JPH06325779A - Stack for solid electrolytic fuel cell and its manufacture - Google Patents

Stack for solid electrolytic fuel cell and its manufacture

Info

Publication number
JPH06325779A
JPH06325779A JP5113155A JP11315593A JPH06325779A JP H06325779 A JPH06325779 A JP H06325779A JP 5113155 A JP5113155 A JP 5113155A JP 11315593 A JP11315593 A JP 11315593A JP H06325779 A JPH06325779 A JP H06325779A
Authority
JP
Japan
Prior art keywords
cell
stack
spacer
fuel cell
felt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5113155A
Other languages
Japanese (ja)
Inventor
Toshio Matsushima
敏雄 松島
Isao Nemoto
勲 根本
Toshitaka Yumiba
利恭 弓場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5113155A priority Critical patent/JPH06325779A/en
Publication of JPH06325779A publication Critical patent/JPH06325779A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a stack for a fuel cell, which can maintain electrical connection excellent for a long time by interposing an incompressible insulating spacer and a conductive spacer composed of material in a metallic felt state between single cells. CONSTITUTION:Each single cell is disposed via an incompressible spacer 16 and a metallic felt 28, and is fastened by each assembling bolt 13. The thickness of the spacer 16 is made identical to a space between grooves 20 for installing each substrate, which are provided for a lower fixing plate for fixing each cell, and the thickness of the felt 28 is made larger than the aforesaid space. When the incompressible spacer as mentioned above is used for fastening the stack, the space between the cells is compressed only to the extent of the thickness of the spacer 16, the felt 28 is only partially compressed, so that deformation beyond plastic deformation can thereby be prevented. By this constitution, the respective cells are fixed with the space kept identical to the space between the grooves 20, dislocation of each cell is prevented, and concurrently electrical connection can thereby be secured by the felt 28.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池の
スタックおよびその作製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell stack and a method for producing the same.

【0002】[0002]

【従来の技術】固体電解質型燃料電池(SOFC)は、
電極、電解質をはじめとする単セルのすべてがセラミッ
クス材料で構成された燃料電池であり、電解質としては
イットリアの添加によって結晶構造の安定化がはかられ
たジルコニア(YSZ)が使用されている。このYSZ
は高い酸素イオン導電性を示すが、温度依存性は他のセ
ラミックス材料と同様で温度が低いと導電性は低く、高
い導電性を得るためには充分な高温下で使用する必要が
ある。したがって、SOFCを作製した際の高導電性を
得るために、運転温度は900〜1000℃という値が
設定されている。このような高い温度で使用されるた
め、電解質以外の電極もセラミックスで構成される。と
ころで、上述したYSZ電解質の導電率は、1000℃
においても高々0.1S/cmであるので、セルを形成し
た際には、YSZの薄膜化が必要である。従来、SOF
Cにおいては、例えば図5(a)に示すような平板型の
単セルの検討が進められてきている。この例は、YSZ
で薄い固体電解質層1を作製し、これに空気極3と燃料
極2の2つの電極を形成する方式のものである。この方
式のように、YSZが電極の支持体となるためには充分
な機械的強度を有することが必要であるが、イットリア
を添加したYSZの中でも1000℃における導電率が
高いという特徴を持つ、イットリアを8モル%添加した
YSZは機械的強度が弱いので、支持体の厚みを増す必
要があった。その結果、電解質部でのiR降下が増大
し、充分満足のいくセルの出力が得られないという問題
があった。そこで、電極材料自体がセルの支持体も兼
ね、かつ一方のガス流路を有し、全体のガスシール性の
向上をはかった新たな方式のSOFC単セルが提案され
ている(特開平5‐36417号公報:中空薄板式固体
電解質燃料電池)。この単セルは、図5(b)に示すよ
うな構造を有するものである。すなわち、空気極材料を
用いガス流路となる貫通口10を設けて中空状の空気極
基板8とするもので、空気極基板8の表面には固体電解
質層1、燃料極2の各層を形成し、さらに燃料極2の反
対側の面にインタコネクタ4を配設している。空気極基
板8は、通常用いられるLaSrMnO3やLaCoO3等の
材料を使用し、例えば押出し成形法等で作製される。固
体電解質層1と燃料極2の各層は、材料としてYSZ、
ニッケルとジルコニアを用い、いずれも溶射法によって
形成される。また、インタコネクタ4も、Ni‐Al23
やLaCrO3等の還元雰囲気下で安定な物質層を溶射に
よって形成している。また、固体電解質層1とインタコ
ネクタ4が設けられた部分以外はガスの透過を防止する
必要があるので、Al23等からなるガス不透過性層9
で被覆される。なお、各層は溶射法だけでなく、CVD
法、テープキャスティング法、スラリ塗布法等によって
も作製することが可能である。上述した構成のセルとす
ることによって、もはや固体電解質層はセルの支持体と
しての役割から解放され、緻密な膜でありさえすれば限
りなく薄くて良いことになり、単セルの性能向上を飛躍
的に増大させることが可能となって、単セルの発電特性
を著しく向上させることができる。しかし、SOFCセ
ルは1枚だけで使用されることはなく、単セルを直列
に、また必要に応じて並列に接続して所定の出力をもっ
た燃料電池のスタックとしている。
2. Description of the Related Art Solid oxide fuel cells (SOFC) are
This is a fuel cell in which all the single cells including electrodes and electrolytes are made of a ceramic material, and zirconia (YSZ) whose crystal structure is stabilized by the addition of yttria is used as the electrolyte. This YSZ
Shows high oxygen ion conductivity, but the temperature dependence is similar to that of other ceramic materials, and the conductivity is low when the temperature is low, and it is necessary to use it at a sufficiently high temperature to obtain high conductivity. Therefore, the operating temperature is set to a value of 900 to 1000 ° C. in order to obtain high conductivity when the SOFC is manufactured. Since it is used at such a high temperature, the electrodes other than the electrolyte are also made of ceramics. By the way, the conductivity of the above-mentioned YSZ electrolyte is 1000 ° C.
Since the maximum value is 0.1 S / cm, it is necessary to reduce the thickness of YSZ when the cell is formed. Conventionally, SOF
In C, for example, a flat type single cell as shown in FIG. 5A has been studied. This example is YSZ
In which a thin solid electrolyte layer 1 is prepared, and two electrodes, an air electrode 3 and a fuel electrode 2, are formed on the thin solid electrolyte layer 1. Like this method, YSZ needs to have sufficient mechanical strength in order to serve as a support for electrodes, but it has a characteristic that YSZ added with yttria has a high electrical conductivity at 1000 ° C. Since the mechanical strength of YSZ containing 8 mol% of yttria is weak, it was necessary to increase the thickness of the support. As a result, there has been a problem that the iR drop in the electrolyte portion increases, and a sufficiently satisfactory cell output cannot be obtained. Therefore, a new type SOFC single cell has been proposed in which the electrode material itself also serves as a support of the cell and has one gas flow path to improve the overall gas sealability (Japanese Patent Laid-Open No. 5- No. 36417: Hollow thin plate type solid electrolyte fuel cell). This single cell has a structure as shown in FIG. That is, a hollow air electrode substrate 8 is formed by providing a through-hole 10 that serves as a gas flow path using an air electrode material, and the solid electrolyte layer 1 and the fuel electrode 2 are formed on the surface of the air electrode substrate 8. Further, the interconnector 4 is arranged on the surface opposite to the fuel electrode 2. The air electrode substrate 8 is made of a commonly used material such as LaSrMnO 3 or LaCoO 3 and is manufactured by, for example, an extrusion molding method. Each layer of the solid electrolyte layer 1 and the fuel electrode 2 is made of YSZ,
Both are formed by a thermal spraying method using nickel and zirconia. The interconnector 4 is also made of Ni-Al 2 O 3
A stable material layer is formed by thermal spraying in a reducing atmosphere such as or LaCrO 3 . Further, since it is necessary to prevent the permeation of gas except for the portion where the solid electrolyte layer 1 and the interconnector 4 are provided, the gas impermeable layer 9 made of Al 2 O 3 or the like is used.
Is covered with. In addition, not only the thermal spraying method but also the CVD method
It can also be manufactured by a method, a tape casting method, a slurry coating method, or the like. By adopting the cell having the above-mentioned configuration, the solid electrolyte layer is no longer required to serve as a support for the cell, and as long as it is a dense membrane, it can be made as thin as possible, making a leap forward in improving the performance of a single cell. The power generation characteristics of the single cell can be remarkably improved. However, a single SOFC cell is not used, and single cells are connected in series and, if necessary, in parallel to form a fuel cell stack having a predetermined output.

【0003】上記の方式の単セルを用いた従来の発電モ
ジュールの例を、図6に示す。なお、図6は、空気極材
料で作製した基板を用いたセルの一例である。図におい
て、30は固定板、31は溝、32は分離板、33はガ
ス排出用スリット、34は外容器、35は酸化剤ガス供
給口、36は燃料ガス供給口、37は前室、38は燃焼
室、39はガス排出口、40はフェルト状導電体、41
は導線、42はシール剤である。モジュールの構成にあ
たっては、発電部を形成した空気極基板8を固定板30
に載せた後、分離板32を貫通させ、この状態で外容器
34の内部に収納している。固定板30には空気極基板
8の取付け用の溝31が設けられており、空気極基板8
はこの溝31に嵌合され、嵌合部にはガスの気密性を確
保するため、ホウケイ酸ガラス等の非導電性融体からな
るシール材42が充填される。一方、分離板32には、
ガス排出用スリット33が設けられていて、未反応の燃
料ガスの排出が行える構造になっている。発電にあたっ
ては、この発電モジュールを1000℃等の温度条件下
に設置し、各ガスを供給する。酸化剤ガスは、酸化剤ガ
ス供給口35から供給され、各セルの内部を通過し、セ
ル形成部で反応した後、残ガスは燃焼室38に達する。
一方、燃料ガスは外容器34の側面に設けられた燃料ガ
ス供給口36から供給され、ここで発電する。なお、図
6では燃料ガス供給口36が外容器34の左側面に表示
されているが、ガスと燃料極との接触を向上させる観点
から、紙面の表側(または裏側)の位置に設けることも
可能である。供給された燃料ガスは、各セル間の隙間に
流入して反応することになるが、各セル間に配置された
導電性スペーサである多孔質導電体40は多孔性である
ので、燃料ガスの電極への拡散は支障なく行われる。そ
して、ここで反応せずに消費されなかった燃料ガスは燃
焼室38に導かれ、残った酸化剤ガスと混合して燃焼さ
れる。そして、このような燃焼後の高温ガスは、ガス排
出口39から外部に排出される。ところで、燃料電池の
スタックの発電特性は、各セルの電気的な接続状態の良
否が大きく影響する。すなわち、スタックにおける単セ
ルの出力低下の内訳は、電極過電圧、電解質のiR損お
よび接触抵抗によるiR損であるが、接続状況が不良で
あると、この部分の接触抵抗が大きくなり単セルあたり
の電圧降下が大きくなる。上述の中空平板式セルを用い
た発電モジュールにおいては、単セルを形成した基板間
にNiフェルト等からなる多孔質導電体40を配置して
いるが、基板間の電気的接続を良好にするためには、こ
のNiフェルトを両側の基板に充分押し付けて充分に接
触させた状態で配置する必要がある。しかも、各基板は
固定板30と分離板32の溝にあわせた間隔とする必要
があり、基板を溝に固定した後にNiフェルトを両側の
基板に充分に押し付けた状態で配置することは構成上困
難であり、逆にNiフェルトを基板の間隔に挾んだ状態
で、個々の基板を固定板30の溝に取り付けることも困
難である。また、このNiフェルトは多孔体であるため
圧縮に対しては塑性変形を受け易く、長時間の使用によ
って次第に圧縮され、塑性変形された状態で変形してし
まうという問題があった。そして、基板上のセル間に単
にNiフェルトを配置しただけでは、Niの変形が一部の
みにおいて過度に進む可能性もあり、このような状態に
なると、その部分でのセル間の電気的な接続状態は不良
となり、燃料電池のスタック全体の発電特性も悪化する
という問題があった。
FIG. 6 shows an example of a conventional power generation module using a single cell of the above system. Note that FIG. 6 is an example of a cell using a substrate made of an air electrode material. In the figure, 30 is a fixed plate, 31 is a groove, 32 is a separation plate, 33 is a gas discharge slit, 34 is an outer container, 35 is an oxidant gas supply port, 36 is a fuel gas supply port, 37 is a front chamber, 38 Is a combustion chamber, 39 is a gas outlet, 40 is a felt-like conductor, 41
Is a conducting wire and 42 is a sealant. In constructing the module, the air electrode substrate 8 forming the power generation part is fixed to the fixing plate 30.
Then, the separation plate 32 is penetrated, and in this state, it is stored inside the outer container 34. The fixing plate 30 is provided with a groove 31 for mounting the air electrode substrate 8.
Is fitted in the groove 31, and the fitting portion is filled with a sealing material 42 made of a non-conductive melt such as borosilicate glass in order to ensure gas tightness. On the other hand, the separation plate 32 has
A gas discharge slit 33 is provided so that unreacted fuel gas can be discharged. In power generation, this power generation module is installed under temperature conditions such as 1000 ° C. and each gas is supplied. The oxidant gas is supplied from the oxidant gas supply port 35, passes through the inside of each cell, reacts in the cell forming portion, and then the residual gas reaches the combustion chamber 38.
On the other hand, the fuel gas is supplied from the fuel gas supply port 36 provided on the side surface of the outer container 34, and power is generated here. Although the fuel gas supply port 36 is shown on the left side surface of the outer container 34 in FIG. 6, it may be provided on the front side (or back side) of the paper surface from the viewpoint of improving the contact between the gas and the fuel electrode. It is possible. The supplied fuel gas flows into the gaps between the cells and reacts therewith. However, since the porous conductor 40, which is a conductive spacer disposed between the cells, is porous, Diffusion to the electrodes is done without any problems. Then, the fuel gas which has not reacted here and which has not been consumed is guided to the combustion chamber 38, where it is mixed with the remaining oxidant gas and burned. Then, the high temperature gas after such combustion is discharged to the outside from the gas discharge port 39. By the way, the power generation characteristics of the stack of the fuel cell are greatly affected by the quality of the electrical connection state of each cell. That is, the breakdown of the output of the single cell in the stack is the electrode overvoltage, the iR loss of the electrolyte, and the iR loss due to the contact resistance. However, if the connection status is poor, the contact resistance at this portion increases and The voltage drop becomes large. In the power generation module using the hollow flat plate type cell described above, the porous conductor 40 made of Ni felt or the like is arranged between the substrates forming the single cell, but in order to improve the electrical connection between the substrates. In this case, it is necessary to dispose the Ni felt in such a state that it is sufficiently pressed against the substrates on both sides to make sufficient contact. In addition, it is necessary for each substrate to have an interval matching the groove of the fixing plate 30 and the separating plate 32. It is therefore structurally necessary to fix the substrate in the groove and dispose the Ni felt in a state of being sufficiently pressed against the substrates on both sides. It is difficult, and conversely, it is also difficult to attach the individual substrates to the grooves of the fixing plate 30 with the Ni felt sandwiched between the substrates. In addition, since this Ni felt is a porous body, it tends to be plastically deformed by compression, and there is a problem that it is gradually compressed by being used for a long time and deformed in a plastically deformed state. Then, if Ni felt is simply arranged between the cells on the substrate, the Ni may be excessively deformed in only a part. In such a state, electrical transformation between the cells in that part may occur. There is a problem that the connection state becomes poor and the power generation characteristics of the entire fuel cell stack deteriorate.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上述
した従来技術における問題点を解消するものであり、中
空状単セルを直列に接続して所定の出力電圧を得る固体
電解質型燃料電池のスタックの構成と、その組立て方式
に関するものであり、各セル間に金属製の多孔質導電体
(金属製フェルト)を配置するに際して金属製フェルト
の過剰な圧縮を防ぎ、長期にわたって良好な電気接続を
維持し得る燃料電池のスタックおよびその作製方法を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art, that is, a solid oxide fuel cell in which hollow single cells are connected in series to obtain a predetermined output voltage. It is related to the structure of the stack and its assembling method, and prevents excessive compression of the metal felt when arranging the metal porous conductor (metal felt) between each cell, and makes good electrical connection for a long time. A fuel cell stack capable of maintaining the above and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】上記本発明の目的を達成
するために、固体電解質型燃料電池のスタックを構成す
る各セル間に、金属製の多孔質導電体(金属製フェル
ト)を配置するに際し、所定の間隔を持ったスペーサを
各セル間に配設する構成とし、上記スペーサの機能を高
めるために金属性フェルトと非圧縮性部材を併用して、
燃料電池のスタック全体を両端の面方向から全体を均等
に締め付けて固定し、各セル面に均等な圧力が加わるよ
うに構成して、良好なセル間の電気接続を確保すると共
に、各単セルの位置ずれを防ぎ、セル取付け用ホルダと
の嵌合状態の改善をはかるものである。本発明は、電極
材料を用いて内部に貫通口を有する平板型の基板を作製
し、基板の片面に固体電解質と他の電極の層を形成する
ことで単セルを構成し、この単セル面には、先に内部に
設けた貫通口と重ならない位置に穴を設け、この単セル
を複数接続して燃料電池のスタックを構成するに際し、
上記単セルの隙間に多孔質導電体である金属製フェルト
状物質および電池反応に関与しない非圧縮性物質からな
るスペーサを配設し、単セル面に設けた穴に、セル群の
両端の面からボルトを通して全体を均等に締め付けて一
体化し、この組立て状態で各単セルに嵌合する溝を設け
たホルダを上と下に配置してガスシールを行い、この構
造のスタックを容器内に収納して固体電解質型燃料電池
のスタックを構成するものである。従来の燃料電池で
は、単セルに固定用の穴が設けられておらず、また、セ
ル間の接続用導体もセル間の隙間に挾み込まれているだ
けであり、充分な電気接触を確保することが困難であっ
た。また、従来の燃料電池の構成では、実際にセルを固
定する際の組立て作業においても、伸縮性のあるニッケ
ル金属フェルトを介してセルを取り付ける方法であるた
め組立て作業能率が極めて悪いという問題があり、本発
明はこれら従来の問題点を解消したものである。
In order to achieve the above-mentioned object of the present invention, a metal porous conductor (a metal felt) is arranged between cells constituting a stack of a solid oxide fuel cell. At this time, a spacer having a predetermined interval is arranged between the cells, and a metallic felt and an incompressible member are used together to enhance the function of the spacer.
The entire fuel cell stack is fixed by uniformly tightening it from both end faces, so that even pressure is applied to each cell face, ensuring good electrical connection between the cells, and It is intended to prevent the displacement of the cell and improve the fitting state with the cell mounting holder. The present invention forms a single cell by forming a flat plate type substrate having a through hole in the inside using an electrode material and forming a layer of a solid electrolyte and another electrode on one side of the substrate, At the time of forming a fuel cell stack by forming a hole at a position that does not overlap the through-hole provided in the inside, and connecting a plurality of this single cell,
A spacer made of a metallic felt-like substance that is a porous conductor and an incompressible substance that does not participate in the battery reaction is provided in the gap between the unit cells, and the holes at the unit cell surface are provided with holes on both end surfaces of the cell group. Through bolts to tighten the whole body evenly and integrate them, place holders with grooves to fit each single cell in this assembled state on top and bottom to perform gas sealing, and store the stack of this structure in a container The stack constitutes a solid oxide fuel cell stack. In the conventional fuel cell, no fixing hole is provided in the single cell, and the connecting conductor between cells is only sandwiched in the gap between cells, ensuring sufficient electrical contact. It was difficult to do. Further, in the configuration of the conventional fuel cell, even in the assembling work when actually fixing the cells, there is a problem that the assembling work efficiency is extremely poor because the cells are attached via the stretchable nickel metal felt. The present invention solves these conventional problems.

【0006】[0006]

【実施例】以下に本発明の実施例を挙げ、図面を用いて
さらに詳細に説明する。図1は、本発明の固体電解質型
燃料電池のスタックの単セル群の組立て構造の一例を示
す斜視図である。11は空気極中空基板に形成した単セ
ル、12は端部押さえ板、13は組立て用ボルト、14
はセル間接続部で、詳細には、図3(a)、(b)に示
す非圧縮性スペーサ16に、図4に示す導電性スペーサ
である金属製フェルト28を組み合わせて構成してい
る。また、19はセル固定用の下部固定板である。ま
た、図2には、図1に示すスタックで使用する単セルの
外観を示す。単セルには、固定用のボルトを通すための
セル固定用の穴15が設けられたものを使用する。ま
た、図3には非圧縮性スペーサの形状の一例を示す。本
実施例では、図3(b)で示した形状をした非圧縮性ス
ペーサを用いた。セル間接続部は、このスペーサの中央
部に金属製フェルトを収納する構造とした。この時、金
属製フェルトはスペーサの厚み以上のものを使用し、セ
ルを押しつけた時でも弾性変形となるようにした。本実
施例では、この固定したセル群を容器内に収納して発電
用スタックとした。また、図3(a)には非圧縮性スペ
ーサの他の形状の一例を示した。発電用スタックの構造
例を図4に示した。本実施例では、各単セルは非圧縮性
スペーサ16と金属製フェルト28を介して配置され、
このような状態で組立て用ボルト13によって締めつけ
られている。非圧縮性スペーサ16と組立て用ボルト1
3の材料としては、セルとの熱膨張率の整合性や耐熱性
の観点からジルコニアを主成分とする材料を使用した。
このようにセル全体を一体化させることにより、セルの
固定も容易となる。この時に使用する非圧縮性スペーサ
16の厚みは、セル固定用の下部固定板に設けた基板取
付け用の溝20の間隔と等しくしておき、また金属製フ
ェルト28の厚みは、上記の間隔よりも大きくしてお
く。このような非圧縮性スペーサの使用によって、スタ
ックを締めつけた際にもセル間隔はこの非圧縮性スペー
サ16の厚みまでしか圧縮されず、金属製フェルト28
も部分的に圧縮させるだけで塑性変形以上の変形を防止
することができる。このような構成にすることにより、
セル群を組立て用ボルト13で締めつけると、各セルは
下部固定板19の基板取付け用の溝20と同じ間隔を保
って固定され、セルの位置ずれが防止される。それと同
時に、セル間の電気的な接続も、部分的に圧縮されたの
みで伸張力を有する状態の金属製フェルト28によって
確保することができる。なお、非圧縮性スペーサ16と
しては、単セル間に送入されるガスの流れを妨害しない
ことが必要であり、本実施例では図3(b)に示すよう
に枠状を呈し、周辺部にはガスが流れ込むためのガス給
排気用の切り欠き(または穴)17を設けたスペーサを
使用している。このスペーサにはガス給排気用の穴17
と重複しないようにボルトを通すセル固定用の穴15が
設けられており、セルを固定してスタックとする際に
は、セル固定用の穴15にボルトを通して、セル群全体
を締め付けることで、各セルの位置合わせと共に金属製
フェルト28との接触を確保することができる。なお、
本実施例では図3(b)に示すように枠状のスペーサを
使用したが、このスペーサの形状としては所定の厚みを
持った平板状のものを金属製フェルトと組み合わせて使
用することも可能である。本発明のスタックでは、単セ
ルには固定用のボルトを通すためのセル固定用の穴15
を設けることを特徴としている。単セルは押し出し成形
やシート成形体の積層物の焼結によって中空基板を作製
した後、溶射やEVD法によって表面に電解質を形成す
ることで基本的に作製する。また、電極シートと電解質
シートの共焼結によっても作製可能である。したがっ
て、ボルトを通すためのセル固定用の穴15は、焼結前
の状態において穴開け加工を施すことにより容易に得ら
れる。本発明のセルに設けられる組立て用ボルト13を
通すための穴の個数は、金属製フェルト28が各セルの
面に均一に押し付けられれば良いので、特に限定するも
のではないが、おおよそセルの大きさに準じて2〜6個
程度で充分である。
Embodiments of the present invention will be described below in more detail with reference to the drawings. FIG. 1 is a perspective view showing an example of an assembly structure of a unit cell group of a stack of a solid oxide fuel cell of the present invention. 11 is a single cell formed on the air electrode hollow substrate, 12 is an end holding plate, 13 is an assembly bolt, 14
Is an inter-cell connecting portion, and more specifically, it is configured by combining the incompressible spacer 16 shown in FIGS. 3A and 3B with the metal felt 28 which is a conductive spacer shown in FIG. Further, 19 is a lower fixing plate for fixing the cell. Further, FIG. 2 shows an appearance of a single cell used in the stack shown in FIG. A single cell is provided with a cell fixing hole 15 for passing a fixing bolt. Further, FIG. 3 shows an example of the shape of the non-compressible spacer. In this example, an incompressible spacer having the shape shown in FIG. 3B was used. The inter-cell connecting portion has a structure in which a metal felt is housed in the center of the spacer. At this time, a metal felt having a thickness larger than that of the spacer was used so that the metal felt was elastically deformed even when the cell was pressed. In this example, the fixed cell group was housed in a container to form a power generation stack. Further, FIG. 3A shows an example of another shape of the non-compressible spacer. An example of the structure of the power generation stack is shown in FIG. In this embodiment, each unit cell is arranged via the incompressible spacer 16 and the metal felt 28,
In this state, it is fastened by the assembling bolt 13. Non-compressible spacer 16 and assembly bolt 1
As the material of No. 3, a material containing zirconia as a main component was used from the viewpoint of matching the coefficient of thermal expansion with the cell and heat resistance.
By thus integrating the entire cell, the cell can be easily fixed. The thickness of the incompressible spacer 16 used at this time is made equal to the distance between the substrate mounting grooves 20 provided in the lower fixing plate for fixing the cell, and the thickness of the metal felt 28 is set to be larger than the above distance. Also keep it large. By using such an incompressible spacer, even when the stack is tightened, the cell spacing is compressed only up to the thickness of the incompressible spacer 16, and the metal felt 28 is used.
Even if only partially compressed, it is possible to prevent deformation beyond plastic deformation. With this configuration,
When the cell group is tightened with the assembling bolts 13, each cell is fixed at the same interval as the board mounting groove 20 of the lower fixing plate 19, and the displacement of the cell is prevented. At the same time, the electrical connection between the cells can be ensured by the metal felt 28 which is in a state of being only partially compressed and having an extension force. The non-compressible spacer 16 is required not to interfere with the flow of gas fed between the single cells, and in the present embodiment, it has a frame shape as shown in FIG. A spacer provided with a notch (or hole) 17 for supplying and exhausting gas is used as the spacer. This spacer has holes 17 for gas supply and exhaust.
The hole 15 for fixing the cell through which the bolt is passed is provided so as not to overlap with, and when the cell is fixed to form the stack, the bolt is passed through the hole 15 for fixing the cell to tighten the entire cell group, It is possible to ensure the contact with the metal felt 28 as well as the alignment of each cell. In addition,
In this embodiment, a frame-shaped spacer is used as shown in FIG. 3 (b), but as the shape of this spacer, a flat plate having a predetermined thickness may be used in combination with a metal felt. Is. In the stack of the present invention, the cell fixing holes 15 for passing the fixing bolts through the single cells.
Is provided. A single cell is basically manufactured by forming a hollow substrate by extrusion molding or sintering a laminate of sheet molded bodies, and then forming an electrolyte on the surface by thermal spraying or EVD. It can also be produced by co-sintering the electrode sheet and the electrolyte sheet. Therefore, the hole 15 for fixing the cell through which the bolt is inserted can be easily obtained by making a hole in the pre-sintering state. The number of holes through which the assembling bolts 13 are provided in the cell of the present invention is not particularly limited as long as the metal felt 28 is uniformly pressed on the surface of each cell, but is not limited to a particular size. According to this, about 2 to 6 pieces are sufficient.

【0007】本発明の固体電解質型燃料電池のスタック
で使用する単セルの作製例を、空気極材料として中空基
板に使用した単セルを例として以下に示す。空気極材料
としては、一般的に使用されているLa0.8Sr0.2MnO3
(粒径1〜3μm)粉末を使用した。そして、中空平板
は、シート成形体を熱融着させる方法と押し出し成形法
による方法によって作製した。まず、シート成形体を熱
融着させる方法の一例を次に示す。シート成形体はドク
ターブレード法によって作製し、このようなシート成形
体を所定の大きさに切断した後、加熱・加圧し中空状の
融着体を作製した。なお、この時の加熱・加圧条件はシ
ートの軟らかさによって変える必要があるが、おおむね
70〜80℃、30〜70kg/cm2の成形条件で行っ
た。そして、この融着体の周辺部にセルを固定するため
の穴を設けた。このように融着した中空平板を約400
℃において脱脂し、この後1250〜1350℃で2〜
5時間焼成することで空気極用の中空基板を作製した。
中空基板の大きさは、100mm×150mm角、厚み
は5mm程度の寸法とした。なお、焼結の進行は、使用
した原料粉末の粒径と結合剤・可塑剤の添加量によって
影響されるので、これらの影響を考慮して原料に応じた
温度と時間を選定した。このように、焼成条件を原料粉
末や結合剤等の添加量に応じて適宜選定して焼成するこ
とで、原料粉末を変更しても多孔度20〜30%程度の
焼結体を得ることができる。なお、空気極の導電率は多
孔度によってもある程度左右されるが、本実施例におけ
る焼結体の導電率は1000℃において、約100S/
cmであった。一方、押し出し成形にあたっては粘土状
の材料を必要とする。このような材料は原料粉末100
重量部にバインダ5重量部、溶媒10〜15重量部を添
加して作製した。バインダとしては、メチルセルロース
系の水溶性高分子を用いた。押し出し成形の場合、原料
の粘性によって成形体の仕上がり状況が大きく影響さ
れ、例えば水が少ないと押し出し圧力が高くなって、成
形中にクラックが生じたり、逆に多すぎると中空構造の
維持が困難になったりする。そこで、必要に応じて可塑
剤を2〜5重量部加えて調整した。なお、押し出し成形
体の焼成にあたっても水分を乾燥させた後、やはり脱脂
を行う必要がある。脱脂温度は、使用するバインダによ
って異なるが、ここで使用したメチルセルロース系の水
溶性高分子ではおおむね400℃程度として熱分解を行
った。焼成温度については、ドクターブレードシートの
積層体と同様の条件とした結果として、ドクターブレー
ド法による物と同じ物を得ることができた。このように
作製した中空基板上に、固体電解質と燃料極の薄膜を形
成した。本実施例では、いずれも膜形成にあたっては溶
射法を用いた。使用した溶射機は大気溶射法によるもの
であり、電解質材料としては8モル安定化YSZ(粒
径:10〜50μm)を使用した。電解質の厚みとして
は、100μmを目標に作製し、この膜のガス透過率は
1〜5×10~6〔cc・cm/sec・(g/cm2)cm2〕であ
った。また、燃料電極としては、酸化ニッケル粉末(粒
径:10〜50μm)と8モル安定化YSZを使用し
た。燃料電極の厚みは、200〜300μm程度であっ
た。この燃料電極のガス透過率は10~4〔cc・cm/sec
・(g/cm2)cm2〕オーダであった。本実施例では、上
記の手法で形成した単セルを組み合わせて、所定の出力
を持つ発電モジュールを構成した。図4に、発電モジー
ルの組立て例を示す。19は下部固定板、20は基板取
付け用の溝、21は上部固定板、43はガス排出用スリ
ット、22は外容器、23は酸化剤ガス供給口、24は
燃料ガス供給口、25は発電室、26は燃焼室、27は
排気口、28は金属製フェルト、29は導線である。モ
ジュールの構成にあたっては、単セルを積層しボルトで
固定した単セル11の群を、上部固定板21と下部固定
板19で保持した状態で外容器22の内部に収納した。
一方、単セル11の群が下部固定板19に嵌合する部分
には、基板取付け用の溝20が設けてあり、単セル11
の群をこの溝の部分に組み合わせ、ホウケイ酸ガラス等
の非導電性融体からなるシール材42を用いてガスシー
ルした。本発明のSOFCの動作は、従来のSOFCの
モジュールと全く同様であり、発電モジュールを100
0℃等の温度条件下に設置し、各ガスを供給するだけで
ある。図4に示すように酸化剤ガスは、酸化剤ガス供給
口23から供給され、各セルの内部を通過し、単セル形
成部で反応した後、残ガスが燃焼室26に達する。一
方、燃料ガスは外容器22の側面に設けられた燃料ガス
供給口24から供給され、基板表面において発電が行わ
れる。供給された燃料ガスは、各セル間のすき間に流入
して反応を起こすことになるが、各セル間に配置された
非圧縮性スペーサ16にはガスの給排用の穴17が設け
られているので、上記の穴17を通して燃料ガスの電極
表面への拡散は支障なく行われる。そして、各セルの電
気接触は金属製フェルト28によって確保されているの
で、発電された電力は損失を抑えたまま導線29を通っ
て外部に取り出すことができる。
A production example of a single cell used in the stack of the solid oxide fuel cell of the present invention will be shown below by taking a single cell used as a cathode material as a hollow substrate as an example. As the air electrode material, generally used La 0.8 Sr 0.2 MnO 3
Powder (particle size 1 to 3 μm) was used. Then, the hollow flat plate was produced by a method of heat-sealing the sheet molded body and a method of extrusion molding. First, an example of a method for heat-sealing a sheet molded body will be described below. The sheet molded body was manufactured by the doctor blade method, and after cutting such a sheet molded body into a predetermined size, it was heated and pressed to manufacture a hollow fused body. The heating and pressurizing conditions at this time need to be changed depending on the softness of the sheet, but the molding conditions were generally 70 to 80 ° C. and 30 to 70 kg / cm 2 . Then, a hole for fixing the cell was provided in the peripheral portion of this fused body. The hollow flat plate fused in this way is about 400
Degreasing at ℃, and then 2 at 1250 ~ 1350 ℃
A hollow substrate for an air electrode was produced by firing for 5 hours.
The size of the hollow substrate was 100 mm × 150 mm square and the thickness was about 5 mm. Since the progress of sintering is influenced by the particle size of the raw material powder used and the amount of the binder / plasticizer added, the temperature and time were selected according to the raw material in consideration of these influences. As described above, by appropriately selecting the firing conditions according to the addition amount of the raw material powder, the binder and the like and firing, it is possible to obtain a sintered body having a porosity of about 20 to 30% even if the raw material powder is changed. it can. The conductivity of the air electrode depends to some extent on the porosity, but the conductivity of the sintered body in this example is about 100 S / 1000 at 1000 ° C.
It was cm. On the other hand, a clay-like material is required for extrusion molding. Such a material is a raw powder 100
5 parts by weight of the binder and 10 to 15 parts by weight of the solvent were added to the parts by weight. A methylcellulose-based water-soluble polymer was used as the binder. In the case of extrusion molding, the finish condition of the molded body is greatly affected by the viscosity of the raw material, for example, when the amount of water is low, the extrusion pressure becomes high and cracks occur during molding, and on the contrary, when it is too high, it is difficult to maintain the hollow structure. It becomes. Therefore, 2 to 5 parts by weight of a plasticizer was added as necessary for adjustment. When firing the extruded body, it is also necessary to degrease after drying the water content. Although the degreasing temperature varies depending on the binder used, the methylcellulose-based water-soluble polymer used here was subjected to thermal decomposition at about 400 ° C. Regarding the firing temperature, the same conditions as those of the doctor blade sheet laminate were used, and as a result, the same product as that obtained by the doctor blade method could be obtained. A thin film of the solid electrolyte and the fuel electrode was formed on the hollow substrate thus manufactured. In all of the examples, the thermal spraying method was used for film formation. The thermal spraying machine used was an atmospheric thermal spraying method, and 8 mol-stabilized YSZ (particle size: 10 to 50 μm) was used as an electrolyte material. The target electrolyte thickness was 100 μm, and the gas permeability of this membrane was 1 to 5 × 10 6 [cc · cm / sec · (g / cm 2 ) cm 2 ]. As the fuel electrode, nickel oxide powder (particle size: 10 to 50 μm) and 8 mol-stabilized YSZ were used. The thickness of the fuel electrode was about 200 to 300 μm. The gas permeability of this fuel electrode is 10 ~ 4 [cc ・ cm / sec
・ (G / cm 2 ) cm 2 ]. In this example, the single cells formed by the above method were combined to form a power generation module having a predetermined output. FIG. 4 shows an example of assembling the power generation module. Reference numeral 19 is a lower fixing plate, 20 is a groove for mounting a substrate, 21 is an upper fixing plate, 43 is a gas discharge slit, 22 is an outer container, 23 is an oxidant gas supply port, 24 is a fuel gas supply port, and 25 is power generation. A chamber, 26 is a combustion chamber, 27 is an exhaust port, 28 is a metal felt, and 29 is a conducting wire. In constructing the module, a group of single cells 11 in which the single cells are stacked and fixed with bolts are housed inside the outer container 22 while being held by the upper fixing plate 21 and the lower fixing plate 19.
On the other hand, a groove 20 for mounting a substrate is provided in a portion where the group of unit cells 11 is fitted to the lower fixing plate 19,
The above group was combined with this groove portion, and gas sealing was performed using a sealing material 42 made of a non-conductive melt such as borosilicate glass. The operation of the SOFC of the present invention is exactly the same as that of the conventional SOFC module.
It is installed under a temperature condition such as 0 ° C. and each gas is supplied. As shown in FIG. 4, the oxidant gas is supplied from the oxidant gas supply port 23, passes through the inside of each cell, reacts in the unit cell formation portion, and then the residual gas reaches the combustion chamber 26. On the other hand, the fuel gas is supplied from the fuel gas supply port 24 provided on the side surface of the outer container 22, and power is generated on the substrate surface. The supplied fuel gas flows into the gaps between the cells and causes a reaction, but the incompressible spacers 16 arranged between the cells are provided with holes 17 for supplying and discharging the gas. Therefore, the diffusion of the fuel gas to the electrode surface through the hole 17 can be performed without any trouble. Since the electric contact of each cell is secured by the metal felt 28, the generated electric power can be taken out to the outside through the conducting wire 29 while suppressing the loss.

【0008】[0008]

【発明の効果】以上詳細に説明したように、本発明の固
体電解質型燃料電池(SOFC)では、ガスを通過させ
るための貫通口を有する中空状平板構造の電極基板を用
い、この表面に固体電解質層と基板材料とは異なる他の
電極を形成して、少なくとも1つの発電要素を形成した
構造のセルを電気的に接続してセル群を組み立て、各単
セルにはスタック化の際に固定ボルトを通すための穴を
設け、またセル間に非圧縮性スペーサと金属製フェルト
を使用して全体を均等に締めつけることで、位置ずれが
おこらない様に各単セルを位置ずれすることなく一本化
すると共に、各セル間の電気接続が良好で高性能のSO
FCが得られる。なお、本発明以前において類似の構成
の発電モジュールはあったが、この従来方式はセル間に
導電用の金属フェルトを配置しているだけにすぎず、セ
ル間の電気的な接続状況が必ずしも良好ではなかった。
このため発電モジュールの発電特性が不良であった。ま
た、各単セルを組み立てる際にも伸縮性のある金属フェ
ルトを挾みつつセルを固定板の溝に取り付けていくこと
になるが、発電モジュールの作製効率が極めて低かっ
た。本発明のスタックの組み立て方法によると、セル間
の電気的接続とセル間の密着固定が容易に行え、かつ位
置ずれも発生しないので発電モジュールの信頼性を一段
と高めることができる。
As described above in detail, in the solid oxide fuel cell (SOFC) of the present invention, a hollow flat plate type electrode substrate having a through hole for allowing gas to pass is used, and a solid electrode is formed on the surface of the electrode substrate. An electrolyte layer and another electrode different from the substrate material are formed to electrically connect cells having a structure in which at least one power generation element is formed to assemble a cell group, which is fixed to each single cell during stacking. By providing holes for the bolts to pass through and using the non-compressible spacers and the metal felt between the cells to evenly tighten the whole body, it is possible to prevent misalignment of each single cell without misalignment. This is a high-performance SO that is fully integrated and has good electrical connection between cells.
FC is obtained. Although there was a power generation module having a similar structure before the present invention, this conventional method merely arranges a metal felt for conduction between cells, and the electrical connection between cells is not always good. Was not.
Therefore, the power generation characteristics of the power generation module were poor. Also, when assembling each unit cell, the cell is attached to the groove of the fixing plate while sandwiching the stretchable metal felt, but the production efficiency of the power generation module was extremely low. According to the stack assembling method of the present invention, the electrical connection between cells and the close fixing between cells can be easily performed, and the positional deviation does not occur, so that the reliability of the power generation module can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で例示した単セル群の組立て構
造を示す摸式図。
FIG. 1 is a schematic view showing an assembly structure of a unit cell group exemplified in an embodiment of the present invention.

【図2】本発明の実施例で例示した単セルの外観を示す
斜視図。
FIG. 2 is a perspective view showing the appearance of a single cell exemplified in the embodiment of the present invention.

【図3】本発明の実施例で例示した2種〔(a)、
(b)〕の非圧縮性スペーサの外観を示す斜視図。
FIG. 3 shows two types [(a), illustrated in the examples of the present invention.
FIG. 3B is a perspective view showing the outer appearance of the incompressible spacer of FIG.

【図4】本発明の実施例で例示した発電用スタックの構
造を示す摸式図。
FIG. 4 is a schematic diagram showing a structure of a power generation stack exemplified in an embodiment of the present invention.

【図5】従来の平板型(a)と中空状電極基板(b)を
用いた燃料電池単セルの構造を示す摸式図。
FIG. 5 is a schematic diagram showing a structure of a fuel cell single cell using a conventional flat plate type (a) and a hollow electrode substrate (b).

【図6】従来の燃料電池単セルで構成した発電モジュー
ルの構造を示す摸式図。
FIG. 6 is a schematic diagram showing a structure of a power generation module composed of a conventional fuel cell single cell.

【符号の説明】[Explanation of symbols]

1…固体電解質層 2…燃料極 3…空気極 4…インタコネクタ 5…燃料ガス流路 6…酸化剤ガス流路 7…単セル発電部 8…空気極基板 9…ガス不透過性層 10…貫通口 11…単セル 12…端部押さえ板 13…組立て用ボルト 14…セル間接続部 15…セル固定用の穴 16…非圧縮性スペ
ーサ 17…ガス給排気用の切り欠き(または穴) 18…金属製フェルトを収納する空間 19…下部固定板 20…基板取付け用
の溝 21…上部固定板 22…外容器 23…酸化剤ガス供給口 24…燃料ガス供給
口 25…発電室 26…燃焼室 27…排気口 28…金属製フェル
ト 29…導線 30…固定板 31…溝 32…分離板 33…ガス排出用スリット 34…外容器 35…酸化剤ガス供給口 36…燃料ガス供給
口 37…前室 38…燃焼室 39…ガス排出口 40…多孔質導電体 41…導線 42…シール材 43…ガス排出用スリット
DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte layer 2 ... Fuel electrode 3 ... Air electrode 4 ... Interconnector 5 ... Fuel gas flow path 6 ... Oxidant gas flow path 7 ... Single cell power generation part 8 ... Air electrode substrate 9 ... Gas impermeable layer 10 ... Through-hole 11 ... Single cell 12 ... End pressing plate 13 ... Assembly bolt 14 ... Cell connecting part 15 ... Cell fixing hole 16 ... Incompressible spacer 17 ... Gas supply / exhaust notch (or hole) 18 ... Space for storing metal felt 19 ... Lower fixing plate 20 ... Groove for mounting substrate 21 ... Upper fixing plate 22 ... Outer container 23 ... Oxidant gas supply port 24 ... Fuel gas supply port 25 ... Power generation chamber 26 ... Combustion chamber 27 ... Exhaust port 28 ... Metal felt 29 ... Conductive wire 30 ... Fixed plate 31 ... Groove 32 ... Separation plate 33 ... Gas discharge slit 34 ... Outer container 35 ... Oxidant gas supply port 36 ... Fuel gas supply port 37 ... Front chamber 38 ... Combustion chamber 3 ... gas discharge port 40 ... porous conductive material 41 ... wire 42 ... sealing member 43 ... gas discharge slit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電極材料よりなり、かつ内部に貫通口を有
する平板型基板上に、固体電解質層と電極層を積層して
形成される単セルを、複数個重ね合わせてセル群を構成
する固体電解質型燃料電池のスタックにおいて、上記単
セル間に、非圧縮性の物質からなる電気絶縁性スペーサ
と、該電気絶縁性スペーサの厚み以上の厚さを有し、上
記電気絶縁性スペーサの厚さにまで圧縮しても弾性変形
が可能な金属製フェルト状物質からなる導電性スペーサ
を配設してなることを特徴とする固体電解質型燃料電池
のスタック。
1. A cell group is formed by stacking a plurality of single cells formed by laminating a solid electrolyte layer and an electrode layer on a flat substrate made of an electrode material and having a through hole therein. In a stack of a solid oxide fuel cell, an electric insulating spacer made of an incompressible substance is provided between the single cells, and a thickness equal to or larger than the thickness of the electric insulating spacer is used. A stack of a solid oxide fuel cell, characterized in that a conductive spacer made of a metallic felt-like substance that is elastically deformable even when compressed to a small size is arranged.
【請求項2】請求項1において、単セルを複数個重ね合
わせて構成されるセル群全体が、電極層の面に対し垂直
な方向から均等に締め付けられた構成とすることを特徴
とする固体電解質型燃料電池のスタック。
2. The solid according to claim 1, wherein the entire cell group formed by stacking a plurality of single cells is uniformly tightened in a direction perpendicular to the surface of the electrode layer. Electrolyte fuel cell stack.
【請求項3】電極材料よりなり、かつ内部に貫通口を有
する平板型基板上に、固体電解質層と電極層を積層して
形成される単セルを、複数個重ね合わせてセル群を構成
する固体電解質型燃料電池のスタックの作製方法におい
て、上記貫通口を有する平板型基板上に、固体電解質層
と電極層を積層して形成される単セルの表面で、上記貫
通口の位置と重複しない位置に、上記単セルを貫通する
共通の穴を複数個形成し、該単セルを複数個重ね合わせ
てセル群を構成するに際し、上記共通の穴にボルトを通
してセル群全体を均等に締め付ける工程を含むことを特
徴とする固体電解質型燃料電池のスタックの作製方法。
3. A cell group is formed by stacking a plurality of single cells formed by stacking a solid electrolyte layer and an electrode layer on a flat plate type substrate made of an electrode material and having a through hole therein. In the method for producing a stack of a solid oxide fuel cell, on the surface of a single cell formed by laminating a solid electrolyte layer and an electrode layer on a flat plate type substrate having the above through hole, the position of the above through hole does not overlap. At the position, forming a plurality of common holes penetrating the single cell, and forming a cell group by stacking a plurality of the single cells, a step of passing bolts through the common hole and uniformly tightening the entire cell group is performed. A method for manufacturing a stack of a solid oxide fuel cell, comprising:
JP5113155A 1993-05-14 1993-05-14 Stack for solid electrolytic fuel cell and its manufacture Pending JPH06325779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5113155A JPH06325779A (en) 1993-05-14 1993-05-14 Stack for solid electrolytic fuel cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5113155A JPH06325779A (en) 1993-05-14 1993-05-14 Stack for solid electrolytic fuel cell and its manufacture

Publications (1)

Publication Number Publication Date
JPH06325779A true JPH06325779A (en) 1994-11-25

Family

ID=14604965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5113155A Pending JPH06325779A (en) 1993-05-14 1993-05-14 Stack for solid electrolytic fuel cell and its manufacture

Country Status (1)

Country Link
JP (1) JPH06325779A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317291A (en) * 2004-04-27 2005-11-10 Tokyo Gas Co Ltd Supporting film type solid oxide fuel cell stack, and manufacturing method of the same
JP2007035498A (en) * 2005-07-28 2007-02-08 Kyocera Corp Current collection structure in fuel battery cell stack
JP2007227226A (en) * 2006-02-24 2007-09-06 Kyocera Corp Fuel battery cell and fuel cell
JP2008234911A (en) * 2007-03-19 2008-10-02 Hitachi Ltd Solid oxide fuel cell
JP2008251241A (en) * 2007-03-29 2008-10-16 Dainippon Printing Co Ltd Solid oxide fuel cell and its stack structure
JP2009146858A (en) * 2007-12-18 2009-07-02 Nippon Telegr & Teleph Corp <Ntt> Planar solid oxide fuel cell stack
JP4782419B2 (en) * 2002-08-21 2011-09-28 ユーティーシー パワー コーポレイション End cell thermal isolation for fuel cell systems
JP2017107644A (en) * 2015-12-07 2017-06-15 パナソニックIpマネジメント株式会社 High-temperature operation type fuel battery
JP2017183225A (en) * 2016-03-31 2017-10-05 本田技研工業株式会社 Fuel cell stack

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4782419B2 (en) * 2002-08-21 2011-09-28 ユーティーシー パワー コーポレイション End cell thermal isolation for fuel cell systems
JP2005317291A (en) * 2004-04-27 2005-11-10 Tokyo Gas Co Ltd Supporting film type solid oxide fuel cell stack, and manufacturing method of the same
JP2007035498A (en) * 2005-07-28 2007-02-08 Kyocera Corp Current collection structure in fuel battery cell stack
JP2007227226A (en) * 2006-02-24 2007-09-06 Kyocera Corp Fuel battery cell and fuel cell
JP2008234911A (en) * 2007-03-19 2008-10-02 Hitachi Ltd Solid oxide fuel cell
JP2008251241A (en) * 2007-03-29 2008-10-16 Dainippon Printing Co Ltd Solid oxide fuel cell and its stack structure
JP2009146858A (en) * 2007-12-18 2009-07-02 Nippon Telegr & Teleph Corp <Ntt> Planar solid oxide fuel cell stack
JP2017107644A (en) * 2015-12-07 2017-06-15 パナソニックIpマネジメント株式会社 High-temperature operation type fuel battery
JP2017183225A (en) * 2016-03-31 2017-10-05 本田技研工業株式会社 Fuel cell stack

Similar Documents

Publication Publication Date Title
JP3102809B2 (en) Hollow thin plate solid electrolyte fuel cell
US7014934B2 (en) Tubular flat plate fuel cells and method of making the same
US20080206618A1 (en) Electrochemical devices and electrochemical apparatus
KR100674153B1 (en) Unit cell of flat solid electrolytic fuel battery and cell stack comprising the same
JP5077238B2 (en) Solid oxide fuel cell support structure and solid oxide fuel cell module including the same
JPH06325779A (en) Stack for solid electrolytic fuel cell and its manufacture
US6294279B1 (en) Solid-electrolyte fuel cell and method for manufacturing the same
JPH06349516A (en) Stack for solid electrolyte type fuel cell
US5372895A (en) Solid oxide fuel cell and method for manufacturing the same
JP3166888B2 (en) Solid oxide fuel cell stack
JP2730817B2 (en) Method for manufacturing solid electrolyte fuel cell
JP2826243B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP6748518B2 (en) Method for manufacturing electrochemical reaction cell
JP3102806B2 (en) Hollow solid electrolyte fuel cell
JPH05275096A (en) Close board for solid electrolytic fuel cell, and solid electrolytic fuel cell using same and manufacture thereof
JP3063952B2 (en) Hollow flat solid electrolyte fuel cell
JPH06349515A (en) Solid electrolyte type fuel cell and its operation
JP2980921B2 (en) Flat solid electrolyte fuel cell
US10665872B2 (en) Fuel cell stack and method for manufacturing fuel cell stack
JPH05151979A (en) Solid electrolyte fuel cell
JP3358640B2 (en) Manufacturing method of electrode substrate
JP7465849B2 (en) Electrochemical reaction single cells and electrochemical reaction cell stacks
JP7073441B2 (en) Electrochemical reaction Single cell manufacturing method
JPH076776A (en) Stack of solid electrolyte fuel cell
JPH06325787A (en) Solid electrolytic fuel cell