JP5727915B2 - Solid oxide fuel cell, solid oxide fuel cell main body, and method for producing solid oxide fuel cell - Google Patents

Solid oxide fuel cell, solid oxide fuel cell main body, and method for producing solid oxide fuel cell Download PDF

Info

Publication number
JP5727915B2
JP5727915B2 JP2011229922A JP2011229922A JP5727915B2 JP 5727915 B2 JP5727915 B2 JP 5727915B2 JP 2011229922 A JP2011229922 A JP 2011229922A JP 2011229922 A JP2011229922 A JP 2011229922A JP 5727915 B2 JP5727915 B2 JP 5727915B2
Authority
JP
Japan
Prior art keywords
cell
square
sides
electrode layer
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011229922A
Other languages
Japanese (ja)
Other versions
JP2013089496A (en
Inventor
大野 猛
大野  猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2011229922A priority Critical patent/JP5727915B2/en
Publication of JP2013089496A publication Critical patent/JP2013089496A/en
Application granted granted Critical
Publication of JP5727915B2 publication Critical patent/JP5727915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料極層と空気極層と固体電解質層とを積層及び焼成して形成されたセル本体を備えた固体酸化物形燃料電池に関するものである。   The present invention relates to a solid oxide fuel cell including a cell body formed by laminating and firing a fuel electrode layer, an air electrode layer, and a solid electrolyte layer.

従来から、平板状の固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)として、固体電解質層の一方の側に燃料ガスと接する燃料極層を配置し、他方の側に空気と接する空気極層を配置することによりセル本体を構成し、このセル本体を隔離セパレータ等のセル接合部材に接合した構造のSOFCが知られている。このような構造のSOFCを作製する際には、例えば、開口部を設けた隔離セパレータを用意し、その開口部を取り囲む領域にセル本体の周縁部がロウ材等を介して一体的に接合される。一般に、セル本体と隔離セパレータは方形の平面形状で形成されるが、隔離セパレータは軽量化等のため極めて薄く形成され、セル本体との接合領域で破損を防止する観点から、セル本体の平面形状のうちの各角部を面取りする構造が提案されている(例えば、特許文献1参照)。また、SOFCの発電動作時の熱膨張などに起因する機械的応力によるセル本体の割れを防止する観点から、セル本体を方形の平面形状ではなく円形の平面形状で形成する構造が提案されている(例えば、特許文献2参照)。   Conventionally, as a flat solid oxide fuel cell (SOFC), a fuel electrode layer in contact with fuel gas is disposed on one side of a solid electrolyte layer, and an air electrode in contact with air on the other side. A SOFC having a structure in which a cell body is formed by arranging layers and the cell body is bonded to a cell bonding member such as an isolation separator is known. When manufacturing an SOFC having such a structure, for example, an isolation separator provided with an opening is prepared, and the periphery of the cell body is integrally joined to the region surrounding the opening via a brazing material or the like. The In general, the cell body and the separator are formed in a square planar shape, but the separator separator is formed extremely thin for weight reduction and the like, and from the viewpoint of preventing breakage in the joint area with the cell body, the planar shape of the cell body The structure which chamfers each corner | angular part is proposed (for example, refer patent document 1). Further, from the viewpoint of preventing cracking of the cell body due to mechanical stress caused by thermal expansion during SOFC power generation operation, a structure in which the cell body is formed in a circular planar shape instead of a square planar shape has been proposed. (For example, refer to Patent Document 2).

特開2006−4678号公報JP 2006-4678 A 特開2009−245633号公報JP 2009-245633 A

上記SOFCのセル本体は、例えば、セラミックを主な成分として形成することができる。この場合、SOFCの製造時には、セル本体の各層のシートを積層した積層体を形成した後、その積層体を焼成してセル焼成体が形成される。一般に、SOFCのセル本体は、燃料極層を支持極層として固体電解質層を積層した積層体を焼成してセル焼成体とし、セル焼成体に空気極層を積層することにより作製される。このようにして作製されるセル本体を隔離セパレータに接合した状態では、焼成時の収縮によって積層方向の変形が生じており、それに対し発電動作時における酸化・還元サイクルや熱サイクルが印加されたときセル本体の変形量が変化していく。特に、平板状のセル本体の略中央では凸状に反りが生じやすく、未焼成時のセル本体が平面視で方形の外周形状を有することを想定すると、各角部よりも四辺の位置で中央からの距離が短くなり、各角部の部分が下方に湾曲する。その結果、セル本体は、柔軟な隔離セパレータに接合された状態のまま、各角部がインターコネクタ等の下方の部材に接触して4点支えの構造に近付くことになる(図4参照)。一方、上述の円形の平面形状で形成したセル本体は、中央からの距離が均等であって4点支えの構造を回避できるが、セル本体の面積が制約されるため発電面積が減少することは避けられない。以上のように、発電面積を確保するために方形の平面形状を有するセル本体を採用すると、上述の変形によって応力の緩和が困難になり、インターコネクタ等の部材と接触することによりセル本体が割れるなど不良が増加してSOFCの信頼性を低下させることが問題となる。   The SOFC cell body can be formed, for example, using ceramic as a main component. In this case, at the time of manufacturing the SOFC, after forming a laminated body in which the sheets of the respective layers of the cell body are laminated, the laminated body is fired to form a cell fired body. In general, a cell body of SOFC is manufactured by firing a laminated body in which a solid electrolyte layer is laminated using a fuel electrode layer as a supporting electrode layer to form a cell fired body, and laminating an air electrode layer on the cell fired body. In the state where the cell body manufactured in this way is joined to the isolation separator, deformation in the stacking direction has occurred due to shrinkage during firing, whereas when an oxidation / reduction cycle or thermal cycle is applied during power generation operation The amount of deformation of the cell body changes. In particular, if it is assumed that the cell body when unfired has a square outer peripheral shape in plan view, the center is located at four sides rather than each corner when the flat cell body is likely to be warped in the approximate center of the flat cell body. The distance from is shortened, and each corner is curved downward. As a result, while the cell body is bonded to the flexible isolation separator, each corner portion comes into contact with a lower member such as an interconnector and approaches a four-point support structure (see FIG. 4). On the other hand, the cell body formed in the above-mentioned circular planar shape is uniform in distance from the center and can avoid the four-point support structure. However, the area of the cell body is limited, so that the power generation area is reduced. Unavoidable. As described above, when a cell main body having a square planar shape is employed to secure a power generation area, it becomes difficult to relieve stress due to the above-described deformation, and the cell main body is cracked by contact with a member such as an interconnector. It becomes a problem that the number of defects increases and the reliability of SOFC decreases.

本発明はこれらの問題を解決するためになされたものであり、十分な発電性能を確保しつつ、セル本体の積層方向の変形に起因する割れ等を抑制し、高い信頼性を確保可能な固体酸化物形燃料電池を提供することを目的とする。   The present invention has been made to solve these problems, and while ensuring sufficient power generation performance, it is possible to suppress cracks and the like due to deformation in the stacking direction of the cell main body and ensure high reliability. An object is to provide an oxide fuel cell.

上記課題を解決するために、本発明の固体酸化物形燃料電池は、燃料極層と、空気極層と、一方の面側に前記燃料極層が配置され他方の面側に前記空気極層が配置された固体電解質層とを積層及び焼成して形成されたセル本体を備えた固体酸化物形燃料電池において、前記セル本体は、平面視で直線状の四辺を含む方形の外周形状を有するとともに、前記方形の中央部における積層方向の高さが前記方形の四辺における積層方向の高さに比べて高く、積層方向において凸状の断面形状を有し、前記セル本体の周縁部は、前記方形の四隅と、前記四辺の全体又は部分とが、所定の部材に接触した状態で支持可能な構造を有することを特徴としている。
In order to solve the above problems, a solid oxide fuel cell of the present invention includes a fuel electrode layer, an air electrode layer, the fuel electrode layer disposed on one surface side, and the air electrode layer on the other surface side. In the solid oxide fuel cell having a cell body formed by laminating and firing a solid electrolyte layer on which is disposed, the cell body has a rectangular outer peripheral shape including four straight sides in a plan view. with the height in the stacking direction at the center of the square is higher than the height of the stacking direction of the four sides of the square has a convex cross-sectional shape in the stacking direction, the peripheral edge of the cell body, The four corners of the square and the whole or a part of the four sides have a structure that can be supported in a state of being in contact with a predetermined member.

本発明の固体酸化物形燃料電池によれば、燃料極層と空気極層と固体電解質層とが積層されたセル本体は、未焼成の時点の積層体を焼成してセル焼成体に形成した際、四辺を含む外周形状が方形を保ち、方形の中央の部分が四辺の部分より高い凸状の断面形状を有する。すなわち、セル本体に対し熱サイクル等が印加されることを予め想定し、セル本体が積層方向に変形したときの変形量に応じて、セル本体の四隅の部分と四辺の全体又は部分が所定の部材の表面に接触した状態で支持可能なように予め積層体の平面形状を適切に設定するものである。これにより、セル本体の方形の中央部が積層方向に凸状に変形したとしても、セル本体の湾曲した四辺の部分のみが所定の部材に接触して4点支えの構造になることを防止することができ、応力の集中によるセル本体の割れを確実に防止することができる。   According to the solid oxide fuel cell of the present invention, the cell body in which the fuel electrode layer, the air electrode layer, and the solid electrolyte layer are stacked is formed into a cell fired body by firing the unfired laminate. At this time, the outer peripheral shape including the four sides maintains a square shape, and the central portion of the square has a convex cross-sectional shape higher than the four side portions. That is, assuming that a thermal cycle or the like is applied to the cell body in advance, depending on the amount of deformation when the cell body is deformed in the stacking direction, the four corners of the cell body and all or part of the four sides are predetermined. The planar shape of the laminate is appropriately set in advance so that it can be supported in contact with the surface of the member. As a result, even if the central part of the rectangular shape of the cell body is deformed in a convex shape in the stacking direction, only the curved four sides of the cell body are prevented from coming into contact with a predetermined member to form a four-point support structure. It is possible to reliably prevent cracking of the cell body due to stress concentration.

また、本発明の固体酸化物形燃料電池は、前記セル本体を備え、前記セル本体が上述の方形の平面形状及び上述の凸状の断面形状を有することを前提としたとき、前記断面形状に含まれる曲線群のうち、前記中央部を通り前記方形の各辺と平面視で平行な第1の曲線は、前記各辺の近傍を通り前記第1の曲線と平面視で平行な第2の曲線の線長に比べて長い線長を有することを特徴としている。このように、未焼成セル本体の断面形状において、中央部を通る第1の直線の線長(L2)が各辺の近傍を通る第2の直線の線長(L1)よりも長く(L1<L2)、方形の四辺に近づくほど変形量が少なくなっている。この場合、セル本体の四辺が直線状であることを考慮すると、セル本体の四辺の部分が所定の部材(例えば、インターコネクタ)から浮き上がることを防止する作用については上述した通りであり、応力の集中によるセル本体の割れを確実に防止することができる。   Further, the solid oxide fuel cell of the present invention includes the cell body, and the cross-sectional shape assumes that the cell body has the above-described rectangular planar shape and the above-described convex cross-sectional shape. Among the included curves, a first curve that passes through the central portion and parallel to each side of the square in plan view is a second curve that passes through the vicinity of each side and is parallel to the first curve in plan view. It is characterized by having a long line length compared to the line length of the curve. Thus, in the cross-sectional shape of the unfired cell body, the line length (L2) of the first straight line passing through the center is longer than the line length (L1) of the second straight line passing through the vicinity of each side (L1 < L2) The amount of deformation decreases as it approaches the four sides of the square. In this case, considering that the four sides of the cell body are linear, the action of preventing the four sides of the cell body from floating from a predetermined member (for example, an interconnector) is as described above. It is possible to reliably prevent the cell body from being cracked due to concentration.

本発明において、前記セル本体の外周形状は、平面視で直線状の四辺を含む方形の範囲内で多様な構造を含んでいてもよい。例えば、前記セル本体は、前記方形の四隅において面取りされた外周形状を有していてもよい。これにより、前記セル本体を所定の部材により支持した状態で四隅の近辺における破損を防止し、より一層信頼性を高めることができる。   In the present invention, the outer peripheral shape of the cell main body may include various structures within a square range including four sides that are linear in a plan view. For example, the cell body may have an outer peripheral shape that is chamfered at four corners of the square. Thereby, in the state which supported the said cell main body with the predetermined member, the damage in the vicinity of four corners can be prevented, and reliability can be improved further.

また、上記課題を解決するために、本発明の固体酸化物形燃料電池の製造方法は、少なくとも支持基体層を含む複数の平板状のシートを積層し、平面視で外周側に湾曲又は突出した四辺を含む外周形状を有する積層体を形成する積層工程と、前記積層体を焼成してセル焼成体を形成し、当該セル焼成体を含むセル本体を形成するセル本体形成工程と、を含んでいる。これらの一連の工程により、前記セル本体は、平面視で直線状の四辺を含む方形の外周形状を有するとともに、前記方形の中央部における積層方向の高さが前記方形の四辺における積層方向の高さに比べて高く、積層方向において凸状の断面形状を有し、前記セル本体の周縁部は、前記方形の四隅と、前記四辺の全体又は部分が、所定の部材に接触した状態で支持可能な構造に形成されることを特徴としている。また、上記の一連の工程により、上述の方形の平面形状及び上述の凸状の断面形状を有する前記セル本体の断面形状に含まれる曲線群のうち、前記中央部を通り前記方形の各辺に平行な第1の曲線は、前記各辺の近傍を通り前記第1の直線に平行な第2の曲線の線長に比べて長い線長を有することを特徴としている。
In order to solve the above-described problem, the method for manufacturing a solid oxide fuel cell according to the present invention includes stacking a plurality of flat sheets including at least a support base layer and bending or projecting outward in a plan view. A stacking step of forming a laminate having an outer peripheral shape including four sides, and a cell body forming step of firing the laminate to form a cell fired body and forming a cell body including the cell fired body. Yes. Through these series of steps, the cell body has a rectangular outer peripheral shape including four sides that are linear in a plan view, and the height in the stacking direction at the center of the square is the height in the stacking direction at the four sides of the square. higher than in the, has a convex cross section in the stacking direction, the peripheral edge of the cell body, the support and the four corners of the square, the entire or portions of the four sides, in contact with a predetermined member It is characterized by being formed into a possible structure. In addition, by the above series of steps, among the group of curves included in the cross-sectional shape of the cell body having the above-described rectangular planar shape and the above-described convex cross-sectional shape, each side of the square passes through the central portion. The parallel first curve has a line length that is longer than the line length of the second curve that passes through the vicinity of each side and is parallel to the first straight line.

本発明の固体酸化物形燃料電池の製造方法によれば、平面視で外周側に湾曲又は突出した外周形状の積層体を形成し、その積層体を焼成して焼成体を形成した後にセル本体を形成して、セル本体は上述の外周形状と上述の凸状の断面形状を有することになる。また、セル本体の周縁部にセル接合部材を接合した後もその凸状の断面形状を有する。その結果、セル本体の四辺の全体又は部分が所定の部材の表面によって支持される構造が得られ、複雑な工程を経ることなく上述の構造上の効果を容易に実現することができる。   According to the method for producing a solid oxide fuel cell of the present invention, a cell body is formed after forming an outer circumferentially-shaped laminated body curved or protruded on the outer circumferential side in a plan view, and firing the laminated body to form a fired body. The cell body has the above-described outer peripheral shape and the above-described convex cross-sectional shape. Moreover, even after joining a cell joining member to the peripheral part of a cell main body, it has the convex cross-sectional shape. As a result, a structure in which the whole or part of the four sides of the cell body is supported by the surface of the predetermined member can be obtained, and the above structural effects can be easily realized without going through complicated steps.

本発明の上述の製造方法において、前記積層体を、前記方形の四隅の各々が第1の曲率半径で円弧状に面取りされ、前記四辺の各々が前記第1の曲率半径より大きい第2の曲率半径を有する円弧状の曲線に形成してもよい。これにより、前記セル本体の四隅の近傍における破損を防止する効果を高めることができる。   In the above-described manufacturing method of the present invention, the laminated body is chamfered in an arc shape with a first curvature radius at each of the four corners of the square, and a second curvature at which each of the four sides is larger than the first curvature radius. You may form in the circular-arc-shaped curve which has a radius. Thereby, the effect of preventing breakage in the vicinity of the four corners of the cell body can be enhanced.

また、本発明の上述の製造方法において、前記セル本体形成工程は、前記セル焼成体の表面に所定の層を積層して前記セル本体を形成する第2の積層工程を含んでいてもよい。この場合、本発明の上述の製造方法において、前記支持基体層を前記燃料極層とし、前記所定の層は前記空気極層としてもよい。   Moreover, in the above-described manufacturing method of the present invention, the cell body forming step may include a second stacking step in which a predetermined layer is stacked on the surface of the cell fired body to form the cell body. In this case, in the above manufacturing method of the present invention, the support base layer may be the fuel electrode layer, and the predetermined layer may be the air electrode layer.

本発明によれば、固体酸化物形燃料電池のセル本体に対し、所定の外周形状を有する積層体を焼成して得られたセル本体は、方形の中央の部分が四辺の部分より高い凸状の断面形状を有するとともに、所定の部材で支持した状態のセル本体の周縁部の全体又は部分がインターコネクタ等の部材に支持可能な構造を保つことができる。よって、セル本体に印加される熱サイクル等によりセル本体の方形の中央部が積層方向に凸状に変形したとしても、4点支えの構造にすることなくセル本体をインターコネクタ等の部材によって安定に支持することができる。従って、セル本体への応力集中による割れを確実に防止し、発電面積を減少させることなく、セル本体の構造上に信頼性を高めることが可能となる。   According to the present invention, a cell body obtained by firing a laminate having a predetermined outer peripheral shape with respect to a cell body of a solid oxide fuel cell has a convex shape in which a central portion of a square is higher than a portion of four sides. It is possible to maintain a structure in which the whole or part of the peripheral portion of the cell body supported by a predetermined member can be supported by a member such as an interconnector. Therefore, even if the square center of the cell body is deformed in a convex shape in the stacking direction due to a thermal cycle applied to the cell body, the cell body is stabilized by a member such as an interconnector without using a four-point support structure. Can be supported. Therefore, it is possible to reliably prevent cracking due to stress concentration on the cell body, and to improve the reliability on the structure of the cell body without reducing the power generation area.

実施形態の固体酸化物形燃料電池の単位セルに関し、各構成要素を分解した状態の模式的な断面構造図である。1 is a schematic cross-sectional structure diagram of a state in which each component is disassembled with respect to a unit cell of a solid oxide fuel cell according to an embodiment. 比較例のセル本体30を焼成する前の積層体30aの模式的な平面図及び側断面図である。It is the typical top view and sectional side view of the laminated body 30a before baking the cell main body 30 of a comparative example. 比較例の図2の積層体30aを焼成した後のセル焼成体30bの模式的な平面図及び側断面図である。It is the typical top view and side sectional view of the cell baking body 30b after baking the laminated body 30a of FIG. 2 of a comparative example. 比較例の図3のセル焼成体30bの構造を反映したセル本体30を接触面40に接合したときの構造を模式的に表す斜視図である。FIG. 4 is a perspective view schematically showing a structure when a cell body 30 reflecting the structure of the cell fired body 30 b of FIG. 3 of the comparative example is joined to a contact surface 40. 本実施形態のセル本体10を焼成する前の積層体10aの模式的な平面図及び側断面図である。It is the typical top view and sectional side view of the laminated body 10a before baking the cell main body 10 of this embodiment. 本実施形態の図5の積層体10aを焼成した後のセル焼成体10bの模式的な平面図及び側断面図である。It is the typical top view and side sectional view of cell calcination object 10b after calcination of layered product 10a of Drawing 5 of this embodiment. 本実施形態のセル焼成体10bの構造を反映したセル本体10を接触面40に接合したときの構造を模式的に表す斜視図である。It is a perspective view showing typically the structure when the cell body 10 reflecting the structure of the cell fired body 10b of this embodiment is joined to the contact surface 40. 本実施形態の変形例に係るセル本体10に関し、図5に対応する積層体10aの模式的な平面図及び側断面図である。It is the typical top view and side sectional view of layered product 10a corresponding to Drawing 5 about cell main part 10 concerning the modification of this embodiment.

以下、本発明の好適な実施形態について、図面を参照しながら説明する。ただし、以下に述べる実施形態は本発明の技術思想を適用した形態の一例であって、本発明が本実施形態の内容により限定されることはない。   Preferred embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below is an example of a form to which the technical idea of the present invention is applied, and the present invention is not limited by the content of the present embodiment.

まず、本発明を適用した固体酸化物形燃料電池セルの基本構造について説明する。図1は、本実施形態の固体酸化物形燃料電池の基本的な構成単位である固体酸化物形燃料電池セル1(以下、「単位セル1」と呼ぶ)に関し、各構成要素を分解した状態の模式的な断面構造を示している。図1に示す単位セル1は、発電機能を担うセル本体10と、上下1対のインターコネクタ20、21と、下側のインターコネクタ20と燃料極層11との間に配置された燃料極側集電体22と、上側のインターコネクタ21と空気極層13との間に配置された空気極側集電体23と、セル本体10の側面を取り囲む金属フレーム24と、セル本体10と一体的に接合されて燃料極層11の側の燃料ガス流路Fpと空気極層13の側の空気流路Apとを隔離する隔離セパレータ25と、金属フレーム24と下側のインターコネクタ20との間に配置されたガスシール部材26と、隔離セパレータ25と上側のインターコネクタ21との間に配置されたガスシール部材27と、を備えている。   First, the basic structure of a solid oxide fuel cell to which the present invention is applied will be described. FIG. 1 shows a state in which each component is disassembled with respect to a solid oxide fuel cell 1 (hereinafter referred to as “unit cell 1”) which is a basic structural unit of the solid oxide fuel cell of the present embodiment. The schematic cross-sectional structure of is shown. A unit cell 1 shown in FIG. 1 includes a cell body 10 that performs a power generation function, a pair of upper and lower interconnectors 20 and 21, and a fuel electrode side disposed between a lower interconnector 20 and a fuel electrode layer 11. The current collector 22, the air electrode side current collector 23 disposed between the upper interconnector 21 and the air electrode layer 13, the metal frame 24 surrounding the side surface of the cell body 10, and the cell body 10 are integrated. Between the metal frame 24 and the lower interconnector 20. The separator 25 is joined to the fuel electrode layer 11 to separate the fuel gas flow path Fp on the fuel electrode layer 11 side and the air flow path Ap on the air electrode layer 13 side. And a gas seal member 27 disposed between the isolation separator 25 and the upper interconnector 21.

図1に示すセル本体10は、下層側から順に、燃料極層11と、固体電解質層12と、空気極層13とからなる積層体を焼成して形成され、平面視で方形の外周形状を有する。燃料極層11は、水素源となる燃料ガスに接触し、単位セル1のアノードとして機能する。燃料極層11は、セル本体10を支持する支持基体層となるので、機械的強度を確保できる程度の十分な厚みで形成することが望ましい。例えば、燃料極層11の材料としては、Ni等の金属粒子とセラミック粒子からなるサーメットを用いることができる。固体電解質層12は、イオン導電性を有する各種の固体電解質からなる。例えば、固体電解質層12の材料としては、YSZ、ScSZ、SDC、GDC、ペロブスカイト系酸化物等を用いることができる。空気極層13は、酸素源となる空気ガスに接触し、単位セル1のカソードとして機能する。例えば、空気極層13の材料としては、ペロブスカイト系酸化物、各種貴金属及び貴金属とセラミックとのサーメットを用いることができる。   A cell body 10 shown in FIG. 1 is formed by firing a laminated body composed of a fuel electrode layer 11, a solid electrolyte layer 12, and an air electrode layer 13 in order from the lower layer side, and has a rectangular outer peripheral shape in plan view. Have. The fuel electrode layer 11 is in contact with a fuel gas serving as a hydrogen source and functions as an anode of the unit cell 1. Since the fuel electrode layer 11 serves as a support base layer that supports the cell body 10, it is desirable to form the fuel electrode layer 11 with a sufficient thickness to ensure mechanical strength. For example, as the material of the fuel electrode layer 11, cermet made of metal particles such as Ni and ceramic particles can be used. The solid electrolyte layer 12 is made of various solid electrolytes having ionic conductivity. For example, as the material of the solid electrolyte layer 12, YSZ, ScSZ, SDC, GDC, perovskite oxide, or the like can be used. The air electrode layer 13 is in contact with air gas serving as an oxygen source and functions as a cathode of the unit cell 1. For example, as the material of the air electrode layer 13, perovskite oxides, various noble metals, and cermets of noble metals and ceramics can be used.

下側のインターコネクタ20は下層に隣接する単位セル1との電気的接続を担い、上側のインターコネクタ21は上層に隣接する単位セル1との電気的接続を担う。インターコネクタ20、21は、例えばフェライト系ステンレスからなる薄型の金属板である。また、下側のインターコネクタ20に接合された燃料極側集電体22は、例えば、通気性を有するNiフェルトからなり、上側のインターコネクタ21に接合された空気極側集電体23は、例えば、金属及び導電性セラミックからなる。   The lower interconnector 20 is responsible for electrical connection with the unit cell 1 adjacent to the lower layer, and the upper interconnector 21 is responsible for electrical connection with the unit cell 1 adjacent to the upper layer. The interconnectors 20 and 21 are thin metal plates made of, for example, ferritic stainless steel. The fuel electrode side current collector 22 joined to the lower interconnector 20 is made of, for example, Ni felt having air permeability, and the air electrode side current collector 23 joined to the upper interconnector 21 is For example, it consists of a metal and a conductive ceramic.

下側のガスシール部材26は、例えば、マイカ等の絶縁材料からなり、単位セル1における燃料ガス流路Fpをシールする役割がある。同様に、上側のガスシール部材27は、マイカ等の絶縁材料からなり、単位セル1における空気流路Apをシールする役割がある。それぞれのガスシール部材26、27には、セル本体10に対して燃料ガス及び空気を円滑に供給するために、中央部に開口部が形成されている。   The lower gas seal member 26 is made of an insulating material such as mica, for example, and serves to seal the fuel gas flow path Fp in the unit cell 1. Similarly, the upper gas seal member 27 is made of an insulating material such as mica and serves to seal the air flow path Ap in the unit cell 1. Each gas seal member 26, 27 has an opening at the center for smoothly supplying fuel gas and air to the cell body 10.

金属フレーム24は、例えばフェライト系ステンレス等の金属材料からなり、セル本体10及び隔離セパレータ25を単位セル1に固定する役割がある。よって、金属フレーム24には、中央部にセル本体10の側面を取り囲むことが可能なサイズの開口部が形成されている。   The metal frame 24 is made of a metal material such as ferritic stainless steel, for example, and serves to fix the cell body 10 and the separator 25 to the unit cell 1. Therefore, the metal frame 24 has an opening of a size that can surround the side surface of the cell body 10 at the center.

隔離セパレータ25は、可撓性を有する金属材料として、例えばフェライト系ステンレス等の金属材料を用いて、厚み0.02〜0.3mm程度の枠体状の薄板に形成されている。隔離セパレータ25は、本発明のセル接合部材として機能し、セル本体10の周縁部に接合される。隔離セパレータ25には、セル本体10の外周形状よりサイズが小さく、かつ空気極層13よりもサイズが大きい方形の開口部が形成され、その開口部から空気極層13が露出可能な構造となっている。   The isolation separator 25 is formed in a frame-like thin plate having a thickness of about 0.02 to 0.3 mm using a metal material such as ferritic stainless steel as a flexible metal material. The isolation separator 25 functions as a cell joining member of the present invention and is joined to the peripheral edge of the cell body 10. The isolation separator 25 has a rectangular opening that is smaller in size than the outer peripheral shape of the cell body 10 and larger in size than the air electrode layer 13, and the air electrode layer 13 can be exposed from the opening. ing.

次に本実施形態の単位セル1の特徴的な構造について説明する。本実施形態では、セル本体10を焼成して形成されるセル焼成体の形状変化を予め想定し、セル本体10を焼成する前の積層体について所定の形状を規定している。まず、本実施形態の構造と対比するための比較例として、従来の構造を有する後述のセル本体30(図4)に関し、その構造を製造方法の概要とともに説明する。図2は、比較例のセル本体30を焼成する前の積層体30aの模式的な平面図及び側断面図を示し、図3は、図2の積層体30aを焼成した後のセル焼成体30bの模式的な平面図及び側断面図を示している。なお、図2の積層体30a及び図3のセル焼成体30bの方向に関しては、各図の上部に示した平面図は図1のセル本体10を上方側から見た場合に対応する。   Next, a characteristic structure of the unit cell 1 of the present embodiment will be described. In the present embodiment, a shape change of a cell fired body formed by firing the cell body 10 is assumed in advance, and a predetermined shape is defined for the laminate before firing the cell body 10. First, as a comparative example for comparison with the structure of the present embodiment, a cell body 30 (FIG. 4) having a conventional structure will be described along with an outline of the manufacturing method. FIG. 2 shows a schematic plan view and a side sectional view of the laminate 30a before firing the cell body 30 of the comparative example, and FIG. 3 shows a cell fired body 30b after firing the laminate 30a of FIG. The schematic top view and side sectional drawing of are shown. In addition, regarding the direction of the laminated body 30a of FIG. 2 and the cell baking body 30b of FIG. 3, the top view shown to the upper part of each figure respond | corresponds when the cell main body 10 of FIG.

図2の積層体30aは、方形の燃料極グリーンシートと方形の固体電解質グリーンシートとをそれぞれ準備し、それぞれのグリーンシートを重ねた状態でプレス成型により一体化することで作製される。よって、この時点では、積層体30aに空気極層13が形成されていない。なお、図2では、燃料極層11と固体電解質層12の区別は示しておらず、一体的な積層体30aとして表している。図2の上部の平面図に示すように、積層体30aは平面視で方形の形状を有し、四辺の直線状の4つの側面Saに囲まれるとともに、各側面Saが交わる4つの角部Caが面取りされている。また、図2の下部には、上述の平面視の積層体30aにおけるa−a’断面の側断面図とb−b’断面の側断面図とをそれぞれ示している。a−a’断面は方形の積層体30aの外縁部近傍を通る断面であり、b−b’断面は方形の積層体30aの中央部を通る断面である。a−a’断面とb−b’断面のいずれにおいても、平坦な直線状の断面形状を有する。これは、上述したように積層体30aが未焼成であるため、焼成時の加熱等による積層方向の変形が発生してないためである。   The laminated body 30a in FIG. 2 is prepared by preparing a rectangular fuel electrode green sheet and a rectangular solid electrolyte green sheet, and integrating them by press molding in a state where the green sheets are stacked. Therefore, at this time, the air electrode layer 13 is not formed on the stacked body 30a. In FIG. 2, the distinction between the fuel electrode layer 11 and the solid electrolyte layer 12 is not shown, and is represented as an integral laminate 30a. As shown in the top plan view of FIG. 2, the stacked body 30a has a square shape in plan view, is surrounded by four side surfaces Sa having four sides, and four corners Ca where the side surfaces Sa intersect. Is chamfered. Further, in the lower part of FIG. 2, a side sectional view of the a-a ′ section and a side sectional view of the b-b ′ section in the laminate 30 a in a plan view are shown. The a-a ′ cross section is a cross section passing through the vicinity of the outer edge portion of the rectangular stacked body 30 a, and the b-b ′ cross section is a cross section passing through the center of the square stacked body 30 a. Both the a-a ′ cross section and the b-b ′ cross section have a flat linear cross section. This is because, as described above, the laminate 30a is not fired, so that deformation in the stacking direction due to heating during firing does not occur.

次に、図3のセル焼成体30bは、図2の積層体30aを所定温度で焼成することにより作製される。この場合、焼成時の加熱や発電動作時の酸化・還元サイクル又は熱サイクルにより、セル焼成体30bは積層方向への変形(反り)が生じる。なお、セル焼成体30bにおいて、所定位置に空気極層13を積層形成することにより後述のセル本体30が得られる。図3の上部の平面図に示すように、セル焼成体30bは、平面視で四辺の4つの側面Sbに囲まれるが、これらの側面Sbは図2の側面Saのように直線状ではなく内周側に凹状の曲線状になっている。また、図3の下部には、平面視のセル焼成体30bにおけるa−a’断面の側断面図とb−b’断面の側断面図とをそれぞれ示している。a−a’断面及びb−b’断面の各位置は図2と同様である。また、セル焼成体30bが、図1のインターコネクタ20の表面に接触する際の接触面40の位置をそれぞれ付記している。a−a’断面とb−b’断面のいずれについても、上述の積層方向の変形に起因して、平坦な直線状ではなく断面の中央付近が上方に突出した曲線状の断面形状を有する。また、a−a’断面は、その両端が接触面40にほぼ接触しているのに対し、b−b’断面は、その両端が接触面40よりも上方に位置することがわかる。   Next, the cell fired body 30b in FIG. 3 is produced by firing the laminated body 30a in FIG. 2 at a predetermined temperature. In this case, the cell fired body 30b is deformed (warped) in the stacking direction due to heating during firing and oxidation / reduction cycles or thermal cycles during power generation. In the cell fired body 30b, the cell body 30 described later is obtained by laminating and forming the air electrode layer 13 at a predetermined position. As shown in the top plan view of FIG. 3, the cell fired body 30b is surrounded by four side surfaces Sb of the four sides in a plan view, but these side surfaces Sb are not linear but like the side surface Sa of FIG. It has a concave curved shape on the circumferential side. In addition, in the lower part of FIG. 3, a side sectional view of the a-a ′ section and a side sectional view of the b-b ′ section of the cell fired body 30 b in plan view are shown. Each position in the a-a ′ cross section and the b-b ′ cross section is the same as that in FIG. 2. Moreover, the position of the contact surface 40 when the cell baking body 30b contacts the surface of the interconnector 20 of FIG. Both the a-a ′ cross section and the b-b ′ cross section have a curved cross-sectional shape in which the vicinity of the center of the cross section protrudes upward, not a flat straight line shape, due to the deformation in the stacking direction. Further, it can be seen that both ends of the a-a ′ section are substantially in contact with the contact surface 40, whereas both ends of the b-b ′ section are located above the contact surface 40.

ここで、図3の下部に示すように、a−a’断面の曲線に沿った線長をL1’とし最大の高さをH1’とするとともに、b−b’断面の曲線に沿った線長をL2’とし最大の高さをH2’とする。この場合、それぞれの線長L1’、L2’は、L1’≒L2’の関係を満たす。これは、図2において、a−a’断面とb−b’断面が同一の線長であり、その関係を焼成後も維持するためである。一方、両方の高さH1’、H2’は、H1’<H2’の関係を満たす。つまり、b−b’断面の反り量である高さH2’がa−a’断面の反り量である高さH1’に比べ大きくセル焼成体30bが中央で凸状に突出しているが、上式の関係から概ね同じ線長(L1、L2)が維持される。そのため、b−b’断面の両端部は、横方向においてはa−a’断面の両端部の位置より内周側に縮小するとともに、積層方向においては接触面40から上方に浮き上がった状態になる。   Here, as shown in the lower part of FIG. 3, the line length along the curve of the aa ′ section is L1 ′, the maximum height is H1 ′, and the line along the curve of the bb ′ section. The length is L2 ′ and the maximum height is H2 ′. In this case, the line lengths L1 'and L2' satisfy the relationship L1'≈L2 '. This is because in FIG. 2, the a-a ′ section and the b-b ′ section have the same line length, and the relationship is maintained even after firing. On the other hand, both heights H1 'and H2' satisfy the relationship H1 '<H2'. That is, the height H2 ′ that is the amount of warpage of the bb ′ section is larger than the height H1 ′ that is the amount of warpage of the aa ′ section, and the cell fired body 30b protrudes in a convex shape at the center. The substantially same line length (L1, L2) is maintained from the relationship of the formula. Therefore, both end portions of the bb ′ cross section are reduced to the inner peripheral side from the positions of both end portions of the aa ′ cross section in the lateral direction, and are lifted upward from the contact surface 40 in the stacking direction. .

図4は、図3のセル焼成体30bの構造を反映したセル本体30が接触面40(インターコネクタ20の表面)に接触するときの構造を模式的に表す斜視図である。図4に示すセル本体30は、中央部が上方に突出するとともに、四隅の各角部を接点として接触面40に支持される構造であることがわかる(4点支え)。なお、図4においては、理解の容易のため、セル本体30が積層方向に突出する変形量を強調して表しているが、実際の変形量はセル本体30のサイズに比べて十分に小さい。セル本体30が図4の構造を有する結果、セル本体30に対して積層方向に応力が加わったとき、接点の面積が極めて小さいので、セル本体30の割れ等の不良を生じる恐れがある。   FIG. 4 is a perspective view schematically showing the structure when the cell main body 30 reflecting the structure of the cell fired body 30b of FIG. 3 contacts the contact surface 40 (the surface of the interconnector 20). It can be seen that the cell main body 30 shown in FIG. 4 has a structure in which the central portion protrudes upward and is supported by the contact surface 40 with the four corners as contact points (four-point support). In FIG. 4, for ease of understanding, the deformation amount that the cell body 30 protrudes in the stacking direction is emphasized, but the actual deformation amount is sufficiently smaller than the size of the cell body 30. As a result of the cell main body 30 having the structure shown in FIG. 4, when stress is applied to the cell main body 30 in the stacking direction, the area of the contact is extremely small, so that there is a possibility of causing defects such as cracking of the cell main body 30.

次に、本実施形態の構造を採用したセル本体10の構造を説明する。図5は、本実施形態のセル本体10を焼成する前の積層体10aの模式的な平面図及び側断面図を示し、図6は、図5の積層体10aを焼成した後のセル焼成体10bの模式的な平面図及び側断面図を示している。なお、図5の積層体10a及び図6のセル焼成体10bの方向は、比較例の図2及び図3と共通である。また、積層体10a及びセル焼成体10bのそれぞれの製造方法の概要についても、比較例で説明した通りであるので、説明を省略する。   Next, the structure of the cell body 10 adopting the structure of the present embodiment will be described. FIG. 5 shows a schematic plan view and a side sectional view of the laminate 10a before firing the cell body 10 of the present embodiment, and FIG. 6 shows a cell fired body after firing the laminate 10a of FIG. 10b shows a schematic plan view and a side sectional view of 10b. In addition, the direction of the laminated body 10a of FIG. 5 and the cell baking body 10b of FIG. 6 is the same as FIG. 2 and FIG. 3 of a comparative example. Moreover, since the outline of each manufacturing method of the laminated body 10a and the cell fired body 10b is also as described in the comparative example, the description is omitted.

図5の上部の平面図に示すように、積層体10aは四辺が平面視で円弧状の4つの側面S1に囲まれるとともに、各側面S1が交わる4つの角部C1が面取りされている。4つの角部C1は平面視で曲率半径R1の円弧状であり、4つの側面S1は平面視で曲率半径R2の円弧状であり、R1<R2の関係にある。また、図5の下部には、上述の平面視の積層体10aにおけるa−a’断面の側断面図とb−b’断面の側断面図とをそれぞれ示している。a−a’断面及びb−b’断面の各位置は図2の場合と同様である。未焼成の積層体10aのa−a’断面とb−b’断面のいずれにおいても、平坦な直線状の断面形状を有する点では図2と共通であるが、それぞれの長さが異なる。すなわち、図5の各側面S1の形状に対応して、外縁部のa−a’断面の直線に沿った線長はL3であり、中央部のb−b’断面の直線に沿った線長はL4であり、L3<L4の関係を満たしている。   As shown in the top plan view of FIG. 5, the laminated body 10a is surrounded by four side surfaces S1 having an arc shape in plan view, and four corners C1 where the side surfaces S1 intersect are chamfered. The four corners C1 have an arc shape with a radius of curvature R1 in a plan view, and the four side surfaces S1 have an arc shape with a radius of curvature R2 in a plan view, and have a relationship of R1 <R2. Further, in the lower part of FIG. 5, a side sectional view of the a-a ′ section and a side sectional view of the b-b ′ section in the laminate 10 a in a plan view are shown. Each position in the a-a ′ cross section and the b-b ′ cross section is the same as that in FIG. 2. Although both the a-a ′ section and the b-b ′ section of the unfired laminated body 10a have the same flat cross-sectional shape, they are the same as those in FIG. That is, corresponding to the shape of each side surface S1 in FIG. 5, the line length along the straight line of the aa ′ cross section of the outer edge part is L3, and the line length along the straight line of the bb ′ cross section of the center part. Is L4, which satisfies the relationship L3 <L4.

次に、図6のセル焼成体10bは、上述したように、積層体10aの焼成時の加熱や発電動作時の酸化・還元サイクル又は熱サイクルによって積層方向への変形(反り)が生じている。図6の上部の平面図に示すように、セル焼成体10bにおいては、四辺における上述の4つの側面S1が図5の曲線状から平面視で直線状に変化していることがかわる。また、図6の下部には、平面視のセル焼成体10bにおけるa−a’断面の側断面図とb−b’断面の側断面図とをそれぞれ示している。a−a’断面及びb−b’断面の各位置と、接触面40の位置については、図3と同様である。まず、b−b’断面については、上述の積層方向の変形に起因して、平坦な直線状ではなく、断面の中央付近が上方に突出した曲線状の断面形状を有する。これに対し、a−a’断面については、中央付近が僅かに上方に湾曲しているが平坦に近い断面形状を有する。また、a−a’断面及びb−b’断面のいずれも、その両端が接触面40と接触していることがわかる。   Next, as described above, the cell fired body 10b in FIG. 6 is deformed (warped) in the stacking direction due to heating during firing of the laminated body 10a, oxidation / reduction cycle or thermal cycle during power generation operation. . As shown in the top plan view of FIG. 6, in the cell fired body 10 b, the four side surfaces S <b> 1 on the four sides change from the curved shape of FIG. 5 to a linear shape in plan view. Further, in the lower part of FIG. 6, a side sectional view of the a-a ′ section and a side sectional view of the b-b ′ section of the cell fired body 10 b in plan view are shown. The positions of the a-a ′ and b-b ′ sections and the position of the contact surface 40 are the same as those in FIG. 3. First, the b-b ′ cross-section has a curved cross-sectional shape in which the vicinity of the center of the cross-section protrudes upward, not due to the deformation in the stacking direction. On the other hand, the a-a ′ cross section has a cross-sectional shape that is slightly flat near the center but is nearly flat. Further, it can be seen that both ends of the a-a ′ cross section and the b-b ′ cross section are in contact with the contact surface 40.

ここで、図6の下部に示すように、a−a’断面の曲線に沿った線長をL1とし最大の高さをH1とするとともに、b−b’断面の曲線に沿った線長をL2とし最大の高さをH2とする。この場合、図3とは異なり、図6のそれぞれの線長L1、L2は、L1<L2の関係を満たす。これは、図5に示されるように未焼成時にa−a’断面に比べてb−b’断面が長い線長を有するので(L3<L4)、その関係を焼成後も維持するためである。一方、両方の高さH1、H2は、H1<H2の関係であるとともに、図3の高さH1’に比べて図6のH1は極めて小さくなっている。以上のような図3と図6との相違は、図5の積層体10aにおいて4つの側面S1を、平面視で直線状ではなく曲率半径R2の円弧状に形成したことに基づいている。   Here, as shown in the lower part of FIG. 6, the line length along the curve of the aa ′ cross section is L1, the maximum height is H1, and the line length along the curve of the bb ′ cross section is Let L2 be the maximum height. In this case, unlike FIG. 3, the line lengths L1 and L2 in FIG. 6 satisfy the relationship of L1 <L2. This is because the bb ′ section has a longer line length than the aa ′ section when unfired as shown in FIG. 5 (L3 <L4), so that the relationship is maintained even after firing. . On the other hand, both heights H1 and H2 have a relationship of H1 <H2, and H1 in FIG. 6 is extremely smaller than the height H1 ′ in FIG. The difference between FIG. 3 and FIG. 6 as described above is based on the fact that the four side surfaces S1 in the laminated body 10a of FIG.

図7は、本実施形態の図6のセル焼成体10bの構造を反映したセル本体10が接触面40(インターコネクタ20の表面)に接触するときの構造を模式的に表す斜視図である。図7に示すセル本体10は、中央部が上方に突出するとともに、外縁部の四隅の各角部及び各辺が全周にわたって接触面40に支持される構造であることがわかる。つまり、図4のような4点支えではなく、接触面40との接触面積(接触長さ)を十分に保つことができる。なお、理想的な接触状態は図7に示すようにセル本体10の各角部及び各辺の全ての領域が接触面40に支持されることであるが、実際にはセル本体10の各角部及び各辺が部分的に接触面40に支持される構造であってもよい。このように、本実施形態の構造を採用することにより、セル本体10に対して積層方向に応力が加わったとしても、図4の構造で問題となるセル本体10の割れ等の不良を確実に防止する効果がある。   FIG. 7 is a perspective view schematically showing the structure when the cell body 10 reflecting the structure of the cell fired body 10b of FIG. 6 of the present embodiment contacts the contact surface 40 (the surface of the interconnector 20). It can be seen that the cell body 10 shown in FIG. 7 has a structure in which the central portion protrudes upward, and the corners and sides of the four corners of the outer edge are supported by the contact surface 40 over the entire circumference. That is, not the four-point support as shown in FIG. 4, but the contact area (contact length) with the contact surface 40 can be sufficiently maintained. It should be noted that the ideal contact state is that each corner of the cell body 10 and all the regions on each side are supported by the contact surface 40 as shown in FIG. A structure in which the portion and each side are partially supported by the contact surface 40 may be used. As described above, by adopting the structure of the present embodiment, even if stress is applied to the cell body 10 in the stacking direction, defects such as cracking of the cell body 10 which are problematic in the structure of FIG. There is an effect to prevent.

なお、図5〜図7の例では、積層体10aが平面視で円弧状の側面S1に囲まれているが、積層体10aの外周形状を構成する側面S1は、円弧状に限らず、平面視で多様な形状で形成することができる。ただし、積層体10aを焼成したセル焼成体10bの各辺が少なくとも部分的に接触面40により支持されることが前提である。また、図5の積層体10aは平面視で各角部C1が円弧状に面取りされているが(R面取り)、直線状に面取りしてもよく(C面取り)、あるいは面取りをしない場合であっても本発明の適用が可能である。   5 to 7, the laminated body 10a is surrounded by the arc-shaped side surface S1 in a plan view. However, the side surface S1 constituting the outer peripheral shape of the laminated body 10a is not limited to the arc shape, and may be a plane. It can be formed in various shapes visually. However, it is a premise that each side of the cell fired body 10b obtained by firing the laminate 10a is at least partially supported by the contact surface 40. Further, in the laminated body 10a in FIG. 5, each corner C1 is chamfered in an arc shape in a plan view (R chamfering), but may be chamfered in a straight line (C chamfering) or not chamfered. However, the present invention can be applied.

以下、図5及び図6の構造を有するセル本体10の具体的な寸法例を挙げる。まず、図5の積層体10aの外縁部及び中央部の長さL3、L4は、例えば、L3=150mm、L4=150.008mmに設定される。また、図6のセル焼成体10bの外縁部及び中央部の長さL1、L2は、例えば、L1=120mm、L2=120.006mmに設定される。また、図5の積層体10aの各角部C1の曲率半径R1及び各側面S1の曲率半径R2は、例えば、R1=3mm、R2=60.003mmに設定される。この場合、図6のセル焼成体10bにおける最大の高さH2、H1の差は、例えば、H2−H1=0.6mm程度になる。なお、積層体10aの長さL3、L4の比率やセル焼成体10bの長さL1、L2の比率に関し、図5及び図6では強調されているが、実際には僅かな相違を持たせるのみで本実施形態の効果を得ることができる。   Hereinafter, specific examples of dimensions of the cell body 10 having the structure of FIGS. 5 and 6 will be described. First, the lengths L3 and L4 of the outer edge part and the center part of the laminated body 10a of FIG. 5 are set to L3 = 150 mm and L4 = 150.008 mm, for example. Moreover, the lengths L1 and L2 of the outer edge part and the center part of the cell fired body 10b of FIG. 6 are set to L1 = 120 mm and L2 = 1200.06 mm, for example. Moreover, the curvature radius R1 of each corner | angular part C1 of the laminated body 10a of FIG. 5 and the curvature radius R2 of each side surface S1 are set to R1 = 3 mm and R2 = 60.003 mm, for example. In this case, the difference between the maximum heights H2 and H1 in the cell fired body 10b of FIG. 6 is, for example, about H2−H1 = 0.6 mm. Note that the ratio of the lengths L3 and L4 of the laminated body 10a and the ratio of the lengths L1 and L2 of the cell fired body 10b are emphasized in FIGS. 5 and 6, but only a slight difference is actually given. Thus, the effect of this embodiment can be obtained.

図5及び図6の構造を有するセル本体10を作製し、信頼性の試験を実施した。すなわち、従来の構造を有するセル本体10と本実施形態の構造を有するセル本体10とをそれぞれ含む複数の単位セル1に対し、所定の条件で酸化/還元サイクル及び熱サイクルの試験を実施した後、セル本体10の割れ等による不良が発生する比率を求めた。その結果、従来の構造を有するセル本体10の場合は、不良比率が9.1%(総数2299個中、不良が210個)であったの対し、本実施形態の構造を有するセル本体10の場合は、不良比率が2.0%(総数1023個中、不良が20個)となり、不良比率を大幅に低減可能であることが確認された。   A cell body 10 having the structure shown in FIGS. 5 and 6 was produced and a reliability test was performed. That is, after performing the oxidation / reduction cycle and thermal cycle tests on the plurality of unit cells 1 each including the cell body 10 having the conventional structure and the cell body 10 having the structure of the present embodiment under predetermined conditions. The ratio of occurrence of defects due to cracking of the cell body 10 was determined. As a result, in the case of the cell body 10 having the conventional structure, the defect ratio was 9.1% (out of the total 2299, 210 defects), whereas the cell body 10 having the structure of the present embodiment. In this case, the defect ratio was 2.0% (20 defects out of the total 1023), and it was confirmed that the defect ratio can be greatly reduced.

本実施形態において、上述のセル本体10の構造について具体的に説明したが、本発明は上述の構造には限られることなく多様な変形例に対して適用することができる。図8は、本実施形態の変形例に係るセル本体10に関し、図5に対応する積層体10aの模式的な平面図を示している。図8の変形例においては、積層体10aが平面視で曲線状ではなく直線状の8つの側面S2に囲まれている。すなわち、図5の1つの円弧状の側面S1が、図8の2つの直線状の側面S2に対応し、全部で8つの側面S2により積層体10aの外周形状が形成される。これらの8つの側面S2は平面視で等しい長さを有している。図8の変形例においては、図5の各辺の中央に相当する位置Pで2つの側面S2が交差しており、2つの側面S2が位置Pにて交差する角度を適切に設定することにより、図5〜図7の構造と同様の効果を得ることができる。図8の積層体10aを焼成して得られたセル焼成体10bは、8つの側面S2の全体が接触面40により支持されない場合であっても、角部C1に加えて8つの側面S2が部分的に接触面40により支持されていればよい。なお、図8の変形例では示されないが、各角部C1をR面取りやC面取りなどによって面取りしてもよい。   In the present embodiment, the structure of the above-described cell body 10 has been specifically described. However, the present invention is not limited to the above-described structure, and can be applied to various modifications. FIG. 8 is a schematic plan view of a stacked body 10a corresponding to FIG. 5 with respect to the cell body 10 according to the modified example of the present embodiment. In the modification of FIG. 8, the stacked body 10 a is surrounded by eight straight side surfaces S <b> 2 instead of a curved shape in plan view. That is, one arcuate side surface S1 in FIG. 5 corresponds to the two linear side surfaces S2 in FIG. 8, and the outer peripheral shape of the laminate 10a is formed by a total of eight side surfaces S2. These eight side surfaces S2 have the same length in plan view. In the modification of FIG. 8, two side surfaces S2 intersect at a position P corresponding to the center of each side in FIG. 5, and the angle at which the two side surfaces S2 intersect at the position P is set appropriately. The effect similar to the structure of FIGS. 5-7 can be acquired. In the cell fired body 10b obtained by firing the laminated body 10a of FIG. 8, the eight side surfaces S2 in addition to the corner portion C1 are partially formed even when the entire eight side surfaces S2 are not supported by the contact surface 40. In other words, it may be supported by the contact surface 40. Although not shown in the modified example of FIG. 8, each corner C1 may be chamfered by R chamfering, C chamfering, or the like.

次に、本実施形態の単位セル1の製造方法のうち本実施形態の特徴的な構造に関連する工程について補足的に説明する。まず、セル本体10に対応する積層体10a及びセル焼成体10bの作製については、図2〜図7を参照して説明した通りである(セル本体形成工程)。一方、周知の手法で、金属の薄板の打ち抜き加工により、中央に開口部を有する隔離セパレータ25を作製する。次いで、セル接合部材としての隔離セパレータ25に対し、図3の位置関係でセル本体10の位置合せを行い、隔離セパレータ25の底面とセル本体10の外縁部の上面とを例えばロウ材を用いて接合する(接合工程)。その後、一体化されたセル本体10及び隔離セパレータ25を金属フレーム24に取り付けるとともに、図1に示すガスシール部材26、27、燃料極側集電体22、空気極側集電体23、インターコネクタ20、21を一体的に積層形成して単位セル1が作製される。   Next, the steps related to the characteristic structure of the present embodiment in the method for manufacturing the unit cell 1 of the present embodiment will be supplementarily described. First, the production of the laminate 10a and the cell fired body 10b corresponding to the cell body 10 is as described with reference to FIGS. 2 to 7 (cell body forming step). On the other hand, an isolation separator 25 having an opening at the center is manufactured by a known technique by punching a thin metal plate. Then, the cell body 10 is aligned with respect to the separator 25 as a cell joining member in the positional relationship shown in FIG. 3, and the bottom surface of the separator 25 and the upper surface of the outer edge of the cell body 10 are, for example, using brazing material. Join (joining process). Thereafter, the integrated cell body 10 and isolation separator 25 are attached to the metal frame 24, and the gas seal members 26 and 27, the fuel electrode side current collector 22, the air electrode side current collector 23, and the interconnector shown in FIG. 20 and 21 are integrally laminated to form the unit cell 1.

なお、上述の説明では、固体酸化物形燃料電池の基本的な構成単位である単位セル1を作製する場合を説明したが、複数個の単位セル1を積層して作製される燃料電池スタックに対しても、本発明の適用が可能である。   In the above description, the case where the unit cell 1 which is a basic structural unit of the solid oxide fuel cell is manufactured has been described. However, the fuel cell stack manufactured by stacking a plurality of unit cells 1 is used. Also, the present invention can be applied.

以上、本実施形態に基づき本発明の内容を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で多様な変更を施すことができる。例えば、本実施形態の単位セル1は、セル本体10が燃料極層11、固体電解質層12、空気極層13から構成されるが、セル本体10がこれら各層とは別の機能層を含んでいてもよい。また、本実施形態の単位セル1は、セル本体10の四隅と四辺が所定の部材であるインターコネクタ20の表面に支持可能な構造を有するが、所定の部材はインターコネクタ20には限られず、配置可能な他の部材であってもよい。さらに、その他の点についても上記実施形態により本発明の内容が限定されるものではなく、本発明の作用効果を得られる範囲内で、上記実施形態に開示した内容には限定されることなく適宜に変更可能である。   The contents of the present invention have been specifically described above based on the present embodiment, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. For example, in the unit cell 1 of the present embodiment, the cell body 10 includes the fuel electrode layer 11, the solid electrolyte layer 12, and the air electrode layer 13, but the cell body 10 includes functional layers different from these layers. May be. Further, the unit cell 1 of the present embodiment has a structure that can be supported on the surface of the interconnector 20 whose four corners and four sides of the cell body 10 are predetermined members, but the predetermined member is not limited to the interconnector 20. Other members that can be arranged may be used. Further, the contents of the present invention are not limited to the above-described embodiments by other embodiments, and the present invention is not limited to the contents disclosed in the above-described embodiments within the range where the effects of the present invention can be obtained. Can be changed.

1…固体酸化物形燃料電池セル(単位セル)
10…セル本体
10a…積層体
10b…セル焼成体
11…燃料極層
12…固体電解質層
13…空気極層
20、21…インターコネクタ
22…燃料極側集電体
23…空気極側集電体
24…金属フレーム
25…隔離セパレータ
26、27…ガスシール部材
40…接触面
1. Solid oxide fuel cell (unit cell)
DESCRIPTION OF SYMBOLS 10 ... Cell main body 10a ... Laminated body 10b ... Cell sintered body 11 ... Fuel electrode layer 12 ... Solid electrolyte layer 13 ... Air electrode layer 20, 21 ... Interconnector 22 ... Fuel electrode side collector 23 ... Air electrode side collector 24 ... metal frame 25 ... isolation separators 26, 27 ... gas seal member 40 ... contact surface

Claims (10)

燃料極層と、空気極層と、一方の面側に前記燃料極層が配置され他方の面側に前記空気極層が配置された固体電解質層とを積層及び焼成して形成されたセル本体を備えた固体酸化物形燃料電池において、
前記セル本体は、平面視で直線状の四辺を含む方形の外周形状を有するとともに、前記方形の中央部における積層方向の高さが前記方形の四辺における積層方向の高さに比べて高く、積層方向において凸状の断面形状を有し、
前記セル本体の周縁部は、前記方形の四隅と、前記四辺の全体又は部分とが、所定の部材に接触した状態で支持可能な構造を有することを特徴とする固体酸化物形燃料電池。
A cell body formed by laminating and firing a fuel electrode layer, an air electrode layer, and a solid electrolyte layer in which the fuel electrode layer is disposed on one side and the air electrode layer is disposed on the other side In a solid oxide fuel cell comprising:
The cell body has a rectangular outer peripheral shape including four sides that are linear in a plan view, and the height in the stacking direction at the center of the square is higher than the height in the stacking direction at the four sides of the square. Has a convex cross-sectional shape in the direction,
Peripheral edge, and four corners of the square, and all or part of the four sides, the solid oxide fuel cell characterized by having a support structure capable in contact with the predetermined member and the cell body.
燃料極層と、空気極層と、一方の面側に前記燃料極層が配置され他方の面側に前記空気極層が配置された固体電解質層とを積層及び焼成して形成されたセル本体を備えた固体酸化物形燃料電池において、
前記セル本体は、平面視で直線状の四辺を含む方形の外周形状を有するとともに、前記方形の中央部における積層方向の高さが前記方形の四辺における積層方向の高さに比べて高く、積層方向において凸状の断面形状を有し、
前記断面形状に含まれる曲線群のうち、前記中央部を通り前記方形の各辺と平面視で平行な第1の曲線は、前記各辺の近傍を通り前記第1の曲線と平面視で平行な第2の曲線の線長に比べて長い線長を有することを特徴とする固体酸化物形燃料電池。
A cell body formed by laminating and firing a fuel electrode layer, an air electrode layer, and a solid electrolyte layer in which the fuel electrode layer is disposed on one side and the air electrode layer is disposed on the other side In a solid oxide fuel cell comprising:
The cell body has a rectangular outer peripheral shape including four sides that are linear in a plan view, and the height in the stacking direction at the center of the square is higher than the height in the stacking direction at the four sides of the square. Has a convex cross-sectional shape in the direction,
Of the group of curves included in the cross-sectional shape, a first curve that passes through the central portion and is parallel to the sides of the square in plan view passes through the vicinity of the sides and is parallel to the first curve in plan view. A solid oxide fuel cell having a long line length compared to the line length of the second curve.
前記セル本体は、前記方形の四隅において面取りされた外周形状を有することを特徴とする請求項1又は2に記載の固体酸化物形燃料電池。   3. The solid oxide fuel cell according to claim 1, wherein the cell body has an outer peripheral shape chamfered at four corners of the square. 前記セル本体の周縁部に接合された平板状のセル接合部材を更に備えたことを特徴とする請求項1から3のいずれか一項に記載の固体酸化物形燃料電池。 The solid oxide fuel cell according to any one of claims 1 to 3, further comprising a plate-shaped cell joining member joined to a peripheral edge of the cell body. 少なくとも支持基体層を含む複数の平板状のシートを積層し、平面視で外周側に湾曲又は突出した四辺を含む外周形状を有する積層体を形成する積層工程と、
前記積層体を焼成してセル焼成体を形成し、当該セル焼成体を含むセル本体を形成するセル本体形成工程と、
を含み、
前記セル本体は、平面視で直線状の四辺を含む方形の外周形状を有するとともに、前記方形の中央部における積層方向の高さが前記方形の四辺における積層方向の高さに比べて高く、積層方向において凸状の断面形状を有し、
前記セル本体の周縁部は、前記方形の四隅と、前記四辺の全体又は部分とが、所定の部材に接触した状態で支持可能な構造に形成されることを特徴とする固体酸化物形燃料電池の製造方法。
A laminating step of laminating a plurality of flat sheets including at least a support base layer, and forming a laminate having an outer peripheral shape including four sides curved or protruded on the outer peripheral side in plan view;
A cell body forming step of firing the laminate to form a cell fired body, and forming a cell body including the cell fired body,
Including
The cell body has a rectangular outer peripheral shape including four sides that are linear in a plan view, and the height in the stacking direction at the center of the square is higher than the height in the stacking direction at the four sides of the square. Has a convex cross-sectional shape in the direction,
Peripheral edge of the cell body, and the four corners of the square, and all or part of the four sides, the solid oxide fuel, characterized in that it is formed in the support structure capable in contact with a predetermined member Battery manufacturing method.
少なくとも支持基体層を含む複数の平板状のシートを積層し、平面視で外周側に湾曲又は突出した四辺を含む外周形状を有するとともに平坦な断面形状を有する積層体を形成する積層工程と、
前記積層体を焼成してセル焼成体を形成し、当該セル焼成体を含むセル本体を形成するセル本体形成工程と、
を含み
前記セル本体は、平面視で直線状の四辺を含む方形の外周形状を有するとともに、前記方形の中央部における積層方向の高さが前記方形の四辺における積層方向の高さに比べて高く、積層方向において凸状の断面形状を有し、
前記セル本体の断面形状に含まれる曲線群のうち、前記中央部を通り前記方形の各辺に平行な第1の曲線は、前記各辺の近傍を通り前記第1の直線に平行な第2の曲線の線長に比べて長い線長を有することを特徴とする固体酸化物形燃料電池の製造方法。
A laminating step of laminating a plurality of flat sheets including at least a support base layer, and forming a laminate having a flat cross-sectional shape with an outer peripheral shape including four sides curved or protruded on the outer peripheral side in plan view;
A cell body forming step of firing the laminate to form a cell fired body, and forming a cell body including the cell fired body,
The cell body has a rectangular outer peripheral shape including four straight sides in plan view, and the height in the stacking direction at the center of the square is higher than the height in the stacking direction at the four sides of the square. , Having a convex cross-sectional shape in the stacking direction,
Of the group of curves included in the cross-sectional shape of the cell body, a first curve that passes through the central portion and is parallel to each side of the square is a second curve that passes through the vicinity of each side and is parallel to the first straight line. A method for producing a solid oxide fuel cell, characterized by having a long line length compared to the line length of the curve.
前記積層体は、前記方形の四隅の各々が第1の曲率半径で円弧状に面取りされ、前記四辺の各々が前記第1の曲率半径より大きい第2の曲率半径を有する円弧状の曲線であることを特徴とする請求項5又は6に記載の固体酸化物形燃料電池の製造方法。   The laminated body is an arcuate curve in which each of the four corners of the square is chamfered in an arc shape with a first radius of curvature, and each of the four sides has a second radius of curvature larger than the first radius of curvature. The method for producing a solid oxide fuel cell according to claim 5 or 6. 前記セル本体形成工程は、前記セル焼成体の表面に所定の層を積層して前記セル本体を形成する第2の積層工程を含むことを特徴とする請求項5から7のいずれか一項に記載の固体酸化物形燃料電池の製造方法。   The said cell main body formation process includes the 2nd lamination process of laminating | stacking a predetermined layer on the surface of the said cell baking body, and forming the said cell main body, It is any one of Claim 5 to 7 characterized by the above-mentioned. The manufacturing method of the solid oxide fuel cell of description. 前記支持基体層は前記燃料極層であり、前記所定の層は前記空気極層であることを特徴とする請求項に記載の固体酸化物形燃料電池の製造方法。 9. The method for manufacturing a solid oxide fuel cell according to claim 8 , wherein the support base layer is the fuel electrode layer, and the predetermined layer is the air electrode layer. 燃料極層と、空気極層と、一方の面側に前記燃料極層が配置され他方の面側に前記空気極層が配置された固体電解質層とを積層及び焼成して形成された固体酸化物形燃料電池セル本体において、
前記セル本体は、平面視で直線状の四辺を含む方形の外周形状を有するとともに、前記方形の中央部における積層方向の高さが前記方形の四辺における積層方向の高さに比べて高く、積層方向において凸状の断面形状を有することを特徴とする固体酸化物形燃料電池セル本体。
Solid oxidation formed by laminating and firing a fuel electrode layer, an air electrode layer, and a solid electrolyte layer in which the fuel electrode layer is disposed on one surface side and the air electrode layer is disposed on the other surface side In the body fuel cell body,
The cell body has a rectangular outer peripheral shape including four sides that are linear in a plan view, and the height in the stacking direction at the center of the square is higher than the height in the stacking direction at the four sides of the square. A solid oxide fuel cell main body having a convex cross-sectional shape in a direction.
JP2011229922A 2011-10-19 2011-10-19 Solid oxide fuel cell, solid oxide fuel cell main body, and method for producing solid oxide fuel cell Active JP5727915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011229922A JP5727915B2 (en) 2011-10-19 2011-10-19 Solid oxide fuel cell, solid oxide fuel cell main body, and method for producing solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011229922A JP5727915B2 (en) 2011-10-19 2011-10-19 Solid oxide fuel cell, solid oxide fuel cell main body, and method for producing solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2013089496A JP2013089496A (en) 2013-05-13
JP5727915B2 true JP5727915B2 (en) 2015-06-03

Family

ID=48533194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011229922A Active JP5727915B2 (en) 2011-10-19 2011-10-19 Solid oxide fuel cell, solid oxide fuel cell main body, and method for producing solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5727915B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6800546B2 (en) 2018-04-23 2020-12-16 森村Sofcテクノロジー株式会社 Complex and electrochemical reaction cell stack
JP6591101B1 (en) * 2019-01-29 2019-10-16 日本碍子株式会社 Fuel cell
JP7147631B2 (en) * 2019-03-01 2022-10-05 株式会社デンソー Solid oxide fuel cell stack and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219316A (en) * 2001-01-25 2002-08-06 National House Industrial Co Ltd Air cleaning member and method for manufacturing the same
JP4658524B2 (en) * 2004-06-15 2011-03-23 日本特殊陶業株式会社 Solid electrolyte fuel cell
JP4476721B2 (en) * 2004-07-05 2010-06-09 東京瓦斯株式会社 Flat plate type solid oxide fuel cell and method for producing the same
JP2006253434A (en) * 2005-03-11 2006-09-21 Tdk Corp Process for producing multilayer ceramic substrate

Also Published As

Publication number Publication date
JP2013089496A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
JP5679893B2 (en) Solid oxide fuel cell and method for producing the same
JP5172207B2 (en) Thin plate for single cell of solid oxide fuel cell
JP6317222B2 (en) Solid oxide fuel cell stack
JP6147606B2 (en) Solid oxide fuel cell stack
JP2015153672A (en) fuel cell stack
JP6185316B2 (en) Fuel cell with separator, method for manufacturing the same, and fuel cell stack
US20160197359A1 (en) Solid oxide fuel cell stack and manufacturing method therefor
JP5325017B2 (en) Solid oxide fuel cell and assembly method thereof
JP5727915B2 (en) Solid oxide fuel cell, solid oxide fuel cell main body, and method for producing solid oxide fuel cell
JP5955719B2 (en) Method for producing molded article for solid oxide fuel cell
JP6177620B2 (en) Solid oxide fuel cell stack and interconnector with separator
JP5705636B2 (en) Solid oxide fuel cell
JP2013037789A (en) Fuel cell
JP5734582B2 (en) Solid oxide fuel cell and method for producing the same
JP6563279B2 (en) Method for producing a single fuel cell
JP2015032557A (en) Solid oxide fuel cell stack and interconnector with separator
JP4470474B2 (en) Solid oxide fuel cell
JP5650443B2 (en) Solid oxide fuel cell and method for producing the same
JP6965041B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP5326330B2 (en) Solid electrolyte fuel cell and manufacturing method thereof
JP5650019B2 (en) Solid oxide fuel cell
JP6637939B2 (en) Fuel cell and cell stack device
JP2009206080A (en) Solid oxide fuel cell
US11489187B2 (en) Cell stack device
CN110945698B (en) Fuel cell unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150403

R150 Certificate of patent or registration of utility model

Ref document number: 5727915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250