JP4476721B2 - Flat plate type solid oxide fuel cell and method for producing the same - Google Patents

Flat plate type solid oxide fuel cell and method for producing the same Download PDF

Info

Publication number
JP4476721B2
JP4476721B2 JP2004198706A JP2004198706A JP4476721B2 JP 4476721 B2 JP4476721 B2 JP 4476721B2 JP 2004198706 A JP2004198706 A JP 2004198706A JP 2004198706 A JP2004198706 A JP 2004198706A JP 4476721 B2 JP4476721 B2 JP 4476721B2
Authority
JP
Japan
Prior art keywords
cell
solid oxide
oxide fuel
fuel cell
corners
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004198706A
Other languages
Japanese (ja)
Other versions
JP2006024371A (en
Inventor
好孝 馬場
輝浩 桜井
久孝 矢加部
慶 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2004198706A priority Critical patent/JP4476721B2/en
Publication of JP2006024371A publication Critical patent/JP2006024371A/en
Application granted granted Critical
Publication of JP4476721B2 publication Critical patent/JP4476721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、平板型固体酸化物形燃料電池およびその作製方法に関し、より詳しくは平板型固体酸化物形燃料電池、平板型固体酸化物形燃料電池スタックおよびそれらの作製方法に関する。   The present invention relates to a flat solid oxide fuel cell and a manufacturing method thereof, and more particularly to a flat solid oxide fuel cell, a flat solid oxide fuel cell stack, and a manufacturing method thereof.

固体酸化物形燃料電池(Solid Oxide Fuel Cell:以下適宜SOFCと略称する)の単電池すなわちセルは、固体酸化物電解質を挟んで燃料極および空気極が配置され、燃料極/電解質/空気極の三層ユニットで構成される。本明細書中、固体酸化物電解質を適宜「電解質」または「電解質膜」とも言う。また、空気極は、酸化剤ガスとして酸素が用いられる場合は酸素極であるが、本明細書においては、酸化剤ガスとして酸素または酸素富化空気が用いられる場合を含めて空気極という。   A unit cell of a solid oxide fuel cell (hereinafter abbreviated as SOFC as appropriate), that is, a fuel electrode and an air electrode are arranged with a solid oxide electrolyte in between, and a fuel electrode / electrolyte / air electrode Consists of three-layer units. In the present specification, the solid oxide electrolyte is also referred to as “electrolyte” or “electrolyte membrane” as appropriate. The air electrode is an oxygen electrode when oxygen is used as the oxidant gas, but in this specification, the air electrode is referred to as an air electrode including the case where oxygen or oxygen-enriched air is used as the oxidant gas.

電解質材料としては、例えばイットリア安定化ジルコニア(YSZ)等のシート状焼結体が用いられ、燃料極としては、例えばニッケルとイットリア安定化ジルコニアの混合物(Ni/YSZサーメット)等の多孔質体が用いられ、空気極としては、例えばSrドープのLaMnO3等の多孔質体が用いられ、通常、電解質材料の両面に燃料極と空気極を焼き付けることによりセルが構成される。その作動時に、空気極に供給される空気中の酸素は空気極で酸化物イオン(O2-)となり、電解質を通って燃料極に至る。ここで、燃料極に供給される燃料と反応して電子を放出し、電気と水、二酸化炭素等の反応生成物とを生成する。空気極での利用済み空気は空気極オフガスとして排出され、燃料極での利用済み燃料は燃料オフガスとして排出される。 As the electrolyte material, for example, a sheet-like sintered body such as yttria stabilized zirconia (YSZ) is used, and as the fuel electrode, a porous body such as a mixture of nickel and yttria stabilized zirconia (Ni / YSZ cermet) is used. As the air electrode, for example, a porous body such as Sr-doped LaMnO 3 is used, and the cell is usually formed by baking the fuel electrode and the air electrode on both surfaces of the electrolyte material. During the operation, oxygen in the air supplied to the air electrode becomes oxide ions (O 2− ) at the air electrode, and reaches the fuel electrode through the electrolyte. Here, it reacts with the fuel supplied to the fuel electrode and emits electrons to generate electricity and reaction products such as water and carbon dioxide. Used air at the air electrode is discharged as an air electrode off gas, and used fuel at the fuel electrode is discharged as a fuel off gas.

ところで、従来のSOFCはその作動温度が1000〜800℃程度と高いが、最近ではそれ以下、800〜650℃程度の範囲、例えば750℃程度の温度で作動するSOFCが開発されつつある。図1はそのSOFCのセルの態様例を説明する図で、断面図を示している。図1のとおり、セル1は、燃料極2の上に電解質膜3が配置され、電解質膜3の上に空気極4が配置されて構成される。   By the way, a conventional SOFC has a high operating temperature of about 1000 to 800 ° C., but recently, an SOFC operating at a temperature of about 800 to 650 ° C., for example, about 750 ° C. is being developed. FIG. 1 is a diagram for explaining an example of the SOFC cell and shows a cross-sectional view. As shown in FIG. 1, the cell 1 includes an electrolyte membrane 3 disposed on a fuel electrode 2 and an air electrode 4 disposed on the electrolyte membrane 3.

固体酸化物電解質として例えばYSZ等のジルコニア系やLaGaO3系などの電解質材料が用いられ、これを膜厚の厚い燃料極で支持するように構成されており、支持膜式と称される。支持膜式においては、電解質膜の膜厚を薄く構成でき、その膜厚が例えば10μm程度となり、800〜650℃という低温で運転できる。このため、インターコネクタなどの構成材料として耐熱合金、例えばステンレス鋼などの安価な材料の使用を可能とし、また小型化が可能であるなど各種利点を有する。 For example, a zirconia-based or LaGaO 3 -based electrolyte material such as YSZ is used as the solid oxide electrolyte, which is configured to be supported by a thick fuel electrode, and is referred to as a support membrane type. In the support membrane type, the thickness of the electrolyte membrane can be reduced. The thickness of the membrane is, for example, about 10 μm, and it can be operated at a low temperature of 800 to 650 ° C. For this reason, it is possible to use a heat-resistant alloy, such as stainless steel, as a constituent material for the interconnector or the like, and it has various advantages such as miniaturization.

空気極側に酸化剤ガス、例えば空気を流し、燃料極側に燃料を流して、両電極を外部負荷に接続することで電力が得られる。セル一つでは高い電圧は得られないので、セルとセルをインターコネクタを介して交互に積層配置してスタック化される。すなわち、隣接するセルを電気的に接続すると同時に空気極と燃料極のそれぞれに空気と燃料とを分配し供給し排出する目的で、インターコネクタとセルとが交互に積層される。   Electric power can be obtained by flowing an oxidant gas, for example, air, on the air electrode side, flowing fuel on the fuel electrode side, and connecting both electrodes to an external load. Since a high voltage cannot be obtained with one cell, cells and cells are stacked by being alternately stacked via an interconnector. In other words, interconnectors and cells are alternately stacked for the purpose of electrically connecting adjacent cells and distributing, supplying, and discharging air and fuel to and from the air electrode and the fuel electrode, respectively.

図2〜3はその構成例を示す図で、セル1を二個、その間にインターコネクタ5を一個、上方セルの上面および下方セルの下面にそれぞれ枠体6(この枠体も一種のインターコネクタである)を備えてスタックを構成した場合を示している。インターコネクタ5には、セルに空気および燃料を供給するための複数個の溝状のガス流路が形成されている。これら部材は、図2に示すように荷重をかけることで積層される。   2 to 3 are diagrams showing an example of the configuration, in which two cells 1 and one interconnector 5 are provided between them, and a frame body 6 (this frame body is also a kind of interconnector) on the upper surface of the upper cell and the lower surface of the lower cell. This is a case where the stack is configured with The interconnector 5 is formed with a plurality of groove-like gas passages for supplying air and fuel to the cells. These members are stacked by applying a load as shown in FIG.

ところで、支持膜式SOFCのセルを模式的に示せば前述図1のように平面になる。しかし、セルは、その作製に際して焼成工程を必須とし、燃料極や電解質など、熱膨張率の異なる複数のセラミックス材料を重ね合わせて焼結することから、セラミックス材料間の熱膨張率の差が原因で、完全な平面ないしスタック化するに際して許容できる範囲の平面にはなり難く、反りや歪みが生じる。図4はその状態を示す図で、図4(a)は断面図、図4(b)は空気極側すなわち表面から見た斜視図、図4(c)は燃料極側すなわち裏面から見た斜視図である。   By the way, if the cell of the support membrane type SOFC is schematically shown, it becomes a plane as shown in FIG. However, the cell requires a firing process for its production, and a plurality of ceramic materials with different coefficients of thermal expansion, such as fuel electrodes and electrolytes, are stacked and sintered, causing the difference in coefficient of thermal expansion between the ceramic materials. Thus, it is difficult to achieve a complete flat surface or an acceptable flat surface for stacking, and warpage or distortion occurs. 4 (a) is a cross-sectional view, FIG. 4 (b) is a perspective view seen from the air electrode side, that is, the front surface, and FIG. 4 (c) is a view seen from the fuel electrode side, that is, the back surface. It is a perspective view.

まず、セルの燃料極2側すなわちその裏面は、図4(a)、図4(c)に示すように、中央部が凹み(窪み)、周縁部に向けて漸次湾曲して反りないし歪みが生じる。そして、図4(b)〜(c)中、Yとして示す四隅の部位が最も反りが大きい。すると、支持膜式SOFCのセルをスタック化した際に、その反りないし歪みにより、接触抵抗や分極抵抗が増大し、電気的接触にむらが生じて接触抵抗が増大し、発電性能を低下させてしまう。   First, as shown in FIGS. 4 (a) and 4 (c), the fuel electrode 2 side of the cell, that is, the back surface thereof, has a central portion that is recessed (dented) and gradually curves toward the peripheral portion, causing warping or distortion. Arise. And in FIG.4 (b)-(c), the site | part of the four corners shown as Y has the largest curvature. Then, when stacking the support membrane type SOFC cell, the warping or distortion increases contact resistance and polarization resistance, causing uneven electrical contact, increasing contact resistance, and reducing power generation performance. End up.

一方、セルの空気極4側すなわちその表面は、図4(a)、図4(b)に示すように、中央部が膨らみ、周縁部に向けて漸次湾曲して反りないし歪みが生じる。このセルをインターコネクタを介してスタック化する際には、その空気極4面にインターコネクタを当接させるが、その反りないし歪みにより、空気極4面とインターコネクタ間の接触が阻害され、電気的接触にむらが生じて接触抵抗を増大させ、発電性能を低下させてしまう。   On the other hand, on the air electrode 4 side of the cell, that is, the surface thereof, as shown in FIGS. 4A and 4B, the central portion swells and gradually curves toward the peripheral portion, causing warping or distortion. When stacking the cells via the interconnector, the interconnector is brought into contact with the surface of the air electrode 4, but the warpage or distortion impedes contact between the surface of the air electrode 4 and the interconnector. As a result, uneven contact occurs, increasing the contact resistance and reducing the power generation performance.

また、高い電圧を得るため複数個のセルをインターコネクタを介して積層するが、その際、接触抵抗や分極抵抗を低減するため、前述図2に示すように荷重をかけることで積層される。上記のようにセルが反った状態で組むと、すなわちその状態でスタック化すると、セルの中央部のみに荷重がかかり、そうするとセルに割れが生じることになり、これによっても発電性能を低下させてしまう。   In order to obtain a high voltage, a plurality of cells are stacked via an interconnector. At this time, the cells are stacked by applying a load as shown in FIG. 2 in order to reduce contact resistance and polarization resistance. If the cells are assembled in a warped state as described above, that is, if they are stacked in that state, a load is applied only to the center of the cell, which causes cracks in the cell, which also reduces power generation performance. End up.

図5は、そのような反りの問題を解決するものとして考えられる態様を説明する図で、固体電解質の表面の電極が、所定の間隔dを有するように小区画に区画される。例えば、特開平9−147887号公報の平板状固体電解質型燃料電池では、支持膜式ではないが、固体電解質板11の表面に、その電解質と同一材料により、所定の間隔dを有するように小区画に区画された多孔質の凹凸層12が形成される。そして、その凹凸層12の上面に空気極または燃料極としての電極が形成される。しかしこの場合、発電に寄与するのは凹凸層12の凸部であり、その凹部は電極と接触しないので、その分電気化学反応に寄与する面積が少なくなり、単位面積当たりの出力が低下してしまう。   FIG. 5 is a diagram for explaining an embodiment that can be considered as a solution to the problem of warping. The electrodes on the surface of the solid electrolyte are divided into small sections so as to have a predetermined distance d. For example, the flat solid electrolyte fuel cell disclosed in Japanese Patent Application Laid-Open No. 9-14787 is not a support membrane type, but the surface of the solid electrolyte plate 11 is made of the same material as the electrolyte so as to have a predetermined distance d. The porous uneven | corrugated layer 12 divided into the division is formed. Then, an electrode as an air electrode or a fuel electrode is formed on the upper surface of the uneven layer 12. However, in this case, it is the convex part of the concavo-convex layer 12 that contributes to power generation, and the concave part does not come into contact with the electrode, so the area contributing to the electrochemical reaction is reduced correspondingly, and the output per unit area is reduced. End up.

特開平9−147887号公報Japanese Patent Laid-Open No. 9-147887

本発明は、平板型固体酸化物形燃料電池の反りや歪みに起因する以上の問題を解決してなる平板型固体酸化物形燃料電池、平板型固体酸化物形燃料電池スタックおよびそれらの作製方法を提供することを目的とするものである。   The present invention relates to a flat solid oxide fuel cell, a flat solid oxide fuel cell stack, and a method for producing the same, which solve the above problems caused by warpage and distortion of the flat solid oxide fuel cell. Is intended to provide.

本発明は、(1)セル基板の四隅に曲面Rをつけることによりセルの反りを軽減し、電極反応での接触抵抗および分極抵抗を低減してなることを特徴とする平板型固体酸化物形燃料電池を提供し、また、本発明は(2)平板型固体酸化物形燃料電池スタックであって、セル基板の四隅に曲面Rをつけることによりセルの反りを軽減し、電極反応での接触抵抗および分極抵抗を低減してなるセルの複数個をインターコネクタを介して積層してなることを特徴とする平板型固体酸化物形燃料電池スタックを提供する。   The present invention provides: (1) A flat solid oxide form characterized by reducing curvature of a cell by providing curved surfaces R at four corners of a cell substrate, and reducing contact resistance and polarization resistance in an electrode reaction. A fuel cell is provided, and the present invention is (2) a flat plate type solid oxide fuel cell stack, wherein curved surfaces R are provided at four corners of a cell substrate to reduce cell warpage, and contact by electrode reaction. Provided is a flat plate type solid oxide fuel cell stack, in which a plurality of cells each having reduced resistance and polarization resistance are laminated via an interconnector.

本発明は、(3)セル基板の四隅を研磨または研削して曲面Rをつけることにより、セルの反りを軽減し、電極反応での接触抵抗および分極抵抗を低減することを特徴とする平板型固体酸化物形燃料電池の作製方法を提供し、また、本発明は(4)セル基板の四隅に曲面Rをつけることによりセルの反りを軽減し、電極反応での接触抵抗および分極抵抗を低減してなるセルの複数個を順次インターコネクタを介して積層することを特徴とする平板型固体酸化物形燃料電池スタックの作製方法を提供する。   The present invention is (3) a flat plate type characterized by reducing curvature of a cell and reducing contact resistance and polarization resistance in an electrode reaction by polishing or grinding four corners of a cell substrate to form curved surfaces R A method for producing a solid oxide fuel cell is provided, and the present invention (4) reduces curvature of the cell by providing curved surfaces R at the four corners of the cell substrate, and reduces contact resistance and polarization resistance in electrode reactions. A method for producing a flat plate type solid oxide fuel cell stack is provided, in which a plurality of cells are sequentially stacked via an interconnector.

本発明によれば、平板型固体酸化物形燃料電池のセルにおいて、(1)最も反りが大きい部位であるセル基板の四隅に曲面Rをつけることにより、セルの全体的な反りを軽減することができる、(2)複雑な応力がかかる四隅に曲面Rをつけることにより、より均一なセルとすることができる、(3)、(1)および(2)により電極反応での接触抵抗および分極抵抗を低減できる、(4)発電に寄与しない基板の四隅をカットするので、有効電極面積は変わらないので、出力密度すなわち発電性能は向上する、(5)高い電圧を得るため複数個のセルをインターコネクタを介して荷重をかけて積層する際、セルの割れを無くし、それに起因する発電性能の低下を防ぐことができる、など各種有用な効果を達成することができる。   According to the present invention, in a flat solid oxide fuel cell, (1) the curved surfaces R are provided at the four corners of the cell substrate, which is the most warped part, thereby reducing the overall warpage of the cell. (2) It is possible to obtain a more uniform cell by attaching curved surfaces R to the four corners to which complicated stress is applied. (3), (1) and (2) make contact resistance and polarization in electrode reaction possible. The resistance can be reduced. (4) Since the four corners of the substrate that do not contribute to power generation are cut, the effective electrode area does not change, so the output density, that is, the power generation performance is improved. (5) Multiple cells are provided to obtain a high voltage. When stacking by applying a load via the interconnector, various useful effects such as elimination of cell cracking and prevention of deterioration of power generation performance due to the cell crack can be achieved.

本発明(1)は、平板型固体酸化物形燃料電池である。そして、セル基板の四隅に曲面Rをつけることによりセルの反りを軽減し、電極反応での接触抵抗および分極抵抗を低減してなることを特徴とする。本発明(2)は平板型固体酸化物形燃料電池スタックである。そしてセル基板の四隅に曲面Rをつけることによりセルの反りを軽減し、電極反応での接触抵抗および分極抵抗を低減してなるセルの複数個をインターコネクタを介して積層してなることを特徴とする。   The present invention (1) is a flat plate solid oxide fuel cell. Then, by providing curved surfaces R at the four corners of the cell substrate, the warpage of the cell is reduced, and the contact resistance and the polarization resistance in the electrode reaction are reduced. The present invention (2) is a flat plate type solid oxide fuel cell stack. Then, the curvature of the cell is reduced by providing curved surfaces R at the four corners of the cell substrate, and a plurality of cells having reduced contact resistance and polarization resistance in the electrode reaction are laminated via an interconnector. And

また、本発明(3)は、平板型固体酸化物形燃料電池の作製方法である。そして、セル基板の四隅を研磨または研削して曲面Rをつけることによりセルの反りを軽減し、電極反応での接触抵抗および分極抵抗を低減することを特徴とする。本発明(4)は、平板型固体酸化物形燃料電池スタックの作製方法である。そして、セル基板の四隅に曲面Rをつけることによりセルの反りを軽減し、電極反応での接触抵抗および分極抵抗を低減してなるセルの複数個を順次インターコネクタを介して積層することを特徴とする。   The present invention (3) is a method for producing a flat plate type solid oxide fuel cell. Then, the curvature of the cell is reduced by polishing or grinding the four corners of the cell substrate to form a curved surface R, and the contact resistance and the polarization resistance in the electrode reaction are reduced. The present invention (4) is a method for producing a flat plate type solid oxide fuel cell stack. Then, the curvature of the cell is reduced by attaching curved surfaces R to the four corners of the cell substrate, and a plurality of cells having reduced contact resistance and polarization resistance in electrode reaction are sequentially stacked via an interconnector. And

図6は本発明を説明する図で、図6(a)は平面図、図6(b)は空気極側すなわち表面から見た斜視図、図6(c)は燃料極側すなわち裏面から見た斜視図である。図6(a)〜(c)のとおり、セル基板の四隅を研削機等で研削するか、または研磨機等で研磨して曲面Rをつける。なおその際、必要に応じて四隅の部分の下面の一部を研削または研磨してもよい。曲面Rは、図6(b)〜(c)中Zとして示す部分の曲面であり、前述図4(b)〜(c)中Yとして示す部分に対応する部分である。図6(b)〜(c)では四隅のうち一隅にZの標示をしているが、他の三隅についても同様である。   6A and 6B are diagrams illustrating the present invention. FIG. 6A is a plan view, FIG. 6B is a perspective view seen from the air electrode side, that is, the front surface, and FIG. FIG. As shown in FIGS. 6A to 6C, the four corners of the cell substrate are ground with a grinding machine or the like, or polished with a polishing machine or the like to form curved surfaces R. At that time, a part of the lower surface of the four corners may be ground or polished as necessary. The curved surface R is a curved surface of a portion indicated by Z in FIGS. 6B to 6C, and corresponds to a portion indicated by Y in FIGS. 4B to 4C. In FIGS. 6B to 6C, Z is marked at one of the four corners, but the same applies to the other three corners.

図4のY部分と図6のZ部分を対比して見ると明らかなとおり、本発明適用前の、曲面RをつけていないセルにおけるYとして示す最も反りが大きい四隅の部位が、本発明を適用して曲面Rをつけたセルにおける、Zとして示す四隅の部位では、その反りがより小さく緩和されている。本発明においては、これにより、セルの反りを軽減し、電極反応での接触抵抗および分極抵抗を低減するものである。   As is clear from a comparison between the Y portion in FIG. 4 and the Z portion in FIG. 6, the four corner portions having the largest warpage indicated as Y in the cell without the curved surface R before application of the present invention are the present invention. In the cell with the curved surface R applied, the warpage is reduced to a smaller degree at the four corners indicated as Z. In the present invention, this reduces cell warpage and reduces contact resistance and polarization resistance in electrode reactions.

図7は、図4のセルの断面と図6のセルの断面を対比して示した図である。本発明適用前の曲面Rをつけていないセルでは反りが大きいため、空気極の最上部と燃料極の最下部との間隔が大きい。これに対して、本発明適用後の曲面Rをつけたセルでは反りが小さいため、空気極の最上部と燃料極の最下部との間隔が小さい。これにより、前記(1)〜(4)の効果に加え、高い電圧を得るため複数個のセルをインターコネクタを介して荷重をかけて積層する際、セルの割れを無くして発電性能の低下を防ぐことができる。   FIG. 7 is a diagram showing the cross section of the cell of FIG. 4 in comparison with the cross section of the cell of FIG. Since the warpage is large in the cell without the curved surface R before application of the present invention, the distance between the uppermost portion of the air electrode and the lowermost portion of the fuel electrode is large. On the other hand, since the warpage is small in the cell with the curved surface R after application of the present invention, the distance between the uppermost portion of the air electrode and the lowermost portion of the fuel electrode is small. As a result, in addition to the effects (1) to (4) described above, when stacking a plurality of cells under a load via an interconnector in order to obtain a high voltage, the cell generation is eliminated and the power generation performance is reduced. Can be prevented.

図8は、インターコネクタを介して積層する態様を示す図で、図8(a)は本発明を適用し、曲面Rをつけたセルを積層する態様、図8(b)は本発明適用前の曲面Rをつけないセルを積層する態様である。図8(a)のように、本発明により曲面Rをつけたセルでは、図8(b)のように曲面Rをつけない場合に比べて、反りが小さいため、空気極の最上部と燃料極の最下部との間隔が小さくなり、セルの割れを無くして発電性能の低下を防ぐことができる。   FIG. 8 is a diagram showing a mode of stacking via an interconnector. FIG. 8 (a) is a mode in which the present invention is applied, cells with curved surfaces R are stacked, and FIG. 8 (b) is a level before the present invention is applied. This is a mode in which cells without the curved surface R are stacked. As shown in FIG. 8 (a), the cell with the curved surface R according to the present invention is less warped than the case without the curved surface R as shown in FIG. 8 (b). The distance between the pole and the lowermost portion is reduced, and the cell can be prevented from cracking to prevent the power generation performance from being lowered.

以上、セルの面が正方形状ないしこれに近似の態様について説明したが、本発明はセルの面が長方形状その他、四隅に角部を有するSOFCセルのいずれにも適用される。また、本発明は、支持膜式の平板型固体酸化物形燃料電池のほか、電解質膜の厚い平板型固体酸化物形燃料電池など、いずれの平板型固体酸化物形燃料電池に対しても適用されるが、特に支持膜式の平板型固体酸化物形燃料電池に対して有用である。   As described above, the cell surface has a square shape or an embodiment similar to this, but the present invention is applicable to any of the SOFC cells having a rectangular cell surface and other corners at four corners. Further, the present invention is applicable to any flat plate solid oxide fuel cell such as a flat membrane solid oxide fuel cell having a thick electrolyte membrane, in addition to a support membrane type flat solid oxide fuel cell. However, it is particularly useful for a support membrane type flat solid oxide fuel cell.

セルにおける電解質の構成材料としては、イオン導電性を有する固体電解質であればよく、例えば下記(1)〜(4)の材料が挙げられるが、これらに限定されない。
(1) イットリア安定化ジルコニア〔YSZ:(Y23X(ZrO21-X(式中、x=0.05〜0.15〕
(2) スカンジア安定化ジルコニア〔(Sc23X(ZrO21-X(式中、x=0.05〜0.15)〕
(3) イットリアドープセリア〔(Y23X(CeO21-X(式中、x=0.02〜0.4)〕
(4) ガドリアドープセリア〔(Gd23X(CeO21-X(式中、x=0.02〜0.4)〕
The constituent material of the electrolyte in the cell may be a solid electrolyte having ionic conductivity, and examples thereof include, but are not limited to, the following materials (1) to (4).
(1) Yttria-stabilized zirconia [YSZ: (Y 2 O 3 ) X (ZrO 2 ) 1-X (where x = 0.05 to 0.15)
(2) Scandia-stabilized zirconia [(Sc 2 O 3 ) X (ZrO 2 ) 1-X (where x = 0.05 to 0.15)]
(3) Yttria-doped ceria [(Y 2 O 3 ) X (CeO 2 ) 1-X (where x = 0.02 to 0.4)]
(4) Gadria-doped ceria [(Gd 2 O 3 ) X (CeO 2 ) 1-X (where x = 0.02 to 0.4)]

セルの燃料極の構成材料としては、例えばNiを主成分とする材料、NiとYSZ〔(Y23X(ZrO21-X(式中、x=0.05〜0.15)〕との混合物からなる材料などが用いられるが、これらに限定されない。空気極の構成材料としては、例えばSrドープのLaMnO3やLa、Sr、CoおよびFeを含む複合酸化物(LSCF)などが用いられるが、これらに限定されない。SOFCスタックを構成する際のインターコネクタの構成材料としてはステンレス鋼等の耐熱性合金が用いられる。 As a constituent material of the fuel electrode of the cell, for example, a material containing Ni as a main component, Ni and YSZ [(Y 2 O 3 ) X (ZrO 2 ) 1-X (where x = 0.05 to 0.15) )] And the like. However, the material is not limited to these. As a constituent material of the air electrode, for example, Sr-doped LaMnO 3 or a composite oxide (LSCF) containing La, Sr, Co, and Fe is used, but is not limited thereto. A heat-resistant alloy such as stainless steel is used as a constituent material of the interconnector for constituting the SOFC stack.

SOFCスタックの燃料としては、炭化水素、都市ガス、LPガス、天然ガス、ガソリン、軽油、灯油、ディーゼル油、アルコール類(メチルアルコール、エチルアルコール等)、ジメチルエーテル(DME)などが用いられ、これらは予備改質して燃料極に供給される。   As fuel for the SOFC stack, hydrocarbons, city gas, LP gas, natural gas, gasoline, light oil, kerosene, diesel oil, alcohols (methyl alcohol, ethyl alcohol, etc.), dimethyl ether (DME), etc. are used. Preliminarily reformed and supplied to the fuel electrode.

以下、実施例を基に本発明をさらに詳しく説明するが、本発明が実施例に限定されないことはもちろんである。常法に従い図4に示すようなセルを作製し、その四隅を曲面に研削して図6に示すようなセルを作製し、性能試験を実施した。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, it cannot be overemphasized that this invention is not limited to an Example. A cell as shown in FIG. 4 was prepared in accordance with a conventional method, and the cells shown in FIG. 6 were prepared by grinding the four corners into curved surfaces, and a performance test was performed.

図9はそのセルの作製工程を示す図である。図9中、燃料極(アノード)、電解質および空気極(カソード)の構成原料を併記している。図9のとおり、原料粉を混合した後、造粒し、次いでプレス成形等によりグリーン基板を作製した。グラファイト粉末は成形を容易にするとともに、焼結時に多孔質とするための補助材である。次いで、グリーン基板上に、電解質の水性スラリーをスクリーン印刷により塗布することで電解質膜を形成した後、両者を共焼結した。   FIG. 9 is a diagram showing a manufacturing process of the cell. In FIG. 9, the constituent materials for the fuel electrode (anode), the electrolyte, and the air electrode (cathode) are also shown. As shown in FIG. 9, the raw material powder was mixed and then granulated, and then a green substrate was produced by press molding or the like. Graphite powder is an auxiliary material for facilitating molding and making it porous during sintering. Next, an aqueous electrolyte slurry was applied on a green substrate by screen printing to form an electrolyte membrane, and then both were co-sintered.

次いで、共焼結体のうち、電解質膜面上に空気極材料〔LSCF:(La0.6Sr0.4)Co0.2Fe0.83〕をスクリーン印刷により塗布した後、焼成して、燃料極/電解質/空気極の三層ユニットからなるSOFCセルを複数個作製した。こうして得られたSOFCセルを図9中に(a)として示している。図9(a)には併せて燃料極のおおよその寸法を示している。なお、電解質の面積は約144cm2(≒120mm×120mm)、空気極の面積は約100cm2(≒100mm×100mm)である。 Next, in the co-sintered body, an air electrode material [LSCF: (La 0.6 Sr 0.4 ) Co 0.2 Fe 0.8 O 3 ] is applied by screen printing on the electrolyte membrane surface, and then fired to obtain a fuel electrode / electrolyte / A plurality of SOFC cells composed of a three-layer unit of an air electrode were produced. The SOFC cell thus obtained is shown as (a) in FIG. FIG. 9A also shows the approximate dimensions of the fuel electrode. The area of the electrolyte is about 144 cm 2 (≈120 mm × 120 mm), and the area of the air electrode is about 100 cm 2 (≈100 mm × 100 mm).

次いで、複数個のSOFCセルのうちの一部のSOFCセルについて、本発明を適用してセル基板すなわち燃料極(アノード)の四隅を研削機で研削し、本発明を適用した平板型SOFCセルを作製した。こうして得られたSOFCセルを図9中に(b)として示している。図9(b)のとおり、セル基板すなわち燃料極(アノード)の四隅に曲面Rを形成した。   Next, the present invention is applied to some SOFC cells of a plurality of SOFC cells, and the cell substrate, that is, the four corners of the fuel electrode (anode) are ground with a grinding machine, and a flat plate SOFC cell to which the present invention is applied is obtained. Produced. The SOFC cell thus obtained is shown as (b) in FIG. As shown in FIG. 9B, curved surfaces R were formed at the four corners of the cell substrate, that is, the fuel electrode (anode).

〈性能試験〉
以上のようにして得られた図9(a)のSOFCセルおよび図9(b)のSOFCセルについて性能試験を実施した。本性能試験は、常法に従い、各セルを図10に示すように配置して実施した。図11はその結果を示す図である。図11中、横軸は電流密度、左縦軸は電圧、右縦軸は出力密度であり、また“黒□:処理前(反り大)”は図9(a)のセル、“○:処理後(反り小)”は図9(b)のセルについての測定値である。
<performance test>
A performance test was performed on the SOFC cell of FIG. 9A and the SOFC cell of FIG. 9B obtained as described above. This performance test was carried out by arranging each cell as shown in FIG. FIG. 11 is a diagram showing the results. In FIG. 11, the horizontal axis is the current density, the left vertical axis is the voltage, and the right vertical axis is the output density. “Black □: Before processing (large warpage)” is the cell in FIG. “After (small warpage)” is a measured value for the cell of FIG. 9B.

図11のとおり、まずセル電圧については、処理前(反り大)のセルでは電流密度が大きくなるに伴い低くなるが、その程度は大きい。電流密度0.27Acm-2で0.51Vとなり、電流密度0.37Acm-2では0.31Vにまで低下している。これに対して、処理後(反り小)のセルでは電流密度が大きくなるに伴い徐々に低くなるが、その程度は小さい。電流密度0.27Acm-2で0.76V、電流密度0.37Acm-2でも0.64Vもの値を示している。 As shown in FIG. 11, the cell voltage first decreases as the current density increases in the cell before processing (large warpage), but the degree is large. When the current density is 0.27 Acm −2 , the voltage is 0.51 V, and when the current density is 0.37 Acm −2 , the voltage decreases to 0.31 V. In contrast, the cell after processing (small warpage) gradually decreases as the current density increases, but the degree is small. A current density of 0.27 Acm −2 is 0.76 V, and a current density of 0.37 Acm −2 is 0.64 V.

次に、出力密度については、処理前(反り大)のセルでは電流密度が大きくなるに伴い徐々に高くなるがその程度は小さい。電流密度0.27〜0.31Acm-2で0.14Wcm-2となり、それ以降低下していき、電流密度0.37Acm-2では0.12Wcm-2にまで低下している。これに対して、処理後(反り小)のセルでは電流密度が大きくなるに伴い、それにほぼ比例して大きくなり、電流密度0.27Acm-2で0.2Wcm-2超となり、電流密度0.37Acm-2では0.24Wcm-2もの値を示している。 Next, the power density of the cell before processing (large warpage) gradually increases as the current density increases, but the level is small. Current density 0.27~0.31Acm -2 0.14Wcm -2 next, continue to decrease thereafter, it is reduced to 0.12Wcm -2 at a current density 0.37Acm -2. On the other hand, in the cell after processing (small warpage), as the current density increases, the current density increases in proportion to the current density, and the current density is 0.27 Acm −2 and exceeds 0.2 Wcm −2 . At 37 Acm -2 , a value of 0.24 Wcm -2 is shown.

すなわち、本発明適用前のセルの出力密度は最大0.14Wcm-2程度であるのに対して、本発明適用後のセルの出力密度は最大0.24Wcm-2程度となる。このように、セルの四隅を研削処理して曲面Rをつけ、反りを軽減することにより、セル電圧、出力密度ともに増大させることができる。 That is, the power density of the cell before application of the present invention is about 0.14 Wcm −2 at the maximum, whereas the power density of the cell after application of the present invention is about 0.24 Wcm −2 at the maximum. Thus, both the cell voltage and the output density can be increased by grinding the four corners of the cell to form curved surfaces R and reducing the warpage.

支持膜式SOFCの単セルの態様例を説明する図The figure explaining the example of a single cell of support membrane type SOFC 単セルの複数個をインターコネクタを介して交互に積層配置したSOFCスタックの構成例を示す図A diagram showing a configuration example of a SOFC stack in which a plurality of single cells are alternately stacked via an interconnector 単セルの複数個をインターコネクタを介して交互に積層配置したSOFCスタックの構成例を示す図A diagram showing a configuration example of a SOFC stack in which a plurality of single cells are alternately stacked via an interconnector 支持膜式SOFCのセルに反りや歪みが生じる状態を示す図The figure which shows the state where the warp and the distortion occur in the cell of the support membrane type SOFC セルの反りや歪みに対する先行技術における解決態様を示す図The figure which shows the solution aspect in a prior art with respect to the curvature and distortion of a cell 本発明においてセルの四隅に曲面Rをつける態様を説明する図The figure explaining the aspect which attaches the curved surface R to the four corners of a cell in this invention セルの反りや歪みに対する本発明と先行技術における解決態様を説明する図The figure explaining the solution aspect in this invention and prior art with respect to the curvature and distortion of a cell 本発明によってセルの四隅に曲面Rをつけたセルをインターコネクタを介して積層する態様を示す図The figure which shows the aspect which laminates | stacks the cell which attached the curved surface R to the four corners of the cell via the interconnector by this invention 実施例を示す図(セルの作製)Diagram showing example (production of cell) 実施例で用いた性能試験装置の概略を示す図The figure which shows the outline of the performance test apparatus used in the Example 実施例の結果を示す図The figure which shows the result of the example

符号の説明Explanation of symbols

1 セル
2 燃料極
3 電解質膜
4 空気極
5 インターコネクタ
6 枠体(インターコネクタ)
11 固体電解質板
12 凹凸層
Y 本発明適用前のセルの四隅の部位
Z 本発明適用後のセルの四隅の部位
R 曲面
1 cell 2 fuel electrode 3 electrolyte membrane 4 air electrode 5 interconnector 6 frame (interconnector)
DESCRIPTION OF SYMBOLS 11 Solid electrolyte board 12 Concavity and convexity layer Y The four corner part of the cell before this invention application Z The four corner part of the cell after this invention application R Curved surface

Claims (8)

四隅に角部を有する平板型固体酸化物形燃料電池において、セル基板の焼成後にセル基板の四隅の外周面に研削または研磨による曲面Rをつけることによりセルの反りを軽減し、電極反応での接触抵抗および分極抵抗を低減してなることを特徴とする平板型固体酸化物形燃料電池。 Corners Te flat type solid oxide fuel cell odor having a corner portion, to reduce the warpage of a cell by attaching a curved surface R by grinding or polishing after sintering of the cell substrate on the outer peripheral surface of the cell substrate corners, in the electrode reaction A flat plate type solid oxide fuel cell, characterized in that the contact resistance and polarization resistance of the plate are reduced. 請求項1に記載の平板型固体酸化物形燃料電池が、支持膜式の平板型固体酸化物形燃料電池であることを特徴とする支持膜式固体酸化物形燃料電池。 2. A support membrane type solid oxide fuel cell according to claim 1, wherein the plate type solid oxide fuel cell is a support membrane type flat solid oxide fuel cell. 四隅に角部を有する平板型固体酸化物形燃料電池スタックにおいて、セル基板の焼成後にセル基板の四隅の外周面に研削または研磨により曲面Rをつけることによりセルの反りを軽減し、電極反応での接触抵抗および分極抵抗を低減してなるセルの複数個をインターコネクタを介して積層してなることを特徴とする平板型固体酸化物形燃料電池スタック。 Corners Te flat type solid oxide fuel cell stack odor having a corner portion, to reduce the warpage of a cell by attaching curved R by grinding or polishing after sintering of the cell substrate on the outer peripheral surface of the cell substrate corners, electrode reaction A flat plate type solid oxide fuel cell stack, wherein a plurality of cells having reduced contact resistance and polarization resistance are stacked through an interconnector. 請求項3に記載の平板型固体酸化物形燃料電池スタックにおいて、各セルが支持膜式の平板型固体酸化物形燃料電池であることを特徴とする支持膜式固体酸化物形燃料電池スタック。 4. The support membrane solid oxide fuel cell stack according to claim 3, wherein each cell is a support membrane type flat solid oxide fuel cell. 四隅を有する平板型固体酸化物形燃料電池の作製方法であって、セル基板の焼成後にセル基板の四隅の外周面を研磨または研削して曲面Rをつけることにより、セルの反りを軽減し、電極反応での接触抵抗および分極抵抗を低減することを特徴とする平板型固体酸化物形燃料電池の作製方法。 A method for producing a flat-plate solid oxide fuel cell having four corners, by polishing or grinding the outer peripheral surfaces of the four corners of the cell substrate after baking the cell substrate to give curved surfaces R, thereby reducing cell warpage, A method for producing a flat plate type solid oxide fuel cell, characterized by reducing contact resistance and polarization resistance in an electrode reaction. 請求項に記載の平板型固体酸化物形燃料電池の作製方法において、該平板型固体酸化物形燃料電池が支持膜式の平板型固体酸化物形燃料電池であることを特徴とする支持膜式固体酸化物形燃料電池の作製方法。 6. The method for producing a flat plate solid oxide fuel cell according to claim 5 , wherein the flat plate solid oxide fuel cell is a flat plate solid oxide fuel cell of the support membrane type. Of manufacturing a solid oxide fuel cell. 四隅を有する平板型固体酸化物形燃料電池からなる平板型固体酸化物形燃料電池スタックの作製方法であって、セル基板の焼成後にセル基板の四隅の外周面を研削または研磨して曲面Rをつけることによりセルの反りを軽減し、電極反応での接触抵抗および分極抵抗を低減してなるセルの複数個を順次インターコネクタを介して積層することを特徴とする平板型固体酸化物形燃料電池スタックの作製方法。 A method for producing a flat solid oxide fuel cell stack comprising flat solid oxide fuel cells having four corners , wherein the outer peripheral surfaces of the four corners of the cell substrate are ground or polished after the cell substrate is fired to form a curved surface R. A flat solid oxide fuel cell comprising: a plurality of cells sequentially stacked via an interconnector, wherein the warpage of the cell is reduced by attaching, and the contact resistance and the polarization resistance in the electrode reaction are reduced. How to make a stack. 請求項7に記載の平板型固体酸化物形燃料電池スタックの作製方法において、各セルが支持膜式の平板型固体酸化物形燃料電池であることを特徴とする支持膜式固体酸化物形燃料電池スタックの作製方法。
8. A method of manufacturing a flat plate type solid oxide fuel cell stack according to claim 7, wherein each cell is a flat plate type solid oxide fuel cell of a support membrane type. A battery stack manufacturing method.
JP2004198706A 2004-07-05 2004-07-05 Flat plate type solid oxide fuel cell and method for producing the same Expired - Fee Related JP4476721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198706A JP4476721B2 (en) 2004-07-05 2004-07-05 Flat plate type solid oxide fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004198706A JP4476721B2 (en) 2004-07-05 2004-07-05 Flat plate type solid oxide fuel cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006024371A JP2006024371A (en) 2006-01-26
JP4476721B2 true JP4476721B2 (en) 2010-06-09

Family

ID=35797497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198706A Expired - Fee Related JP4476721B2 (en) 2004-07-05 2004-07-05 Flat plate type solid oxide fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP4476721B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5177474B2 (en) * 2006-04-24 2013-04-03 日本碍子株式会社 Ceramic thin plate
JPWO2009084380A1 (en) * 2007-12-27 2011-05-19 株式会社東芝 Fuel cell
JP5365050B2 (en) * 2008-03-31 2013-12-11 大日本印刷株式会社 Solid oxide fuel cell
JP5727915B2 (en) * 2011-10-19 2015-06-03 日本特殊陶業株式会社 Solid oxide fuel cell, solid oxide fuel cell main body, and method for producing solid oxide fuel cell
JP6443662B2 (en) * 2014-10-21 2018-12-26 日産自動車株式会社 Manufacturing method of fuel cell
JP6591101B1 (en) * 2019-01-29 2019-10-16 日本碍子株式会社 Fuel cell
CN114175328B (en) * 2019-07-29 2024-04-12 株式会社村田制作所 Electrolyte sheet for solid oxide fuel cell, method for producing electrolyte sheet for solid oxide fuel cell, and single cell for solid oxide fuel cell

Also Published As

Publication number Publication date
JP2006024371A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
US6864009B2 (en) Single cell and stack structure for solid oxide fuel cell stacks
EP0670606B1 (en) Solid oxide electrolyte fuel cell
JP4605885B2 (en) Support membrane type solid oxide fuel cell
US20130078551A1 (en) Method for manufacturing unit cells of solid oxide fuel cell
US6534211B1 (en) Fuel cell having an air electrode with decreased shrinkage and increased conductivity
JP5756591B2 (en) Fuel cell
US8252366B2 (en) Method for making toughened electrode-supported ceramic fuel cells
JP4476721B2 (en) Flat plate type solid oxide fuel cell and method for producing the same
KR101072137B1 (en) Anode-supported electrolyte for solid oxide fuel cell and manufacturing method of the same
JPH09129252A (en) Highly durable solid electrlyte fuel cell and manufacture thereof
JP5284876B2 (en) Method for producing flat solid oxide fuel cell
JP6748518B2 (en) Method for manufacturing electrochemical reaction cell
JP3963122B2 (en) Cell plate for solid oxide fuel cell and method for producing the same
JP2009009738A (en) Solid electrolyte fuel cell and its manufacturing method
JP6162572B2 (en) Method for producing solid oxide fuel cell single cell and method for producing solid oxide fuel cell stack
JP6965041B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
US20140017598A1 (en) Fuel cell
JP5502365B2 (en) Half cell for solid oxide fuel cell, solid oxide fuel cell, and method for producing half cell for solid oxide fuel cell
JPH06310156A (en) Flat solid electrolyte type fuel cell
JP6808396B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP7132982B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP4753556B2 (en) FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL
JP2018174116A (en) Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and manufacturing method of electrochemical element
JP2948441B2 (en) Flat solid electrolyte fuel cell
JP6734707B2 (en) Current collecting member-electrochemical reaction single cell composite and electrochemical reaction cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100310

R150 Certificate of patent or registration of utility model

Ref document number: 4476721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees