JP5756591B2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP5756591B2
JP5756591B2 JP2009179253A JP2009179253A JP5756591B2 JP 5756591 B2 JP5756591 B2 JP 5756591B2 JP 2009179253 A JP2009179253 A JP 2009179253A JP 2009179253 A JP2009179253 A JP 2009179253A JP 5756591 B2 JP5756591 B2 JP 5756591B2
Authority
JP
Japan
Prior art keywords
electrode layer
current collector
electrode
layer
air electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009179253A
Other languages
Japanese (ja)
Other versions
JP2010272499A (en
Inventor
暁 石田
暁 石田
墨 泰志
泰志 墨
秀樹 上松
秀樹 上松
柴田 昌宏
昌宏 柴田
石川 浩也
浩也 石川
圭三 古崎
圭三 古崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2009179253A priority Critical patent/JP5756591B2/en
Publication of JP2010272499A publication Critical patent/JP2010272499A/en
Application granted granted Critical
Publication of JP5756591B2 publication Critical patent/JP5756591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、水素と酸素を電気化学反応させることで電気エネルギーを得る燃料電池に係り、特に、電極層と集電体との接合構造に特徴を有する燃料電池に関するものである。   The present invention relates to a fuel cell that obtains electric energy by electrochemical reaction of hydrogen and oxygen, and more particularly, to a fuel cell characterized by a junction structure between an electrode layer and a current collector.

従来、燃料電池の一種として、例えば、電解質層に固体酸化物を用いた固体酸化物形燃料電池(Solid Oxide Fuel Cell)が知られている。固体酸化物形燃料電池は、一般に、セラミックス系のイオン伝導性を有する固体酸化物からなる固体電解質体と、固体電解質体の一方の側に設けられて燃料ガス(水素やメタン、メタノール等)に接する燃料極層と、固体電解質体の他方の側に設けられて酸化剤ガス(空気や酸素など)に接する空気極層と、これら燃料極層や空気極層等の電極層と接合して水素と酸素の電気化学反応による電気エネルギーを電極層から外部に取り出す集電体とを備えている(特許文献1や特許文献2参照。)。   Conventionally, as one type of fuel cell, for example, a solid oxide fuel cell using a solid oxide in an electrolyte layer is known. A solid oxide fuel cell is generally provided with a solid electrolyte body made of a ceramic-based solid oxide having an ionic conductivity and a fuel gas (hydrogen, methane, methanol, etc.) provided on one side of the solid electrolyte body. A fuel electrode layer that is in contact, an air electrode layer that is provided on the other side of the solid electrolyte body and contacts an oxidant gas (air, oxygen, etc.), and an electrode layer such as the fuel electrode layer or the air electrode layer. And a current collector for taking out the electric energy generated by the electrochemical reaction of oxygen from the electrode layer to the outside (see Patent Document 1 and Patent Document 2).

ところで、固体酸化物形燃料電池の発電性能を向上させる要因の一つには、電極層と集電体との接触抵抗の低減が挙げられることとなり、特許文献1,2においてもそれが検討されている。   By the way, one of the factors that improve the power generation performance of the solid oxide fuel cell is to reduce the contact resistance between the electrode layer and the current collector. ing.

この特許文献1には、電極層における集電体を印刷する表面に露出領域が形成され、電極層と集電体が一体的に焼結されている構成が提案されている。これにより、電極層と集電体の圧接に際して電極層の表面全体に集電体を形成することによる局所的な応力集中に起因する割れを防止する等して、電極層と集電体の接触抵抗の増加を抑えるようになっている。   Patent Document 1 proposes a configuration in which an exposed region is formed on the surface of the electrode layer on which the current collector is printed, and the electrode layer and the current collector are integrally sintered. This prevents contact between the electrode layer and the current collector, such as preventing cracking due to local stress concentration by forming the current collector on the entire surface of the electrode layer when the electrode layer and current collector are pressed. The increase in resistance is suppressed.

また、特許文献2には、電極層を構成する空気極に接触する集電体として、金属フェルト層と金属粉末焼結層との複合層からなるものを用い、金属粉末焼結層を空気極に接触させることで、金属粉末焼結層の耐久性に基づき電極層と集電体の接触状態を安定させて、電極層と集電体の接触抵抗を低減させるようにした技術が開示されている。   In Patent Document 2, a current collector that is in contact with an air electrode that constitutes an electrode layer is composed of a composite layer of a metal felt layer and a metal powder sintered layer, and the metal powder sintered layer is used as an air electrode. Has been disclosed to stabilize the contact state between the electrode layer and the current collector based on the durability of the metal powder sintered layer and reduce the contact resistance between the electrode layer and the current collector. Yes.

特開2006−139955号公報JP 2006-139955 A 特開2002−298878号公報JP 2002-298878 A

しかしながら、上記特許文献1,2においては、電極層と集電体との接触抵抗の低減に関して、未だ十分に検討されていなかった。
つまり、電極層には導電性と燃料ガス又は酸化剤ガスの透過性が求められるのに対して、集電体には高い集電性能が求められ、これら要求特性の違いから、電極層と集電体は、一般に、異なる材料を用いて形成されて、それらの焼結温度又は熱膨張率は互いに異なる場合が多い。
However, Patent Documents 1 and 2 have not yet been sufficiently studied for reducing the contact resistance between the electrode layer and the current collector.
In other words, the electrode layer is required to have electrical conductivity and fuel gas or oxidant gas permeability, whereas the current collector is required to have high current collecting performance. In general, electric bodies are formed using different materials, and their sintering temperature or thermal expansion coefficient is often different from each other.

そのため、特許文献1に記載の燃料装置では、電極層と集電体を一体的に焼成しても、集電体と電極層の一方の反りやうねり等に追従するように他方を変形させることが難しくて、集電体と電極層の接触部分に隙間が不規則に生じ易くなる結果、電極層と集電体の接触面積が減少して、接触抵抗が増加するおそれがあった。   Therefore, in the fuel device described in Patent Document 1, even if the electrode layer and the current collector are integrally fired, the other is deformed so as to follow one warp or swell of the current collector and the electrode layer. As a result, the gap between the current collector and the electrode layer is likely to be irregularly formed. As a result, the contact area between the electrode layer and the current collector is decreased, and the contact resistance may be increased.

また、例えば、セラミックス系の固体電解質体や、セラミックスと金属の各粉状物を混合して焼結した複合材料、いわゆるサーメット等からなる電極層においては、焼結に際して反りやうねりが生じるため、電極層の集電体と接する面が湾曲したり、凹凸部分を有したりして、平坦でない場合が多い。   In addition, for example, in an electrode layer made of a ceramic-based solid electrolyte body, a composite material obtained by mixing ceramic and metal powders and sintered, so-called cermet, etc., warping and undulation occur during sintering. In many cases, the surface of the electrode layer in contact with the current collector is not flat because the surface is curved or has uneven portions.

したがって、特許文献2に記載のように、集電体の電極層(空気極)と接しようとする部分に金属粉末焼結層を形成しても、金属粉末焼結層を電極層の平坦でない表面に対して接触面積を大きく確保しつつ接触させることが難しくて、接触抵抗が低減され難い問題があった。   Therefore, as described in Patent Document 2, even if the metal powder sintered layer is formed on the portion of the current collector that is in contact with the electrode layer (air electrode), the metal powder sintered layer is not flat. There is a problem that it is difficult to make contact with the surface while ensuring a large contact area, and it is difficult to reduce contact resistance.

本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、電極層と集電体との接触面積が確実に確保されて、接触抵抗の増加が抑えられることにより、発電性能が向上される、新規な構造の燃料電池を提供することにある。   The present invention has been made in the background as described above, and the problem to be solved is that the contact area between the electrode layer and the current collector is ensured and the increase in contact resistance is suppressed. Accordingly, it is an object of the present invention to provide a fuel cell having a novel structure with improved power generation performance.

かかる課題を解決するためになされた請求項1に記載の発明は、電解質層と、該電解質層の両側に設けられて燃料ガスと酸化剤ガスにそれぞれ接する電極層と、該電極層の少なくとも一方と接合して該電極層から外部に電気を取り出す集電体とを備えた固体酸化物形燃料電池において、前記集電体と前記電極層との接合部分において該集電体の該電極層と対向する面には複数の凸部が設けられており、該電極層の該集電体と対向する面には、該凸部の硬度が該電極層の硬度に比して大きいことにより、該凸部の先端の少なくとも一部が差し込まれて潰される潰れ変形部が形成されており、且つ、前記凸部による前記潰れ変形部の潰れ深さは、5〜70μmであるとともに、前記凸部の先端において前記電極層と対向する部分の面積は、0.2〜13mm 2 であることを特徴とする固体酸化物形燃料電池である。 The invention according to claim 1, which has been made to solve such a problem, includes an electrolyte layer, electrode layers provided on both sides of the electrolyte layer and in contact with the fuel gas and the oxidant gas, and at least one of the electrode layers. A solid oxide fuel cell comprising a current collector that is connected to the electrode layer and extracts electricity from the electrode layer to the outside, and the electrode layer of the current collector at a junction between the current collector and the electrode layer The opposing surface is provided with a plurality of convex portions, and the surface of the electrode layer facing the current collector has a hardness that is greater than the hardness of the electrode layer, A crushing deformation part is formed in which at least a part of the tip of the convex part is inserted and crushed, and a crushing depth of the crushing deformation part by the convex part is 5 to 70 μm . The area of the portion facing the electrode layer at the tip is 0.2. It is a solid oxide fuel cell, which is a 13 mm 2.

このような本発明の燃料電池においては、電極層と集電体の接合に際して、集電体に設けられた複数の凸部が電極層の潰れ変形部に差し込まれるようになっていることから、例えば、電極層の集電体と対向する面に反りやうねりが生じる等して電極層及び集電体の両対向面が互いに平行とされ難い場合にも、電極層と集電体の目的とする接触面積が十分に確保される。   In such a fuel cell of the present invention, when the electrode layer and the current collector are joined, a plurality of convex portions provided on the current collector are inserted into the crushed deformation portion of the electrode layer, For example, even when the opposing surfaces of the electrode layer and the current collector are difficult to be parallel to each other due to warpage or undulation on the surface of the electrode layer facing the current collector, the purpose of the electrode layer and the current collector A sufficient contact area is ensured.

すなわち、電極層及び集電体の両対向面が互いに平行とされ難いことで両対向面の直接的な重ね合わせによる接触面積が確保され難い場合においても、凸部の潰れ変形部への差し込みよる接触面積の増大によって、電極層と集電体における接触抵抗の増加が解消されるのである。 That is, even when by two facing surfaces of the electrode layer and the current collector is less likely be parallel to each other hardly contact area is ensured by direct superposition of two facing surfaces, the insertion of the collapse deformation of the convex portion This increase in contact area eliminates an increase in contact resistance between the electrode layer and the current collector.

また、このように集電体の凸部が差し込まれて潰される潰れ変形部が、電極層における集電体との接合部分に特定配置されていることによって、電極層における潰れ変形部以外の部位では、適宜に厚さ寸法を大きくしたり、耐久性の高い材料を用いて形成したりすることが可能である。これにより、電極層全体として要求される耐久性が十分に確保されて、電極層における所望の導電性能が得られる。   In addition, the crushing deformed portion into which the convex portion of the current collector is inserted and crushed in this manner is specifically arranged at the joint portion of the electrode layer with the current collector, so that the portion other than the crushing deformed portion in the electrode layer Then, it is possible to appropriately increase the thickness dimension or to use a highly durable material. Thereby, the durability required for the entire electrode layer is sufficiently ensured, and desired conductive performance in the electrode layer is obtained.

それ故、本発明の燃料電池によれば、電極層の耐久性が確保されつつ、電極層と集電体の接触抵抗が低減されることによって、発電性能が向上される。
しかも、本発明の燃料電池は、凸部による潰れ変形部の潰れ深さは、5〜70μmである。
凸部による潰れ変形部の潰れ深さが5μm未満の場合には、電極層と集電体の接触面積が十分に確保され難くなって、接触抵抗が増加する可能性がある。また、凸部による潰れ変形部の潰れ深さが70μmを上回る場合には、電極層における潰れ変形部の占める割合が高くなって、電極層全体の耐久性が確保され難くなる可能性がある。従って、本発明の範囲が好適である。
なお、前記潰れ深さは、複数の凸部が差し込まれた潰れ変形部においては、凸部が最も深く差し込まれた潰れ変形部における電極層表面の開口部から底部までの深さ寸法である。
しかも、前記凸部の先端において前記電極層と対向する部分の面積は、0.2〜13mm 2 であることを特徴とする。
凸部の先端において電極層と対向する部分の面積が0.2mm 2 未満の場合には、集電体の電極層に対する接触面積が小さくなって、集電体と電極層の接触抵抗が増加する可能性がある。また、凸部の先端において電極層と対向する部分の面積が13mm 2 を上回ると、凸部の先端と接する潰れ変形部の応力集中が生じ難くなって、凸部が潰れ変形部に容易に差し込まれ難くなり、その結果、集電体と電極層の接触面積が小さくなって、接触抵抗が増加する可能性があり、電気的接触性が確保されにくい。従って、本発明の範囲が好適である。
請求項2に記載の発明では、前記潰れ変形部を備えた前記電極層は、前記電解質層に積層された第1電極層と、該第1電極層に積層されて前記集電体と対向位置し、且つ硬度が該第1電極層に比して小さい第2電極層とを含んで構成されており、該第2電極層の該集電体と対向する面に該潰れ変形部が形成されていることを特徴とする。
Therefore, according to the fuel cell of the present invention, the durability of the electrode layer is ensured, and the contact resistance between the electrode layer and the current collector is reduced, thereby improving the power generation performance.
Moreover, in the fuel cell of the present invention, the crushing depth of the crushing deformed portion due to the convex portion is 5 to 70 μm.
When the crushing depth of the crushing deformation portion by the convex portion is less than 5 μm, it is difficult to ensure a sufficient contact area between the electrode layer and the current collector, and the contact resistance may increase. Moreover, when the crushing depth of the crushing deformation part by a convex part exceeds 70 micrometers, the ratio for which the crushing deformation part in an electrode layer accounts becomes high, and it may become difficult to ensure the durability of the whole electrode layer. Accordingly, the scope of the present invention is preferred.
The crushing depth is a depth dimension from the opening portion to the bottom of the electrode layer surface in the crushing deformation portion where the convex portion is inserted deepest in the crushing deformation portion where a plurality of convex portions are inserted.
And the area of the part which opposes the said electrode layer in the front-end | tip of the said convex part is 0.2-13 mm < 2 > , It is characterized by the above-mentioned.
When the area of the portion facing the electrode layer at the tip of the convex portion is less than 0.2 mm 2 , the contact area of the current collector with the electrode layer is reduced, and the contact resistance between the current collector and the electrode layer is increased. there is a possibility. Further, if the area of the portion facing the electrode layer at the tip of the convex portion exceeds 13 mm 2 , stress concentration at the crushing deformed portion in contact with the tip of the convex portion is difficult to occur, and the convex portion is easily inserted into the crushing deformed portion. As a result, the contact area between the current collector and the electrode layer is reduced, which may increase the contact resistance, and it is difficult to ensure electrical contact. Accordingly, the scope of the present invention is preferred.
According to a second aspect of the present invention, the electrode layer having the crushing deformation portion includes a first electrode layer laminated on the electrolyte layer, and a position opposed to the current collector laminated on the first electrode layer. And a second electrode layer having a hardness lower than that of the first electrode layer, and the crushing deformation portion is formed on a surface of the second electrode layer facing the current collector. It is characterized by.

つまり、潰れ変形部が電極層に対して容易に形成されるように電極層の耐久性を低下させることと、電極層の必要強度を得るために耐久性を向上させることとは、相反する行為であるが、請求項2に記載のように、電極層を互いに異なる物性の第1電極層と第2電極層との積層構造体とすることで、潰れ変形部の形成容易と電極層の耐久性確保が両立して達成される。   In other words, reducing the durability of the electrode layer so that the crushing deformation portion is easily formed on the electrode layer and improving the durability to obtain the required strength of the electrode layer are contradictory acts. However, as described in claim 2, by forming the electrode layer as a laminated structure of the first electrode layer and the second electrode layer having different physical properties, it is easy to form a crushing deformed portion and durability of the electrode layer. Assured compatibility is achieved.

請求項3に記載の発明では、前記潰れ変形部が形成された前記電極層は、前記酸化剤ガスに接する空気極であることを特徴とする。
燃料電池の空気極は、カソード(正極)とされて、電子を受け取って酸素をイオン化する一方、燃料電池の燃料極は、アノード(負極)とされて、電解質層を通ってきた酸素イオンと水素の反応により水を生成し、電子を放出する。発電性能の向上に際しては、空気極の内部抵抗が小さくされることが好ましい。
The invention according to claim 3 is characterized in that the electrode layer in which the crushing deformation portion is formed is an air electrode in contact with the oxidant gas.
The air electrode of the fuel cell is a cathode (positive electrode) and receives electrons to ionize oxygen, while the fuel electrode of the fuel cell is an anode (negative electrode) and oxygen ions and hydrogen that have passed through the electrolyte layer. The reaction generates water and emits electrons. In improving the power generation performance, it is preferable to reduce the internal resistance of the air electrode.

そこにおいて、本発明では、潰れ変形部が空気極に形成されるようにしたことから、空気極の内部抵抗及び空気極と集電体間の接触抵抗が低減されることとなって、発電性能が一層向上される。   Therefore, in the present invention, since the crushing deformation part is formed on the air electrode, the internal resistance of the air electrode and the contact resistance between the air electrode and the current collector are reduced, and the power generation performance Is further improved.

請求項4に記載の発明では、前記電極層における前記集電体と対向する方向の厚さは、100〜300μmであることを特徴とする。
電極層における集電体と対向する方向の厚さが100μm未満であると、電極層の耐久性を確保しつつ潰れ変形部を電極層に形成することが難しくなり、しかも、電極層における各凸部を介した集電体までの横方向(電極層の集電体との対向方向に直交する幅方向)の集電抵抗が高くなる可能性がある。また、電極層における集電体と対向する方向の厚さが300μmを上回る場合に、電極層の縦方向(電極層の集電体との対向方向)の内部抵抗が増加したり、電極層の耐久性が確保され難くなったりする可能性がある。従って、本発明の範囲が好適である。
The invention according to claim 4 is characterized in that a thickness of the electrode layer in a direction facing the current collector is 100 to 300 μm.
If the thickness of the electrode layer in the direction facing the current collector is less than 100 μm, it becomes difficult to form the crushed deformation portion in the electrode layer while ensuring the durability of the electrode layer, and each convexity in the electrode layer There is a possibility that the current collection resistance in the lateral direction up to the current collector through the portion (the width direction orthogonal to the direction of the electrode layer facing the current collector) will increase. In addition, when the thickness of the electrode layer facing the current collector exceeds 300 μm, the internal resistance in the vertical direction of the electrode layer (direction facing the current collector of the electrode layer) increases, Durability may be difficult to ensure. Accordingly, the scope of the present invention is preferred.

請求項5に記載の発明では、前記電極層における前記潰れ変形部の形成部分は、粒径が1〜10μmの粉末材料を焼結することにより形成されていることを特徴とする。
電極層の潰れ変形部の形成部分における粉末材料の粒径が1μmを下回ると、当該形成部分の焼結が進行し過ぎて、粒子の結合強度が高くなるため、凸部が潰れ変形部に差し込まれ難くなって、電極層と集電体の接触面積が小さくなる可能性がある。また、電極層の潰れ変形部の形成部分の粒径が10μmを上回る場合には、当該形成部分の焼結が進行し難くなって、電極層の耐久性が低下する可能性がある。従って、本発明の範囲が好適である。なお、前記粒径は、潰れ変形部の形成部分を構成する粉末材料において、複数の粒子の直径の平均値で表される。
The invention according to claim 5 is characterized in that a portion where the crushing deformation portion is formed in the electrode layer is formed by sintering a powder material having a particle diameter of 1 to 10 μm.
If the particle size of the powder material in the formation portion of the collapsed deformed portion of the electrode layer is less than 1 μm, sintering of the formed portion proceeds excessively and the bond strength of the particles increases, so that the convex portion is inserted into the deformed deformed portion. This may make it difficult to reduce the contact area between the electrode layer and the current collector. Moreover, when the particle diameter of the formation part of the crushing deformation part of an electrode layer exceeds 10 micrometers, the sintering of the said formation part becomes difficult to advance and the durability of an electrode layer may fall. Accordingly, the scope of the present invention is preferred. In addition, the said particle size is represented by the average value of the diameter of several particle | grains in the powder material which comprises the formation part of a crushing deformation part.

本発明の一実施形態としての固体酸化物形燃料電池の要部を概略的に示す縦断面図。1 is a longitudinal sectional view schematically showing a main part of a solid oxide fuel cell as one embodiment of the present invention. 同固体酸化物形燃料電池の一製造工程を示す縦断面図。The longitudinal cross-sectional view which shows one manufacturing process of the solid oxide fuel cell. 同固体酸化物形燃料電池の要部を拡大して概略的に示す縦断面図。The longitudinal cross-sectional view which expands and shows schematically the principal part of the solid oxide fuel cell.

以下に、本発明の燃料電池に関する一実施形態としての固体酸化物形燃料電池10について、図面を参照しつつ説明する。この固体酸化物形燃料電池10は、燃料ガス(例えば水素)と酸化剤ガス(例えば空気)との供給を受けて発電を行う装置であって、図1に示される如き略平板形状の燃料電池セル12を厚さ方向(図1中、上下)に複数積層することにより、電圧を上げる形態を有している。   Hereinafter, a solid oxide fuel cell 10 as an embodiment relating to a fuel cell of the present invention will be described with reference to the drawings. The solid oxide fuel cell 10 is a device that generates power by being supplied with a fuel gas (for example, hydrogen) and an oxidant gas (for example, air), and has a substantially flat plate shape as shown in FIG. A plurality of cells 12 are stacked in the thickness direction (up and down in FIG. 1) to increase the voltage.

燃料電池セル12は、いわゆる燃料極支持膜タイプの発電単位であり、一方の電極層としての燃料極(アノード)14を基板として、燃料極14の表面に電解質層としての固体電解質層16が積層され、更に固体電解質層16の表面に他方の電極層としての空気極(カソード)18が積層されている。固体電解質層16は、単一層から構成されても良いが、本実施形態では電解質層本体16a及び反応防止層16bからなる複数層とされており、電解質層本体16aと空気極18が反応防止層16bを介して積層されている。   The fuel cell 12 is a so-called fuel electrode supporting membrane type power generation unit, and a fuel electrode (anode) 14 as one electrode layer is used as a substrate, and a solid electrolyte layer 16 as an electrolyte layer is laminated on the surface of the fuel electrode 14. Further, an air electrode (cathode) 18 as the other electrode layer is laminated on the surface of the solid electrolyte layer 16. The solid electrolyte layer 16 may be composed of a single layer, but in the present embodiment, the solid electrolyte layer 16 is a plurality of layers including the electrolyte layer body 16a and the reaction prevention layer 16b, and the electrolyte layer body 16a and the air electrode 18 are the reaction prevention layer. It is laminated via 16b.

固体電解質層16や燃料極14、空気極18は、特開2006−172906号公報や特開2006−139955号公報、特開2002−298878号公報等にも示されているように、公知の材料を採用可能である。   The solid electrolyte layer 16, the fuel electrode 14, and the air electrode 18 are known materials as disclosed in JP 2006-172906 A, JP 2006-139955 A, JP 2002-298878 A, and the like. Can be adopted.

固体電解質層16は、酸素イオン伝導性を有するセラミックス材料からなる。具体的に、電解質層本体16aには、例えば、イットリアやスカンジウム等で安定化した各ジルコニア系酸化物(YSZやScSZ)、或いはストロンチウムやマグネシウムをドープしたランタン・ガレード系酸化物等を含むペロブスカイト系酸化物が採用される。   The solid electrolyte layer 16 is made of a ceramic material having oxygen ion conductivity. Specifically, the electrolyte layer body 16a includes, for example, perovskite-based oxides including zirconia-based oxides (YSZ or ScSZ) stabilized with yttria, scandium, or the like, or lanthanum galade-based oxides doped with strontium or magnesium. An oxide is employed.

反応防止層16bには、例えば、サマリウムやガドリニウム等をドープした各セリア系酸化物(SDC、GDC)等が採用される。つまり、反応防止層16bは、例えば、Laを含む空気極18を直接に焼き付けても、電気抵抗を著しく増大する物質(La2Zr27等)を生成しない材料(SDC等)を用いて形成されており、それによって、ジルコニア系酸化物等からなる電解質層本体16aと空気極18との直接的な焼き付けによるLa2Zr27等の生成反応を防止して、電気抵抗の増大を抑えている。 For the reaction preventing layer 16b, for example, each ceria-based oxide (SDC, GDC) doped with samarium, gadolinium or the like is employed. That is, the reaction preventing layer 16b is made of, for example, a material (SDC or the like) that does not generate a substance (La 2 Zr 2 O 7 or the like) that remarkably increases electrical resistance even when the air electrode 18 containing La is directly baked. Thus, the formation reaction of La 2 Zr 2 O 7 and the like due to direct baking between the electrolyte layer body 16a made of zirconia-based oxide or the like and the air electrode 18 is prevented, and the electrical resistance is increased. It is suppressed.

燃料極14としては、例えば、NiやPt、Ir等の金属材料からなる多孔質体、又は金属材料とジルコニア系酸化物等のセラミックス材料とのサーメット等が採用される。
一方、空気極18は、固体電解質層16の反応防止層16bに積層された第1電極層18aと第1電極層18aに積層された第2電極層18bとを含んで構成されている。
As the fuel electrode 14, for example, a porous body made of a metal material such as Ni, Pt, or Ir, or a cermet made of a metal material and a ceramic material such as a zirconia-based oxide is used.
On the other hand, the air electrode 18 includes a first electrode layer 18a stacked on the reaction preventing layer 16b of the solid electrolyte layer 16 and a second electrode layer 18b stacked on the first electrode layer 18a.

第1電極層18aと第2電極層18bは、何れもPtやNi等の金属材料とベロブスカイト系酸化物等のセラミックス材料とのサーメットからなる。これら第1及び第2電極層18a,18bの積層構造体からなる空気極18は、例えば、第1電極層18aのサーメットを構成する粉末材料のペーストを反応防止層16bに印刷形成して焼結した後に、第2電極層18bのサーメットを構成する粉末材料のペーストを第1電極層18aに印刷形成して焼結することによって、構成される。ここで、第2電極層18bの粉末材料の粒径は、1〜10μmとされている。   Each of the first electrode layer 18a and the second electrode layer 18b is made of a cermet made of a metal material such as Pt or Ni and a ceramic material such as a velovite oxide. The air electrode 18 composed of the laminated structure of the first and second electrode layers 18a and 18b is sintered by, for example, printing and forming a paste of powder material constituting the cermet of the first electrode layer 18a on the reaction preventing layer 16b. After that, the paste of the powder material constituting the cermet of the second electrode layer 18b is printed and formed on the first electrode layer 18a and sintered. Here, the particle size of the powder material of the second electrode layer 18b is 1 to 10 μm.

特に、焼結前の段階で、第1電極層18aの粉末材料の粒径は、第2電極層18bの粉末材料の粒径に比して小さくされている。その結果、第1電極層18aの焼結進行度が第2電極層18bの焼結進行度よりも大きくされて、焼結後の第1電極層18aにおける密度又は粒子の結合強度が、第2電極層18bのそれに比して大きくされている。   In particular, at the stage before sintering, the particle size of the powder material of the first electrode layer 18a is made smaller than the particle size of the powder material of the second electrode layer 18b. As a result, the degree of sintering progress of the first electrode layer 18a is made larger than the degree of sintering progress of the second electrode layer 18b, and the density or particle bond strength in the first electrode layer 18a after sintering is the second. It is made larger than that of the electrode layer 18b.

つまり、第1電極層18aと第2電極層18bが同一材料を用いて形成され、且つ第1電極層18aの密度又は粒子の結合強度が第2電極層18bのそれよりも大きくされていることから、第2電極層18bの硬度は、第1電極層18aの硬度に比して小さくされている。   That is, the first electrode layer 18a and the second electrode layer 18b are formed using the same material, and the density of the first electrode layer 18a or the bond strength of the particles is larger than that of the second electrode layer 18b. Therefore, the hardness of the second electrode layer 18b is smaller than the hardness of the first electrode layer 18a.

この第2電極層18bの図1中、上側の表面から下側に向かう所定厚さの領域が、潰れ変形部20として構成されている。潰れ変形部20の厚さは、後述する集電体22と第2電極層18bとの接合状態や第2電極層18bの耐久性等の各種要求特性に応じて、適宜に設定される。   A region having a predetermined thickness from the upper surface to the lower side of the second electrode layer 18b in FIG. The thickness of the crushing deformable portion 20 is appropriately set according to various required characteristics such as a bonding state between a current collector 22 and a second electrode layer 18b, which will be described later, and durability of the second electrode layer 18b.

第2電極層18bの厚さは、第1電極層18aの厚さに比して大きくされている。また、第1電極層18aと第2電極層18bを含む空気極18の厚さは、100〜300μmとされている。   The thickness of the second electrode layer 18b is larger than the thickness of the first electrode layer 18a. The thickness of the air electrode 18 including the first electrode layer 18a and the second electrode layer 18b is 100 to 300 μm.

また、複数の燃料電池セル12における各セル12同士の積層方向の間には、各セル12間の導通を確保する等の目的で、集電体22が設けられている。本実施形態では、集電体22が各セル12の空気極18の上側にだけ配置されているが、空気極18の上側の配置に代えて或いは加えて、集電体22を燃料極14の下側に配置することも可能である。   In addition, a current collector 22 is provided between the cells 12 in the stacking direction of the plurality of fuel cells 12 for the purpose of ensuring electrical connection between the cells 12. In the present embodiment, the current collector 22 is disposed only on the upper side of the air electrode 18 of each cell 12. However, instead of or in addition to the arrangement on the upper side of the air electrode 18, the current collector 22 is disposed on the fuel electrode 14. It is also possible to arrange it on the lower side.

集電体22は、略平板形状を有しており、空気極18の第2電極層18bに対して厚さ方向で対向している。集電体22の潰れ変形部20と対向する面には、複数の凸部24が設けられている。   The current collector 22 has a substantially flat plate shape and faces the second electrode layer 18 b of the air electrode 18 in the thickness direction. A plurality of convex portions 24 are provided on the surface of the current collector 22 facing the crushing deformable portion 20.

凸部24は、略円柱形状を有していて、それら複数の凸部24が、集電体22の横幅方向(図1中、左右)や縦幅方向(図1中、紙面に直交する方向)に所定の間隔(本実施形態では略等間隔)で配置されている。   The convex portion 24 has a substantially cylindrical shape, and the plurality of convex portions 24 are arranged in the horizontal width direction (left and right in FIG. 1) and the vertical width direction (direction perpendicular to the paper surface in FIG. 1). ) At predetermined intervals (substantially equal intervals in the present embodiment).

また、各凸部24の先端において空気極18と対向する部分の面積(換言すると、図1〜3中、凸部24の下端面の大きさ)は、0.2〜13mm2とされている。
集電体22及び凸部24の形成材料には、例えば、NiやPt等の金属材料やサーメット等が採用される。凸部24は、集電体22と一体形成されても良く、或いは集電体22と別に形成された後に、集電体22に固着されても良い。
Further, the area of the portion facing the air electrode 18 at the tip of each convex portion 24 (in other words, the size of the lower end surface of the convex portion 24 in FIGS. 1 to 3) is 0.2 to 13 mm 2 . .
For example, a metal material such as Ni or Pt, cermet, or the like is employed as a material for forming the current collector 22 and the convex portion 24. The convex portion 24 may be formed integrally with the current collector 22, or may be fixed to the current collector 22 after being formed separately from the current collector 22.

また、凸部24及び集電体22の硬度は、互いに略同じとされていると共に、潰れ変形部20が形成された第2電極層18bの硬度に比して大きくされている。
複数の凸部24を備えた集電体22と空気極18との接合に際しては、先ず、図2にも示されているように、集電体22の複数の凸部24が設けられた面が、空気極18の第2電極層18bの潰れ変形部20が形成された上面に重ねられる。
The convex portions 24 and the current collectors 22 have substantially the same hardness, and are larger than the hardness of the second electrode layer 18b on which the crushing deformed portion 20 is formed.
In joining the current collector 22 having the plurality of convex portions 24 and the air electrode 18, first, as shown in FIG. 2, the surface of the current collector 22 on which the plurality of convex portions 24 are provided. Is superimposed on the upper surface of the second electrode layer 18b of the air electrode 18 on which the crushing deformation portion 20 is formed.

そして、集電体22の複数の凸部24の先端面と第2電極層18bの上面が重ね合わされた状態下、集電体22を第2電極層18bに向かって押圧させることで、第2電極層18bにおける凸部24が重ね合わされた潰れ変形部20に応力集中が生じ、潰れ変形部20が脆性破壊して、凸部22が所定深さで潰れ変形部20に差し込まれることとなる。これにより、集電体22が凸部24を介して空気極18に接合される。   Then, the current collector 22 is pressed toward the second electrode layer 18b in a state where the tip surfaces of the plurality of convex portions 24 of the current collector 22 and the upper surface of the second electrode layer 18b are overlapped with each other. Stress concentration occurs in the crushing deformed portion 20 where the convex portions 24 in the electrode layer 18b are overlapped, the crushing deformable portion 20 is brittlely broken, and the convex portions 22 are inserted into the crushing deformed portion 20 at a predetermined depth. Thereby, the current collector 22 is joined to the air electrode 18 via the convex portion 24.

特に本実施形態では、集電体22と第2電極層18bの対向面の間に凸部24の高さ寸法よりも小さなスペーサ(図示せず)を挟んで、上述の凸部24の潰れ変形部20への差し込み作業を行うこと等により、凸部24における先端面(図1〜3中、下端面)から所定高さの領域部分が、潰れ変形部20に差し込まれている。この凸部24の差し込み深さに相当する潰れ変形部20の潰れ深さ:ΔHは、5〜70μmとされている。潰れ深さ:ΔHは、複数の凸部24において潰れ変形部20に最も深く差し込まれた凸部24における空気極18の高さ(厚さ):H1から当該凸部24の先端面と空気極18の下端面との間の高さ(厚さ):H2を減じた値:H1−H2で表される。   In particular, in this embodiment, a spacer (not shown) smaller than the height of the convex portion 24 is sandwiched between the opposing surfaces of the current collector 22 and the second electrode layer 18b, and the above-described convex portion 24 is deformed. By performing an insertion operation into the portion 20, an area portion having a predetermined height from the front end surface (the lower end surface in FIGS. 1 to 3) of the convex portion 24 is inserted into the crushing deformation portion 20. The crushing depth: ΔH of the crushing deformation portion 20 corresponding to the insertion depth of the convex portion 24 is set to 5 to 70 μm. The crushing depth: ΔH is the height (thickness) of the air electrode 18 in the convex part 24 that is inserted into the crushing deformed part 20 in the plurality of convex parts 24, and the tip surface and the air electrode of the convex part 24 from H1. Height between 18 lower end surfaces (thickness): Value obtained by subtracting H2: H1-H2.

ところで、固体電解質層16や空気極18はセラミックスを含んで構成されていることから、固体電解質層16や空気極18の形成に際して多少なりとも反りやうねり等が生じることとなり、空気極18の集電体22と対向する面は、図面では平坦に示されているが、厳密には凹凸形状を有している。   By the way, since the solid electrolyte layer 16 and the air electrode 18 are configured to include ceramics, the formation of the solid electrolyte layer 16 and the air electrode 18 causes some warping or undulation, and the collection of the air electrode 18. Although the surface facing the electric body 22 is shown flat in the drawing, strictly speaking, it has an uneven shape.

そのため、複数の凸部24と第2電極層18bを重ね合わせる段階で、全ての凸部24が第2電極層18bに重ね合わされない場合もある。
そこにおいて、本実施形態では、凹凸形状を有する潰れ変形部20に対して全ての凸部24が差し込まれる、集電体22の空気極18への押圧に伴う変位量を考慮して、スペーサの大きさ等を設定することによって、全ての凸部24を潰れ変形部20に差し込むことが可能となる。
Therefore, at the stage where the plurality of protrusions 24 and the second electrode layer 18b are overlapped, not all the protrusions 24 may be overlapped on the second electrode layer 18b.
Therefore, in the present embodiment, in consideration of the displacement amount due to the pressing of the current collector 22 to the air electrode 18 into which all the convex portions 24 are inserted into the crushing deformable portion 20 having the concavo-convex shape, By setting the size and the like, all the convex portions 24 can be inserted into the collapsed deformable portion 20.

このように、本実施形態の固体酸化物形燃料電池10においては、集電体22に設けられた複数の凸部24が空気極18の潰れ変形部20に差し込まれて、集電体22と空気極18が接合されているので、例えば、空気極18に反りやうねりが生じて集電体22と空気極18との対向面が互いに平行とされ難い場合にも、空気極18と集電体22の接触面積が確実に確保されて、接触抵抗が低減される。   As described above, in the solid oxide fuel cell 10 of the present embodiment, the plurality of convex portions 24 provided on the current collector 22 are inserted into the crushing deformation portion 20 of the air electrode 18, and the current collector 22 Since the air electrode 18 is joined, for example, even when the air electrode 18 is warped or undulated and the opposing surfaces of the current collector 22 and the air electrode 18 are difficult to be parallel to each other, the air electrode 18 and the current collector The contact area of the body 22 is ensured and the contact resistance is reduced.

また、各凸部24の先端側が潰れ変形部20に差し込まれていて、各凸部24がそれぞれ全体に亘って深く差し込まれるような構成とされていないことから、空気極18における潰れ変形部20の形成部分から全体に亘って亀裂が生じるようなおそれが少ない。   Moreover, since the front end side of each convex part 24 is inserted in the crushing deformation | transformation part 20, and it is not set as the structure which each protrusion 24 is inserted deeply over the whole, the crushing deformation | transformation part 20 in the air electrode 18 is carried out. There is little possibility that a crack will occur from the formation part to the whole.

しかも、空気極18においては、潰れ変形部20を備えた第2電極層18bの全体の厚さが、潰れ変形部20の形成部分の厚さに対して十分に大きくされていることに加えて、かかる第2電極層18bと第2電極層18bよりも硬度の大きい第1電極層18aとの二層構造とされている。これにより、空気極18全体として要求される耐久性が十分に確保されると共に、空気極18が厚くされて、空気極18の厚さ方向に直交する幅方向の集電抵抗が減少されるため、空気極18の集電性能が向上される。   Moreover, in the air electrode 18, in addition to the fact that the entire thickness of the second electrode layer 18 b provided with the crushing deformation portion 20 is sufficiently larger than the thickness of the portion where the crushing deformation portion 20 is formed. The second electrode layer 18b and the first electrode layer 18a having higher hardness than the second electrode layer 18b have a two-layer structure. As a result, the durability required for the air electrode 18 as a whole is sufficiently ensured, and the air electrode 18 is thickened, and the current collection resistance in the width direction perpendicular to the thickness direction of the air electrode 18 is reduced. The current collecting performance of the air electrode 18 is improved.

従って、本実施形態の固体酸化物形燃料電池10では、空気極18の耐久性が確保されつつ、電気的なロスが低減されて、発電性能を高めることができるという顕著な効果を奏する。   Therefore, in the solid oxide fuel cell 10 of the present embodiment, there is a remarkable effect that the electrical loss can be reduced and the power generation performance can be enhanced while the durability of the air electrode 18 is ensured.

以上、本発明の一実施形態について詳述してきたが、かかる実施形態における具体的な記載によって、本発明は、何等限定されるものでなく、当業者の知識に基づいて種々なる変更、修正、改良等を加えた態様で実施可能である。また、そのような実施態様が本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは言うまでもない。   As mentioned above, although one embodiment of the present invention has been described in detail, the present invention is not limited in any way by the specific description in the embodiment, and various changes, modifications, and modifications based on the knowledge of those skilled in the art. The present invention can be implemented in a mode with improvements and the like. Further, it goes without saying that any such embodiments are included in the scope of the present invention as long as they do not depart from the spirit of the present invention.

具体的に、前記実施形態では、潰れ変形部20を備えた空気極18と凸部24を備えた集電体22がそれぞれ別に形成された後に、凸部24が潰れ変形部20に差し込まれるようになっていたが、例えば、空気極18の粉末材料のペーストを固体電解質層16に印刷形成して乾燥させると共に、集電体22の凸部24を潰れ変形部20に差し込み、その後、空気極18と凸部24を備えた集電体22とを一体的に焼結しても良い。   Specifically, in the above-described embodiment, after the air electrode 18 including the crushing deformable portion 20 and the current collector 22 including the convex portion 24 are separately formed, the convex portion 24 is inserted into the crushing deformable portion 20. However, for example, the paste of the powder material of the air electrode 18 is printed on the solid electrolyte layer 16 and dried, and the convex portion 24 of the current collector 22 is inserted into the crushed deformation portion 20, and then the air electrode 18 and the current collector 22 provided with the convex portions 24 may be integrally sintered.

また、前記実施形態において、複数の凸部24は、何れも略同じ大きさの円柱形状を有していたが、例えば、凸部は、矩形形状の他、集電体22から空気極18に向かって先細りとなる先鋭形状等を有していても良いし、複数の凸部24における形状や大きさなどは、それぞれ異ならされていても良い。   In the above-described embodiment, each of the plurality of convex portions 24 has a columnar shape having substantially the same size. For example, the convex portion has a rectangular shape, and the current collector 22 to the air electrode 18. It may have a sharpened shape or the like that tapers inward, and the shape and size of the plurality of convex portions 24 may be different from each other.

さらに、集電体22における各凸部24の数や配置等も、例示の如きものに限定されず、例えば、各凸部24を集電体22に対してそれぞれ異なる間隔で配置しても良い。
また、第1電極層18aと第2電極層18bとの硬度を異ならせるに際して、前記実施形態では、同一の粉末材料を用い、且つ粉末材料の粒径を異ならせることで対応していたが、例えば予め硬度の異なる材料を採用することにより、対応させても良い。
Further, the number and arrangement of the convex portions 24 in the current collector 22 are not limited to those illustrated, and for example, the convex portions 24 may be arranged at different intervals with respect to the current collector 22. .
Further, when the hardnesses of the first electrode layer 18a and the second electrode layer 18b are made different, in the above embodiment, the same powder material is used and the particle diameter of the powder material is made different. For example, it is possible to cope by adopting materials having different hardnesses in advance.

また、前記実施形態では、凸部24を備えた集電体22が、燃料極支持膜型の燃料電池セル12に積層されるようになっていたが、燃料極の代わりに空気極を基体とする空気極支持膜型や固体電解質層を基体として燃料極及び空気極を固体電解質層に支持させる通常型の燃料電池セルに対して積層することも勿論可能である。   Further, in the above embodiment, the current collector 22 having the convex portion 24 is laminated on the fuel electrode supporting membrane type fuel cell 12. However, instead of the fuel electrode, the air electrode is used as the base. Of course, it is possible to stack the fuel electrode and the air electrode on a normal type fuel cell in which the air electrode support membrane type or solid electrolyte layer is used as a base and the solid electrolyte layer supports the solid electrolyte layer.

また、本発明の燃料電池は、例示の如き固体酸化物形燃料電池への適用に限定されるものでなく、例えば、電解質に固体高分子膜(ポリマー)を用い、電極層にカーボンを用いた固体高分子形燃料電池(PEFC)やその他、電極層と集電体との接合構造を有する各種の燃料電池に対して適用可能である。   Further, the fuel cell of the present invention is not limited to the application to the solid oxide fuel cell as illustrated. For example, a solid polymer membrane (polymer) is used for the electrolyte and carbon is used for the electrode layer. The present invention can be applied to a polymer electrolyte fuel cell (PEFC) and other various fuel cells having a junction structure of an electrode layer and a current collector.

次に、本発明の燃料電池の作用効果について確認するために行った実験を示す。
[実験試料の作製]
先ず、NiOとYSZとの混合粉末からなる燃料極基体用グリーンシートと、YSZ粉末からなる固体電解質膜用グリーンシートとを積層した後に焼成して得られた基体に、GDC(ガドリニウム添加セリア)保護膜用ペーストを印刷して焼き付ける。
Next, an experiment conducted for confirming the effect of the fuel cell of the present invention will be described.
[Preparation of experimental samples]
First, GDC (gadolinium-added ceria) protection is applied to a substrate obtained by laminating a green sheet for a fuel electrode substrate made of a mixed powder of NiO and YSZ and a green sheet for a solid electrolyte membrane made of YSZ powder and then firing. Print and burn the film paste.

また、GDC保護膜用ペーストの焼結物の上にLSCF空気極を焼き付けて、燃料極支持膜型の平板セルを作製する。このような平板セルを複数作製する際に、LSCF空気極が、粒径1〜10μm又は粒径1μm未満の粉末材料の焼結物からなる上層と粒径1μm以下の粉末材料の焼結物からなる下層との二層構造であるものと、粒径1〜10μm又は粒径1μm未満の粉末材料の焼結物からなる単層構造であるものとを、複数用意する。   In addition, an LSCF air electrode is baked on the sintered product of the GDC protective film paste to produce a fuel electrode support film type flat plate cell. When producing a plurality of such flat cells, the LSCF air electrode is composed of an upper layer made of a sintered powder material having a particle size of 1 to 10 μm or a particle size of less than 1 μm and a sintered material of a powder material having a particle size of 1 μm or less. A plurality of a two-layer structure with a lower layer and a single-layer structure made of a sintered powder material having a particle size of 1 to 10 μm or a particle size of less than 1 μm are prepared.

さらに、フェライト系ステンレス等の金属材料からなる平板部材の一方の面に円柱形状の凸部を複数突設することによって、空気極集電体を得る。
そして、各平板セルのLSCF空気極の上端部分に対して空気極集電体の各凸部を所定の圧力で押し当てて、空気極と凸部の当接状態を保持し、実験試料となる固体酸化物形燃料電池を複数作製する。
Furthermore, an air electrode current collector is obtained by projecting a plurality of cylindrical protrusions on one surface of a flat plate member made of a metal material such as ferritic stainless steel.
Then, each convex part of the air electrode current collector is pressed at a predetermined pressure against the upper end portion of the LSCF air electrode of each flat plate cell, and the contact state between the air electrode and the convex part is maintained, which becomes an experimental sample. A plurality of solid oxide fuel cells are produced.

なお、凸部の空気極集電体からの突出寸法に相当する、凸部の高さ寸法は、0.6mmとした。
また、本実験試料において、空気極集電体の凸部が設けられた側の表面の面積に対する各凸部の先端の円形部分の総面積の比(以下、面積比ともいう)は、26〜27%に設定した。空気極集電体に設けられる凸部の数や各凸部同士の間隔は、各凸部の先端の円形部分の面積(以下、ドット面積ともいう)と面積比に基づいて求められる。
In addition, the height dimension of the convex part corresponding to the protrusion dimension from the air electrode current collector of the convex part was 0.6 mm.
In this experimental sample, the ratio of the total area of the circular portion at the tip of each convex portion to the area of the surface on the side where the convex portion of the air electrode current collector is provided (hereinafter also referred to as area ratio) is 26 to Set to 27%. The number of convex portions provided on the air electrode current collector and the interval between the convex portions are determined based on the area of the circular portion at the tip of each convex portion (hereinafter also referred to as dot area) and the area ratio.

具体的に、ドット面積を1.5mm2とし、面積比を27%に設定した場合には、空気極集電体に設けられる凸部の数は1764個になり、凸部間隔は2.4mmになる。また、ドット面積を3.1mm2とし、面積比を26%に設定した場合には、空気極集電体に設けられる凸部の数は841個になり、凸部間隔は3.5mmになる。
[実験内容]
上記複数の実験試料において、所定のレーザ顕微鏡を用いて、凸部が空気極に差し込まれた際の空気極凹み量(μm)を測定した。なお、空気極凹み量は、前記実施形態の凸部24による潰れ変形部20の潰れ深さΔH:H1−H2に相当する。
Specifically, when the dot area is set to 1.5 mm 2 and the area ratio is set to 27%, the number of convex portions provided on the air electrode current collector is 1764, and the interval between the convex portions is 2.4 mm. become. When the dot area is 3.1 mm 2 and the area ratio is set to 26%, the number of convex portions provided on the air electrode current collector is 841 and the convex interval is 3.5 mm. .
[Experiment contents]
In the plurality of experimental samples, a predetermined laser microscope was used to measure the air electrode recess amount (μm) when the convex portion was inserted into the air electrode. The air electrode dent amount corresponds to the crushing depth ΔH of the crushing deformed portion 20 by the convex portion 24 of the above embodiment: H1−H2.

ここで、凸部が空気極に差し込まれて、所定の大きさの空気極凹み量が発現するものを実施例1〜14とし、一方、凸部が空気極に差し込まれないため、或いは空気極に差し込んだ状態が保持されないため、空気極凹み量が発現しないものを比較例1〜3および参考例1とした。   Here, the convex part is inserted into the air electrode and the air electrode dent amount of a predetermined size is expressed as Examples 1 to 14, while the convex part is not inserted into the air electrode, or the air electrode Since the state inserted in was not maintained, those in which the amount of air electrode dents did not appear were referred to as Comparative Examples 1 to 3 and Reference Example 1.

また、上記実験試料において、実施例1〜14や比較例1〜3、参考例1における空気極集電体の各凸部を空気極に対して押し当てる所定の圧力よりも大きな圧力で、各凸部を空気極に押し当てて、空気極凹み量が発現した実験試料を参考例2とした。なお、参考例2のLSCF空気極は、粒径10μmの粉末材料の焼結物からなる上層と粒径1μmの粉末材料の焼結物からなる下層との二層構造を呈する。   Moreover, in the said experimental sample, each pressure is larger than a predetermined pressure for pressing each convex part of the air electrode current collector in Examples 1 to 14, Comparative Examples 1 to 3, and Reference Example 1 against the air electrode. The experimental sample in which the convex portion was pressed against the air electrode and the air electrode dent amount was expressed was referred to as Reference Example 2. The LSCF air electrode of Reference Example 2 has a two-layer structure of an upper layer made of a sintered material of a powder material having a particle size of 10 μm and a lower layer made of a sintered material of a powder material having a particle size of 1 μm.

特に実施例1〜11では、以下(イ)〜(ハ)の要件を全て満たしている。
(イ)空気極に押し当てられる凸部の先端の円形部分の面積(表1中、ドット面積)は、0.2〜13mm2である。
(ロ)上層及び下層または単層からなる空気極の厚さは、100〜300μmである。
(ハ)空気極における集電体の凸部が押し当てられる層は、粒径1〜10μmの粉末材料を焼結することにより形成されている。
In particular, in Examples 1 to 11, the following requirements (A) to (C) are all satisfied.
(A) The area of the circular portion at the tip of the convex portion pressed against the air electrode (in Table 1, the dot area) is 0.2 to 13 mm 2 .
(B) The thickness of the air electrode composed of an upper layer and a lower layer or a single layer is 100 to 300 μm.
(C) The layer to which the convex portions of the current collector in the air electrode are pressed is formed by sintering a powder material having a particle diameter of 1 to 10 μm.

そして、実施例や比較例、参考例の各実験試料において、各実験試料の空気極に酸化剤ガス(空気)を供給し、燃料極グリーンシートの焼結物からなる燃料極に燃料ガス(水素ガス)を供給するようにして、各実験試料を図示しない発電評価用装置にセットして、700℃にて発電試験を行い、各実験試料の電圧を測定した。その結果を表1に示す。なお、表1の各実施例または各比較例おいて、上層膜厚(μm)と下層膜厚(μm)の何れか一方が「0」と示されているものは、その一方の層が積層されておらず、空気極が他方の層のみの単層構造であることを示す。
[実験結果]
And in each experimental sample of an Example, a comparative example, and a reference example, oxidant gas (air) is supplied to the air electrode of each experimental sample, and fuel gas (hydrogen) is supplied to the fuel electrode made of a sintered product of the fuel electrode green sheet. Each experimental sample was set in a power generation evaluation apparatus (not shown) so that the gas was supplied, and a power generation test was performed at 700 ° C., and the voltage of each experimental sample was measured. The results are shown in Table 1. In each example of Table 1 or each comparative example, one of the upper layer thickness (μm) and the lower layer thickness (μm) indicated as “0” is a lamination of one of the layers. This indicates that the air electrode has a single-layer structure of only the other layer.
[Experimental result]

Figure 0005756591
表1に示される結果からも、実施例1〜14によれば、何れも、集電体の凸部が所定の深さで空気極に差し込まれており、比較例1〜3に比して、高電圧が得られることが認められる。
Figure 0005756591
Also from the result shown in Table 1, according to Examples 1-14, the convex part of an electrical power collector is inserted in the air electrode by the predetermined | prescribed depth, and compared with Comparative Examples 1-3. It can be seen that a high voltage is obtained.

また、実施例1〜11や実施例14では、空気極の厚さが100μm以上とされて、空気極の厚さが100μmを大きく下回る実施例12に比して、空気極の厚さ方向に対する横方向の集電抵抗が小さくなる。その結果、実施例1〜11,14の電圧は、実施例12よりも大きくなるものと考えられる。   Further, in Examples 1 to 11 and Example 14, the thickness of the air electrode is set to 100 μm or more, and the thickness of the air electrode is less than 100 μm. The current collecting resistance in the lateral direction is reduced. As a result, the voltages of Examples 1 to 11 and 14 are considered to be larger than those of Example 12.

一方、比較例2のように、空気極の全体厚さが300μmを超えると、平板セルの基体に対する空気極の支持安定性が確保され難くなって、空気極の焼結時に、空気極が基体から剥離してしまい、空気極凹み量と電圧を測定することが不可能になる。   On the other hand, when the total thickness of the air electrode exceeds 300 μm as in Comparative Example 2, it is difficult to ensure the support stability of the air electrode with respect to the substrate of the flat plate cell. It becomes impossible to measure the air electrode dent amount and voltage.

また、比較例1,3では、実施例5,6,14に比して、空気極に押し当てられる凸部の先端面積が大きくされているものの、凸部が粒径1μm未満の粉末材料の焼結物からなる硬い空気極に押し当てられることで、潰れ変形部が空気極に形成されない結果、実施例に比して電圧が低くされている。   In Comparative Examples 1 and 3, the tip area of the convex portion pressed against the air electrode is larger than in Examples 5, 6, and 14, but the convex portion is made of a powder material having a particle size of less than 1 μm. By being pressed against the hard air electrode made of a sintered product, the collapsed deformed portion is not formed on the air electrode. As a result, the voltage is lower than in the example.

このことから、集電体と空気極との接触抵抗の低減には、凸部の先端面積を大きくするよりも、潰れ変形部の形成が重要であることがわかる。
また、実施例14のように、空気極に押し当てられる凸部の先端面積が0.2mm2未満の場合には、空気極の凸部が押し当てられる部分に応力集中が生じ易くなって、空気極凹み量が十分に確保されるが、実施例1〜11ほどに電圧が上がらないことが認められる。これは、潰れ変形部に差し込まれた凸部において空気極と確実に接する部分が凸部の周壁部分よりも先端部分とされ、かかる先端部分の面積確保が、空気極と集電体との接触面積の増加に大きく寄与するからであると考えられる。
From this, it can be seen that the formation of the crushing deformation portion is more important for reducing the contact resistance between the current collector and the air electrode than increasing the tip area of the convex portion.
Further, as in Example 14, when the tip area of the convex portion pressed against the air electrode is less than 0.2 mm 2 , stress concentration tends to occur in the portion where the convex portion of the air electrode is pressed, Although the air electrode dent amount is sufficiently secured, it is recognized that the voltage does not increase as much as in Examples 1-11. This is because the portion of the convex portion inserted into the crushing deformable portion that makes positive contact with the air electrode is the tip portion rather than the peripheral wall portion of the convex portion, and ensuring the area of the tip portion is the contact between the air electrode and the current collector. This is thought to be because it contributes greatly to the increase in area.

しかしながら、参考例1のように、凸部の先端面積が13mm2以上と過大になると、空気極の凸部の押し当て部分に応力が集中され難くなって、凸部が空気極に差し込まれなくなり、空気極に潰れ変形部が形成されない。このため、参考例1では、凸部の先端部分の大きな面積に基づき、所定の電圧は確保されるが、実施例1〜11ほどに電圧が上がらないことが認められる。 However, as in Reference Example 1, when the tip end area of the convex portion is excessively 13 mm 2 or more, stress is not easily concentrated on the pressing portion of the convex portion of the air electrode, and the convex portion is not inserted into the air electrode. The air electrode is not crushed and deformed. For this reason, in Reference Example 1, a predetermined voltage is secured based on the large area of the tip portion of the convex portion, but it is recognized that the voltage does not increase as much as in Examples 1-11.

従って、凸部の先端面積は潰れ変形部が空気極に形成される範囲で大きくされることが望ましい。
また、実施例1〜14、比較例1〜3および参考例1の結果からも、空気極凹み量が、実用的に5μm以上とされていれば、電圧が好適に確保されることが認められる。
Therefore, it is desirable that the tip area of the convex portion is increased within a range in which the crushing deformed portion is formed on the air electrode.
Also, from the results of Examples 1 to 14, Comparative Examples 1 to 3, and Reference Example 1, it is recognized that the voltage is suitably secured if the air electrode dent amount is practically 5 μm or more. .

一方、参考例2のように、複数の凸部の空気極に対する押圧力を大きくして、凸部が潰れ変形部に差し込まれた部分の空気極凹み量が80μmになると、空気極を含み、電解質層(固体電解質膜用グリーンシートまたはGDC保護膜用ペーストの焼結物)や燃料極(燃料極基体用グリーンシートの焼結物)等の平板セルの一部に亀裂の発生が確認される。この亀裂は、空気極の潰れ変形部において凸部が差し込まれた部分の凹み等とは異なるものである。   On the other hand, as in Reference Example 2, when the pressing force against the air electrode of the plurality of convex portions is increased and the convex portion is crushed and the air electrode dent amount of the portion inserted into the deformed portion is 80 μm, the air electrode is included, Cracks are confirmed in some flat plate cells such as electrolyte layers (green sheets for solid electrolyte membranes or GDC protective film pastes) and fuel electrodes (sintered green sheets for fuel electrode substrates). . This crack is different from the dent or the like of the portion where the convex portion is inserted in the collapsed deformed portion of the air electrode.

上記亀裂の発生は、空気極を焼結した際のうねりや反り等により、凸部を差し込む空気極の表面が平坦とされていないことによって、各凸部の先端面と空気極の表面との間の距離にばらつきが生じることが原因と考えられる。   The occurrence of the crack is caused by the fact that the surface of the air electrode into which the convex portion is inserted is not flat due to swell or warping when the air electrode is sintered, and therefore, the tip surface of each convex portion and the surface of the air electrode This is considered to be caused by variations in the distance between them.

従って、空気極凹み量、即ち凸部による潰れ変形部の潰れ深さにおいては、凸部の大きさや空気極のうねり量等の設定に応じて多少の誤差は許容されるものであるが、一般的な燃料電池に採用される凸部の大きさや空気極の通常のうねり量等を勘案してセルの強度に影響する可能性のある亀裂が生じず、且つ好適な電圧が得られる範囲を考慮すれば、5〜70μmとされることが好ましい。   Therefore, in the air electrode dent amount, that is, the crushing depth of the crushed deformation portion due to the convex portion, some errors are allowed depending on the setting of the size of the convex portion, the undulation amount of the air electrode, etc. In consideration of the range in which a suitable voltage can be obtained without taking into account the size of the protrusions used in a typical fuel cell and the normal amount of swell of the air electrode, which may affect the strength of the cell In this case, the thickness is preferably 5 to 70 μm.

それ故、実施例1〜14の何れかの構成からなる燃料電池によれば、空気極の好適な厚さ確保と凸部の空気極への差し込みによる潰れ変形部の形成に基づいて、集電体と空気極の接触に伴う電気的なロスが低減されて、発電性能が向上される。加えて、上述の(イ)〜(ハ)の要件を備えた実施例1〜11の燃料電池においては、発電性能の更なる向上が図られる。   Therefore, according to the fuel cell having any one of the configurations of Examples 1 to 14, the current collector is based on ensuring a suitable thickness of the air electrode and forming the crushing deformation portion by inserting the convex portion into the air electrode. Electrical loss due to contact between the body and the air electrode is reduced, and power generation performance is improved. In addition, in the fuel cells of Examples 1 to 11 having the above requirements (A) to (C), the power generation performance can be further improved.

10…固体酸化物形燃料電池、12…燃料電池セル、14…燃料極、16…固体電解質層、18…空気極、20…潰れ変形部、22…集電体、24…凸部 DESCRIPTION OF SYMBOLS 10 ... Solid oxide fuel cell, 12 ... Fuel cell, 14 ... Fuel electrode, 16 ... Solid electrolyte layer, 18 ... Air electrode, 20 ... Collapse deformation part, 22 ... Current collector, 24 ... Convex part

Claims (5)

電解質層と、該電解質層の両側に設けられて燃料ガスと酸化剤ガスにそれぞれ接する電極層と、該電極層の少なくとも一方と接合して該電極層から外部に電気を取り出す集電体とを備えた固体酸化物形燃料電池において、
前記集電体と前記電極層との接合部分において該集電体の該電極層と対向する面には複数の凸部が設けられており、
該電極層の該集電体と対向する面には、該凸部の硬度が該電極層の硬度に比して大きいことにより、該凸部の先端の少なくとも一部が差し込まれて潰される潰れ変形部が形成されており、
且つ、前記凸部による前記潰れ変形部の潰れ深さは、5〜70μmであるとともに、前記凸部の先端において前記電極層と対向する部分の面積は、0.2〜13mm 2 であることを特徴とする固体酸化物形燃料電池。
An electrolyte layer; an electrode layer provided on both sides of the electrolyte layer and in contact with the fuel gas and the oxidant gas; and a current collector that joins at least one of the electrode layers and extracts electricity from the electrode layer. In the solid oxide fuel cell provided,
A plurality of convex portions are provided on the surface of the current collector that faces the electrode layer at the junction between the current collector and the electrode layer,
On the surface of the electrode layer facing the current collector, the hardness of the convex portion is larger than the hardness of the electrode layer, so that at least a part of the tip of the convex portion is inserted and crushed. A deformation part is formed,
And, the collapse depth of the crush deformation portion by the convex portion, with a 5 to 70 m, the area of the portion facing the electrode layer at the tip of the convex portion is 0.2~13Mm 2 A solid oxide fuel cell.
前記潰れ変形部を備えた前記電極層は、前記電解質層に積層された第1電極層と、該第1電極層に積層されて前記集電体と対向位置し、且つ硬度が該第1電極層に比して小さい第2電極層とを含んで構成されており、該第2電極層の該集電体と対向する面に該潰れ変形部が形成されていることを特徴とする請求項1に記載の固体酸化物形燃料電池。 The electrode layer having the crushing deformable portion includes a first electrode layer laminated on the electrolyte layer, a layer laminated on the first electrode layer and facing the current collector, and the hardness is the first electrode. And a second electrode layer that is smaller than the first electrode layer, wherein the crushing deformation portion is formed on a surface of the second electrode layer facing the current collector. 2. The solid oxide fuel cell according to 1. 前記潰れ変形部が形成された前記電極層は、前記酸化剤ガスに接する空気極であることを特徴とする請求項1又は2に記載の固体酸化物形燃料電池。 3. The solid oxide fuel cell according to claim 1, wherein the electrode layer in which the crushing deformation portion is formed is an air electrode in contact with the oxidant gas. 4. 前記電極層における前記集電体と対向する方向の厚さは、100〜300μmであることを特徴とする請求項1乃至3の何れか一項に記載の固体酸化物形燃料電池。 4. The solid oxide fuel cell according to claim 1, wherein a thickness of the electrode layer in a direction facing the current collector is 100 to 300 μm . 5. 前記電極層における前記潰れ変形部の形成部分は、粒径が1〜10μmの粉末材料を焼結することにより形成されていることを特徴とする請求項1乃至4の何れか一項に記載の固体酸化物形燃料電池。 Forming part of the crushing deformation portion of the electrode layer, the particle size is according to any one of claims 1 to 4, characterized that you have been formed by sintering 1~10μm powder material Solid oxide fuel cell.
JP2009179253A 2009-04-20 2009-07-31 Fuel cell Active JP5756591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009179253A JP5756591B2 (en) 2009-04-20 2009-07-31 Fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009102146 2009-04-20
JP2009102146 2009-04-20
JP2009179253A JP5756591B2 (en) 2009-04-20 2009-07-31 Fuel cell

Publications (2)

Publication Number Publication Date
JP2010272499A JP2010272499A (en) 2010-12-02
JP5756591B2 true JP5756591B2 (en) 2015-07-29

Family

ID=43420347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179253A Active JP5756591B2 (en) 2009-04-20 2009-07-31 Fuel cell

Country Status (1)

Country Link
JP (1) JP5756591B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5657399B2 (en) * 2011-01-11 2015-01-21 株式会社東芝 Method for producing solid oxide electrochemical cell
JP5708923B2 (en) 2011-04-20 2015-04-30 日本特殊陶業株式会社 Fuel cell and fuel cell
CA2840022C (en) * 2011-06-28 2018-09-18 Ngk Spark Plug Co., Ltd. Solid oxide fuel cell and inter-connector
JP5885579B2 (en) * 2012-05-15 2016-03-15 日本特殊陶業株式会社 Solid oxide fuel cell and method for producing the same
CA2880153C (en) * 2012-07-27 2018-06-12 Ngk Spark Plug Co., Ltd. Fuel cell and fuel cell stack with maintained electrical connection
KR101917424B1 (en) * 2016-08-31 2018-11-09 주식회사 포스코 Fuel cell
JP6839022B2 (en) * 2017-02-22 2021-03-03 森村Sofcテクノロジー株式会社 Electrochemical reaction unit and electrochemical reaction cell stack
JP6839021B2 (en) * 2017-02-22 2021-03-03 森村Sofcテクノロジー株式会社 Electrochemical reaction unit and electrochemical reaction cell stack

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4237602A1 (en) * 1992-11-06 1994-05-11 Siemens Ag High temperature fuel cell stack and process for its manufacture
JPH0896820A (en) * 1994-09-28 1996-04-12 Toyota Motor Corp Fuel cell
JPH08130023A (en) * 1994-10-27 1996-05-21 Aisin Seiki Co Ltd Fuel cell
JPH09180731A (en) * 1995-12-28 1997-07-11 Kyocera Corp Solid electrolyte fuel cell
JP2004200023A (en) * 2002-12-19 2004-07-15 Mitsubishi Materials Corp Solid oxide fuel cell
JP4067396B2 (en) * 2002-12-25 2008-03-26 三洋電機株式会社 Cell unit for fuel cell
JP2006059611A (en) * 2004-08-18 2006-03-02 Mitsui Mining & Smelting Co Ltd Ceria based solid electrolyte fuel cell and its manufacturing method
WO2007061043A1 (en) * 2005-11-25 2007-05-31 Nippon Telegraph And Telephone Corporation Solid oxide fuel cell
EP1990856B1 (en) * 2007-05-09 2013-01-23 Hexis AG Method for creating contacts between electrochemically active discs and interconnectors in high-temperature fuel cells

Also Published As

Publication number Publication date
JP2010272499A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
JP5756591B2 (en) Fuel cell
JP6658754B2 (en) Solid oxide fuel cell and method for producing electrolyte layer-anode assembly
DK2701225T3 (en) Fuel cell and fuel cell stack
JP4820463B2 (en) Fuel cell and solid oxide fuel cell
JP5051741B2 (en) Fabrication method of flat plate type solid oxide fuel cell
KR101154506B1 (en) Unit cell for solid oxide fuel cell and manufacturing method thereof
KR102111859B1 (en) Solid oxide fuel cell and a battery module comprising the same
JP2010061829A (en) Operation method of solid oxide fuel cell
JP5313518B2 (en) Solid electrolyte fuel cell
JP6044717B2 (en) CERAMIC SUBSTRATE FOR ELECTROCHEMICAL DEVICE, PROCESS FOR PRODUCING THE SAME, FUEL CELL AND FUEL CELL STACK
JP5107509B2 (en) Method for producing solid oxide fuel cell
JP4476721B2 (en) Flat plate type solid oxide fuel cell and method for producing the same
WO2018174167A1 (en) Substrate with electrode layer for metal support type electrochemical element, electrochemical element, electrochemical module, solid oxide fuel cell, and manufacturing method
JP2009009738A (en) Solid electrolyte fuel cell and its manufacturing method
JP6162572B2 (en) Method for producing solid oxide fuel cell single cell and method for producing solid oxide fuel cell stack
JP6965041B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP6993162B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP6808396B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP7245210B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP7132982B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP6075924B2 (en) Fuel cell single cell and manufacturing method thereof
JP7278241B2 (en) electrochemical reaction single cell
JP7202172B2 (en) Anode and Solid Oxide Electrochemical Cell
JP2005038848A (en) Solid oxide fuel cell
JP2005063810A (en) Solid oxide fuel cell and base plate used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140224

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150601

R150 Certificate of patent or registration of utility model

Ref document number: 5756591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250