JP5055786B2 - MOS type semiconductor device and manufacturing method thereof - Google Patents

MOS type semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5055786B2
JP5055786B2 JP2006041752A JP2006041752A JP5055786B2 JP 5055786 B2 JP5055786 B2 JP 5055786B2 JP 2006041752 A JP2006041752 A JP 2006041752A JP 2006041752 A JP2006041752 A JP 2006041752A JP 5055786 B2 JP5055786 B2 JP 5055786B2
Authority
JP
Japan
Prior art keywords
semiconductor
region
semiconductor region
type
mos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006041752A
Other languages
Japanese (ja)
Other versions
JP2007221012A (en
Inventor
博樹 脇本
正人 大月
功 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006041752A priority Critical patent/JP5055786B2/en
Publication of JP2007221012A publication Critical patent/JP2007221012A/en
Application granted granted Critical
Publication of JP5055786B2 publication Critical patent/JP5055786B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Description

本発明は、電力変換装置などに用いられる、トレンチゲート構造を有するIGBT(絶縁ゲート型バイポーラトランジスタ)などのMOS型半導体装置に関する。   The present invention relates to a MOS semiconductor device such as an IGBT (insulated gate bipolar transistor) having a trench gate structure, which is used in a power conversion device or the like.

電力変換装置の低消費電力化が進む中で、その装置で中心的な役割を果たすパワーデバイス自身の低消費電力化への要望が強い。そのようなパワーデバイスの中でも、特に、伝導度変調効果により低オン電圧が達成でき、電圧駆動によりゲート制御が容易である絶縁ゲート型バイポーラトランジスタ(IGBT)の採用が近年増加してきている。   As the power consumption of power converters continues to decrease, there is a strong demand for lower power consumption of power devices themselves that play a central role in the devices. Among such power devices, in particular, the use of insulated gate bipolar transistors (IGBT), which can achieve a low on-voltage due to the conductivity modulation effect and can be easily gate-controlled by voltage drive, has been increasing in recent years.

IGBTについては、ウエハの基板表面に沿ってゲート電極を設ける周知のプレーナゲート型IGBTと、基板表面から垂直にトレンチ(溝)を形成してその中に酸化膜を介してゲート電極を埋設するトレンチゲート構造のトレンチ型IGBTとがある。後者のトレンチ型IGBTは、基板表面に垂直に形成されたトレンチの両側壁にチャネルが形成されるので、前記プレーナゲート型IGBTに比べるとチャネル密度を高くすることができ、オン電圧をさらに低くできるメリットがある。そのため、近年トレンチゲート構造を採用するトレンチ型IGBTが増えるようになってきた。   As for the IGBT, a well-known planar gate type IGBT in which a gate electrode is provided along the substrate surface of the wafer, and a trench in which a trench (groove) is formed vertically from the substrate surface and the gate electrode is embedded through an oxide film therein. There is a trench type IGBT having a gate structure. In the latter trench type IGBT, since channels are formed on both side walls of the trench formed perpendicular to the substrate surface, the channel density can be increased and the on-voltage can be further reduced as compared with the planar gate type IGBT. There are benefits. Therefore, in recent years, the number of trench type IGBTs employing a trench gate structure has increased.

図9に従来のトレンチゲート構造のIGBT(以下、トレンチ型IGBTと表記)について、チップ中央に位置する(セル領域)活性領域12の一部とそれを取り囲むキャリア排出領域17と周辺構造部13とを含むチップ周辺の概略断面図を示す。図10に、キャリア排出領域を備えず、平行なストライプ状トレンチの間に島状のIGBTユニットセル領域を有する従来のトレンチ型IGBTであって、セル領域12の表面に被覆されているエミッタ電極9を透視するように画いた概略平面図を示す。図10中のA−A’における表面近傍の概略断面図を図11に示す。   FIG. 9 shows a conventional trench gate structure IGBT (hereinafter referred to as a trench type IGBT), a part of the (cell region) active region 12 located in the center of the chip, a carrier discharge region 17 surrounding the active region 12, and a peripheral structure portion 13. FIG. FIG. 10 shows a conventional trench IGBT having no island-shaped IGBT unit cell region between parallel stripe-shaped trenches without a carrier discharge region, and the emitter electrode 9 covered on the surface of the cell region 12. The schematic plan view drawn to see through is shown. FIG. 11 is a schematic cross-sectional view of the vicinity of the surface at A-A ′ in FIG. 10.

前述のトレンチ型IGBTの構造、動作、オン電圧特性およびその改善方法について、図9、図10、図11を参照して説明する。図9は、ストライプ状の平面形状を有するトレンチゲート構造のnチャネル型IGBTのチップについて、セル領域(活性領域)12とキャリア排出領域17と周辺構造部13を含むチップの周辺部を、トレンチゲートのストライプ状の平面形状を直角方向に切断した概略断面図である。図9において、高不純物濃度p型コレクタ領域1と低不純物濃度n型ドリフト領域2からなるシリコン基板のドリフト領域2側の表面にp型ベース領域3が形成され、そのp型ベース領域3の表面に選択的にnエミッタ領域4が形成されている。また、nエミッタ領域4の表面から垂直にp型ベース領域3を貫通してn型のドリフト領域2に達するトレンチ(溝)5が形成される。そのトレンチ5の内部には、ゲート酸化膜6を挟んで多結晶シリコンからなるゲート電極7が充填される。このゲート電極7はゲート配線14によりチップ表面上の図示しないゲートパッドに接続される。このゲート電極7の直上部には層間絶縁膜8が形成され、さらにその上部に形成されるエミッタ電極9との絶縁を図っている。また、このエミッタ電極9はnエミッタ領域4表面とp型ベース領域3表面とに共通に接触するように被覆される。さらに、このエミッタ電極9の上部にパッシベーション膜としての窒化膜やアモルファスシリコン膜が形成されることもあるが、この図では省略した。また、p型コレクタ領域1側の表面(裏面)にはコレクタ電極10が被覆される。周辺構造部13はチップの活性領域を構成するセル領域12を取り囲む周辺に形成され、耐圧を高信頼性に維持できるようにシリコン表面は絶縁膜15で保護され、高耐圧を確保するためのガードリング16構造が形成されている。キャリア排出領域17はpベース領域3に、トレンチ5に隣接するnエミッタ領域4を設けない構造とすることにより、ターンオフ時に、周辺構造部13との境界近傍におけるセル領域12にキャリアの集中があっても、電流遮断不能になることを防ぐ機能を有する。 The structure, operation, on-voltage characteristics and improvement method of the above-described trench type IGBT will be described with reference to FIG. 9, FIG. 10, and FIG. FIG. 9 shows an n-channel IGBT chip having a trench gate structure having a stripe-like planar shape, and the periphery of the chip including the cell region (active region) 12, the carrier discharge region 17, and the peripheral structure portion 13 is formed as a trench gate. It is the schematic sectional drawing which cut | disconnected the stripe-shaped planar shape of this at right angle direction. In FIG. 9, a p-type base region 3 is formed on the surface of the silicon substrate composed of the high impurity concentration p-type collector region 1 and the low impurity concentration n-type drift region 2 on the drift region 2 side, and the surface of the p-type base region 3 is formed. An n + emitter region 4 is selectively formed. Further, a trench (groove) 5 that penetrates the p-type base region 3 perpendicularly from the surface of the n + emitter region 4 and reaches the n-type drift region 2 is formed. The trench 5 is filled with a gate electrode 7 made of polycrystalline silicon with a gate oxide film 6 interposed therebetween. The gate electrode 7 is connected to a gate pad (not shown) on the chip surface by a gate wiring 14. An interlayer insulating film 8 is formed immediately above the gate electrode 7 and further insulated from the emitter electrode 9 formed thereon. The emitter electrode 9 is coated so as to be in common contact with the surface of the n + emitter region 4 and the surface of the p-type base region 3. Further, a nitride film or an amorphous silicon film as a passivation film may be formed on the emitter electrode 9, but this is omitted in this figure. Further, the collector electrode 10 is covered on the front surface (back surface) on the p-type collector region 1 side. The peripheral structure 13 is formed in the periphery surrounding the cell region 12 constituting the active region of the chip, and the silicon surface is protected by an insulating film 15 so that the breakdown voltage can be maintained with high reliability, and a guard for ensuring a high breakdown voltage. A ring 16 structure is formed. The carrier discharge region 17 has a structure in which the n emitter region 4 adjacent to the trench 5 is not provided in the p base region 3, so that carriers are concentrated in the cell region 12 in the vicinity of the boundary with the peripheral structure portion 13 at the time of turn-off. However, it has a function to prevent the current from being interrupted.

次に、このトレンチ型IGBTをオン状態にする動作を説明する。   Next, the operation for turning on the trench IGBT will be described.

エミッタ電極9は通常アースに接地し、エミッタ電極9よりも高い電圧をコレクタ電極10に印加した状態で、ゲート電極7に、ゲート駆動回路(図示せず)よりゲート抵抗を介して閾値より高い電圧を加えると、IGBTはオン状態となり、閾値より低い電圧ではオフ状態となる。ゲート電極7に閾値より高い電圧を印加する場合、まず、ゲート電極7に電荷が蓄積され始め、ゲート電極7への電荷の蓄積と同時に、p型ベース領域3でゲート酸化膜6を介してゲート電極7に対峙している部分がn型に反転してチャネル部が形成される。これにより電子電流がエミッタ電極9から、nエミッタ領域4、p型ベース領域3のチャネル領域を通り、n型のドリフト領域2に注入される。この注入された電子によりp型コレクタ領域1とn型ドリフト領域2との間が順バイアスされて、コレクタ電極10から正孔が注入されオン状態となる。このオン状態のIGBTのエミッタ電極9とコレクタ電極10間の電圧降下がオン電圧である。特に、定格電流を流した時のコレクタ−エミッタ間のオン電圧を飽和電圧Vce(sat)と称する。 The emitter electrode 9 is normally grounded to ground, and a voltage higher than the threshold voltage is applied to the gate electrode 7 via a gate resistance from a gate drive circuit (not shown) while a voltage higher than that of the emitter electrode 9 is applied to the collector electrode 10. Is added, the IGBT is turned on and turned off at a voltage lower than the threshold. When a voltage higher than the threshold value is applied to the gate electrode 7, first, charges start to be accumulated in the gate electrode 7, and at the same time as the charges are accumulated in the gate electrode 7, The portion facing the electrode 7 is inverted to n-type to form a channel portion. As a result, an electron current is injected from the emitter electrode 9 through the n + emitter region 4 and the channel region of the p-type base region 3 into the n-type drift region 2. The injected electrons cause a forward bias between the p-type collector region 1 and the n-type drift region 2, and holes are injected from the collector electrode 10 to be turned on. The voltage drop between the emitter electrode 9 and the collector electrode 10 of the IGBT in the on state is the on voltage. In particular, the on-voltage between the collector and the emitter when a rated current is passed is referred to as a saturation voltage Vce (sat).

次にIGBTをオン状態からオフ状態にするには、エミッタ電極9とゲート電極7間の電圧を閾値以下にすることによって、ゲート電極7に蓄積されていた電荷はゲート抵抗を介してゲート駆動回路へ放電される。その際、n型に反転していたチャネル領域がp型に戻り、チャネル領域が無くなることにより電子の供給が止まる。これにより正孔の注入も無くなるので、n型のドリフト領域2内に蓄積されていた電子と正孔がそれぞれコレクタ電極10とエミッタ電極9に吐きだされるか、互いに再結合することにより電流は消滅し、IGBTがオフ状態になる。   Next, in order to switch the IGBT from the on state to the off state, the voltage between the emitter electrode 9 and the gate electrode 7 is set to a threshold value or less so that the charge accumulated in the gate electrode 7 is passed through the gate resistance to the gate drive circuit. Is discharged. At that time, the channel region that has been inverted to the n-type returns to the p-type, and the supply of electrons stops when the channel region disappears. This eliminates the injection of holes, so that the electrons and holes accumulated in the n-type drift region 2 are discharged to the collector electrode 10 and the emitter electrode 9, respectively, or recombined with each other, thereby causing the current to flow. It disappears and the IGBT is turned off.

このトレンチ型IGBTのオン電圧を低減するために、これまで行われてきた公知の改善方法を下記する。下記特許文献1に記載のIEGT(INJECTION ENHANCED GATE BIPOLOR TRANSISTOR)は、ダイオードの順電圧降下特性に近い限界のオン電圧特性が出せるように改善されたものである。これはnエミッタ領域およびp型ベース領域の一部表面を絶縁層により被覆することにより、これら被覆された領域表面にはエミッタ電極がコンタクトしないようにしたものである。このIEGTの動作は基本的にそれまでの通常のトレンチ型IGBTと同じであるが、nエミッタ領域とp型ベース領域とがエミッタ電極とコンタクトしていないp型ベース領域の下の正孔は、エミッタ電極に吐き出されにくいようになるため、p型ベース領域の下に蓄積する。その結果、n型ドリフト領域のキャリア濃度分布はダイオードのそれに近くまでになり、通常のトレンチ型IGBTのオン電圧よりも低下させることができる。しかし、前述のようにn型ドリフト領域中で、pベース領域に近い領域のキャリア濃度が高くなると、高速スイッチング性は逆に悪化する。すなわち、トレンチ型IGBTおよびIEGTでは、トレンチ構造が高密度で形成されるので、オン電圧は低減されるが、ゲート電極とエミッタ電極間の容量は大きくなり、スイッチング損失(特にはターンオフ損失)が増加するのである。ところが、パワーデバイスは実際には低オン電圧特性だけでなく、高速スイッチング特性も重要であるので、前述のスイッチング特性の悪化は好ましくない。すなわち、パワーデバイスの発生損失は、オン電圧で決まる定常損失と、オン動作およびオフ動作時のスイッチング損失の和として発生するので、オン電圧の低減だけでは不充分であり、スイッチング損失の原因であるゲート電極とエミッタ電極間の容量も低減する必要があるということである。ここに、前記従来のトレンチ型IGBTおよびIEGTをさらに改善する余地があり、改善すべき課題となる。 In order to reduce the on-voltage of the trench IGBT, a known improvement method that has been carried out is described below. The IEGT (INJECTION ENHANCED GATE BIPOLOR TRANSISTOR) described in the following Patent Document 1 is improved so that a limit ON voltage characteristic close to a forward voltage drop characteristic of a diode can be obtained. In this method, the n + emitter region and the p-type base region are partially covered with an insulating layer so that the emitter electrode does not contact the surface of the covered region. The operation of this IEGT is basically the same as that of a conventional trench IGBT, but the holes under the p-type base region where the n + emitter region and the p-type base region are not in contact with the emitter electrode are Since it is difficult to be discharged to the emitter electrode, it accumulates under the p-type base region. As a result, the carrier concentration distribution in the n-type drift region reaches close to that of the diode, and can be lowered from the on-voltage of a normal trench IGBT. However, as described above, when the carrier concentration in the region close to the p base region in the n-type drift region is increased, the high-speed switching property is deteriorated. That is, in the trench type IGBT and IEGT, since the trench structure is formed at a high density, the on-voltage is reduced, but the capacitance between the gate electrode and the emitter electrode is increased, and the switching loss (particularly the turn-off loss) is increased. To do. However, since the power device actually has not only low on-voltage characteristics but also high-speed switching characteristics, the aforementioned switching characteristics are not preferable. In other words, the generated loss of the power device occurs as the sum of the steady loss determined by the on-voltage and the switching loss during the on-operation and off-operation, so it is not enough to reduce the on-voltage, which is the cause of the switching loss. That is, it is necessary to reduce the capacitance between the gate electrode and the emitter electrode. Here, there is room for further improvement of the conventional trench IGBT and IEGT, and this is a problem to be improved.

前述したゲート電極とエミッタ電極間の容量を低減する具体的な方法のひとつは、すでに下記特許文献2に示唆されている。この特許文献2に記載の図1と同様の図を、前記図9と同一機能は同一符号として共通する符号に置き換えて本願では図12として示す。図12において、p領域11を層間絶縁膜8で被覆することによりエミッタ電極9とコンタクトしないようにすることにより、正孔がエミッタ電極9に吐き出されにくくなり、このp領域11直下に正孔が蓄積し、n型ドリフト領域2のキャリア濃度分布がダイオードのそれに近くなる。さらに、前記p領域11は、その表面がすべて層間絶縁膜8で覆われ、当然ながら、トレンチゲート構造部分5、6,7を含まないので、その分、ゲート電極7とエミッタ電極9間の容量が低減されて充放電の時間が短縮され、スイッチング損失の低減が図られる構造となっている(特許文献2)。その他の符号で、4はエミッタ領域、1はpコレクタ領域、10はコレクタ電極を示す。   One specific method for reducing the capacitance between the gate electrode and the emitter electrode described above has already been suggested in Patent Document 2 below. The same figure as FIG. 1 described in Patent Document 2 is replaced with a common reference numeral having the same function as that of FIG. In FIG. 12, by covering the p region 11 with the interlayer insulating film 8 so as not to contact the emitter electrode 9, it becomes difficult for holes to be discharged to the emitter electrode 9. As a result, the carrier concentration distribution in the n-type drift region 2 is close to that of the diode. Further, the surface of the p region 11 is entirely covered with the interlayer insulating film 8 and, of course, does not include the trench gate structure portions 5, 6, and 7. Therefore, the capacitance between the gate electrode 7 and the emitter electrode 9 is correspondingly increased. Thus, the charge / discharge time is shortened and the switching loss is reduced (Patent Document 2). In other symbols, 4 indicates an emitter region, 1 indicates a p collector region, and 10 indicates a collector electrode.

他方、トレンチ型IGBTは、そのターンオフ過程において、少数キャリアの正孔がエミッタ電極へ排出される際、周辺構造部下のn型ドリフト領域2に存在する正孔も排出する必要があるため、通電電流が大きくなるにつれて周辺構造部に最も近い側の活性領域にキャリアの集中が起き易くなり、その近傍のセル領域の寄生npnトランジスタ構造を導通させ易いので、遮断可能電流が低下する現象の生じることが問題とされていた。この遮断可能電流の低下を防止する対策としては、前記周辺構造部に最も近い側のセル領域にn型ソース領域を作りこまないp型領域(サイド拡散領域)を設け、その領域に寄生npnトランジスタを形成しないようにしてエミッタ電極へ接続することにより、ターンオフ時の少数キャリアの排出を促す方法が知られている(特許文献3)。ちなみに前記図9に示すトレンチ型IGBTに記載のキャリア排出領域17も前記特許文献3に記載のサイド拡散領域と同様の遮断可能電流を向上させる効果を持つ。   On the other hand, in the trench IGBT, when minority carrier holes are discharged to the emitter electrode in the turn-off process, it is necessary to discharge holes existing in the n-type drift region 2 below the peripheral structure portion. As the current increases, the concentration of carriers is likely to occur in the active region closest to the peripheral structure, and the parasitic npn transistor structure in the neighboring cell region is likely to be conducted. It was a problem. As a measure for preventing the reduction of the cutoff current, a p-type region (side diffusion region) that does not form an n-type source region is provided in the cell region closest to the peripheral structure portion, and a parasitic npn transistor is provided in that region There is known a method of promoting minority carrier discharge at the time of turn-off by connecting to the emitter electrode without forming a layer (Patent Document 3). Incidentally, the carrier discharge region 17 described in the trench type IGBT shown in FIG. 9 has an effect of improving the cutoff current similar to that of the side diffusion region described in Patent Document 3.

さらに、トレンチ型IGBTのpベース領域をウエハの全面にではなく、選択的に形成することにより、nドリフト領域に注入された正孔がエミッタ電極から流出する面積を少なくして、nドリフト領域内でエミッタ電極側に蓄積するキャリア濃度の低下を抑制し、オン電圧(飽和電圧:Vce(sat))を低減する方法についても既に公開されている(特許文献4)。
特開平5−243561号公報(図101) 特開2001−308327号公報(図1) 特開平9−270512号公報 特開2000−228519号公報
Furthermore, by selectively forming the p-type base region of the trench IGBT not over the entire surface of the wafer, the area where holes injected into the n-drift region flow out of the emitter electrode is reduced, and the n-drift region The method of suppressing the decrease in the carrier concentration accumulated on the emitter electrode side and reducing the on-voltage (saturation voltage: Vce (sat)) has already been disclosed (Patent Document 4).
JP-A-5-243561 (FIG. 101) JP 2001-308327 A (FIG. 1) Japanese Patent Laid-Open No. 9-270512 JP 2000-228519 A

前述の問題点を考慮して、前記特許文献4に記載の選択的pベース領域を形成したトレンチ型IGBTをさらに改良して、スイッチング特性の向上とオン電圧の低減との両立を計るために考えられた構造が、前記図10の要部平面図および図11の要部断面図により示される島状のセル領域を有するトレンチ型IGBTである。このトレンチ型IGBTは、その活性領域12表面に形成されストライプ状平面パターンを有する平行なトレンチ5間に挟まれた領域内に、島状に分割されたIGBTユニットセル12−1領域を有する。図10では、図に向かって右側に図示しない周辺構造部があり、さらにその右端はチップ端となる。図に向かって左側はチップ中央部方向となる。   In consideration of the above-mentioned problems, the trench type IGBT having the selective p base region described in Patent Document 4 is further improved so as to achieve both improvement in switching characteristics and reduction in on-voltage. The resulting structure is a trench IGBT having an island-shaped cell region shown by the plan view of the relevant part in FIG. 10 and the cross-sectional view of the relevant part in FIG. This trench IGBT has an IGBT unit cell 12-1 region divided into islands in a region sandwiched between parallel trenches 5 formed on the surface of the active region 12 and having a striped planar pattern. In FIG. 10, there is a peripheral structure portion (not shown) on the right side of the figure, and the right end thereof is a chip end. The left side in the figure is the direction of the center of the chip.

しかしながら、このトレンチ型IGBTによれば、pベース領域3が島状(セル状)に製造され、注入された少数キャリアの実効的な排出面積(エミッタ電極9とp型ベース領域3が接触しているコンタクトホール18の総面積)が小さくなるため、オン電圧の低減とスイッチング特性の双方の向上効果は得られるが、p型ベース領域3が全面に形成された従来のIGBTや、p型ベース領域3がトレンチの長手方向に沿ってストライプ状に形成された従来のトレンチ型IGBTよりも、活性領域12内の周辺構造部13側付近で少数キャリアの集中が起きやすく、遮断可能電流が小さくなる問題のあることがわかった。   However, according to the trench type IGBT, the p base region 3 is manufactured in an island shape (cell shape), and the effective discharge area of injected minority carriers (the emitter electrode 9 and the p type base region 3 are in contact with each other). The total area of the contact holes 18) is reduced, so that both the reduction of the on-voltage and the improvement of the switching characteristics can be obtained. However, the conventional IGBT having the p-type base region 3 formed on the entire surface, or the p-type base region Minority carrier concentration is more likely to occur near the peripheral structure 13 side in the active region 12 than the conventional trench IGBT in which 3 is formed in a stripe shape along the longitudinal direction of the trench, and the interruptable current is reduced. I found out that

他方、前述のように、遮断可能電流が向上する効果のある前記図9および前記特許文献3に記載のキャリア排出領域は、活性領域であるセル領域を取り囲む環状領域となっている。しかし、この環状のキャリア排出領域は、IGBTの機能としては本来、無効な領域でもあるため、この環状領域による遮断可能電流向上効果を向上させようとしてその面積を大きくすると、IGBTセル領域面積(活性領域面積)が相対的に小さくなり易く、ON状態での飽和電圧(Vce(sat))が急激に上昇する結果となるので、キャリア排出領域を単に大きくすることには限界があってできない。   On the other hand, as described above, the carrier discharge region described in FIG. 9 and Patent Document 3 having the effect of improving the interruptable current is an annular region surrounding the cell region which is the active region. However, since this annular carrier discharge region is originally an ineffective region as the function of the IGBT, if the area is increased in order to improve the cutoff current improvement effect by the annular region, the area of the IGBT cell region (active (Area area) tends to be relatively small, and the saturation voltage (Vce (sat)) in the ON state increases rapidly, so there is a limit to simply increasing the carrier discharge area.

本発明は、以上述べた点に鑑みてなされたものであり、その目的とするところは、スイッチング特性を悪化させずに、ON状態でのオン電圧の上昇を抑制し、遮断可能電流の向上をはかることのできるトレンチ型MOS型半導体装置の提供である。   The present invention has been made in view of the above-described points, and the object of the present invention is to suppress an increase in on-state voltage in the on-state without deteriorating switching characteristics and to improve an interruptable current. The present invention provides a trench type MOS semiconductor device that can be measured.

特許請求の範囲の請求項1に記載の発明によれば、第1導電型の第1半導体層と、該第1半導体層上に積層される第2導電型の第2半導体層と、該第2半導体層の表面に、平行なストライプ状平面パターンを有して垂直方向に形成される溝と、隣接する前記平行な溝の間に位置する前記第2半導体層の表面に、隣接する前記平行な溝の双方に側面で接すると共に相互に離間して配置され、かつ前記溝の深さよりは浅く形成される複数の第1導電型の第3半導体領域と、該第3半導体領域の表面に、隣接する平行な溝に片側づつ側面で接し相互に離間して対向配置される第2導電型の第4半導体領域と、前記溝内に絶縁膜を介して埋め込まれるゲート電極と、前記第3半導体領域表面と第4半導体領域表面の双方に接し、前記ゲート電極上では層間絶縁膜を介して覆うエミッタ電極膜と、前記第1半導体層表面に接するコレクタ電極膜と、前記ストライプ状溝を取り囲むように配置される周辺構造部とを有するMOS型半導体装置において、隣接する前記平行な溝の間に位置する前記第2半導体層表面に形成され、隣接する前記平行な溝の双方に側面で接すると共に、同一の平行な溝の間に位置する第3半導体領域間に離間して第1導電型の第5半導体領域が配置され、
前記第5半導体領域の配置は、チップ中央部に向かって前記周辺構造部から50μm以上300μm以下までに位置する溝間であり、前記第3半導体領域と前記第5半導体領域が交互に配置され、かつ、前記第5半導体領域がエミッタ電極膜と導電接触しているMOS型半導体装置とすることにより、本発明の目的は達成される。
According to the first aspect of the present invention, the first conductivity type first semiconductor layer, the second conductivity type second semiconductor layer stacked on the first semiconductor layer, and the first conductivity type Two grooves formed in a vertical direction having a parallel stripe-like planar pattern on the surface of the semiconductor layer, and the parallel adjacent to the surface of the second semiconductor layer located between the adjacent parallel grooves A plurality of first-conductivity-type third semiconductor regions that are in contact with both sides of the trench and are spaced apart from each other and are shallower than the depth of the trench, and a surface of the third semiconductor region, A fourth semiconductor region of a second conductivity type that is in contact with an adjacent parallel groove on one side and is opposed to each other; a gate electrode embedded in the groove with an insulating film; and the third semiconductor In contact with both the surface of the region and the surface of the fourth semiconductor region, on the gate electrode In a MOS type semiconductor device having an emitter electrode film covered via an inter-layer insulating film, a collector electrode film in contact with the surface of the first semiconductor layer, and a peripheral structure portion arranged so as to surround the stripe-shaped groove Formed on the surface of the second semiconductor layer located between the parallel grooves, is in contact with both sides of the adjacent parallel grooves on the side surface, and is separated between third semiconductor regions located between the same parallel grooves. A fifth semiconductor region of the first conductivity type is disposed,
The arrangement of the fifth semiconductor region is between the grooves located from the peripheral structure part to 50 μm or more and 300 μm or less toward the center part of the chip, and the third semiconductor area and the fifth semiconductor area are alternately arranged, In addition, the object of the present invention is achieved by providing a MOS semiconductor device in which the fifth semiconductor region is in conductive contact with the emitter electrode film.

特許請求の範囲の請求項2に記載の発明によれば、前記第5半導体領域の不純物濃度が、前記第半導体領域よりも高い特許請求の範囲の請求項1に記載のMOS型半導体装置とすることが好ましい。 According to the invention described in claim 2 of the claim, the MOS type semiconductor device according to claim 1 wherein the impurity concentration of the fifth semiconductor region is higher than that of the third semiconductor region. It is preferable to do.

特許請求の範囲の請求項3に記載の発明によれば、前記第5半導体領域の拡散深さが、第3半導体領域と同等、または、それ以上の拡散深さを持つ特許請求の範囲の請求項1または2記載のMOS型半導体装置としてもよい。 According to the third aspect of the present invention, the diffusion depth of the fifth semiconductor region is equal to or greater than that of the third semiconductor region. The MOS semiconductor device according to Item 1 or 2 may be used.

特許請求の範囲の請求項4に記載の発明によれば、前記第5半導体領域の拡散深さが第3半導体領域よりも浅い特許請求の範囲の請求項1または2記載のMOS型半導体装置とすることが好適である。 According to a fourth aspect of the present invention, the MOS semiconductor device according to the first or second aspect, wherein the diffusion depth of the fifth semiconductor region is shallower than that of the third semiconductor region. Is preferable.

特許請求の範囲の請求項に記載の発明によれば、第3半導体領域および第5半導体領域内に、第3半導体領域よりも高い不純物濃度を持つ第6半導体領域を有する特許請求の範囲の請求項1乃至のいずれか一項に記載のMOS型半導体装置とすることがいっそう好ましい。 According to the invention of claim 5 , the sixth semiconductor region having a higher impurity concentration than the third semiconductor region in the third semiconductor region and the fifth semiconductor region. More preferably, the MOS semiconductor device according to any one of claims 1 to 4 is used.

特許請求の範囲の請求項に記載の発明によれば、前記第1導電型の第1半導体層と第2導電型の第2半導体層との間に、第2半導体層よりも高い濃度を持つ、第2導電型の第7半導体層を備える特許請求の範囲の請求項1乃至5のいずれか一項に記載のMOS型半導体装置とすることがいっそう好適である。 According to the invention of claim 6 , a concentration higher than that of the second semiconductor layer is provided between the first conductive type first semiconductor layer and the second conductive type second semiconductor layer. It is more preferable to provide the MOS semiconductor device according to any one of claims 1 to 5, which includes a seventh semiconductor layer of the second conductivity type.

特許請求の範囲の請求項に記載の発明によれば特許請求の範囲の請求項1記載のMOS半導体装置の製造方法において、前記第5半導体領域と前記第3半導体領域とを同工程で形成するMOS型半導体装置の製造方法とすることができる。 According to a seventh aspect of the present invention, in the method for manufacturing a MOS semiconductor device according to the first aspect of the present invention, the fifth semiconductor region and the third semiconductor region are formed in the same step. The manufacturing method of the MOS type semiconductor device can be made.

IGBTセルがトレンチ長手方向に分割配置されたトレンチ型IGBTにおいて、周辺構造部から内側にn型ソース領域を持たないp型半導体領域(以降、ダミーセルと表記する)を分割配置する。ダミーセルを配置する範囲は、周辺構造部から50μm以上300μm以下であることが望ましい。p型ベース領域よりも高い不純物濃度を持つp型ウエル領域を代わりに形成しても良い。また、p型ベース領域よりも拡散深さが浅いp型半導体領域を形成すると、Vce(sat)の上昇が抑えられる。 In a trench IGBT in which IGBT cells are divided and arranged in the longitudinal direction of the trench, a p-type semiconductor region (hereinafter referred to as a dummy cell) that does not have an n-type source region inside from the peripheral structure portion is divided and arranged. The range in which the dummy cells are arranged is desirably 50 μm or more and 300 μm or less from the peripheral structure portion. Alternatively, a p + type well region having a higher impurity concentration than the p type base region may be formed. Further, when a p-type semiconductor region having a diffusion depth shallower than that of the p-type base region is formed, an increase in Vce (sat) can be suppressed.

本発明によれば、スイッチング特性を悪化させずに、ON状態でのオン電圧の上昇を抑制し、遮断可能電流の向上をはかることのできるトレンチ型MOS型半導体装置を提供することができる。   According to the present invention, it is possible to provide a trench type MOS semiconductor device capable of suppressing an increase in ON voltage in an ON state and improving a cutoff current without deteriorating switching characteristics.

以下、本発明にかかる半導体装置の製造方法について、図面を用いて詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。   Hereinafter, a method for manufacturing a semiconductor device according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to the description of the examples described below unless it exceeds the gist.

図1は本発明にかかるトレンチ型IGBTの要部平面図である。図2は図1のB−B’断面図である。図3は本発明にかかる、異なるトレンチ型IGBTの要部平面図である。図4は図3のC−C’要部断面図である。図5は本発明にかかる、さらに異なるトレンチ型IGBTの要部平面図である。図6は図5のD−D’要部断面図である。図7は本発明にかかるVce(sat)とキャリア排出領域幅との関係図である。図8は遮断可能電流とキャリア排出領域幅との関係図である。   FIG. 1 is a plan view of an essential part of a trench type IGBT according to the present invention. 2 is a cross-sectional view taken along the line B-B 'of FIG. FIG. 3 is a plan view of an essential part of a different trench type IGBT according to the present invention. 4 is a cross-sectional view of an essential part of C-C ′ in FIG. 3. FIG. 5 is a plan view of an essential part of still another trench IGBT according to the present invention. FIG. 6 is a cross-sectional view of an essential part of D-D ′ in FIG. 5. FIG. 7 is a graph showing the relationship between Vce (sat) and the carrier discharge area width according to the present invention. FIG. 8 is a relationship diagram between the interruptable current and the carrier discharge region width.

図1に示す本発明にかかる実施例1のトレンチ型IGBTの平面図は、従来の前記IGBTの平面図(図10)に対応する図であり、活性領域(セル領域)32の平面図を示す。図2は前記図11に対応する本発明にかかる断面図である。本発明図と従来図の異なるところは、周辺構造部に近いところで平行に配置されたストライプ状の溝(トレンチ)25間のIGBTユニットセル32−1間の位置にp型領域のダミーセル32−2が設けられていることである。符号26はゲート酸化膜、27はポリシリコンゲート電極、28は層間絶縁膜、29はエミッタ電極である。38はエミッタ電極とシリコン基板表面に接触するコンタクトホールである。図1で、向かって右側には図示しない周辺構造部33がある。図1で、向かって左側はチップの中央方向である。   The plan view of the trench type IGBT according to the first embodiment of the present invention shown in FIG. 1 corresponds to the plan view (FIG. 10) of the conventional IGBT and shows a plan view of the active region (cell region) 32. . FIG. 2 is a sectional view according to the present invention corresponding to FIG. The difference between the present invention figure and the conventional figure is that the dummy cell 32-2 in the p-type region is located between the IGBT unit cells 32-1 between the stripe-like grooves (trench) 25 arranged in parallel near the peripheral structure portion. Is provided. Reference numeral 26 denotes a gate oxide film, 27 denotes a polysilicon gate electrode, 28 denotes an interlayer insulating film, and 29 denotes an emitter electrode. Reference numeral 38 denotes a contact hole in contact with the emitter electrode and the silicon substrate surface. In FIG. 1, there is a peripheral structure 33 (not shown) on the right side. In FIG. 1, the left side is the center direction of the chip.

ダミーセル32−2はp型ベース領域23−1とp型ベース領域よりも高い不純物濃度を持つp型コンタクト領域23−2からなっており、n型ソース領域24は形成されない。このダミーセル32−2はn型ソース領域24を持たないため、ON状態でn型ドリフト領域22への電子の注入が行なわれず、n型ドリフト領域22に蓄積した少数キャリア(正孔)をエミッタ電極29へ排出する機能のみを持ち、IGBTとしては機能しない領域でもある。従来のキャリア排出領域(図9の符号17)は、IGBTセル領域を連続して環状に囲むように形成されるため、IGBTの機能としての無効領域が大きくなり、オン電圧が大きくなりやすいという問題があったが、実施例1では、キャリア排出領域が島状であるため、面積も従来の環状のキャリア排出領域よりも小さくでき、オン電圧の上昇も少なくできる。 The dummy cell 32-2 includes a p-type base region 23-1 and a p + -type contact region 23-2 having an impurity concentration higher than that of the p-type base region, and the n-type source region 24 is not formed. Since the dummy cell 32-2 does not have the n-type source region 24, electrons are not injected into the n-type drift region 22 in the ON state, and minority carriers (holes) accumulated in the n-type drift region 22 are emitted from the emitter electrode. It is also an area that has only the function of discharging to 29 and does not function as an IGBT. Since the conventional carrier discharge region (reference numeral 17 in FIG. 9) is formed so as to continuously surround the IGBT cell region in an annular shape, the invalid region as a function of the IGBT becomes large, and the on-voltage tends to increase. However, in Example 1, since the carrier discharge region is island-shaped, the area can be made smaller than that of the conventional annular carrier discharge region, and the rise of the on-voltage can be reduced.

図7の飽和電圧Vce(sat)と従来の環状キャリア排出領域幅およびダミーセル配置幅との関係図に示すように、同じチップサイズで考えた場合、本発明にかかるダミーセルの配置幅と従来の環状キャリア排出領域(図9)の幅が同じ場合、従来のキャリア排出領域幅の方がVce(sat)が大きいことが分かる。   As shown in the relationship diagram between the saturation voltage Vce (sat) of FIG. 7 and the conventional annular carrier discharge region width and dummy cell arrangement width, when considering the same chip size, the dummy cell arrangement width according to the present invention and the conventional annular When the width of the carrier discharge region (FIG. 9) is the same, it can be seen that the conventional carrier discharge region width has a larger Vce (sat).

ダミーセル32−2が周辺構造部33からチップ中央部に向かって配置される幅は、図8に示すように、50μm以下と300μm以上では遮断可能電流の増加への寄与が少なく、50μm以上300μm以下では増加量の多くなることが確かめられた。   As shown in FIG. 8, the width in which the dummy cell 32-2 is arranged from the peripheral structure portion 33 toward the center of the chip is less than 50 μm and less than 300 μm, and contributes little to the increase in current that can be cut off, and more than 50 μm and less than 300 μm. Then, it was confirmed that the increase amount increased.

ダミーセル32−2内にp型コンタクト層23−2が形成されていれば、キャリア排出の効果がより高くなるので好ましいが、p型ベース層23または23−1の不純物濃度が十分高く、エミッタ電極とのコンタクト抵抗が実質的に問題にならない程度であれば、形成する必要は必ずしも無い。これはIGBTユニットセル32−1内のp型コンタクト層23−3の有無についても同様である。 It is preferable that the p + -type contact layer 23-2 is formed in the dummy cell 32-2, since the effect of discharging carriers is higher, but the impurity concentration of the p-type base layer 23 or 23-1 is sufficiently high, and the emitter If the contact resistance with the electrode does not substantially cause a problem, it is not always necessary to form the electrode. The same applies to the presence or absence of the p + -type contact layer 23-3 in the IGBT unit cell 32-1.

ダミーセル32−2のp型ベース領域23−1およびコンタクトホール38のトレンチ長手方向の長さYは、Vce(sat)と遮断可能電流に影響する。長手方向の長さが長いほど、遮断可能電流も大きくなるが、Vce(sat)も上昇する。そのため、必要なVce(sat)と遮断可能電流が得られるように、適宜、Y方向長さを設計すればよい。   The length Y in the trench longitudinal direction of the p-type base region 23-1 of the dummy cell 32-2 and the contact hole 38 affects the Vce (sat) and the cutoff current. The longer the length in the longitudinal direction, the larger the interruptable current, but the Vce (sat) also increases. Therefore, the length in the Y direction may be designed as appropriate so that the necessary Vce (sat) and breakable current can be obtained.

また、本例のように、ダミーセルのp型半導体領域をp型ベース領域と同じ工程で形成すれば、プロセスが増加せず、効率的にダミーセルを形成できる。   Further, if the p-type semiconductor region of the dummy cell is formed in the same process as the p-type base region as in this example, the dummy cell can be efficiently formed without increasing the process.

本発明の実施例2にかかるトレンチ型IGBTの要部平面図を図3に、図3中のC−C’断面概略図を図4にそれぞれ示す。ダミーセル52−2のp型領域43−1は、IGBTユニットセル52−1のp型ベース領域43よりも高い不純物濃度を持ち、p型ベース領域43と同等か、それよりも深い拡散深さを持つ。ターンオフ過程において、エミッタ電極49に対しゲート電極47に負電圧が印加された状態では、トレンチ45側壁のp型ベース領域43に蓄積層50が形成される。そのため、実施例1よりも高いキャリア排出効果が期待できる。しかしながら、ON状態では、逆に高いキャリア排出効果の影響からVce(sat)の上昇が実施例1よりも若干大きくなる。 FIG. 3 shows a plan view of a main part of a trench type IGBT according to Example 2 of the present invention, and FIG. 4 shows a schematic cross-sectional view taken along the line CC ′ in FIG. The p-type region 43-1 of the dummy cell 52-2 has a higher impurity concentration than the p-type base region 43 of the IGBT unit cell 52-1, and has a diffusion depth equal to or deeper than that of the p-type base region 43. Have. In a state in which a negative voltage is applied to the gate electrode 47 with respect to the emitter electrode 49 in the turn-off process, the storage layer 50 is formed in the p + type base region 43 on the side wall of the trench 45. Therefore, a higher carrier discharge effect than that of Example 1 can be expected. However, in the ON state, on the contrary, the increase in Vce (sat) is slightly larger than that in the first embodiment due to the influence of the high carrier discharge effect.

本発明の実施例3にかかるトレンチ型IGBTの要部平面図を図5に、図5中のD−D’断面概略図を図6にそれぞれ示す。実施例3では、ダミーセル72−2のp型領域63−1はIGBTユニットセル72−1のp型ベース層63よりも拡散深さが浅いことが特徴である。キャリアの排出効果は若干低下するが、Vce(sat)の上昇を低減することができる。他の領域は実施例1、2と同様である。   FIG. 5 shows a plan view of the main part of a trench IGBT according to Example 3 of the present invention, and FIG. 6 shows a schematic cross-sectional view taken along the line D-D ′ in FIG. Example 3 is characterized in that the p-type region 63-1 of the dummy cell 72-2 has a shallower diffusion depth than the p-type base layer 63 of the IGBT unit cell 72-1. Although the carrier discharging effect is slightly reduced, an increase in Vce (sat) can be reduced. Other areas are the same as in the first and second embodiments.

表1に、Vce(sat)と遮断可能電流に対するダミーセル中のp型半導体領域の不純物濃度の効果を、表2にVce(sat)と遮断可能電流に対するダミーセル中のp型半導体領域の拡散深さの効果をそれぞれ、まとめて示した。   Table 1 shows the effect of the impurity concentration of the p-type semiconductor region in the dummy cell on Vce (sat) and the cutoff current, and Table 2 shows the diffusion depth of the p-type semiconductor region in the dummy cell on Vce (sat) and the cutoff current. The effects of are shown together.

Figure 0005055786
Figure 0005055786

Figure 0005055786
ダミーセル72−2内のp型領域63−1は上記表1、2の効果を考え合わせ、最適に設計する必要がある。
Figure 0005055786
The p-type region 63-1 in the dummy cell 72-2 needs to be optimally designed in consideration of the effects shown in Tables 1 and 2 above.

本発明にかかるトレンチ型IGBTの要部平面図である。It is a principal part top view of trench type IGBT concerning the present invention. 図1のB−B’断面図である。It is B-B 'sectional drawing of FIG. 本発明にかかる、異なるトレンチ型IGBTの要部平面図である。It is a principal part top view of different trench type IGBT concerning this invention. 図3のC−C’要部断面図である。FIG. 4 is a cross-sectional view of a main part of C-C ′ in FIG. 3. 本発明にかかる、さらに異なるトレンチ型IGBTの要部平面図である。It is a principal part top view of further different trench type IGBT concerning this invention. 図5のD−D’要部断面図である。FIG. 6 is a cross-sectional view of an essential part of D-D ′ in FIG. 5. 本発明にかかるVce(sat)とキャリア排出領域幅との関係図である。It is a relationship figure of Vce (sat) concerning this invention, and carrier discharge area width. 遮断可能電流とキャリア排出領域幅との関係図である。FIG. 5 is a relationship diagram between a current that can be interrupted and a carrier discharge region width. 従来のトレンチ型IGBTのチップ周辺の概略断面図である。It is a schematic sectional drawing of the chip periphery of the conventional trench type IGBT. 従来のトレンチ型IGBTの概略平面図である。It is a schematic plan view of the conventional trench type IGBT. 図10中のA−A’における表面近傍の概略断面図である。It is a schematic sectional drawing of the surface vicinity in A-A 'in FIG. 特許文献2に記載の図1に相当するIGBTの断面図である。2 is a cross-sectional view of an IGBT corresponding to FIG. 1 described in Patent Document 2. FIG.

符号の説明Explanation of symbols

22… nドリフト層
23、43、63… pベース層
24… nエミッタ層
25、45… トレンチ(溝)
26… ゲート酸化膜
27、47… ポリシリコンゲート電極
28… 層間絶縁膜
29、49… エミッタ電極
32、52、72… IGBTユニットセル領域
33… 周辺構造部。
22 ... n drift layer 23, 43, 63 ... p base layer 24 ... n emitter layer 25, 45 ... trench
26 ... Gate oxide film 27, 47 ... Polysilicon gate electrode 28 ... Interlayer insulating film 29, 49 ... Emitter electrode 32, 52, 72 ... IGBT unit cell region 33 ... Peripheral structure part.

Claims (7)

第1導電型の第1半導体層と、
該第1半導体層上に積層される第2導電型の第2半導体層と、
該第2半導体層の表面に、平行なストライプ状平面パターンを有して垂直方向に形成される溝と、
隣接する前記平行な溝の間に位置する前記第2半導体層の表面に、隣接する前記平行な溝の双方に側面で接すると共に相互に離間して配置され、かつ前記溝の深さよりは浅く形成される複数の第1導電型の第3半導体領域と、
該第3半導体領域の表面に、隣接する平行な溝に片側づつ側面で接し相互に離間して対向配置される第2導電型の第4半導体領域と、
前記溝内に絶縁膜を介して埋め込まれるゲート電極と、
前記第3半導体領域表面と第4半導体領域表面の双方に接し、前記ゲート電極上では層間絶縁膜を介して覆うエミッタ電極膜と、
前記第1半導体層表面に接するコレクタ電極膜と
前記ストライプ状溝を取り囲むように配置される周辺構造部とを有するMOS型半導体装置において、
隣接する前記平行な溝の間に位置する前記第2半導体層表面に形成され、隣接する前記平行な溝の双方に側面で接すると共に、同一の平行な溝の間に位置する第3半導体領域間に離間して第1導電型の第5半導体領域が配置され、
前記第5半導体領域の配置は、チップ中央部に向かって前記周辺構造部から50μm以上300μm以下までに位置する溝間であり、前記第3半導体領域と前記第5半導体領域が交互に配置され、かつ、前記第5半導体領域がエミッタ電極膜と導電接触していることを特徴とするMOS型半導体装置。
A first semiconductor layer of a first conductivity type;
A second semiconductor layer of a second conductivity type stacked on the first semiconductor layer;
A groove formed in a vertical direction on the surface of the second semiconductor layer with a parallel stripe-like planar pattern;
Formed on the surface of the second semiconductor layer located between the adjacent parallel grooves, in contact with both sides of the adjacent parallel grooves on the side surfaces and spaced apart from each other, and shallower than the depth of the grooves. A plurality of first-conductivity-type third semiconductor regions,
A fourth semiconductor region of a second conductivity type disposed on the surface of the third semiconductor region, in contact with an adjacent parallel groove on one side surface on one side and oppositely spaced from each other;
A gate electrode embedded in the trench through an insulating film;
An emitter electrode film in contact with both the surface of the third semiconductor region and the surface of the fourth semiconductor region and covering the gate electrode with an interlayer insulating film;
In a MOS semiconductor device having a collector electrode film in contact with the surface of the first semiconductor layer and a peripheral structure portion arranged so as to surround the stripe-shaped groove,
Between the third semiconductor regions formed on the surface of the second semiconductor layer located between the adjacent parallel grooves, in contact with both sides of the adjacent parallel grooves on the side surfaces and between the same parallel grooves A fifth semiconductor region of the first conductivity type is disposed apart from
The arrangement of the fifth semiconductor region is between the grooves located from the peripheral structure part to 50 μm or more and 300 μm or less toward the center part of the chip, and the third semiconductor area and the fifth semiconductor area are alternately arranged, A MOS semiconductor device, wherein the fifth semiconductor region is in conductive contact with the emitter electrode film.
前記第5半導体領域の不純物濃度が、前記第半導体領域よりも高いことを特徴とする請求項1に記載のMOS型半導体装置。 2. The MOS semiconductor device according to claim 1, wherein an impurity concentration of the fifth semiconductor region is higher than that of the third semiconductor region. 前記第5半導体領域の拡散深さが、第3半導体領域と同等、または、それ以上の拡散深さを持つことを特徴とする請求項1または2記載のMOS型半導体装置。 The diffusion depth of the fifth semiconductor region, equivalent to the third semiconductor region or,, MOS-type semiconductor device according to claim 1 or 2, characterized in that with more diffusion depth. 前記第5半導体領域の拡散深さが第3半導体領域よりも浅いことを特徴とする請求項1または2記載のMOS型半導体装置。 MOS type semiconductor device according to claim 1 or 2 diffusion depth of said fifth semiconductor region is equal to or shallower than the third semiconductor region. 第3半導体領域および第5半導体領域内に、第3半導体領域よりも高い不純物濃度を持つ第6半導体領域を有することを特徴とする請求項1乃至のいずれか一項に記載のMOS型半導体装置。 The third semiconductor region and fifth semiconductor region, MOS-type semiconductor according to any one of claims 1 to 4, characterized in that it has a sixth semiconductor region having a higher impurity concentration than the third semiconductor region apparatus. 前記第1導電型の第1半導体層と第2導電型の第2半導体層との間に、第2半導体層よりも高い濃度を持つ、第2導電型の第7半導体層を備えることを特徴とする請求項1乃至5のいずれか一項に記載のMOS型半導体装置。 A seventh conductivity type seventh semiconductor layer having a higher concentration than the second semiconductor layer is provided between the first conductivity type first semiconductor layer and the second conductivity type second semiconductor layer. MOS type semiconductor device according to any one of claims 1 to 5,. 請求項1記載のMOS半導体装置の製造方法において、前記第5半導体領域と前記第3半導体領域とを同工程で形成することを特徴とするMOS型半導体装置の製造方法。 2. The method of manufacturing a MOS semiconductor device according to claim 1, wherein the fifth semiconductor region and the third semiconductor region are formed in the same step.
JP2006041752A 2006-02-20 2006-02-20 MOS type semiconductor device and manufacturing method thereof Active JP5055786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006041752A JP5055786B2 (en) 2006-02-20 2006-02-20 MOS type semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006041752A JP5055786B2 (en) 2006-02-20 2006-02-20 MOS type semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007221012A JP2007221012A (en) 2007-08-30
JP5055786B2 true JP5055786B2 (en) 2012-10-24

Family

ID=38497935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006041752A Active JP5055786B2 (en) 2006-02-20 2006-02-20 MOS type semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5055786B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261893B2 (en) * 2006-07-18 2013-08-14 富士電機株式会社 Trench type insulated gate bipolar transistor
CN102804385B (en) * 2010-11-30 2016-08-03 富士电机株式会社 Semiconductor device
JP6270799B2 (en) * 2011-05-16 2018-01-31 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2014075582A (en) * 2012-09-12 2014-04-24 Fuji Electric Co Ltd Semiconductor device and method of manufacturing semiconductor device
JP2014103352A (en) * 2012-11-22 2014-06-05 Toyota Motor Corp Semiconductor device
JP5924420B2 (en) * 2012-12-20 2016-05-25 トヨタ自動車株式会社 Semiconductor device
JP6265619B2 (en) * 2013-04-17 2018-01-24 三菱電機株式会社 Power semiconductor device and manufacturing method thereof
JP6084695B2 (en) * 2013-08-29 2017-02-22 株式会社日立製作所 Manufacturing method of semiconductor device
JP6320808B2 (en) 2014-03-19 2018-05-09 富士電機株式会社 Trench MOS semiconductor device
DE102014117780B4 (en) 2014-12-03 2018-06-21 Infineon Technologies Ag Semiconductor device with a trench electrode and method of manufacture
JP6507609B2 (en) 2014-12-08 2019-05-08 富士電機株式会社 Semiconductor device
DE102014119465B3 (en) * 2014-12-22 2016-05-25 Infineon Technologies Ag SEMICONDUCTOR DEVICE WITH STRIPULAR TRENCHGATE STRUCTURES, TRANSISTORMESIS AND DIODE MESAS
JP6641983B2 (en) * 2015-01-16 2020-02-05 株式会社デンソー Semiconductor device
DE102015103067B3 (en) 2015-03-03 2016-09-01 Infineon Technologies Ag SEMICONDUCTOR DEVICE WITH TRENCHGATE STRUCTURES IN A SEMICONDUCTOR BODY WITH HEXAGONAL CRYSTAL GRILLE
WO2017099096A1 (en) 2015-12-11 2017-06-15 富士電機株式会社 Semiconductor apparatus
JP6507112B2 (en) 2016-03-16 2019-04-24 株式会社東芝 Semiconductor device
DE102018103973B4 (en) 2018-02-22 2020-12-03 Infineon Technologies Ag SILICON CARBIDE SEMICONDUCTOR COMPONENT
JP6970632B2 (en) * 2018-03-16 2021-11-24 株式会社東芝 Semiconductor device
JP7284797B2 (en) * 2018-03-16 2023-05-31 株式会社東芝 semiconductor equipment
DE102019111308A1 (en) 2018-05-07 2019-11-07 Infineon Technologies Ag SILICON CARBIDE SEMICONDUCTOR ELEMENT
DE102018124740A1 (en) 2018-10-08 2020-04-09 Infineon Technologies Ag SEMICONDUCTOR COMPONENT WITH A SIC SEMICONDUCTOR BODY AND METHOD FOR PRODUCING A SEMICONDUCTOR COMPONENT
US10586845B1 (en) 2018-11-16 2020-03-10 Infineon Technologies Ag SiC trench transistor device and methods of manufacturing thereof
US10903322B2 (en) 2018-11-16 2021-01-26 Infineon Technologies Ag SiC power semiconductor device with integrated body diode
US10985248B2 (en) 2018-11-16 2021-04-20 Infineon Technologies Ag SiC power semiconductor device with integrated Schottky junction

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3405649B2 (en) * 1996-12-05 2003-05-12 株式会社東芝 Semiconductor device
JP3924975B2 (en) * 1999-02-05 2007-06-06 富士電機デバイステクノロジー株式会社 Trench type insulated gate bipolar transistor
JP2001274400A (en) * 2000-03-28 2001-10-05 Toshiba Corp Semiconductor device
JP2003197912A (en) * 2001-12-25 2003-07-11 Toshiba Corp Insulated gate semiconductor device

Also Published As

Publication number Publication date
JP2007221012A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP5055786B2 (en) MOS type semiconductor device and manufacturing method thereof
US11610884B2 (en) Semiconductor device
JP5867617B2 (en) Semiconductor device
JP4857566B2 (en) Insulated gate type semiconductor device and manufacturing method thereof
JP5987990B2 (en) Semiconductor device
US6809349B2 (en) Power semiconductor device
JP5787853B2 (en) Power semiconductor device
US7714353B2 (en) Insulated gate semiconductor device and the method of manufacturing the same
US9059238B2 (en) Semiconductor device
JP5720805B2 (en) Insulated gate semiconductor device and manufacturing method thereof
CN110462838B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP2004022941A (en) Semiconductor device
WO2011118512A1 (en) Insulated gate bipolar transistor
JP7327672B2 (en) semiconductor equipment
JP5261893B2 (en) Trench type insulated gate bipolar transistor
JP7101593B2 (en) Semiconductor equipment
KR101397784B1 (en) Insulated gate bipolar transistor
KR102437047B1 (en) Power semiconductor device and power semiconductor chip
US20240136436A1 (en) silicon carbide semiconductor device
JPH1140818A (en) Semiconductor device
JP2023130251A (en) Semiconductor device
JP2013251464A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081211

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5055786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250