate having gas flow paths is arranged, and the subassemblies are arranged and laminated again thereon>
FIG. 11 is a diagram for explaining a mode in which, after a certain number of subassemblies are stacked in the present invention, a smooth partition plate having a gas flow path is disposed, and the subassemblies are disposed and stacked again thereon. . In order to show the arrangement relationship of each member, each member is shown at intervals. Although FIG. 11 shows the case where four subassemblies are stacked, the same applies to the case where three subassemblies, five or more subassemblies are stacked.

図11のとおり、下部台20の上に、順次、サブアセンブリ11、絶縁スペーサ21、インターコネクタ22、サブアセンブリ11、絶縁スペーサ21、インターコネクタ22、サブアセンブリ11、絶縁スペーサ21、インターコネクタ22を配置する。サブアセンブリの三個を積層する場合を示しているが、二個あるいは四個以上のサブアセンブリを積層することができる。   As shown in FIG. 11, the subassembly 11, the insulating spacer 21, the interconnector 22, the subassembly 11, the insulating spacer 21, the interconnector 22, the subassembly 11, the insulating spacer 21, and the interconnector 22 are sequentially formed on the lower base 20. Deploy. Although the case where three subassemblies are stacked is shown, two or four or more subassemblies can be stacked.

そして、その上にガス流路24を備えた平滑な仕切板23を置き、その上に、上記と同様にして、順次、サブアセンブリ11、絶縁スペーサ21、インターコネクタ22を積層した後、上部から荷重をかけることでSOFCスタックが構成される。ガス流路24を備えた平滑な仕切板23としては剛性の耐熱性合金やセラミック板などを用いることができる。仕切板23は積層する複数個のサブアセンブリ間に一個とは限らず必要数使用してよい。すなわち、図11中、その下部に・・・で示すように、ガス流路を備えた平滑な仕切板の上に再びサブアセンブリの所定数を配置、積層する、その積層段の数は必要に応じて二段、三段、あるいは四段以上と積層することができる。これらの態様では、仕切板23の直上のサブアセンブリの下面、仕切板23の直下のインターコネクタに電流端子のケーブルが接続される。   Then, a smooth partition plate 23 having a gas flow path 24 is placed thereon, and the subassembly 11, the insulating spacer 21, and the interconnector 22 are sequentially laminated thereon in the same manner as described above. The SOFC stack is configured by applying a load. As the smooth partition plate 23 provided with the gas flow path 24, a rigid heat-resistant alloy, a ceramic plate, or the like can be used. The required number of partition plates 23 is not limited to one between the plurality of sub-assemblies to be stacked. That is, as shown in FIG. 11 at the lower part thereof, a predetermined number of subassemblies are again arranged and laminated on a smooth partition plate provided with gas flow paths, and the number of lamination stages is necessary. Depending on the situation, it can be laminated in two, three or four or more stages. In these embodiments, the current terminal cable is connected to the lower surface of the subassembly directly above the partition plate 23 and the interconnector directly below the partition plate 23.

このように、本発明においては、サブアセンブリの一定数を積層した後に、ガス流路を備えた平滑な仕切板を配置し、その上に再びサブアセンブリを配置、積層することにより、高積層化による変位の蓄積が初期化され、セル割れや集電不良の不具合を回避することができる。また、本発明によれば、上層部のサブアセンブリの変形量を少なくし、セルの割れや集電不良を無くして、所望の積層数の高積層スタックを作製することができる。   As described above, in the present invention, after stacking a certain number of subassemblies, a smooth partition plate having a gas flow path is disposed, and the subassemblies are disposed and laminated again thereon, thereby achieving high stacking. Accumulation of displacement due to is initialized, and problems such as cell cracking and current collection failure can be avoided. Further, according to the present invention, it is possible to produce a high stack having a desired number of stacks by reducing the amount of deformation of the sub-assembly in the upper layer portion, eliminating cell cracking and current collection failure.

図12は、集電用電流端子25を配置する場合の態様である。ガス流路23を備えた平滑な仕切板23の上下に集電用電流端子25を配置する点を除き、図11の態様と同様である。この態様では、電流は集電用電流端子25からリード線を通して取り出される。   FIG. 12 shows a mode in which a current collecting current terminal 25 is arranged. Except for the point which arrange | positions the current terminal 25 for current collection on the upper and lower sides of the smooth partition plate 23 provided with the gas flow path 23, it is the same as that of the aspect of FIG. In this embodiment, the current is taken out from the current collecting current terminal 25 through the lead wire.

〈本発明に関連する支持膜式SOFCスタックの構成部材〉
本発明において、サブアセンブリの一定数を積層した後に、ガス流路を備えた平滑な仕切板を配置し、その上に再びサブアセンブリを配置、積層するに際しては、支持膜式SOFCの形状に対応した構成を備えたインターコネクタを用いることが有用である。以下、そのインターコネクタの構成について順次説明する。
<Components of Support Membrane SOFC Stack Related to the Present Invention>
In the present invention, after laminating a certain number of subassemblies, a smooth partition plate with a gas flow path is placed, and when placing and laminating the subassemblies again, it corresponds to the shape of the support membrane SOFC. It is useful to use an interconnector having such a configuration. Hereinafter, the configuration of the interconnector will be sequentially described.

インターコネクタの波状部における波状の形状は各種形状を採ることができる。図13はその形状の態様例を示す図である。図13(a)は断面波状の形状、図13(b)は断面ジグザグ状の形状、図13(c)は断面マシュマロ状の形状、図13(d)は断面台形状の形状、図13(e)は断面コ字状の形状であり、さらにはこれらの変形形状を採ることができる。ここで、本明細書及び特許請求の範囲における、インターコネクタの波状部あるいはその波状とは、図13(a)に示すような断面波状の形状そのものを意味するほか、当該断面波状の形状を含む上記各種形状のものを包括した意味でも用いている。   The wavy shape of the waved portion of the interconnector can take various shapes. FIG. 13 is a diagram showing an example of the shape. 13A is a cross-sectional wave shape, FIG. 13B is a cross-sectional zigzag shape, FIG. 13C is a cross-sectional marshmallow shape, FIG. 13D is a cross-sectional trapezoidal shape, and FIG. e) is a U-shaped cross-section, and these deformation shapes can be adopted. Here, the wavy portion of the interconnector or the wavy shape thereof in the present specification and claims means not only the wavy shape of the cross section as shown in FIG. 13 (a) but also includes the wavy shape of the cross section. Also used in a comprehensive sense of the above-mentioned various shapes.

支持膜式SOFCの単セルの表面すなわちカソード面は、図7〜9のように、中央部が膨らみ、周縁部に向けて漸次湾曲して反りないし歪みが生じる。すると、スタック作製に際して、そのカソード面に図11〜12に示すようにインターコネクタの波状部を当接させる場合、その反りないし歪みにより、図14中、非接触部分として示すように、カソード面とインターコネクタの波状部間の接触が阻害され、電気的接触にむらが生じて接触抵抗を増大させ、発電性能を低下させてしまう。そこで、インターコネクタの波状部に、その波方向と平行にスリットを入れて構成する。図15はその態様を示す図である。   As shown in FIGS. 7 to 9, the surface of the single cell of the support membrane type SOFC, that is, the cathode surface, bulges at the center and gradually curves toward the peripheral edge to cause warping or distortion. Then, when the stack is made, when the corrugated portion of the interconnector is brought into contact with the cathode surface as shown in FIGS. 11 to 12, due to the warpage or distortion, the cathode surface and Contact between the corrugated portions of the interconnector is obstructed, causing uneven electrical contact, increasing contact resistance, and reducing power generation performance. Therefore, a slit is formed in the corrugated portion of the interconnector in parallel with the wave direction. FIG. 15 is a diagram showing this aspect.

図15のとおり、その波状部に、その波方向と平行にスリットを入れる。これにより、支持膜式SOFC単セルのカソード面とインターコネクタの波状部をむらなく接触させ、両者間で均等な電気的接触を達成することができる。本スリットは、図15に示す断面波状の形状とは限らず、図13(b)〜(e)に示すような、断面ジグザグ状、断面マシュマロ状、断面台形状、断面コ字状の形状の波状部のほか、これらの変形形状の波状部にも適用することができる。   As shown in FIG. 15, a slit is made in the wavy portion in parallel with the wave direction. As a result, the cathode surface of the support membrane type SOFC single cell and the corrugated portion of the interconnector can be brought into contact with each other, and an even electrical contact can be achieved between them. The slits are not limited to the corrugated cross section shown in FIG. 15, but have a zigzag cross section, a marshmallow cross section, a trapezoidal cross section, and a U-shaped cross section as shown in FIGS. In addition to the wavy portion, the present invention can also be applied to the wavy portions having these deformed shapes.

支持膜式SOFCの単セルをインターコネクタを介してスタック化した場合、そのカソード面とインターコネクタの波状部の位置関係は図16(a)〜(b)に示すようになる。そして、インターコネクタの波状部の空隙が空気の流通路となるが、図16(a)に示すように、波状部のうちセルのカソード面に面する側の流路を流れる空気は発電に寄与するが、図16(b)に示すように、波状部のうちセルのカソード面に面しない側の流路を流れる空気はカソード面を流通しないことになり、発電に寄与しないことになる。そこで、インターコネクタの波状部に複数個の孔を設ける。図17〜18はその態様を示す図である。   When stacking single cells of a support membrane type SOFC via an interconnector, the positional relationship between the cathode surface and the corrugated portion of the interconnector is as shown in FIGS. The gap in the corrugated portion of the interconnector serves as an air flow path. As shown in FIG. 16 (a), the air flowing in the flow passage on the side facing the cathode surface of the cell contributes to power generation. However, as shown in FIG. 16 (b), the air flowing through the flow path on the side of the wavy portion that does not face the cathode surface of the cell does not flow through the cathode surface, and does not contribute to power generation. Therefore, a plurality of holes are provided in the corrugated portion of the interconnector. 17 to 18 are diagrams showing such modes.

図17〜18のとおり、インターコネクタの波状部に複数個の孔を設ける。図17は、前述図14(a)に示すような、スリットを設けない波状部に複数個の孔を設ける態様、図18は、前述図15に示すようにスリットを設けた波状部に複数個の孔を設ける態様である。この孔により、波状部のうちセルのカソード面に面しない側の流路を流れる空気をカソード側に流通させ、カソードに接触させて発電に寄与させることができる。複数個の孔は、図17〜18に示す断面波状の形状とは限らず、図13(b)〜(e)に示すような、断面ジグザグ状、断面マシュマロ状、断面台形状、断面コ字状の形状の波状部のほか、これらの変形形状の波状部にも適用することができる。   As shown in FIGS. 17 to 18, a plurality of holes are provided in the corrugated portion of the interconnector. FIG. 17 shows an embodiment in which a plurality of holes are provided in a wavy portion without slits as shown in FIG. 14A, and FIG. 18 shows a plurality in a wavy portion with slits as shown in FIG. This is a mode of providing the holes. With this hole, the air flowing through the flow path on the side of the undulating portion that does not face the cathode surface of the cell can be circulated to the cathode side and brought into contact with the cathode to contribute to power generation. The plurality of holes are not limited to the corrugated cross section shown in FIGS. 17 to 18, but are zigzag cross section, marshmallow cross section, trapezoidal cross section, and U-shaped cross section as shown in FIGS. 13 (b) to 13 (e). In addition to the wavy portions having a shape, the present invention can also be applied to the wavy portions having these deformed shapes.

本発明におけるスタックを構成する合金箔板及びインターコネクタの構成材料としてはステンレス鋼等の耐熱性合金が用いられる。また、スタックに供給する燃料としては、炭化水素、都市ガス、LPガス、天然ガス、ガソリン、軽油、灯油、ディーゼル油、アルコール類(メチルアルコール、エチルアルコール等)、ジメチルエーテル(DME)などが用いられる。   A heat resistant alloy such as stainless steel is used as a constituent material of the alloy foil plate and interconnector constituting the stack in the present invention. Moreover, hydrocarbons, city gas, LP gas, natural gas, gasoline, light oil, kerosene, diesel oil, alcohols (methyl alcohol, ethyl alcohol, etc.), dimethyl ether (DME), etc. are used as fuel to be supplied to the stack. .

SOFCのセルの態様例を説明する図The figure explaining the example of the aspect of the cell of SOFC 単セルを組み込んだSOFCスタックの構成例を示す図Diagram showing a configuration example of a SOFC stack incorporating a single cell 支持膜式SOFCの単セル全体を、カソード用の開口並びにガスの導入用の孔及び導出用の孔を備えた合金箔板で包み込んでなる支持膜式SOFCスタック構成用サブアセンブリを示す図The figure which shows the sub-assembly for supporting membrane type SOFC stack which encloses the whole single cell of a supporting membrane type SOFC with the alloy foil board provided with the opening for cathodes, the hole for gas introduction, and the hole for lead-out. 支持膜式SOFCの単セル全体を、カソード用の開口並びにガスの導入用の孔及び導出用の孔を備えた合金箔板で包み込んでなる支持膜式SOFCスタック構成用サブアセンブリを示す図The figure which shows the sub-assembly for supporting membrane type SOFC stack which encloses the whole single cell of a supporting membrane type SOFC with the alloy foil board provided with the opening for cathodes, the hole for gas introduction, and the hole for lead-out. 図4に示すような支持膜式SOFCスタック構成用サブアセンブリを用いた支持膜式SOFCスタックの構成過程を示す図FIG. 4 is a diagram showing a configuration process of a support membrane SOFC stack using a support membrane SOFC stack configuration subassembly as shown in FIG. 図5のようにして構成された支持膜式SOFCスタックの長手方向中央部の断面図FIG. 5 is a cross-sectional view of the central portion in the longitudinal direction of the support membrane SOFC stack configured as shown in FIG. 支持膜式SOFCの単セルで生じる問題を説明する図Diagram explaining problems that occur in a single cell of a support membrane SOFC 支持膜式SOFCの単セルで生じる問題を説明する図Diagram explaining problems that occur in a single cell of a support membrane SOFC 支持膜式SOFCの単セルで生じる問題を説明する図Diagram explaining problems that occur in a single cell of a support membrane SOFC 支持膜式SOFCスタック構成用サブアセンブリを用いて支持膜式SOFCスタックを構成する態様を説明する図The figure explaining the aspect which comprises a support membrane type SOFC stack using the subassembly for support membrane type SOFC stack composition 本発明において、サブアセンブリの一定数を積層した後に、ガス流路を備えた平滑な仕切板を配置し、その上に再びサブアセンブリを配置、積層する態様を説明する図In the present invention, after laminating a certain number of subassemblies, a state is described in which a smooth partition plate having a gas flow path is disposed, and the subassemblies are disposed and laminated again thereon. 本発明において、サブアセンブリの一定数を積層した後に、ガス流路を備えた平滑な仕切板を配置し、その上に再びサブアセンブリを配置、積層する態様を説明する図In the present invention, after laminating a certain number of subassemblies, a state is described in which a smooth partition plate having a gas flow path is disposed, and the subassemblies are disposed and laminated again thereon. 本発明の支持膜式SOFCスタック構成用に用いるインターコネクタの波状部における波状の形状の態様例を示す図The figure which shows the example of a wave-like shape in the wave-like part of the interconnector used for support membrane type SOFC stack structure of this invention 支持膜式SOFC単電池のカソード面形状に起因する問題を説明する図The figure explaining the problem resulting from the cathode surface shape of the support membrane type SOFC unit cell 支持膜式SOFC単電池のカソード面形状に起因する問題を解決する態様を示す図The figure which shows the aspect which solves the problem resulting from the cathode surface shape of a support membrane type SOFC single cell 支持膜式SOFC単電池のカソード面形状に起因する問題を説明する図The figure explaining the problem resulting from the cathode surface shape of the support membrane type SOFC unit cell 支持膜式SOFC単電池のカソード面形状に起因する問題を解決する態様を示す図The figure which shows the aspect which solves the problem resulting from the cathode surface shape of a support membrane type SOFC single cell 支持膜式SOFC単電池のカソード面形状に起因する問題を解決する態様を示す図The figure which shows the aspect which solves the problem resulting from the cathode surface shape of a support membrane type SOFC single cell

符号の説明Explanation of symbols

1 第1合金箔板
2 第2合金箔板
3 カソード用の開口(窓)
4、4 燃料流通用開口
5、5 接合部
6、6 接合部
7、7 開口
8、8 スペーサ
9 複数の孔
10 単セル
11 支持膜式SOFCスタック構成用サブアセンブリ
12、12 絶縁体部材
13 インターコネクタ
14、14 開口
15 波状部(溝)
20 下部台
21 絶縁スペーサ
22 インターコネクタ
23 ガス流路24を備えた平滑な仕切板
24 仕切板23に設けられたガス流路
25 集電用電流端子
DESCRIPTION OF SYMBOLS 1 1st alloy foil board 2 2nd alloy foil board 3 Opening (window) for cathodes
4, 4 Openings for fuel flow 5, 5 Joints 6, 6 Joints 7, 7 Openings 8, 8 Spacers 9 Multiple holes 10 Single cell 11 Sub-assembly for supporting membrane type SOFC stack 12, 12 Insulator member 13 Inter Connector 14, 14 Opening 15 Wave-shaped part (groove)
DESCRIPTION OF SYMBOLS 20 Lower stand 21 Insulating spacer 22 Interconnector 23 The smooth partition plate provided with the gas flow path 24 24 The gas flow path provided in the partition plate 25 25 Current collecting current terminal

Claims (14)

支持膜式固体酸化物形燃料電池の単セル全体を、カソード用の開口並びにガスの導入用の孔及び導出用の孔を備えた合金箔板で包み込んでなるサブアセンブリの複数個を、ガス流通及び電気的接続を行う波状部を有するインターコネクタ及び絶縁スペーサを介して積層してなる支持膜式固体酸化物形燃料電池スタックであって、サブアセンブリの一定数を積層した後に、ガス流路を備えた平滑な仕切板を配置し、その上に再びサブアセンブリの一個ないし複数個を配置、積層してなることを特徴とする支持膜式固体酸化物形燃料電池スタック。   Gas flow through a plurality of subassemblies, in which the entire single cell of a supported membrane solid oxide fuel cell is wrapped with an alloy foil plate having a cathode opening, a gas introduction hole, and a gas introduction hole. And a support membrane type solid oxide fuel cell stack formed by stacking via an interconnector having an undulating portion for electrical connection and an insulating spacer, and after stacking a certain number of subassemblies, A support membrane type solid oxide fuel cell stack, comprising: a smooth partition plate provided; and one or more subassemblies are disposed and laminated again thereon. 請求項1に記載の支持膜式固体酸化物形燃料電池スタックにおいて、前記ガス流路を備えた平滑な仕切板が耐熱性合金製またはセラミック製であることを特徴とする支持膜式固体酸化物形燃料電池スタック。   2. The support membrane type solid oxide fuel cell stack according to claim 1, wherein the smooth partition plate provided with the gas flow path is made of a heat resistant alloy or ceramic. Fuel cell stack. 請求項1または2に記載の支持膜式固体酸化物形燃料電池スタックにおいて、前記合金箔板が短冊状の箔板であることを特徴とする支持膜式固体酸化物形燃料電池スタック。   3. The support membrane type solid oxide fuel cell stack according to claim 1 or 2, wherein the alloy foil plate is a strip-like foil plate. 請求項1〜3のいずれか1項に記載の支持膜式固体酸化物形燃料電池スタックにおいて、前記合金箔板の構成材料が耐熱性合金であることを特徴とする支持膜式固体酸化物形燃料電池スタック。   The support membrane type solid oxide fuel cell stack according to any one of claims 1 to 3, wherein the constituent material of the alloy foil plate is a heat resistant alloy. Fuel cell stack. 請求項1〜4のいずれか1項に記載の支持膜式固体酸化物形燃料電池スタックにおいて、前記インターコネクタの波状部の形状が断面ジグザグ状、断面マシュマロ状、断面台形状または断面コ字状であることを特徴とする支持膜式固体酸化物形燃料電池スタック。   The support membrane type solid oxide fuel cell stack according to any one of claims 1 to 4, wherein the wavy portion of the interconnector has a zigzag cross section, a marshmallow cross section, a trapezoidal cross section, or a U-shaped cross section. A supported membrane solid oxide fuel cell stack, characterized in that 請求項5に記載の支持膜式固体酸化物形燃料電池スタックにおいて、前記インターコネクタが、カソードと接する部分に波状部を備え且つその波状部にその波方向と平行にスリットを入れてなるインターコネクタであることを特徴とする支持膜式固体酸化物形燃料電池スタック。   6. The support membrane type solid oxide fuel cell stack according to claim 5, wherein the interconnector includes a corrugated portion in a portion in contact with the cathode, and a slit is formed in the corrugated portion in parallel with the wave direction. A supported membrane solid oxide fuel cell stack, characterized in that 請求項5または6に記載の支持膜式固体酸化物形燃料電池スタックにおいて、前記インターコネクタが、カソードと接する部分に波状部を備え且つその波状部に複数個の孔を設けてなるインターコネクタであることを特徴とする支持膜式固体酸化物形燃料電池スタック。   7. The support membrane type solid oxide fuel cell stack according to claim 5 or 6, wherein the interconnector comprises a corrugated portion in contact with the cathode and a plurality of holes in the corrugated portion. A support membrane type solid oxide fuel cell stack. 支持膜式固体酸化物形燃料電池の単セル全体を、カソード用の開口並びにガスの導入用の孔及び導出用の孔を備えた合金箔板で包み込んでなるサブアセンブリの複数個を、ガス流通及び電気的接続を行う波状部を有するインターコネクタ及び絶縁スペーサを介して積層してなる支持膜式固体酸化物形燃料電池スタックの作製方法であって、サブアセンブリの一定数を積層した後に、ガス流路を備えた平滑な仕切板を配置し、その上に再びサブアセンブリ一個ないし複数個を配置、積層することを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法。   Gas flow through a plurality of subassemblies, in which the entire single cell of a supported membrane solid oxide fuel cell is wrapped with an alloy foil plate having a cathode opening, a gas introduction hole, and a gas introduction hole. And a support membrane type solid oxide fuel cell stack formed by laminating via an interconnector having an undulating portion for electrical connection and an insulating spacer, and after laminating a certain number of subassemblies, A method for producing a support membrane type solid oxide fuel cell stack, wherein a smooth partition plate having a flow path is disposed, and one or more subassemblies are again disposed and laminated thereon. 請求項8に記載の支持膜式固体酸化物形燃料電池スタックの作製方法において、前記ガス流路を備えた平滑な仕切板が耐熱性合金製またはセラミック製であることを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法。   9. The support membrane type solid oxide fuel cell stack manufacturing method according to claim 8, wherein the smooth partition plate provided with the gas flow path is made of a heat resistant alloy or ceramic. A method for producing a solid oxide fuel cell stack. 請求項8または9に記載の支持膜式固体酸化物形燃料電池スタックの作製方法において、前記合金箔板が短冊状の箔板であることを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法。   10. The support membrane type solid oxide fuel cell stack according to claim 8 or 9, wherein the alloy foil plate is a strip-like foil plate. Manufacturing method. 請求項8〜10のいずれか1項に記載の支持膜式固体酸化物形燃料電池スタックの作製方法において、前記合金箔板の構成材料が耐熱性合金であることを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法。   The method for producing a support membrane solid oxide fuel cell stack according to any one of claims 8 to 10, wherein the constituent material of the alloy foil plate is a heat resistant alloy. A method for manufacturing an oxide fuel cell stack. 請求項8〜11のいずれか1項に記載の支持膜式固体酸化物形燃料電池スタックの作製方法において、前記インターコネクタの波状部の形状が断面ジグザグ状、断面マシュマロ状、断面台形状または断面コ字状であることを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法。   12. The method for manufacturing a support membrane solid oxide fuel cell stack according to claim 8, wherein the wavy portion of the interconnector has a zigzag cross section, a marshmallow cross section, a trapezoidal cross section, or a cross section. A manufacturing method of a support membrane type solid oxide fuel cell stack characterized by being U-shaped. 請求項8〜12のいずれか1項に記載の支持膜式固体酸化物形燃料電池スタックの作製方法において、前記インターコネクタが、カソードと接する部分に波状部を備え且つその波状部にその波方向と平行にスリットを入れてなるインターコネクタであることを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法。   13. The method for manufacturing a support membrane type solid oxide fuel cell stack according to claim 8, wherein the interconnector includes a corrugated portion in a portion in contact with the cathode, and the wave direction in the corrugated portion. A support membrane type solid oxide fuel cell stack manufacturing method, characterized in that it is an interconnector having slits in parallel with each other. 請求項8〜13のいずれか1項に記載の支持膜式固体酸化物形燃料電池スタックの作製方法において、前記インターコネクタが、カソードと接する部分に波状部を備え且つその波状部に複数個の孔を設けてなるインターコネクタであることを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法。
14. The method of manufacturing a supported membrane solid oxide fuel cell stack according to claim 8, wherein the interconnector includes a corrugated portion in a portion in contact with the cathode, and a plurality of corrugated portions are provided in the corrugated portion. A method for producing a support membrane type solid oxide fuel cell stack, wherein the interconnector is provided with a hole.
JP2004132121A 2004-04-27 2004-04-27 Supporting film type solid oxide fuel cell stack, and manufacturing method of the same Pending JP2005317291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004132121A JP2005317291A (en) 2004-04-27 2004-04-27 Supporting film type solid oxide fuel cell stack, and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004132121A JP2005317291A (en) 2004-04-27 2004-04-27 Supporting film type solid oxide fuel cell stack, and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2005317291A true JP2005317291A (en) 2005-11-10

Family

ID=35444494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004132121A Pending JP2005317291A (en) 2004-04-27 2004-04-27 Supporting film type solid oxide fuel cell stack, and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2005317291A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004353A (en) * 2007-05-22 2009-01-08 Ngk Insulators Ltd Solid oxide fuel cell
JP2009059509A (en) * 2007-08-30 2009-03-19 Nissan Motor Co Ltd Fuel cell
JP2009146858A (en) * 2007-12-18 2009-07-02 Nippon Telegr & Teleph Corp <Ntt> Planar solid oxide fuel cell stack
JP2009158346A (en) * 2007-12-27 2009-07-16 Nissan Motor Co Ltd Cell unit and fuel cell stack using this
JP2009245687A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and method of manufacturing solid oxide fuel cell
CN101887955A (en) * 2009-05-15 2010-11-17 通用汽车环球科技运作公司 By the dividing plate that forms based on the process of photopolymer
WO2014123150A1 (en) * 2013-02-07 2014-08-14 日本特殊陶業株式会社 Fuel cell and method for manufacturing same
WO2014208869A1 (en) * 2013-06-27 2014-12-31 주식회사 미코 Solid oxide fuel cell stack

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325779A (en) * 1993-05-14 1994-11-25 Nippon Telegr & Teleph Corp <Ntt> Stack for solid electrolytic fuel cell and its manufacture
JPH10261426A (en) * 1997-03-17 1998-09-29 Ishikawajima Harima Heavy Ind Co Ltd Block structure of fuel cell stack
JP2000331692A (en) * 1999-05-20 2000-11-30 Tokyo Gas Co Ltd Plate type cell with retaining thin plate frame and fuel cell using same
JP2001035514A (en) * 1999-07-19 2001-02-09 Tokyo Gas Co Ltd Sheet metal for current-carrying and solid electrolyte fuel cell using the same
JP2002151135A (en) * 2000-11-15 2002-05-24 Honda Motor Co Ltd Fuel cell stack
JP2002151136A (en) * 2000-11-07 2002-05-24 Honda Motor Co Ltd Fuel cell stack
JP2002319413A (en) * 2001-04-23 2002-10-31 Nissan Motor Co Ltd Solid electrolyte fuel cell plate and stack
JP2003045454A (en) * 2001-07-27 2003-02-14 Toyota Motor Corp Fuel cell
JP2004006419A (en) * 2003-08-25 2004-01-08 Toyota Motor Corp Unit cell for fuel battery and its manufacturing method
JP2004319291A (en) * 2003-04-16 2004-11-11 Tokyo Gas Co Ltd Support-membrane type solid oxide fuel cell stack and its manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325779A (en) * 1993-05-14 1994-11-25 Nippon Telegr & Teleph Corp <Ntt> Stack for solid electrolytic fuel cell and its manufacture
JPH10261426A (en) * 1997-03-17 1998-09-29 Ishikawajima Harima Heavy Ind Co Ltd Block structure of fuel cell stack
JP2000331692A (en) * 1999-05-20 2000-11-30 Tokyo Gas Co Ltd Plate type cell with retaining thin plate frame and fuel cell using same
JP2001035514A (en) * 1999-07-19 2001-02-09 Tokyo Gas Co Ltd Sheet metal for current-carrying and solid electrolyte fuel cell using the same
JP2002151136A (en) * 2000-11-07 2002-05-24 Honda Motor Co Ltd Fuel cell stack
JP2002151135A (en) * 2000-11-15 2002-05-24 Honda Motor Co Ltd Fuel cell stack
JP2002319413A (en) * 2001-04-23 2002-10-31 Nissan Motor Co Ltd Solid electrolyte fuel cell plate and stack
JP2003045454A (en) * 2001-07-27 2003-02-14 Toyota Motor Corp Fuel cell
JP2004319291A (en) * 2003-04-16 2004-11-11 Tokyo Gas Co Ltd Support-membrane type solid oxide fuel cell stack and its manufacturing method
JP2004006419A (en) * 2003-08-25 2004-01-08 Toyota Motor Corp Unit cell for fuel battery and its manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004353A (en) * 2007-05-22 2009-01-08 Ngk Insulators Ltd Solid oxide fuel cell
JP2009059509A (en) * 2007-08-30 2009-03-19 Nissan Motor Co Ltd Fuel cell
JP2009146858A (en) * 2007-12-18 2009-07-02 Nippon Telegr & Teleph Corp <Ntt> Planar solid oxide fuel cell stack
JP2009158346A (en) * 2007-12-27 2009-07-16 Nissan Motor Co Ltd Cell unit and fuel cell stack using this
JP2009245687A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and method of manufacturing solid oxide fuel cell
CN101887955A (en) * 2009-05-15 2010-11-17 通用汽车环球科技运作公司 By the dividing plate that forms based on the process of photopolymer
WO2014123150A1 (en) * 2013-02-07 2014-08-14 日本特殊陶業株式会社 Fuel cell and method for manufacturing same
JPWO2014123150A1 (en) * 2013-02-07 2017-02-02 日本特殊陶業株式会社 Fuel cell and manufacturing method thereof
US10224553B2 (en) 2013-02-07 2019-03-05 Ngk Spark Plug Co., Ltd. Fuel cell comprising connection members having different thickness for each of cell units and method for manufacturing same
WO2014208869A1 (en) * 2013-06-27 2014-12-31 주식회사 미코 Solid oxide fuel cell stack
CN104521053A (en) * 2013-06-27 2015-04-15 美科股份有限公司 Solid oxide fuel cell stack
US10008732B2 (en) 2013-06-27 2018-06-26 Mico Co., Ltd Solid oxide fuel cell stack

Similar Documents

Publication Publication Date Title
JP6868051B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
US20180040906A1 (en) Fuel cell stack
JP5207729B2 (en) Fuel cell stack device, fuel cell module and fuel cell device
US20190036146A1 (en) Flat plate type fuel cell
JPWO2009041532A1 (en) Fuel cell stack device, fuel cell stack coupling device and fuel cell device
JP5254588B2 (en) Solid oxide fuel cell module
CN104521049A (en) Fuel cell, and fuel cell stack
JP6781188B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP6389133B2 (en) Fuel cell stack
JP2005317291A (en) Supporting film type solid oxide fuel cell stack, and manufacturing method of the same
JP2017517837A (en) Electrically insulating three-layer gasket for SFOC unit
JP2004273213A (en) Unit cell for fuel cells, its manufacturing method, and solid oxide fuel cell
JP2005317241A (en) Supporting film type solid oxide fuel cell stack, and manufacturing method of the same
JP6294134B2 (en) Fuel cell stack
JP5448917B2 (en) Cell stack device, fuel cell module and fuel cell device
JP6756549B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP2010205534A (en) Fuel cell power generation unit, and fuel cell stack
JP6945035B1 (en) Electrochemical reaction cell stack
JP5334731B2 (en) Fuel cell stack device, fuel cell module and fuel cell device
JP6407069B2 (en) Fuel cell stack
JP7087624B2 (en) Fuel cell stack
JP4271538B2 (en) Support membrane type solid oxide fuel cell stack and manufacturing method thereof
JP2005317292A (en) Supporting film type solid oxide fuel cell stack
JP4470474B2 (en) Solid oxide fuel cell
JP6773470B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110215