JP5059906B2 - 体調判定方法 - Google Patents

体調判定方法 Download PDF

Info

Publication number
JP5059906B2
JP5059906B2 JP2010113459A JP2010113459A JP5059906B2 JP 5059906 B2 JP5059906 B2 JP 5059906B2 JP 2010113459 A JP2010113459 A JP 2010113459A JP 2010113459 A JP2010113459 A JP 2010113459A JP 5059906 B2 JP5059906 B2 JP 5059906B2
Authority
JP
Japan
Prior art keywords
physical condition
subject
walking
fluctuation
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010113459A
Other languages
English (en)
Other versions
JP2010201185A (ja
Inventor
紀子 大場
徹 和辻
毅 小河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010113459A priority Critical patent/JP5059906B2/ja
Publication of JP2010201185A publication Critical patent/JP2010201185A/ja
Application granted granted Critical
Publication of JP5059906B2 publication Critical patent/JP5059906B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は被験者の体調判定する方法に関するものである。
脈拍や血圧、体温、血糖値、呼吸、筋電、心電、血流、脳波、発汗量、加速度、振動、傾斜度といった生体信号を測定・分析して、人の健康状態を判定することが従来から種々試みられている。例えば特開平6−217951号公報には、測定した脈波からアトラクタを生成し、メモリに記憶されている複数のアトラクタパターンとこのアトラクタを比較して、アトラクタの形状や構造の類似度から人の体の調子(体調)判定する発明が開示されている。
また特公平6−9546号公報には、脈波及び/又は心電波の時系列データからカオスアトラクタを作成し、さらにカオスアトラクタを演算処理してリアプノフ指数を求め、心身の異常などを診断する発明が開示されている。そして特開2000−166877号公報には、生体リズム情報を解析して生理機能の低下、老化を早期に判別する発明が開示されている。
特開平6−217951号公報 特公平6−9546号公報 特開2000−166877号公報
これら開示された発明によれば、ある程度有効な判定、判断結果が得られるであろうとは推測されるが、判定、判断に必要な生体信号を収集するのに長時間を要するため迅速な判定、判断ができないという問題があった。
また一般に広く使用されていた従来の運動器具は、歩行運動や自転車運動などを行って人の運動不足を解消して健康の維持増進を図るものであって、人の健康状態の判別の手がかりとするようなものではなかった。
本発明はこのような従来の問題に鑑みてなされたものであり、被験者の体調客観的に判定するのに必要な生体信号が迅速に収集できると同時に、精度のよい判定結果が迅速に得られる体調判定方法を提供することをその目的とするものである。
また、本発明は、人体の運動状態から得られる加速度、振動、傾斜度など非医療行為により判定される生体信号だけではなく、心電、血流、脳波など医療行為による測定される生体信号を用いることが出来る。
本発明は、運動を行っている状態の被験者が受けた外部刺激の前後における当該被験者の生体信号測定値に基づき、当該外部刺激の前後の生体信号測定値の揺らぎの変化を求める工程と、
前記求められた揺らぎの変化及び被験者の年齢を、
前記揺らぎの変化が体調と対応し、その変化は年齢と関連していることに基づき得られた、揺らぎの変化と年齢とを変数とする体調区分基準と比較し、被験者の体調区分を判定することを特徴とする体調判定方法である。
ここで、判定の精度を上げる観点から、カオス解析を用いて生体信号の変化を解析し体調区分の判定をすることが望ましい。
例えば、カオス解析としてカオスアトラクタ解析を用いて、カオスアトラクタの軌道周期を求め、その軌道周期の揺らぎをデトレンド変動分析(DFA:Detrended Fluctuation Analysis)により分析し、揺らぎの大きさを縦軸、ウインドウサイズを横軸として各ウインドウサイズに対する揺らぎの大きさを図に表し、外部刺激を与える前後の傾きの変化量を算出し、予め調査しておいた傾きの変化量と年齢とを変数とする体調区分の何れに該当するかを判定することができる。
判定に必要な生体信号を得る際に被験者にかける運動負担を軽減する観点から、前記運動としては歩行運動が好ましく、この場合外部刺激としては坂道歩行、階段歩行、歩行速度変化、音声刺激、映像刺激の少なくとも一つであるのがよい。
また、判定に必要な生体信号を得る場合、場所や天候などを考慮せずに簡便に行える点で、運動器具を用いて運動を行っている被験者に対して外部刺激を与えるのが望ましい。さらに被験者にかける運動負担を軽減する観点から、前記運動器具は歩行運動器具であることが好ましい。この場合、歩行速度や歩行面傾斜角度を変化させることにより外部刺激を与えればよい。
被験者に外部刺激を与える他の方法として、運動器具に映像装置をさらに設け、この映像装置からの映像により外部刺激を与えるようにしてもよいし、運動器具に音声出力装置をさらに設け、この音声出力装置からの音声により外部刺激を与えるようにしてもよい。
被験者が携帯する際の重量負担を軽減する観点および利便性の観点から、被験者の生体信号は加速度センサ及び振動センサの少なくとも一方により測定することが推奨される。
上記加速度センサ、振動センサ、傾斜度センサなどを用いる場合、医療行為を必要としないから、生体信号を簡便に測定することが出来る。
本発明の体調判定方法によれば、用いる生体信号測定値は、運動を行っている被験者に対して外部刺激を与えた前後のもので良いので、従来に比べ格段に短い時間で精度よく、得ることができる。
また、本発明の体調判定方法では、体調の区分により体調の程度を客観的に把握することが出来る。従って、運動開始前に自己の体調を確認し、その確認に基づきその日の運動プログラムを設定すれば、無理なく効果的に健康の維持増進が図れる。
本発明の体調判定方法を実施する装置の構成例を示すブロック図である。 カオスアトラクタを2次元数空間に描いた一例を示す図である。 アトラクタ軌道周期の変化を示す図である。 坂道歩行の前後の平坦歩行における加速度データである。 の加速度データから求めたDFA結果である。 の傾きの変化量と年齢との関係を示す図である。 平坦歩行時の振動センサの波形である。 本発明の体調判定方法を実施している一例を示す概説図である。 実施例1における加速度データのDFAを用いた解析結果である。 実施例2における加速度データのDFAを用いた解析結果である。
本発明者等は、被験者の体調を判定するのに必要な生体信号測定値をいかにして迅速に収集出来るか鋭意検討を重ねた結果、被験者が運動を行っているときに外部刺激を与えると、被験者の体調に対応して生体信号が変化し、その変化は年齢と関連していることを見出し本発明の体調判定方法をなすに至った。
すなわち本発明の体調判定方法では、その判定に必要な生体信号値を得る場合、外部刺激を与えて変化する生体信号を測定するだけなのでわずか数分程度の測定時間で完了する。生体信号の測定装置を被験者に長期間携帯させて、得られた情報から健康状態を判断していた従来の判断方法に比べれば、本発明の体調判定方法の測定時間は格段に短いものである。
被験者が生体信号を得るために行う運動としては過激なものである必要はなく、例えば散歩やジョギング、階段の昇降といった軽度の運動でよい。本発明の体調判定方法を実施する装置の具体的構成の一例を図1に示す。運動している被験者の生体信号を測定手段1により測定する。そして被験者に外部刺激3を与えて、外部刺激3により被験者の生体信号がどのように変化するかを測定手段1で測定し、その測定データをデータ処理・解析手段2へ送る。一方、被験者の年齢を入力手段4から入力し、入力された年齢をデータ処理・解析手段2へ送る。そしてデータ処理・解析手段2で被験者の体調判定する。
被検者に与える外部刺激としては特に限定はなく、どのような刺激であってもよいが、被検者に行わせる運動が歩行運動の場合には、坂道歩行、階段歩行、歩行速度変化、音声刺激、映像刺激の少なくとも一つであるのがよい。また歩行運動器具を用いる場合には、歩行速度や歩行面傾斜角度などの変化、あるいは音声刺激、映像刺激などがよい。
本発明で用いられる生体信号としては、被験者の健康状態に関係するものであれば特に限定はなく、例えば被験者の振動や加速度、心電、血圧、体温、脈拍、筋電、発汗量、傾斜度などが挙げられ、これらの1つ又は2つ以上を組み合わせて測定すればよい。これらの生体信号の測定には、振動センサ、加速度センサ、心電センサ、血圧センサ、体温センサ、脈拍センサ、筋電センサ、発汗センサ、傾斜センサなどが使用でき、この中でも被験者への装着負担が少なく、また小型であることなどから振動センサや加速度センサの使用が望ましい。なお、これら測定器の装着場所は、被検者に行わせる運動や運動器具の種類、測定する生体信号の種類などから適宜決定すればよい。
本発明方法は、外部刺激を与えた直後の被検者の生体信号の変化から行うこともできるし、外部刺激を与えた後、元の状態に戻し、外部刺激を与えた前後での被検者の生体信号の変化から行うこともできる。
ここで行動など生体に関する信号は一般に非線形データであるため、解析方法としては非線形解析方法を用いるのがよく、中でも非線形データの解析手法として広く用いられているカオス解析が最も好適に用いることができる。このカオス解析には、フラクタル次元解析やリアプノフ指数解析、カオスアトラクタ解析など種々の解析方法があるが、生体信号に関する解析手法としてはカオスアトラクタ解析が適している。具体的には得られた生体信号に基づき所望の数空間にカオスアトラクタを描き、描いたカオスアトラクタ形状から被験者の体調を判定する。
一方、カオスアトラクタの形状だけからでは違いが明確にわからない場合がある。このような場合は、カオスアトラクタの軌道周期をさらに測定し、その軌道周期の揺らぎから健康状態を解析すればよい。例えば、数空間上の特定点を原点として極座標変換を行って角周期を求め、この角周期を軌道周期とする。そしてこの軌道周期の揺らぎの特徴から被験者の健康状態を判断するのである。図2を用いて説明すると、カオスアトラクタの点Oから右方向に水平線Sを引き、この水平線Sを基準線としてアトラクタ軌道が反時計回りに360°回転して基準線に戻ってくるまでの時間を測定し、この時間を軌道周期とすればよい。もちろん、軌道周期はアトラクタ軌道の一部分であってもよく、この場合は基準となる回転角度を決めておき、アトラクタ軌道がこの角度を移動する時間を測定すればよい。極座標変換の原点としては、簡単に算出できることからカオスアトラクタ構成要素の平均値座標点を用いるのが好ましい。なおアトラクタ軌道の形状によっては、求めた平均値座標点がアトラクタ軌道内になることもあるが、このような場合には平均値座標点近傍のアトラクタ軌道外の点を極座標変換の原点とすればよい。
被験者による歩行の加速度データから2次元数空間にカオスアトラクタを描いた後、極座標変換してカオスアトラクタの軌道周期を測定した結果の一例を図3に示す。図3(a)は健康時のアトラクタ軌道周期、同図(b)は体調不良時のアトラクタ軌道周期である。両図のアトラクタ軌道周期の揺らぎを比較してみれば、体調の違いによる歩行データの違いが見いだせる。
アトラクタ軌道周期の揺らぎをさらに詳細に解析する場合には、デトレンド変動解析(DFA:Detrended Fluctuation Analysis)、フーリエ変換などの周波数変換、ウェーブレット解析、マルチフラクタル解析などの従来公知の解析方法を用いればよく、この中でも大きな揺らぎに対しても客観的かつ正確に解析できる点でDFAが特に好適に用いることができる。
DFAによる分析方法を概説すると、まず揺らぎの系を所定のウインドウサイズで区切り、各ウインドウサイズ毎に波形を直線近似する。そしてその直線近似からをズレの絶対値を積分し、この積分値を揺らぎの大きさとする。揺らぎの大きさを縦軸とし、ウインドウサイズを横軸として、各ウインドウサイズに対する揺らぎの大きさをプロットして、その傾きやy切片を状態の判定・予測の指標とするのである。
本発明者等による実験よれば、平坦歩行−坂道歩行−平坦歩行を被験者させたときの、坂道を上る前後での歩行加速度データの揺らぎの傾き変化量が、そのときの被験者の体調と密接に関係していることが突き止められた。坂道を上る前・後の加速度波形を図4(a),(b)に示し、これら加速度波形からDFAを用いて求めた歩行間隔の揺らぎを図5に示す。そして年齢の異なる複数の被験者に対して同様の実験を行い、図5における2つの直線の傾きの変化量を算出し、傾きの変化量を縦軸とし、年齢を横軸としてプロットしたものを図6に示す。ここで、被験者の実験時の体調を併せて調査し、体調がよいと申告した被験者のデータを「◎」、体調は平常と申告した被験者のデータを「○」、体調が悪いと申告した被験者のデータを「×」で表示してある。図6から理解されるように、良好、平常、不良の各体調領域は図上で区分けできる。したがって、歩行加速度などの生体信号の測定結果から前記揺らぎの傾き変化量を算出すれば、前記体調区分を基準として、図6において傾き変化量と年齢とを比較することにより、そのときの体調区分を判定できるのである。
例えば図6において、年齢29歳の人であれば、算出した傾き変化量が、ゼロより小さければ「体調不良」、ゼロ〜0.1であれば「平常」、0.1以上であれば「体調良好」と判定できる。
なお、外部刺激の種類を坂道歩行から階段歩行に代えても同様の結果が得られる。また検知手段を加速度センサから振動センサに代えても同様の結果が得られる。振動センサにより検知された振動波形の一例を図7に示す。
また運動器具を用いて被験者に運動を行わせれば、より簡便に生体信号を測定することができる。このような運動器具としては特に限定はなく、従来公知の運動器具を用いることができ、例えば歩行運動器具(トレッドミル)、自転車運動器具(エアロバイク)、階段登り運動器具(エアロクライム)などの運動器具が挙げられる。この中でも被験者への運動負担や利便性などの観点から歩行運動器具を用いることが推奨される。
運動器具を用いた場合の被験者に与える外部刺激としては特に限定はなく、例えば運動器具の条件変化による刺激や映像による刺激、音声による刺激などが考えられる。前記運動器具の条件変化による刺激としては、運動器具として歩行運動器具を例にとれば、歩行速度を早くしたり、遅くしたりする刺激、あるいは歩行面傾斜角度を急にしたり、緩やかにしたりすることによる刺激が挙げられる。
また映像による刺激は、運動器具の周囲に映像装置を配設して被験者の視覚を通して与える刺激である。例えば歩行運動器具上を歩いている被験者に対して、歩行運動器具の前側に設けたスクリーンあるいは頭部に装着したディスプレイに歩道を歩いている映像を投影して、被験者が歩道を歩いている状態を仮想的に創り出し、そして突然横からクルマが飛び出してくる映像を投影してこの時の被験者の生体信号の変化を測定するのである。
音声による刺激は、運動器具の周囲に音声出力装置を配設して被験者の聴覚を通して与える刺激である。例えばイヤホンにより一定のリズムが与えられて歩行運動器具上を歩いている被験者に対して、イヤホンから大きな音など不快な音を突然流して被験者の生体信号の変化を測定する、あるいは行進曲などのリズミカルな音楽を数分間聴かせた後で被験者の生体信号の変化を測定するのである。
次に本発明の体調判定方法を実施した装置について説明する。この装置は、運動器具部と、被験者に外部刺激を与える刺激手段と、外部刺激による被験者の生体信号の変化を測定する測定手段と、被験者の年齢を入力する入力手段と、生体信号の変化から被験者の体調区分判定する判定手段とを備えた構成を有する。
運動器具としては前記例示した運動器具がここでも使用することができる。また刺激手段としては、前記例示した運動器具の条件制御部、映像装置、音声出力装置などが挙げられ、さらに測定手段としては、前記例示した振動センサ、加速度センサ、心電センサ、血圧センサ、体温センサ、脈拍センサ、筋電センサ、発汗センサ、傾斜センサなど従来公知の測定器が挙げられる。入力手段としては、従来公知のものが使用でき、例えば数字キーを備えたものが例示できる。そしてまた判定手段としては、前記説明したカオス解析、さらにはカオスアトラクタ解析を用いることができる。
この装置は、運動器具部により通常の運動器具としての役割を果たすのみならず、前記判定手段などにより被験者の体調を判定することもできる。したがってこの装置では、運動開始時に被験者の体調区分を判定し、その判定結果に基づきその日の運動プログラムを決定するというような利用態様も可能である。
本発明の体調判定方法を実施する装置の一実施態様を図8に示す。図8は当該装置の概説図である。この装置は、歩行運動器具(運動器具部)6と、歩行運動器具6の前側に配置されたスクリーン(刺激手段)7と、被験者が携帯した加速度センサ(測定手段)8と、年齢を入力する入力手段5と、判定手段9とを備える。加速度センサ8を携帯した被験者は、入力手段5から年齢を入力する。そして、前面のスクリーン7に映し出される画面を見ながら歩行運動器具6の歩行ベルト61上を歩行する。スクリーンには、散歩しているときの町や自然の風景が当初は映し出される。そこに突然クルマや犬が横から飛び出してくるといった映像を映す。このときの被験者の加速度の乱れを加速度センサ8で測定し、測定データを判定手段9へ送信する。判定手段9は、データ処理・解析手段91と、体調区分判定手段92と出力手段93とを有し、送信されてきた測定データに基づき被験者の体調区分判定する。
図8では、スクリーン7に映し出された映像により外部刺激を被験者に与えたが、歩行運動器具6の歩行ベルト61の歩行速度や傾斜角度を変化させて被験者に外部刺激を与えてもよく、またこれらを組み合わせて外部刺激を与えてももちろん構わない。
実施例1
加速度センサを携帯した被験者にトレッドミルの歩行ベルト上を歩かせる。歩行ベルトの速度を時速4km/hから6km/hに上げて10分間歩かせた後、再び元の速度に戻して、歩行ベルトの速度を上げる前後での加速度を測定した。測定した加速度データをDFAを用いて解析した。結果を図9に示す。図9では、歩行ベルトの速度を上げた後は上げる前に比べて揺らぎが全体に大きくなっている。この揺らぎの増加は被験者の疲労度と関連していると考えられ、疲労度が大きいほど高速歩行後の揺らぎの増加は大きくなる。また体調と疲労度も密接な関係があり、体調がよいほど疲労度は小さい。したがって疲労度の大きさ、すなわち高速歩行後の揺らぎの増加の大きさを体調の指標とでき、揺らぎの増加が小さいほど体調は良好と判定される。この実施例においては、上記のように生体信号として加速度を用いて、体調区分を判定することが出来る。
実施例2
加速度センサを携帯した被験者にトレッドミルの歩行ベルト(時速4.0km)上を歩かせ、さらに被験者にはイヤホンを付けさせた。そしてイヤホンからリズミカルな音楽(行進曲)を5分間流し、音楽を聴く前と後の加速度変化を測定した。測定した加速度データをDFAを用いて解析した。結果を図10に示す。図10では、音楽を聴いた後は聴く前に比べて揺らぎの傾きが小さくなっている。この揺らぎの傾きは歩行リズムの規則性と関連していると考えられ、歩行リズムが規則的になるほど揺らぎの傾きは小さくなる。また体調と音楽リズムへの順応性とも密接な関係があり、一般に体調がよいほど音楽のリズムに順応しやすい。したがって、音楽のリズムへの順応性、すなわち揺らぎの傾き変化(減少方向)を体調の指標とでき、揺らぎの傾き変化(減少方向)が大きいほど体調は良好と判定される
1 測定手段
2 データ処理・解析手段
3 外部刺激
4 入力手段
5 入力装置(入力手段)
6 歩行運動器具(運動器具部)
7 スクリーン(刺激手段)
8 加速度センサ(測定手段)
判定手段
61 歩行ベルト
91 データ処理・解析手段
92 体調区分判定手段
93 出力手段

Claims (5)

  1. 運動を行っている状態の被験者が受けた外部刺激の前後における当該被験者の生体信号測定値に基づき、当該外部刺激の前後の生体信号測定値の揺らぎの変化を求める工程と、
    前記求められた揺らぎの変化及び被験者の年齢を、
    前記揺らぎの変化が体調と対応し、その変化は年齢と関連していることに基づき得られた、揺らぎの変化と年齢とを変数とする体調区分基準と比較し、
    被験者の体調区分を判定する体調判定方法。
  2. 前記生体信号は、被験者の振動、加速度、傾斜度など非医療行為により測定されるものであることを特徴とする請求項1に記載の体調判定方法。
  3. 前記生体信号は、運動器具を用いて運動を行っている被験者から得られたものであることを特徴とする請求項1又は2に記載の体調判定方法。
  4. 前記体調区分は、体調が良い、体調は平常、体調が悪いのうち少なくとも2つの区分を含むことを特徴とする請求項1〜3の何れかに記載の体調判定方法。
  5. 前記揺らぎの変化はカオス分析を用いて解析する請求項1〜4の何れかに記載の体調判定方法。
JP2010113459A 2010-05-17 2010-05-17 体調判定方法 Expired - Fee Related JP5059906B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010113459A JP5059906B2 (ja) 2010-05-17 2010-05-17 体調判定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010113459A JP5059906B2 (ja) 2010-05-17 2010-05-17 体調判定方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000367212A Division JP4767405B2 (ja) 2000-12-01 2000-12-01 健康状態判断方法および健康状態判断装置

Publications (2)

Publication Number Publication Date
JP2010201185A JP2010201185A (ja) 2010-09-16
JP5059906B2 true JP5059906B2 (ja) 2012-10-31

Family

ID=42963254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010113459A Expired - Fee Related JP5059906B2 (ja) 2010-05-17 2010-05-17 体調判定方法

Country Status (1)

Country Link
JP (1) JP5059906B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201336474A (zh) * 2011-12-07 2013-09-16 通路實業集團國際公司 行為追蹤及修正系統

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292338A (ja) * 1988-09-28 1990-04-03 Sekisui Chem Co Ltd 体力特性診断マップ及び体力特性診断方法
JPH06142086A (ja) * 1992-11-11 1994-05-24 Omron Corp 運動モニタ装置
JPH06217951A (ja) * 1993-01-29 1994-08-09 Sanyo Electric Co Ltd 健康管理装置
JP3615257B2 (ja) * 1995-02-15 2005-02-02 一彦 田辺 ストレステストシステム
JP3811978B2 (ja) * 1996-01-11 2006-08-23 松下電器産業株式会社 健康判定装置
JPH119557A (ja) * 1997-06-24 1999-01-19 Matsushita Electric Ind Co Ltd 健康促進装置
JP3696047B2 (ja) * 2000-04-26 2005-09-14 シャープ株式会社 健康状態診断装置
JP4767405B2 (ja) * 2000-12-01 2011-09-07 シャープ株式会社 健康状態判断方法および健康状態判断装置

Also Published As

Publication number Publication date
JP2010201185A (ja) 2010-09-16

Similar Documents

Publication Publication Date Title
US10856813B2 (en) Method and apparatus for generating assessments using physical activity and biometric parameters
US10512406B2 (en) Systems and methods for determining an intensity level of an exercise using photoplethysmogram (PPG)
US20150038803A1 (en) System and Method for Evaluating Concussion Injuries
Grewal et al. Balance rehabilitation: promoting the role of virtual reality in patients with diabetic peripheral neuropathy
US20140018705A1 (en) Gait analysis method and gait analysis system
JP2018500068A (ja) 加速度計を用いるウェアラブル痛みモニタ
US20160242672A1 (en) Vital signal measuring apparatus and method for estimating contact condition
JP6748076B2 (ja) 心肺適応能評価
JP2008067892A (ja) 生体解析装置及びプログラム
JP2017063966A (ja) 疲労度計
JP2017063963A (ja) 疲労度計
CN113573627A (zh) 用于测量心率的系统
JP2010042236A (ja) ヒトの感覚判定方法及びその判定装置
Albert et al. Using machine learning to predict perceived exertion during resistance training with wearable heart rate and movement sensors
JP5612627B2 (ja) 身体能力判定装置及びデータ処理方法
JP4767405B2 (ja) 健康状態判断方法および健康状態判断装置
JP3696047B2 (ja) 健康状態診断装置
JP2019063091A (ja) 維持システム、維持方法、及び維持プログラム
JP5059906B2 (ja) 体調判定方法
JP2020151470A (ja) 歩行評価装置、歩行評価方法およびプログラム
Janidarmian et al. Haptic feedback and human performance in a wearable sensor system
Grijalva et al. Hyper-acute effects of sub-concussive soccer headers on brain function and hemodynamics
Norali et al. Human breathing assessment using Electromyography signal of respiratory muscles
Tokmak et al. Unveiling the relationships between seismocardiogram signals, physical activity types and metabolic equivalent of task scores
US11779282B2 (en) Method for determining degree of response to physical activity

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5059906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350