JP2004319291A - Support-membrane type solid oxide fuel cell stack and its manufacturing method - Google Patents

Support-membrane type solid oxide fuel cell stack and its manufacturing method Download PDF

Info

Publication number
JP2004319291A
JP2004319291A JP2003112202A JP2003112202A JP2004319291A JP 2004319291 A JP2004319291 A JP 2004319291A JP 2003112202 A JP2003112202 A JP 2003112202A JP 2003112202 A JP2003112202 A JP 2003112202A JP 2004319291 A JP2004319291 A JP 2004319291A
Authority
JP
Japan
Prior art keywords
foil plate
alloy foil
solid oxide
fuel cell
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003112202A
Other languages
Japanese (ja)
Other versions
JP4184139B2 (en
Inventor
Kei Ogasawara
慶 小笠原
Hisataka Yakabe
久孝 矢加部
Teruji Sakurai
輝治 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2003112202A priority Critical patent/JP4184139B2/en
Publication of JP2004319291A publication Critical patent/JP2004319291A/en
Application granted granted Critical
Publication of JP4184139B2 publication Critical patent/JP4184139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a support-membrane type solid oxide fuel cell stack which can be configured without the need of many troublesome processes and is extremely reduced in the number of gas sealing parts, and a support-membrane type solid oxide fuel cell module using the stack. <P>SOLUTION: In the stack and a module using the stack, in which a whole of a cell is wrapped by bending one piece composed of alloy foil plates 18, 20, among foil plate parts of both sides of a bending part 17, the foil plates 18, 20 have fuel pass openings 19 at both ends, in length directions, of one foil plate, and have an air electrode opening 21 at the central part and the openings 19 at the both ends, in the length directions, of the other foil part, respectively. A support-membrane type unit cell 10 is disposed at the central part of one foil plate part in a manner to turn up the air electrode of the unit cell 10, and disposed at the opening 19 by interposing a spacer 8. After that, the foil plate parts on the both sides of the bending part 17 are joined with mutually opposed end parts. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、作動温度が650〜800℃の範囲である支持膜式固体酸化物形燃料電池スタック構成用構造体、支持膜式固体酸化物形燃料電池スタック、その作製方法及び該スタックを用いた支持膜式固体酸化物形燃料電池モジュールに関する。
【0002】
【従来の技術】
固体酸化物形燃料電池〔SOFC(=Solid Oxide Fuel Cell):以下適宜SOFCと略称する〕は、SOFCの単電池すなわち単セル(本明細書中「セル」とも言う)は固体酸化物電解質を挟んで燃料極及び空気極(酸化剤として酸素が用いられる場合は酸素極)が配置され、燃料極/電解質(固体酸化物電解質)/空気極の3層ユニットで構成される。
【0003】
空気極に導入される空気中の酸素は空気極で酸化物イオン(O2−)となり、固体酸化物電解質を通って燃料極に至る。ここで、燃料極に導入される燃料と反応して電子を放出し、電気と水、二酸化炭素等の反応生成物を生成する。空気極での利用済み空気は空気極オフガスとして排出され、燃料極での利用済み燃料は燃料極オフガスとして排出される。単セル1個の電圧は低いため、通常、単セルを複数層直列に積層して構成される。
【0004】
従来のSOFCはその作動温度が800〜1000℃程度と高いが、最近では800℃程度以下、例えば750℃程度の温度で作動するSOFCも開発されつつある。本発明者らは、このような低温作動のSOFCに特に注目し開発を進めており、これまで幾つかの成果を得ている(特開2002−343376、特開2002−367615、特願2002−28847等)。
【0005】
図1〜3は上記低温作動のSOFCの態様例を説明する図である。図1は単電池(セル)の構成例、図2はセルを組み込んだSOFCスタックの構成例、図3は図2中X−X線断面図である。図2ではスタック構成部材の位置関係等を示すため各構成部材間に間隔を置いた斜視図として示している。図1のとおり、単セルは、燃料極の上に電解質膜(=固体酸化物電解質膜)が配置され、電解質膜の上に空気極が配置されて構成され、このセルが図2〜3のように組み込まれてSOFCスタックが構成される。
【0006】
電解質膜として、例えばジルコニア系やLaGaO系などの固体酸化物電解質材料を用いて、これを膜厚の厚い燃料極で支持するように構成されており、支持膜式と称される。支持膜式SOFCにおいては、電解質膜の膜厚を薄く構成でき、その膜厚が10μm程度となり、800℃以下の低温で運転できる。このため、その構成材料として例えばステンレス鋼などの安価な材料の使用を可能とし、また小型化が可能であるなど各種利点を有する。
【0007】
図2〜3のとおり、支持膜式SOFCスタックは、上部から下部へ順次セパレータA、セパレータB、セパレータC、接合材、単電池(セル)、セパレータDが配置される。セパレータAの上部、セパレータDの下部には集電板等が配置されるが、図示は省略している。また、セパレータA〜Dは金属(合金を含む)で構成される。
【0008】
【発明が解決しようとする課題】
ところで、上記のような低温作動の支持膜式SOFCにおいても、単セルを積層する必要があり、金属製のセルサポートフォイル(図2〜3中セパレータC)に接合し、それをマニホールド(図2〜3中セパレータB、D)に納まるように配置、接合したものをユニットとし、これを金属製のセパレータ板を介して次のユニットに接合することにより、スタックすなわち積層体が形成される。
【0009】
加えて、スタックを流通する燃料、空気、燃料極オフガス、空気極オフガスはすべて気体であることから、図3のとおり、ガス封止をしその封止性を高めるために各部材間にはシール材(図3中シール材による接合箇所)を挟み込む必要があるなどスタックを構成するには煩鎖で数多くの工程を必要とする。
【0010】
本発明は、従来におけるような、煩鎖で数多くの工程を経ることなく構成でき、且つ、ガス封止部を格段に減じてなる支持膜式固体酸化物形燃料電池スタック構成用構造体、支持膜式固体酸化物形燃料電池スタック、その作製方法及び該スタックを用いた支持膜式固体酸化物形燃料電池モジュールを提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明は、(A)支持膜式固体酸化物形燃料電池スタック構成用の構造体であって、セル全体を、一方の電極及びガスの導入及び導出用の孔を備えた合金箔板で包み込んでなることを特徴とする支持膜式固体酸化物形燃料電池スタック構成用構造体を提供する。
【0012】
本発明は、(B)支持膜式固体酸化物形燃料電池スタックであって、セル全体を電極及びガスの導入及び導出用の孔を備えた合金箔板で包み込んでなる支持膜式固体酸化物形燃料電池スタック構成用構造体の複数個を、ガス流通及び電気的接続を行うインターコネクタを介して積層してなることを特徴とする支持膜式固体酸化物形燃料電池スタックを提供する。
【0013】
本発明は、(C)セル全体を第1及び第2の2枚の合金箔板で包んでなる支持膜式固体酸化物形燃料電池スタックであって、第1の合金箔板が、長手方向の両端に燃料流通用開口と、その長手方向に対する左右両端に第2の合金箔板との接合部を備え、第2の合金箔板が、その中央部に空気極用の開口と、その長手方向の両端に燃料流通用開口と、その長手方向に対する左右両端に第2の合金箔板との接合部を備え、第1の合金箔板の中央部に支持膜式単セルを空気極を上にして配置した後、第2の合金箔板をその燃料流通用開口部にスペーサを介在させて配置し、第1の合金箔板及び第2の合金箔板の左右両端を接合してなることを特徴とする支持膜式固体酸化物形燃料電池スタック及びその作製方法を提供する。
【0014】
本発明は、(D)前記(C)の構造を有する支持膜式固体酸化物形燃料電池スタックと、その両端に絶縁体部材及び該燃料電池スタックの開口に対応した開口を備え且つその中央部にスタックの単セルの空気極に対応する部位に空気流通用の波状の溝を有するインターコネクタとを、スタック及びインターコネクタの両開口に対応する開口を有する絶縁体部材を介在させて積層してなることを特徴とする支持膜式固体酸化物形燃料電池モジュールを提供する。
【0015】
本発明は、(E)セル全体を1枚の合金箔板を折曲げて包み込んでなる支持膜式固体酸化物形燃料電池スタックであって、該合金箔板が折曲部両側の箔板部のうち、一方の箔板部に、その長手方向の両端に燃料流通用開口を備え、他方の箔板部に、その中央部に空気極用の開口と、その長手方向の両端に燃料流通用開口とを備え、一方の箔板部の中央部に支持膜式単セルを空気極を上にして配置するとともに、該燃料流通用開口部にスペーサを介在させて配置した後、折曲部両側の箔板部を折曲部と相対する端部で接合してなることを特徴とする支持膜式固体酸化物形燃料電池スタック及びその作製方法を提供する。
【0016】
本発明は、(F)前記(E)の構造を有する支持膜式固体酸化物形燃料電池スタックと、その両端に絶縁体部材及び該燃料電池スタックの開口に対応した開口を備え且つその中央部にスタックの単セルの空気極に対応する部位に空気流通用の波状の溝を有するインターコネクタとを、スタック及びインターコネクタの両開口に対応する開口を有する絶縁体部材を介在させて積層してなることを特徴とする支持膜式固体酸化物形燃料電池モジュールを提供する。
【0017】
【発明の実施の形態】
本発明(A)は、支持膜式SOFCスタック構成用の構造体であって、セル全体を、一方の電極及びガスの導入及び導出用の孔を備えた合金箔板で包み込んでなることを特徴とする。ここで合金箔板は、柔軟性のある耐熱性合金の箔板で構成され、セル全体を包み込める形状であればよく、短冊状その他適宜の形状とすることができる。
【0018】
本発明(B)は、本発明(A)の支持膜式SOFCスタック構成用構造体をスタック化して構成される。すなわち、セル全体を一方の電極及びガスの導入及び導出用の孔を備えた合金箔板で包み込んでなる支持膜式SOFCスタック用構造体の複数個を、ガス流通用のインターコネクタを介在させて積層して構成される。ここで合金箔板は、柔軟性のある耐熱性合金の箔板で構成され、セル全体を包み込める形状であればよく、短冊状その他適宜の形状とすることができる。スタック化に際しては、上下から荷重をかけるが、合金箔板自体柔軟性があるので、スタック全体にかかる応力を緩和することができる。
【0019】
本発明(C)は、セル全体を第1及び第2の2枚の合金箔板で包んでなる支持膜式SOFCスタックである。第1の合金箔板は、長手方向の両端に燃料流通用開口を設け、その長手方向に対する左右両端に第2の合金箔板との接合部を設けて構成され、第2の合金箔板は、その中央部に空気極用の開口を設け、その長手方向の両端に燃料流通用開口を設け、その長手方向に対する左右両端に第2の合金箔板との接合部を設けて構成される。
【0020】
そして、第1の合金箔板の中央部に支持膜式単セルを空気極を上にして配置した後、第2の合金箔板をその燃料流通用開口部にスペーサを介在させて配置し、第1の合金箔板及び第2の合金箔板の左右両端を接合して構成される。ここで合金箔板は、柔軟性のある耐熱性合金の箔板で構成され、セル全体を包める形状であればよく、短冊状その他適宜の形状とすることができる。
【0021】
本発明(D)の支持膜式SOFCモジュールは、前記(C)の支持膜式SOFCスタックと、その両端に絶縁体部材及び該燃料電池スタックの開口に対応した開口を備え且つその中央部にスタックの単セルの空気極に対応する部位に空気流通用の波状の溝を有するインターコネクタとを、スタックの両開口に対応する開口を有する絶縁体部材を介して積層することで構成される。
【0022】
本発明(E)は、セル全体を1枚の合金箔板を折曲げて包み込んでなる支持膜式SOFCスタックである。該合金箔板は、折曲部両側の箔板部のうち、一方の箔板部に、その長手方向の両端に燃料流通用開口を備え、他方の箔板部に、その中央部に空気極用の開口と、その長手方向の両端に燃料流通用開口とを備え、一方の箔板部の中央部に支持膜式単セルを空気極を上にして配置する。そして、該燃料流通用開口部にスペーサを介在させて配置した後、折曲部両側の箔板部を折曲部と相対する端部で接合して構成される。
【0023】
本発明(F)の支持膜式SOFCモジュールは、前記(E)の支持膜式SOFCスタックと、その両端に絶縁体部材及び該燃料電池スタックの開口に対応した開口を備え且つその中央部にスタックの単セルの空気極に対応する部位に空気流通用の波状の溝を有するインターコネクタとを、スタックの両開口に対応する開口を有する絶縁体部材を介して積層することで構成される。
【0024】
本発明におけるスタックを構成する合金箔板及びスペーサの構成材料としてはステンレス鋼等の耐熱性合金が用いられ、接合用の材料としては金属ろうやガラス接合材が用いられるが、好ましくは金属ろうが用いられる。また、スタツクまたはモジュールに供給する燃料としては、炭化水素、都市ガス、LPガス、天然ガス、ガソリン、軽油、灯油、ディーゼル油、アルコール類(メチルアルコール、エチルアルコール等)、ジメチルエーテル(DME)などが用いられる。
【0025】
【実施例】
以下、実施例に基づき本発明をさらに詳しく説明するが、本発明がこれら実施例に限定されないことはもちろんである。
【0026】
〈実施例1:本発明(C)の支持膜式SOFCスタックの構成例〉
図4は本発明(C)の支持膜式SOFCスタックの構成部材の例を示す図で、図4(a)は第2合金箔板2の例、図4(b)は第1合金箔板1の例である。合金箔板を短冊状の形状に形成した例である。図4(b)のとおり、第1の短冊状合金箔板1は、その長手方向の両端に燃料流通用開口4、4を設けるとともに、その短冊状合金箔板の長手方向に対する左右両端に第2の短冊状合金箔板2との接合部3、3とを設けて構成される。また、図4(a)のとおり、第2の短冊状合金箔板2は、その中央部に空気極用の開口(窓)5と長手方向の両端に燃料流通用開口6、6を設けるとともに、その長手方向に対する左右両端に第1の短冊状合金箔板1との接合部7、7を設けて構成される。
【0027】
ここで、第1の短冊状合金箔板1の接合部3はその端部を折曲げて構成し、第2の短冊状合金箔板2の接合部7、7はその端部を2回折曲げ、第1の短冊状合金箔板1の接合部3、3で係止されるように構成しているが、その形状は、第1の短冊状合金箔板1の接合部3、3と第2の短冊状合金箔板2の接合部7、7とが接合材により接合し得る適宜の形状に構成することができる。接合材としては金属ろうやガラス接合材等が用いられる。
【0028】
図5は、上記のように構成した第1の短冊状合金箔板1及び第2の短冊状合金箔板2と、支持膜式SOFCの単セル10と、スペーサ8、8を用いて支持膜式SOFCスタックを構成する例を示す図である。スペーサ8、8は、第1の短冊状合金箔板1の長手方向の両端に設けられた開口4、4及び第2の短冊状合金箔板2の長手方向の両端に設けられた開口6、6に対応した開口を有し、両短冊状合金箔板と同様の合金部材で構成される。スペーサ8、8には内部に向けてガスが通るように開口部側面に孔9が設けてある。
【0029】
図5のとおり、まず、第1の短冊状合金箔板1の中央部に単セル10を載置する。そして、第1の短冊状合金箔板1と第2の短冊状合金箔板2との間で、第1の短冊状合金箔板1の長手方向の両端開口4、4と第2の短冊状合金箔板2の長手方向の両端開口6、6に対応した位置にスペーサ8、8を配置する。その後、第1の短冊状合金箔板1の接合部3、3で第2の短冊状合金箔板2の接合部7、7を係止し、その間を接合材で接合する。図6は接合後の状態、すなわち本発明に係る支持膜式SOFCスタック11を示している。
【0030】
このように、本発明の支持膜式SOFCスタックは、単セルのほか、その構成部材として第1及び第2の合金箔板とスペーサを使用するだけで足り、しかも合金箔板を使用することにより、従来型のスタックに対して合金の使用量を抑えることができる。また、接合部分は、第1の合金箔板1の接合部と第2の合金箔板2の接合部との接合だけであるので、その作製も簡単であり、従来のように煩鎖で数多くの工程を必要としない。また、接合部が両端の2箇所だけであるので、ガスシール性の優れたスタックとすることができる。
【0031】
〈実施例2:本発明(D)の支持膜式SOFCスタックを用いたモジュールの構成例〉
本実施例は、本発明(C)の支持膜式SOFCスタックを用いた支持膜式SOFCモジュールの構成例である。構成部材としては、以上のようにして作製した支持膜式SOFCスタック11と絶縁体部材とインターコネクタを用いる。絶縁体部材はスタックの開口と対応した開口を有し、例えば雲母等の耐熱性材料で構成され、インターコネクタは例えばステンレス鋼等の耐熱性合金で構成される。
【0032】
図7は本支持膜式SOFCモジュールの構成過程を示す図である。図7のとおり、インターコネクタ13は、その両端に絶縁体部材12、12の開口及びスタック11の開口4(6)、4(6)に対応した開口14、14を備え、その中央部に単セル10の空気極に対応する部位に空気流通及び電気的接続用の波状の溝15が設けてある。ここで、当該波状溝15の形状は図示のような形状とは限らず、空気流通機能に加え、後述ばね性等の観点から適宜の形状とすることができる。
【0033】
支持膜式SOFCスタック11に、その長手方向両端の開口部4(6)、4(6)に対応した開口を有する絶縁体部材12、12を載置し、その上にインターコネクタ13を載置することにより支持膜式SOFCモジュールが形成される。図7中矢印(↓)はその載置過程を示すものである。
【0034】
こうして作製した支持膜式SOFCモジュールは上下両面に集電板を配し、ケーシング内に納めて使用される。以上は単セル1個を配置したモジュールであるが、当該モジュールの複数個を積層して複数個の単セルを備えた支持膜式SOFCモジュールが構成される。
【0035】
その際、ガスシールをする必要がある。このためモジュールの両面から荷重をかけるが、セル部分は上下のインターコネクタの波状溝15のばね構造によって荷重を緩和するので、荷重によるセル破壊が回避される。この場合、波状溝15を、そのばね性の観点から、それに適応した形状とすることにより、ばね構造の変形の自由度を増加させ、たとえセルに若干の歪みがあっても良好な電気的接続が達成される。
【0036】
〈実施例3:本発明(E)の支持膜式SOFCスタック及び本発明(F)の支持膜式SOFCモジュールの構成例〉
図8は本実施例を示す図である。図8中図4〜7に記載の部材と同じ部材については同一の符号を用いている。本支持膜式SOFCスタックは、1枚の短冊状合金箔板16を折曲げて単セルを包み込んでなる支持膜式固体酸化物形燃料電池スタックである。図8のとおり、該短冊状合金箔板16は、折曲部17の両側の箔板部18、20のうち、一方の箔板部18には、その長手方向の両端に燃料流通用開口19、19を設け、他方の箔板部20には、その中央部に空気極用の開口(窓)21を設けるとともに、その長手方向の両端に燃料流通用開口22、22を設ける。そして、該一方の箔板部の中央部に支持膜式単セル10を空気極を上にして配置する。
【0037】
次いで、該燃料流通用開口部19、19と22、22間にスペーサ8、8を介在させて配置した後、折曲部17の両側の箔板部18、20を折曲部17と相対する端部23、24で当接、接合して構成される。本構成によれば、接合する箇所が短冊状合金箔板の両折曲箔板の折曲部と相対する端部23、24だけであるので、その工作上も非常に有利である。図8では、折曲部17は両側の箔板部18、20間に間隔をとるため2度(図8中17′と17″の2箇所)折曲げているが、ここは、モジュールの複数個を用いてスタック化する際に、箔板部18、20に荷重がかかることになるため、1度(1箇所)の折曲げだけでもよい。また、この時点では、折曲げを軽く行い(すなわち当該部分を湾曲状等にしておき)、モジュール化の際に折曲がるようにしてもよい。
【0038】
本スタックをモジュールとするのは、前記実施例2と同様にして行うことができる。すなわち、上記のように構成したスタックと、その両端にスタックの開口に対応した開口14、14を備え且つその中央部にスタックの単セルの空気極に対応する部位に空気流通及び電気的接続用の波状の溝15を有するインターコネクタ13とを、スタックの両開口19(22)、19(22)に対応する開口を有する絶縁体部材12、12を介在させて積層して構成される。図8中矢印(↓)はその載置過程を示すものである。
【0039】
その際、ガスシールをする必要がある。このためモジュールの両面から荷重をかけるが、セル部分はスタックの上下のインターコネクタの波状溝15のばね構造によって荷重を緩和するので、荷重によるセル破壊が回避される。この場合、波状溝15は、そのばね性の観点から、それに適応した形状とすることにより、ばね構造の変形の自由度を増加させ、たとえセルに若干の歪みがあっても良好な電気的接続が達成される。
【0040】
【発明の効果】
本発明によれば、従来のように煩鎖で数多くの工程を経ることなく構成でき且つガス封止部を格段に減じてなる支持膜式固体酸化物形燃料電池スタック構成用構造体、支持膜式固体酸化物形燃料電池スタック及び該スタックを用いた支持膜式固体酸化物形燃料電池モジュールが得られる。また、それら構造体、スタック及びモジュールを従来のように煩瑣で数多くの工程を経ることなく、しかもガス封止部を格段に減じて構成することができる。
【図面の簡単な説明】
【図1】支持膜式SOFCセルの構成例を示す図
【図2】従来の支持膜式SOFCスタックの構成例を示す図
【図3】従来の支持膜式SOFCスタックの構成例を示す図
【図4】本発明の支持膜式SOFCスタックの構成部材の例を示す図
【図5】図4で示す第1の短冊状合金箔板及び第2の短冊状合金箔板により支持膜式SOFCスタックを構成する例を示す図
【図6】本発明の支持膜式SOFCスタックの構成例を示す図(実施例1)
【図7】本発明の支持膜式SOFCモジュールの構成例を示す図(実施例2)
【図8】本発明の支持膜式SOFCモジュールの構成例を示す図(実施例3)
【符号の説明】
1 第1の短冊状合金箔板
2 第2の短冊状合金箔板
3 接合部
4 開口
5 空気極用の開口(窓)
6 開口
7 接合部
8 スペーサ
9 孔
10 支持膜式SOFCの単セル
11 支持膜式SOFCスタック
12 絶縁体部材
13 インターコネクタ
14 開口
15 波状の溝
16 1枚の短冊状合金箔板
17 折曲部
18、20 箔板部
19 開口(燃料流通用開口)
21 空気極用の開口(窓)
22 開口(燃料流通用開口)
23、24 折曲部17と相対する端部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention uses a support membrane solid oxide fuel cell stack structure having an operating temperature in the range of 650 to 800 ° C., a support membrane solid oxide fuel cell stack, a method for producing the same, and the stack. The present invention relates to a support membrane type solid oxide fuel cell module.
[0002]
[Prior art]
A solid oxide fuel cell [SOFC (= Solid Oxide Fuel Cell): hereinafter abbreviated as SOFC as appropriate) is a single cell of SOFC, that is, a single cell (also referred to as a “cell” in this specification) sandwiching a solid oxide electrolyte. And a fuel electrode and an air electrode (an oxygen electrode when oxygen is used as an oxidant) are arranged, and are constituted by a three-layer unit of fuel electrode / electrolyte (solid oxide electrolyte) / air electrode.
[0003]
Oxygen in the air introduced into the air electrode becomes oxide ions (O 2− ) at the air electrode and reaches the fuel electrode through the solid oxide electrolyte. Here, it reacts with the fuel introduced into the fuel electrode to emit electrons, thereby generating electricity and reaction products such as water and carbon dioxide. The spent air at the cathode is discharged as cathode off-gas, and the spent fuel at the anode is discharged as anode off-gas. Since the voltage of one unit cell is low, the unit cell is usually formed by stacking a plurality of unit cells in series.
[0004]
A conventional SOFC has a high operating temperature of about 800 to 1000 ° C., but recently an SOFC that operates at a temperature of about 800 ° C. or less, for example, about 750 ° C., is being developed. The present inventors have been paying particular attention to such a low-temperature-operating SOFC and have been developing it, and have obtained several results (JP-A-2002-343376, JP-A-2002-376615, and Japanese Patent Application No. 2002-366615). 28847).
[0005]
FIGS. 1 to 3 are diagrams for explaining an example of an embodiment of the SOFC operating at a low temperature. FIG. 1 is a configuration example of a unit cell (cell), FIG. 2 is a configuration example of an SOFC stack incorporating a cell, and FIG. 3 is a cross-sectional view taken along line XX in FIG. FIG. 2 is a perspective view in which a space is provided between the components to show the positional relationship and the like of the stack components. As shown in FIG. 1, the single cell is configured such that an electrolyte membrane (= solid oxide electrolyte membrane) is disposed on a fuel electrode and an air electrode is disposed on the electrolyte membrane. The SOFC stack is configured as described above.
[0006]
As an electrolyte membrane, for example by using a solid oxide electrolyte material, such as zirconia or LaGaO 3 system, which is configured to support a thick fuel electrode film thickness to be referred to as the support membrane type. In the supporting membrane type SOFC, the thickness of the electrolyte membrane can be made thin, the thickness becomes about 10 μm, and the operation can be performed at a low temperature of 800 ° C. or less. For this reason, there are various advantages such as the use of an inexpensive material such as stainless steel as the constituent material, and the downsizing is possible.
[0007]
As shown in FIGS. 2 and 3, in the supporting film type SOFC stack, a separator A, a separator B, a separator C, a bonding material, a unit cell (cell), and a separator D are sequentially arranged from the top to the bottom. Current collectors and the like are arranged above the separator A and below the separator D, but are not shown. The separators A to D are made of metal (including alloy).
[0008]
[Problems to be solved by the invention]
By the way, even in the above-mentioned low-temperature-operated supporting film type SOFC, it is necessary to stack single cells, and it is joined to a metal cell support foil (separator C in FIGS. 2 to 3), and it is connected to a manifold (FIG. 2). A stack, that is, a stacked body is formed by forming a unit that is arranged and joined so as to fit in the separators B and D) to the next unit via a metal separator plate.
[0009]
In addition, since the fuel, air, fuel electrode off-gas, and air electrode off-gas flowing through the stack are all gases, as shown in FIG. For example, it is necessary to sandwich a material (joined portion by a sealing material in FIG. 3), and it is troublesome and requires many steps to configure a stack.
[0010]
SUMMARY OF THE INVENTION The present invention provides a structure for supporting a solid oxide fuel cell stack having a support film type, which can be configured without a number of steps in a complicated manner as in the prior art, and in which the number of gas sealing portions is significantly reduced. It is an object of the present invention to provide a membrane solid oxide fuel cell stack, a method for producing the same, and a support membrane solid oxide fuel cell module using the stack.
[0011]
[Means for Solving the Problems]
The present invention relates to (A) a structure for forming a support membrane type solid oxide fuel cell stack, in which the whole cell is wrapped with an alloy foil plate provided with one electrode and holes for gas introduction and discharge. A structure for forming a supporting membrane type solid oxide fuel cell stack, characterized by comprising:
[0012]
The present invention relates to (B) a supported membrane solid oxide fuel cell stack, wherein the entire cell is wrapped in an alloy foil plate provided with electrodes and holes for introducing and discharging gas and gas. Provided is a support membrane type solid oxide fuel cell stack, wherein a plurality of structural members for forming a fuel cell stack are stacked via an interconnector for performing gas distribution and electrical connection.
[0013]
The present invention provides (C) a supporting membrane solid oxide fuel cell stack in which the entire cell is wrapped with first and second two alloy foil plates, wherein the first alloy foil plate is disposed in a longitudinal direction. At both ends thereof, and a joint portion with a second alloy foil plate at each of the left and right ends with respect to the longitudinal direction. The second alloy foil plate has an air electrode opening at its center and its longitudinal portion. The fuel cell has openings for fuel circulation at both ends in the direction, and joints with the second alloy foil plate at both left and right ends with respect to the longitudinal direction thereof. The support membrane type single cell is placed above the air electrode at the center of the first alloy foil plate. After that, the second alloy foil plate is arranged with a spacer interposed in the fuel circulation opening, and the left and right ends of the first alloy foil plate and the second alloy foil plate are joined. And a method of manufacturing the same.
[0014]
The present invention provides (D) a support membrane type solid oxide fuel cell stack having the structure of (C), an insulator member at both ends thereof, and an opening corresponding to the opening of the fuel cell stack, and a central portion thereof. And an interconnector having a wavy groove for air circulation at a portion corresponding to the air electrode of the single cell of the stack, and an insulator member having openings corresponding to both openings of the stack and the interconnector are laminated. The present invention provides a solid oxide fuel cell module having a support membrane.
[0015]
The present invention provides (E) a support membrane type solid oxide fuel cell stack in which the whole cell is folded and wrapped with one alloy foil plate, wherein the alloy foil plate is a foil plate portion on both sides of a bent portion. One of the foil plates has a fuel flow opening at both ends in the longitudinal direction, and the other foil plate has an air electrode opening at the center and a fuel flow opening at both ends in the longitudinal direction. An opening is provided, and a support membrane type single cell is arranged at the center of one of the foil plate portions with the air electrode facing upward, and after disposing a spacer in the fuel circulation opening portion, both sides of the bent portion are provided. And a method of manufacturing the same, wherein the foil plate portion is joined at an end portion facing the bent portion.
[0016]
The present invention provides (F) a support membrane type solid oxide fuel cell stack having the structure of (E), an insulator member at both ends thereof and an opening corresponding to the opening of the fuel cell stack, and a central portion thereof. And an interconnector having a wavy groove for air circulation at a portion corresponding to the air electrode of the single cell of the stack, and an insulator member having openings corresponding to both openings of the stack and the interconnector are laminated. The present invention provides a solid oxide fuel cell module having a support membrane.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention (A) is a structure for forming a supporting film type SOFC stack, wherein the whole cell is wrapped with an alloy foil plate having one electrode and holes for gas introduction and discharge. And Here, the alloy foil plate may be formed of a flexible heat-resistant alloy foil plate and may have any shape as long as it encompasses the entire cell, and may have a strip shape or any other appropriate shape.
[0018]
The present invention (B) is constituted by stacking the structure for forming a support membrane type SOFC stack of the present invention (A). That is, a plurality of structures for a supporting film type SOFC stack in which the whole cell is wrapped by one electrode and an alloy foil plate having holes for gas introduction and discharge are interposed with an interconnector for gas circulation. It is configured by lamination. Here, the alloy foil plate may be formed of a flexible heat-resistant alloy foil plate and may have any shape as long as it encompasses the entire cell, and may have a strip shape or any other appropriate shape. At the time of stacking, a load is applied from above and below, but since the alloy foil plate itself has flexibility, the stress applied to the entire stack can be reduced.
[0019]
The present invention (C) is a support film type SOFC stack in which the entire cell is wrapped with first and second two alloy foil plates. The first alloy foil plate is formed by providing fuel circulation openings at both ends in the longitudinal direction, and providing joints with the second alloy foil plate at both left and right ends with respect to the longitudinal direction. An opening for the air electrode is provided at the center thereof, openings for fuel flow are provided at both ends in the longitudinal direction, and joints with the second alloy foil plate are provided at both left and right sides with respect to the longitudinal direction.
[0020]
Then, after arranging the support membrane type single cell at the center of the first alloy foil plate with the air electrode facing upward, the second alloy foil plate is arranged at the fuel circulation opening with a spacer interposed therebetween, The left and right ends of the first alloy foil plate and the second alloy foil plate are joined. Here, the alloy foil plate may be formed of a flexible heat-resistant alloy foil plate and may have any shape as long as it can wrap the entire cell, and may have a strip shape or any other appropriate shape.
[0021]
The supported film type SOFC module of the present invention (D) comprises the supported film type SOFC stack of (C), an insulator member at both ends thereof and openings corresponding to the openings of the fuel cell stack, and a stack at the center thereof. And an interconnector having a wavy groove for air circulation at a portion corresponding to the air electrode of the single cell, via an insulator member having openings corresponding to both openings of the stack.
[0022]
The present invention (E) is a support film type SOFC stack in which the whole cell is folded and wrapped with one alloy foil plate. The alloy foil plate is provided with a fuel circulation opening at both ends in the longitudinal direction of one of the foil plate portions on both sides of the bent portion, and an air electrode at the center portion of the other foil plate portion. And a fuel flow opening at both ends in the longitudinal direction thereof, and a support membrane type single cell is arranged at the center of one of the foil plates with the air electrode facing upward. Then, after arranging the fuel circulation opening with a spacer interposed therebetween, the foil plates on both sides of the bent portion are joined at ends facing the bent portion.
[0023]
The supported-film SOFC module of the present invention (F) comprises the supported-film SOFC stack of (E), an insulator member at both ends thereof and openings corresponding to the openings of the fuel cell stack, and a stack at the center thereof. And an interconnector having a wavy groove for air circulation at a portion corresponding to the air electrode of the single cell, via an insulator member having openings corresponding to both openings of the stack.
[0024]
A heat-resistant alloy such as stainless steel is used as a constituent material of the alloy foil plate and the spacer constituting the stack according to the present invention, and a metal brazing material or a glass bonding material is used as a bonding material, but preferably a metal brazing material is used. Used. The fuel supplied to the stack or module includes hydrocarbons, city gas, LP gas, natural gas, gasoline, light oil, kerosene, diesel oil, alcohols (methyl alcohol, ethyl alcohol, etc.), dimethyl ether (DME), etc. Used.
[0025]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but it goes without saying that the present invention is not limited to these Examples.
[0026]
<Example 1: Configuration example of support film type SOFC stack of the present invention (C)>
FIG. 4 is a view showing an example of the constituent members of the support film type SOFC stack of the present invention (C), wherein FIG. 4 (a) is an example of the second alloy foil plate 2, and FIG. 4 (b) is a first alloy foil plate. 1 is an example. This is an example in which an alloy foil plate is formed in a strip shape. As shown in FIG. 4 (b), the first strip-shaped alloy foil plate 1 is provided with fuel circulation openings 4, 4 at both ends in the longitudinal direction, and has first and second left and right ends with respect to the longitudinal direction of the strip-shaped alloy foil plate. 2 and a joint portion 3 with the strip-shaped alloy foil plate 2. As shown in FIG. 4 (a), the second strip-shaped alloy foil plate 2 has an air electrode opening (window) 5 at the center thereof and fuel circulation openings 6, 6 at both ends in the longitudinal direction. The joints 7 with the first strip-shaped alloy foil plate 1 are provided at both left and right ends in the longitudinal direction.
[0027]
Here, the joining portion 3 of the first strip-shaped alloy foil plate 1 is formed by bending an end thereof, and the joining portions 7 of the second strip-shaped alloy foil plate 2 are bent twice by bending the end thereof. The first strip-shaped alloy foil plate 1 is configured to be locked at the joints 3, 3, but the shape thereof is the same as the joints 3, 3 of the first strip-shaped alloy foil plate 1. The joining portions 7 of the two strip-shaped alloy foil plates 2 can be formed in an appropriate shape that can be joined by a joining material. A metal brazing material, a glass bonding material, or the like is used as the bonding material.
[0028]
FIG. 5 shows a first embodiment of the first strip alloy foil plate 1 and the second strip alloy foil plate 2 configured as described above, a single cell 10 of a support film type SOFC, and a support film using spacers 8 and 8. It is a figure showing the example which comprises a formula SOFC stack. The spacers 8, 8 are provided with openings 4, 4 provided at both ends in the longitudinal direction of the first strip-shaped alloy foil plate 1 and the openings 6 provided at both ends in the longitudinal direction of the second strip-shaped alloy foil plate 2, 6 and is made of the same alloy member as the two strip-shaped alloy foil plates. Holes 9 are provided in the side surfaces of the openings of the spacers 8 and 8 so that the gas passes toward the inside.
[0029]
As shown in FIG. 5, first, the single cell 10 is placed at the center of the first strip-shaped alloy foil plate 1. Then, between the first strip-shaped alloy foil plate 1 and the second strip-shaped alloy foil plate 2, the openings 4, 4 at both ends in the longitudinal direction of the first strip-shaped alloy foil plate 1 and the second strip-shaped alloy foil plate 2 are formed. Spacers 8, 8 are arranged at positions corresponding to both ends 6, 6 in the longitudinal direction of the alloy foil plate 2. Thereafter, the joints 7, 7 of the second strip-shaped alloy foil plate 2 are locked at the joints 3, 3 of the first strip-shaped alloy foil plate 1, and the gap therebetween is joined with a joining material. FIG. 6 shows a state after bonding, that is, a support film type SOFC stack 11 according to the present invention.
[0030]
As described above, the supported membrane type SOFC stack of the present invention requires only the use of the first and second alloy foil plates and the spacers as constituent members in addition to the single cell, and furthermore, by using the alloy foil plate. In addition, the amount of alloy used can be reduced with respect to the conventional stack. Further, since the joining portion is only the joining portion between the joining portion of the first alloy foil plate 1 and the joining portion of the second alloy foil plate 2, the production thereof is simple, and it is troublesome and complicated as in the prior art. Step is not required. Further, since there are only two joints at both ends, a stack having excellent gas sealing properties can be obtained.
[0031]
<Example 2: Configuration example of module using support film type SOFC stack of present invention (D)>
This embodiment is an example of the configuration of a supporting film type SOFC module using the supporting film type SOFC stack of the present invention (C). As the constituent members, the support film type SOFC stack 11, the insulator member, and the interconnector manufactured as described above are used. The insulator member has an opening corresponding to the opening of the stack, and is made of a heat-resistant material such as mica, and the interconnector is made of a heat-resistant alloy such as stainless steel.
[0032]
FIG. 7 is a diagram illustrating a configuration process of the present supported membrane SOFC module. As shown in FIG. 7, the interconnector 13 has openings 14, 14 corresponding to the openings of the insulator members 12, 12 and the openings 4 (6), 4 (6) of the stack 11 at both ends thereof. A wavy groove 15 for air circulation and electrical connection is provided in a portion corresponding to the air electrode of the cell 10. Here, the shape of the corrugated groove 15 is not limited to the shape shown in the drawing, and may be an appropriate shape from the viewpoint of the spring property and the like described below in addition to the air circulation function.
[0033]
The insulator members 12, 12 having openings corresponding to the openings 4 (6), 4 (6) at both ends in the longitudinal direction are placed on the supporting film type SOFC stack 11, and the interconnector 13 is placed thereon. By doing so, a support film type SOFC module is formed. The arrow (↓) in FIG. 7 shows the mounting process.
[0034]
The supporting membrane type SOFC module thus manufactured is provided with current collectors on both upper and lower surfaces and used in a casing. The above is a module in which one single cell is arranged. By stacking a plurality of the modules, a supporting film type SOFC module including a plurality of single cells is configured.
[0035]
At that time, it is necessary to seal the gas. For this reason, a load is applied from both sides of the module. However, the cell portion relieves the load by the spring structure of the wavy grooves 15 of the upper and lower interconnectors, thereby avoiding cell breakage due to the load. In this case, from the viewpoint of the spring property, the corrugated groove 15 has a shape adapted to the shape, so that the degree of freedom of the deformation of the spring structure is increased, and good electrical connection is obtained even if the cell has some distortion. Is achieved.
[0036]
<Example 3: Configuration example of supported film type SOFC stack of the present invention (E) and supported film type SOFC module of the present invention (F)>
FIG. 8 is a diagram showing the present embodiment. In FIG. 8, the same members as those shown in FIGS. The support membrane type SOFC stack is a support membrane type solid oxide fuel cell stack in which a single strip-shaped alloy foil plate 16 is folded to enclose a single cell. As shown in FIG. 8, the strip-shaped alloy foil plate 16 has one of the foil plate portions 18, 20 on both sides of the bent portion 17, and one of the foil plate portions 18 has a fuel flow opening 19 at both ends in the longitudinal direction. , 19, and an opening (window) 21 for an air electrode is provided at the center of the other foil plate portion 20, and openings 22, 22 for fuel flow are provided at both ends in the longitudinal direction. Then, the support film type single cell 10 is arranged at the center of the one foil plate portion with the air electrode facing upward.
[0037]
Next, after disposing the spacers 8 and 8 between the fuel circulation openings 19 and 19 and 22 and 22, the foil plates 18 and 20 on both sides of the bent portion 17 are opposed to the bent portion 17. It is configured by abutting and joining at the ends 23 and 24. According to this configuration, since the joining portions are only the end portions 23 and 24 facing the bent portions of the both folded foil plates of the strip-shaped alloy foil plate, it is very advantageous in terms of work. In FIG. 8, the bent portion 17 is bent twice (two locations 17 ′ and 17 ″ in FIG. 8) to make a space between the foil plate portions 18 and 20 on both sides. At the time of stacking using individual pieces, a load is applied to the foil plate portions 18 and 20. Therefore, only one bending (one position) may be performed. That is, the portion may be curved or the like, and may be bent when modularized.
[0038]
This stack can be made into a module in the same manner as in the second embodiment. That is, the stack configured as described above, and openings 14 and 14 corresponding to the openings of the stack at both ends thereof, and a central portion of the stack corresponding to the air electrode of the single cell of the stack for air circulation and electrical connection. And the interconnector 13 having the wavy groove 15 are laminated with insulator members 12, 12 having openings corresponding to both openings 19 (22), 19 (22) of the stack. The arrow (↓) in FIG. 8 shows the mounting process.
[0039]
At that time, it is necessary to seal the gas. For this reason, a load is applied from both sides of the module, but since the cell portion relieves the load by the spring structure of the wavy grooves 15 of the interconnectors above and below the stack, cell breakage due to the load is avoided. In this case, from the viewpoint of the spring property, the wavy groove 15 has a shape adapted to the shape, thereby increasing the degree of freedom of the deformation of the spring structure, and providing good electrical connection even if the cell is slightly distorted. Is achieved.
[0040]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the structure for a support film type solid oxide fuel cell stack structure, and a support film can be configured without a complicated and many steps as in the prior art and the gas sealing portion is significantly reduced. A solid oxide fuel cell stack of the type and a support membrane type solid oxide fuel cell module using the stack are obtained. Further, these structures, stacks, and modules can be configured without going through many complicated steps as in the prior art, and with significantly reduced gas sealing portions.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration example of a supported membrane SOFC cell. FIG. 2 is a diagram illustrating a configuration example of a conventional supported membrane SOFC stack. FIG. 3 is a diagram illustrating a configuration example of a conventional supported membrane SOFC stack. FIG. 4 is a view showing an example of the constituent members of a supported film type SOFC stack of the present invention. FIG. 5 is a support film type SOFC stack formed by a first strip-shaped alloy foil plate and a second strip-shaped alloy foil plate shown in FIG. FIG. 6 is a diagram showing a configuration example of a supporting film type SOFC stack of the present invention (Example 1).
FIG. 7 is a diagram showing a configuration example of a supported-film SOFC module of the present invention (Example 2).
FIG. 8 is a diagram showing a configuration example of a supporting film type SOFC module of the present invention (Example 3).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st strip-shaped alloy foil plate 2 2nd strip-shaped alloy foil plate 3 Joint part 4 Opening 5 Opening (window) for air electrode
6 Opening 7 Joint 8 Spacer 9 Hole 10 Single cell of supporting film type SOFC 11 Supporting film type SOFC stack 12 Insulator member 13 Interconnector 14 Opening 15 Wavy groove 16 One strip alloy foil plate 17 Bend 18 , 20 Foil plate 19 opening (opening for fuel distribution)
21 Opening (window) for air electrode
22 opening (opening for fuel distribution)
23, 24 Ends opposed to bent portion 17

Claims (16)

支持膜式固体酸化物形燃料電池スタック構成用の構造体であって、セル全体を、一方の電極及びガスの導入及び導出用の孔を備えた合金箔板で包み込んでなることを特徴とする支持膜式固体酸化物形燃料電池スタック構成用構造体。A structure for a support membrane type solid oxide fuel cell stack, wherein the whole cell is wrapped with an alloy foil plate having one electrode and holes for gas introduction and discharge. A structure for forming a support film type solid oxide fuel cell stack. 前記合金箔板が短冊状の箔板であることを特徴とする請求項1に記載の支持膜式固体酸化物形燃料電池スタック構成用構造体。2. The structure for forming a solid oxide fuel cell stack according to claim 1, wherein the alloy foil plate is a strip-shaped foil plate. 3. 前記合金箔板の構成材料が耐熱性合金であることを特徴とする請求項1に記載の支持膜式固体酸化物形燃料電池スタック構成用構造体。2. The structure for forming a solid oxide fuel cell stack according to claim 1, wherein a constituent material of the alloy foil plate is a heat-resistant alloy. 3. 支持膜式固体酸化物形燃料電池スタックであって、セル全体を一方の電極及びガスの導入及び導出用の孔を備えた合金箔板で包み込んでなる支持膜式固体酸化物形燃料電池スタック構成用構造体の複数個を、ガス流通及び電気的接続を行うインターコネクタを介して積層してなることを特徴とする支持膜式固体酸化物形燃料電池スタック。A support membrane type solid oxide fuel cell stack, wherein the whole cell is wrapped with an alloy foil plate having one electrode and holes for gas introduction and derivation, comprising a support membrane type solid oxide fuel cell stack. A support membrane type solid oxide fuel cell stack, comprising a plurality of structural members for use, which are stacked via an interconnector for performing gas distribution and electrical connection. セル全体を第1及び第2の2枚の合金箔板で包んでなる支持膜式固体酸化物形燃料電池スタックであって、第1の合金箔板が、長手方向の両端に燃料流通用開口と、その長手方向に対する左右両端に第2の合金箔板との接合部を備え、第2の合金箔板が、その中央部に空気極用の開口と、その長手方向の両端に燃料流通用開口と、その長手方向に対する左右両端に第2の合金箔板との接合部を備え、第1の合金箔板の中央部に支持膜式単セルを空気極を上にして配置した後、第2の合金箔板をその燃料流通用開口部にスペーサを介在させて配置し、第1の合金箔板及び第2の合金箔板の左右両端を接合してなることを特徴とする支持膜式固体酸化物形燃料電池スタック。A supporting membrane type solid oxide fuel cell stack in which the whole cell is wrapped with first and second two alloy foil plates, wherein the first alloy foil plate has fuel flow openings at both ends in the longitudinal direction. And a joining portion with a second alloy foil plate at both left and right ends with respect to the longitudinal direction thereof. The second alloy foil plate has an opening for an air electrode at a central portion thereof, and a fuel passage at both ends in the longitudinal direction thereof. An opening and a joint portion with the second alloy foil plate at both left and right ends with respect to the longitudinal direction thereof, and after the support membrane type single cell is disposed at the center of the first alloy foil plate with the air electrode facing upward, 2. A supporting film type wherein an alloy foil plate of No. 2 is arranged in the fuel circulation opening with a spacer interposed therebetween, and left and right ends of the first alloy foil plate and the second alloy foil plate are joined. Solid oxide fuel cell stack. セル全体を1枚の合金箔板を折曲げて包み込んでなる支持膜式固体酸化物形燃料電池スタックであって、該合金箔板が折曲部両側の箔板部のうち、一方の箔板部に、その長手方向の両端に燃料流通用開口を備え、他方の箔板部に、その中央部に空気極用の開口と、その長手方向の両端に燃料流通用開口とを備え、一方の箔板部の中央部に支持膜式単セルを空気極を上にして配置するとともに、該燃料流通用開口部にスペーサを介在させて配置した後、折曲部両側の箔板部を折曲部と相対する端部で接合してなることを特徴とする支持膜式固体酸化物形燃料電池スタック。A support membrane type solid oxide fuel cell stack in which the entire cell is folded and wrapped with a single alloy foil plate, wherein the alloy foil plate is one of the foil plates on both sides of the bent portion. The part has a fuel flow opening at both ends in the longitudinal direction thereof, and the other foil plate part has an air electrode opening at the center thereof and a fuel flow opening at both ends in the longitudinal direction thereof. After arranging the support membrane type single cell at the center of the foil plate portion with the air electrode facing upward, and arranging the fuel circulation opening with a spacer interposed therebetween, the foil plate portions on both sides of the bent portion are bent. A support membrane type solid oxide fuel cell stack characterized by being joined at an end opposite to a portion. 前記合金箔板が短冊状の箔板であることを特徴とする請求項4〜6のいずれか1項に記載の支持膜式固体酸化物形燃料電池スタック。The solid oxide fuel cell stack according to any one of claims 4 to 6, wherein the alloy foil plate is a strip-shaped foil plate. 前記合金箔板の構成材料が耐熱性合金であることを特徴とする請求項4〜6のいずれか1項に記載の支持膜式固体酸化物形燃料電池スタック。The supporting film type solid oxide fuel cell stack according to any one of claims 4 to 6, wherein a constituent material of the alloy foil plate is a heat-resistant alloy. 下記構造を有する支持膜式固体酸化物形燃料電池スタックと、その両端に絶縁体部材及び該燃料電池スタックの開口に対応した開口を備え且つその中央部にスタックの単セルの空気極に対応する部位に空気流通用の波状の溝を有するインターコネクタとを、スタック及びインターコネクタの両開口に対応する開口を有する絶縁体部材を介在させて積層してなることを特徴とする支持膜式固体酸化物形燃料電池モジュール。
セル全体を第1及び第2の2枚の合金箔板で包んでなる支持膜式固体酸化物形燃料電池スタックであって、第1の合金箔板が、長手方向の両端に燃料流通用開口と、その長手方向に対する左右両端に第2の合金箔板との接合部を備え、第2の合金箔板が、その中央部に空気極用の開口と、その長手方向の両端に燃料流通用開口と、その長手方向に対する左右両端に第2の合金箔板との接合部を備え、第1の合金箔板の中央部に支持膜式単セルを空気極を上にして配置した後、第2の合金箔板をその燃料流通用開口部にスペーサを介在させて配置し、第1の合金箔板及び第2の合金箔板の左右両端を接合してなる支持膜式固体酸化物形燃料電池スタック。
A supporting membrane solid oxide fuel cell stack having the following structure, an insulator member at both ends thereof and an opening corresponding to the opening of the fuel cell stack, and a central portion corresponding to the air electrode of a single cell of the stack. A support film type solid oxide comprising: an interconnector having a wavy groove for air circulation in a portion thereof, and an insulator member having openings corresponding to both openings of the stack and the interconnector interposed therebetween; Physical fuel cell module.
A supporting membrane type solid oxide fuel cell stack in which the whole cell is wrapped with first and second two alloy foil plates, wherein the first alloy foil plate has fuel flow openings at both ends in the longitudinal direction. And a joining portion with a second alloy foil plate at both left and right ends with respect to the longitudinal direction thereof. The second alloy foil plate has an opening for an air electrode at a central portion thereof, and a fuel passage at both ends in the longitudinal direction thereof. An opening and a joint portion with the second alloy foil plate at both left and right ends with respect to the longitudinal direction thereof, and after the support membrane type single cell is disposed at the center of the first alloy foil plate with the air electrode facing upward, 2. A supporting membrane type solid oxide fuel comprising a first alloy foil plate and a second alloy foil plate joined to both left and right ends of the second alloy foil plate with a spacer interposed between the fuel circulation openings. Battery stack.
下記構造を有する支持膜式固体酸化物形燃料電池スタックと、その両端に絶縁体部材及び該燃料電池スタックの開口に対応した開口を備え且つその中央部にスタックの単セルの空気極に対応する部位に空気流通用の波状の溝を有するインターコネクタとを、スタック及びインターコネクタの両開口に対応する開口を有する絶縁体部材を介在させて積層してなることを特徴とする支持膜式固体酸化物形燃料電池モジュール。
セル全体を1枚の合金箔板を折曲げて包み込んでなる支持膜式固体酸化物形燃料電池スタックであって、該合金箔板が折曲部両側の箔板部のうち、一方の箔板部に、その長手方向の両端に燃料流通用開口を備え、他方の箔板部に、その中央部に空気極用の開口と、その長手方向の両端に燃料流通用開口と備え、一方の箔板部の中央部に支持膜式単セルを空気極を上にして配置するとともに、該燃料流通用開口部にスペーサを介在させて配置した後、折曲部両側の箔板部を折曲部と相対する端部で接合してなる支持膜式固体酸化物形燃料電池スタック。
A supporting membrane solid oxide fuel cell stack having the following structure, an insulator member at both ends thereof and an opening corresponding to the opening of the fuel cell stack, and a central portion corresponding to the air electrode of a single cell of the stack. A support film type solid oxide comprising: an interconnector having a wavy groove for air circulation in a portion thereof, and an insulator member having openings corresponding to both openings of the stack and the interconnector interposed therebetween; Physical fuel cell module.
A support membrane type solid oxide fuel cell stack in which the entire cell is folded and wrapped with a single alloy foil plate, wherein the alloy foil plate is one of the foil plates on both sides of the bent portion. Part has an opening for fuel circulation at both ends in the longitudinal direction thereof, and the other foil plate part has an opening for an air electrode at the center thereof and openings for fuel circulation at both ends in the longitudinal direction thereof. At the center of the plate portion, the support membrane type single cell is arranged with the air electrode facing upward, and after placing the spacer in the fuel flow opening, the foil plate portions on both sides of the bent portion are bent. A solid oxide fuel cell stack with a support membrane, which is joined at the end opposite to the solid oxide fuel cell stack.
前記合金箔板が短冊状の箔板であることを特徴とする請求項9〜10のいずれか1項に記載の支持膜式固体酸化物形燃料電池モジュール。The solid oxide fuel cell module according to any one of claims 9 to 10, wherein the alloy foil plate is a strip-shaped foil plate. 前記合金箔板及びインターコネクタの構成材料が耐熱性合金であることを特徴とする請求項9〜10のいずれか1項に記載の支持膜式固体酸化物形燃料電池モジュール。The solid oxide fuel cell module according to any one of claims 9 to 10, wherein constituent materials of the alloy foil plate and the interconnector are heat-resistant alloys. セル全体を第1及び第2の2枚の合金箔板で包んでなる支持膜式固体酸化物燃料電池スタックの作製方法であって、第1の合金箔板が、その長手方向の両端に燃料流通用開口と、その長手方向に対する左右両端に第2の合金箔板との接合部を備え、第2の合金箔板が、その中央部に空気極用の開口と、その長手方向の両端に燃料流通用開口と、その長手方向に対する左右両端に第1の合金箔板との接合部を備えてなり、第1の合金箔板の中央部に支持膜式単セルを空気極を上にして配置した後、第2の合金箔板をその燃料流通用開口部にスペーサを介在させて配置し、第1の合金箔板及び第2の合金箔板の左右両端を接合することを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法。What is claimed is: 1. A method for manufacturing a support membrane type solid oxide fuel cell stack comprising a whole cell wrapped by first and second two alloy foil plates, wherein the first alloy foil plate has fuel at both ends in the longitudinal direction. An opening for circulation, and joints with a second alloy foil plate at both left and right ends with respect to the longitudinal direction thereof are provided. The second alloy foil plate is provided with an opening for an air electrode at the center thereof and at both ends in the longitudinal direction thereof. An opening for fuel distribution, and joints with a first alloy foil plate are provided at both left and right ends with respect to a longitudinal direction thereof. A support membrane type single cell is provided at a center portion of the first alloy foil plate with an air electrode facing upward. After the disposition, the second alloy foil plate is disposed in the fuel circulation opening with a spacer interposed therebetween, and the left and right ends of the first alloy foil plate and the second alloy foil plate are joined. A method for manufacturing a support membrane solid oxide fuel cell stack. セル全体を1枚の合金箔板を折曲げて包み込んでなる支持膜式固体酸化物形燃料電池スタックの作製方法であって、該合金箔板が折曲部両側の箔板部のうち、一方の箔板部に、その長手方向の両端に燃料流通用開口を備え、他方の箔板部に、その中央部に空気極用の開口と、その長手方向の両端に燃料流通用開口とを備え、一方の箔板部の中央部に支持膜式単セルを空気極を上にして配置するとともに、該燃料流通用開口部にスペーサを介在させて配置した後、折曲部両側の箔板部を折曲部と相対する端部で接合することを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法。What is claimed is: 1. A method for producing a solid oxide fuel cell stack comprising: a support film-type solid oxide fuel cell stack in which the whole cell is folded and wrapped with a single alloy foil plate, wherein the alloy foil plate is one of foil plate portions on both sides of a bent portion. The foil plate portion has a fuel circulation opening at both ends in the longitudinal direction thereof, and the other foil plate portion has an air electrode opening at the center thereof and a fuel circulation opening at both longitudinal ends thereof. After arranging the support membrane type single cell with the air electrode facing up at the center of one of the foil plates, and arranging the fuel circulation opening with a spacer interposed therebetween, the foil plates on both sides of the bent portion Of a supporting membrane type solid oxide fuel cell stack, characterized in that the supporting member is joined at an end portion facing the bent portion. 前記合金箔板が短冊状の箔板であることを特徴とする請求項13〜14のいずれか1項に記載の支持膜式固体酸化物形燃料電池スタックの作製方法。The method for manufacturing a solid oxide fuel cell stack according to any one of claims 13 to 14, wherein the alloy foil plate is a strip-shaped foil plate. 前記合金箔板の構成材料が耐熱性合金であることを特徴とする請求項13〜14のいずれか1項に記載の支持膜式固体酸化物形燃料電池スタックの作製方法。The method of manufacturing a solid oxide fuel cell stack according to any one of claims 13 to 14, wherein a constituent material of the alloy foil plate is a heat-resistant alloy.
JP2003112202A 2003-04-16 2003-04-16 Support membrane type solid oxide fuel cell stack and manufacturing method thereof Expired - Fee Related JP4184139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003112202A JP4184139B2 (en) 2003-04-16 2003-04-16 Support membrane type solid oxide fuel cell stack and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003112202A JP4184139B2 (en) 2003-04-16 2003-04-16 Support membrane type solid oxide fuel cell stack and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004319291A true JP2004319291A (en) 2004-11-11
JP4184139B2 JP4184139B2 (en) 2008-11-19

Family

ID=33472490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112202A Expired - Fee Related JP4184139B2 (en) 2003-04-16 2003-04-16 Support membrane type solid oxide fuel cell stack and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4184139B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317291A (en) * 2004-04-27 2005-11-10 Tokyo Gas Co Ltd Supporting film type solid oxide fuel cell stack, and manufacturing method of the same
WO2006134849A1 (en) * 2005-06-17 2006-12-21 Toyota Jidosha Kabushiki Kaisha Fuel cell
WO2011148769A1 (en) 2010-05-26 2011-12-01 日本特殊陶業株式会社 Solid oxide fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317291A (en) * 2004-04-27 2005-11-10 Tokyo Gas Co Ltd Supporting film type solid oxide fuel cell stack, and manufacturing method of the same
WO2006134849A1 (en) * 2005-06-17 2006-12-21 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2006351402A (en) * 2005-06-17 2006-12-28 Toyota Motor Corp Fuel cell
AU2006258671B2 (en) * 2005-06-17 2009-08-13 Toyota Jidosha Kabushiki Kaisha Fuel cell
KR100925251B1 (en) * 2005-06-17 2009-11-05 도요타 지도샤(주) Fuel cell
US8137862B2 (en) 2005-06-17 2012-03-20 Toyota Jidosha Kabushiki Kaisha Fuel cell
WO2011148769A1 (en) 2010-05-26 2011-12-01 日本特殊陶業株式会社 Solid oxide fuel cell
CN102906920A (en) * 2010-05-26 2013-01-30 日本特殊陶业株式会社 Solid oxide fuel cell
US9406952B2 (en) 2010-05-26 2016-08-02 Ngk Spark Plug Co., Ltd. Solid oxide fuel cell

Also Published As

Publication number Publication date
JP4184139B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
JP6175410B2 (en) Fuel cell and manufacturing method thereof
JP6868051B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP5198797B2 (en) Solid electrolyte fuel cell
US20070111068A1 (en) Compliant feed tubes for planar solid oxide fuel cell systems
JP2000331692A (en) Plate type cell with retaining thin plate frame and fuel cell using same
WO1999026304A1 (en) Solid electrolyte fuel cell
JP5629176B2 (en) FUEL CELL CELL DEVICE, FUEL CELL MODULE, AND FUEL CELL DEVICE
JP2008251236A (en) Flat lamination type fuel cell
US10476087B2 (en) Fuel-cell power generation unit and fuel-cell stack
JPH10340736A (en) Fuel cell apparatus
JP2005317291A (en) Supporting film type solid oxide fuel cell stack, and manufacturing method of the same
JP2005317241A (en) Supporting film type solid oxide fuel cell stack, and manufacturing method of the same
JP4184139B2 (en) Support membrane type solid oxide fuel cell stack and manufacturing method thereof
JP5448917B2 (en) Cell stack device, fuel cell module and fuel cell device
JP4470475B2 (en) Solid oxide fuel cell
JPH1092447A (en) Layer-built fuel cell
JP4271538B2 (en) Support membrane type solid oxide fuel cell stack and manufacturing method thereof
JP6773470B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP2002270198A (en) Fuel cell
JP6690996B2 (en) Electrochemical reaction cell stack
JP2005317292A (en) Supporting film type solid oxide fuel cell stack
JP4198512B2 (en) Solid oxide fuel cell stack and module
JP4090758B2 (en) Solid oxide fuel cell separator
JP6959040B2 (en) How to manufacture stack plates, electrochemical reaction cell stacks, and electrochemical reaction cell stacks
JPH0290470A (en) Lamination type fuel battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4184139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees