JP5052024B2 - Membrane-electrode assembly manufacturing method - Google Patents

Membrane-electrode assembly manufacturing method Download PDF

Info

Publication number
JP5052024B2
JP5052024B2 JP2006090677A JP2006090677A JP5052024B2 JP 5052024 B2 JP5052024 B2 JP 5052024B2 JP 2006090677 A JP2006090677 A JP 2006090677A JP 2006090677 A JP2006090677 A JP 2006090677A JP 5052024 B2 JP5052024 B2 JP 5052024B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
catalyst layer
electrolyte membrane
membrane
reinforcing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006090677A
Other languages
Japanese (ja)
Other versions
JP2007035612A (en
Inventor
堀  喜博
美貴子 吉村
岳太 岡西
一仁 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
AGC Inc
Panasonic Holdings Corp
Original Assignee
Asahi Glass Co Ltd
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006090677A priority Critical patent/JP5052024B2/en
Publication of JP2007035612A publication Critical patent/JP2007035612A/en
Application granted granted Critical
Publication of JP5052024B2 publication Critical patent/JP5052024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体高分子型燃料電池の膜−電極接合体の製造方法に関する。より詳しくは、高分子電解質膜の周縁部に補強部材を有する膜−電極接合体の製造方法に関する。   The present invention relates to a method for producing a membrane-electrode assembly of a polymer electrolyte fuel cell. More specifically, the present invention relates to a method for producing a membrane-electrode assembly having a reinforcing member at the peripheral edge of a polymer electrolyte membrane.

固体高分子型燃料電池は、プロトン伝導性を有する高分子電解質膜の両面に、触媒層(電極層)が積層された構造を有する。この構造を、膜−電極接合体(MEA:Membrane Electrode Assembly)と呼ぶ。膜−電極接合体の両面には、ガス拡散層が設けられ、膜−電極−ガス拡散層接合体を形成する。膜−電極−ガス拡散層接合体は、ガスの流路を刻まれた一対のセパレータにより気密に挟まれてセルを構成し、このセルが積層されてスタックと呼ばれる構造が形成される。   A polymer electrolyte fuel cell has a structure in which catalyst layers (electrode layers) are laminated on both surfaces of a polymer electrolyte membrane having proton conductivity. This structure is called a membrane-electrode assembly (MEA: Membrane Electrode Assembly). Gas diffusion layers are provided on both surfaces of the membrane-electrode assembly to form a membrane-electrode-gas diffusion layer assembly. The membrane-electrode-gas diffusion layer assembly is hermetically sandwiched between a pair of separators engraved with gas flow paths to form a cell, and the cell is stacked to form a structure called a stack.

高分子電解質膜の一方の面(カソード側)には、一方のセパレータの流路を介して酸素等の酸化剤ガスが供給される。高分子電解質膜の他方の面(アノード側)には、他方のセパレータの流路を介して水素等の燃料が供給される。アノード側では、燃料がガス拡散層中を拡散して触媒層に達し、触媒層において電極反応によって燃料からプロトンと電子が発生する。このプロトンは、前記高分子電解質膜を通過してカソード側へと移動する。カソード側では、酸化剤がガス拡散層中を拡散して触媒層に達し、電極反応によって前記プロトンと酸化剤から水等が発生する。カソード側およびアノード側での電極反応は、触媒層に含まれる白金等の触媒により促進される。前記電子もカソード側へと誘引されるが、この電子の流れを外部に取り出すことで、化学反応(酸化還元反応)のエネルギーを電力として利用することができる。   An oxidant gas such as oxygen is supplied to one surface (cathode side) of the polymer electrolyte membrane via the flow path of one separator. Fuel, such as hydrogen, is supplied to the other surface (anode side) of the polymer electrolyte membrane via the flow path of the other separator. On the anode side, the fuel diffuses in the gas diffusion layer and reaches the catalyst layer, and protons and electrons are generated from the fuel by an electrode reaction in the catalyst layer. The protons pass through the polymer electrolyte membrane and move to the cathode side. On the cathode side, the oxidant diffuses in the gas diffusion layer and reaches the catalyst layer, and water and the like are generated from the proton and the oxidant by the electrode reaction. The electrode reaction on the cathode side and the anode side is promoted by a catalyst such as platinum contained in the catalyst layer. Although the electrons are also attracted to the cathode side, the energy of the chemical reaction (redox reaction) can be used as electric power by taking out the flow of the electrons to the outside.

スタックを製造する際、高分子電解質膜は電極やセパレータに挟持され、端板とボルトにより締め付けられる。締め付けの圧力に耐えられるように、また、長期間の使用において磨耗等による物理的な破損が生じないように、前記高分子電解質膜には十分な強度を持たせる必要がある。一方、プロトン伝導性を向上させる等の理由からは、前記高分子電解質膜をできるだけ薄くする必要がある。これらの理由から、厚さを増すことなく高分子電解質膜の強度を上げることが望ましい。   When manufacturing the stack, the polymer electrolyte membrane is sandwiched between electrodes and a separator, and tightened with an end plate and a bolt. The polymer electrolyte membrane needs to have sufficient strength so that it can withstand the tightening pressure and so that physical damage due to wear or the like does not occur during long-term use. On the other hand, for reasons such as improving proton conductivity, the polymer electrolyte membrane needs to be as thin as possible. For these reasons, it is desirable to increase the strength of the polymer electrolyte membrane without increasing the thickness.

かかる課題を解決する技術として、特許文献1の実験例2に開示された固体高分子型燃料電池がある。この固体高分子型燃料電池では、高分子電解質膜の周縁部に枠体を取り付けることで、高分子電解質膜の強度を向上させている。触媒層はカーボン不織布(ガス拡散層)の上に塗布され、枠体を取り付けた高分子電解質膜に接合される。触媒層が枠体の内側を完全に覆うように、カーボン不織布(ガス拡散層)および触媒層は、枠体の穴よりも両側に若干(1mm程度)大きく形成され接合される。
特開平10−308228号公報
As a technique for solving this problem, there is a polymer electrolyte fuel cell disclosed in Experimental Example 2 of Patent Document 1. In this polymer electrolyte fuel cell, the strength of the polymer electrolyte membrane is improved by attaching a frame to the peripheral edge of the polymer electrolyte membrane. The catalyst layer is applied on a carbon non-woven fabric (gas diffusion layer) and joined to a polymer electrolyte membrane to which a frame is attached. The carbon non-woven fabric (gas diffusion layer) and the catalyst layer are formed slightly larger (on the order of 1 mm) on both sides than the holes of the frame so that the catalyst layer completely covers the inside of the frame.
JP-A-10-308228

前記従来の構成において、触媒層とガス拡散層は枠体の穴よりも大きいため、触媒層は、ガス拡散層と共に枠体に乗り上げる。枠体に乗り上げた触媒層は、枠体の内縁の角に当接する。かかる状態でセパレータにより膜−電極接合体を挟持すると、触媒層と枠体の接触部分に押圧が集中し、触媒層がゆがんだり破損したりする可能性があった。触媒層を枠体の穴よりも小さくすればゆがみや破損は防止できる。しかし、かかる構成ではガス拡散層および触媒層と枠体の間に隙間が生じ、この隙間を通じて反応ガスの短絡が生じる可能性があった。このように、従来の方法では、位置合わせや部品寸法の精度の限界により、枠体と触媒層の間に重なりや隙間のない膜−電極接合体を製造することは困難であった。   In the conventional configuration, since the catalyst layer and the gas diffusion layer are larger than the holes of the frame body, the catalyst layer rides on the frame body together with the gas diffusion layer. The catalyst layer riding on the frame comes into contact with the corner of the inner edge of the frame. When the membrane-electrode assembly is sandwiched between the separators in such a state, the pressure is concentrated on the contact portion between the catalyst layer and the frame, and the catalyst layer may be distorted or damaged. Distortion and damage can be prevented by making the catalyst layer smaller than the hole in the frame. However, in such a configuration, there is a possibility that a gap is formed between the gas diffusion layer and the catalyst layer and the frame, and a short circuit of the reaction gas may occur through the gap. As described above, in the conventional method, it is difficult to manufacture a membrane-electrode assembly having no overlap or gap between the frame and the catalyst layer due to the limit of accuracy of alignment and part dimensions.

本発明は上記のような課題を解決するためになされたもので、高分子電解質膜の周縁部に枠体(補強部材)が配設され、補強部材の内側に隙間なく触媒層が形成され、スタック組み立て時の押圧により触媒層にゆがみや破損の生じにくい膜−電極接合体を効率よく製造する方法を提供することを目的としている。   The present invention has been made in order to solve the above-described problems, a frame (reinforcing member) is disposed on the peripheral edge of the polymer electrolyte membrane, and a catalyst layer is formed inside the reinforcing member without a gap, An object of the present invention is to provide a method for efficiently producing a membrane-electrode assembly in which a catalyst layer is not easily distorted or damaged by pressing during stack assembly.

本発明者らは、高分子電解質膜の周縁部が硬質樹脂で補強された膜−電極接合体を有する燃料電池において、発電効率、装置寿命、製造効率等を向上させるべく鋭意検討を重ねた。その結果、高分子電解質膜の周縁部では、反応ガス(酸化剤ガス、燃料ガス)が直接に膜を介して反応する問題(クロスリーク、クロスオーバー)が生じやすいことが判明した。問題の原因は、膜−電極接合体において、反応ガスが触媒層を経由せずに、ガス拡散層から直接膜へと到達する経路が存在するためと推察された。クロスリークが起こる部分は高分子電解質膜の周縁部分に集中していた。周縁部分では膜の劣化が特異的に速く進行し、燃料電池の寿命を低下させる可能性があることも判明した。クロスリークを防ぐためには、反応ガスが必ず触媒層を通って高分子電解質膜に到達するように膜−電極接合体を構成する必要がある。   The inventors of the present invention have intensively studied to improve the power generation efficiency, device life, manufacturing efficiency, etc., in a fuel cell having a membrane-electrode assembly in which the periphery of the polymer electrolyte membrane is reinforced with a hard resin. As a result, it has been found that problems (cross leak, crossover) in which the reaction gas (oxidant gas, fuel gas) reacts directly through the membrane easily occur at the peripheral portion of the polymer electrolyte membrane. The cause of the problem was presumed to be that in the membrane-electrode assembly, there was a route for the reaction gas to reach the membrane directly from the gas diffusion layer without passing through the catalyst layer. The portion where the cross leak occurred was concentrated on the peripheral portion of the polymer electrolyte membrane. It has also been found that the deterioration of the membrane progresses specifically and rapidly at the peripheral portion, which may reduce the life of the fuel cell. In order to prevent cross-leakage, it is necessary to configure the membrane-electrode assembly so that the reaction gas always reaches the polymer electrolyte membrane through the catalyst layer.

従来の方法では、上述の通り、触媒層と枠体との間に重なりや隙間が生じやすい。隙間が生じれば当然にクロスリークは発生する。一方、触媒層が枠体と重なるように構成すれは、ガスは触媒層を通過して膜に到達するため、クロスリークは発生しないとも考えられる。しかし、枠体と触媒層の重なり部分には押圧が集中する。押圧によって触媒層にゆがみや破損が生じればクロスリークが発生することになる。以上の検討から、本発明者らは、重なりや隙間は、枠体と触媒層を別個に形成して接合させる場合に必然的に生じる問題であることに気づいた。さらに本発明者らは、枠体を高分子電解質膜に取り付けた後に、枠体の内側に触媒層を塗工すれば、枠体と触媒層の間に重なりも隙間も生じないことに思い至った。   In the conventional method, as described above, an overlap or a gap is easily generated between the catalyst layer and the frame. If there is a gap, naturally a cross leak occurs. On the other hand, if the catalyst layer is configured to overlap the frame body, it is considered that no cross leak occurs because the gas passes through the catalyst layer and reaches the membrane. However, the pressure is concentrated on the overlapping portion of the frame and the catalyst layer. If the catalyst layer is distorted or damaged by the pressing, a cross leak will occur. From the above examination, the present inventors have realized that the overlap and the gap are problems that inevitably occur when the frame body and the catalyst layer are separately formed and joined. Furthermore, the present inventors have come to the idea that if a catalyst layer is applied to the inside of the frame after attaching the frame to the polymer electrolyte membrane, no overlap or gap will occur between the frame and the catalyst layer. It was.

なお、高分子電解質膜は湿度等により伸縮するものがあり、膜に直接触媒層を塗工するとしわが生じて問題となる場合がある。こうした理由も一因となって、膜の上に触媒層を直接形成する方法は、これまで一般的ではなかった。しかしながら、本発明者らの検討によれば、吸引固定装置(減圧方式による吸引固定装置)により膜を吸引して固定しながら、あるいは、膜を裏打ち部材の上に載せたまま(保持したまま、固定したまま)、触媒層を塗工することで、しわの発生を防止できることも判明した。   Some polymer electrolyte membranes expand and contract due to humidity and the like, and when a catalyst layer is applied directly to the membrane, wrinkles may be caused, which may be a problem. For these reasons as well, a method for directly forming a catalyst layer on a membrane has not been common. However, according to the study by the present inventors, while the membrane is sucked and fixed by a suction fixing device (a suction fixing device by a decompression method), or while the membrane is placed on the backing member (while being held, It was also found that wrinkle generation can be prevented by applying the catalyst layer while remaining fixed.

上記課題を解決するために、本発明の膜−電極接合体の製造方法は、開口を囲むように枠部が形成された補強部材を、前記枠部で高分子電解質膜の少なくとも一方の面の周縁部を被覆するように前記高分子電解質膜上に設ける補強部材配設工程と、少なくとも前記補強部材の開口に露出する前記高分子電解質膜の全面に触媒層を塗工する触媒層塗工工程と、前記触媒層を被覆するようにガス拡散層を配設するガス拡散層配設工程と、を有する。   In order to solve the above-described problems, a method for producing a membrane-electrode assembly according to the present invention includes a reinforcement member having a frame portion formed so as to surround an opening, and the frame portion includes at least one surface of a polymer electrolyte membrane. A reinforcing member disposing step provided on the polymer electrolyte membrane so as to cover a peripheral portion, and a catalyst layer applying step of applying a catalyst layer on the entire surface of the polymer electrolyte membrane exposed at least in the opening of the reinforcing member And a gas diffusion layer disposing step of disposing a gas diffusion layer so as to cover the catalyst layer.

かかる方法では、触媒層は、補強部材の開口の内側全面を覆い、かつ補強部材にはみ出すように塗工されるため、補強部材と触媒層の間には隙間が生じない。触媒層は不織布等に印刷されて取り付けられるのではなく、高分子電解質膜に塗工されるため、触媒層が補強部材に重なっていたとしても触媒層にゆがみや破損は生じにくい。よって、高分子電解質膜の周縁部に補強部材が配設され、補強部材の内側に隙間なく触媒層が形成され、スタック組み立て時の押圧により触媒層にゆがみや破損の生じにくい膜−電極接合体を効率よく製造することができる。   In such a method, the catalyst layer covers the entire inner surface of the opening of the reinforcing member and is applied so as to protrude from the reinforcing member, so that no gap is generated between the reinforcing member and the catalyst layer. The catalyst layer is not printed and attached to a nonwoven fabric or the like, but is applied to the polymer electrolyte membrane, so that even if the catalyst layer overlaps the reinforcing member, the catalyst layer is unlikely to be distorted or damaged. Accordingly, a membrane-electrode assembly in which a reinforcing member is disposed on the periphery of the polymer electrolyte membrane, a catalyst layer is formed without gaps inside the reinforcing member, and the catalyst layer is not easily distorted or damaged by pressing during stack assembly. Can be manufactured efficiently.

また、本発明の膜−電極接合体の製造方法は、前記触媒層塗工工程において、スプレーにより前記触媒層を塗工してもよい。   In the method for producing a membrane-electrode assembly of the present invention, the catalyst layer may be applied by spraying in the catalyst layer application step.

スプレーを利用すれば、容易に、補強部材の開口の内側全面を覆い、かつ補強部材にはみ出すように触媒層を塗工できる。   If the spray is used, the catalyst layer can be easily applied so as to cover the entire inner surface of the opening of the reinforcing member and to protrude from the reinforcing member.

また、本発明の膜−電極接合体の製造方法は、さらに、前記補強部材と前記補強部材と実質的に同じ平面形状を有し前記補強部材の片面を被覆する被覆部材とを有する複合部材を形成する複合部材形成工程と、前記触媒層を塗工した後に前記被覆部材を前記補強部材から除去する被覆部材除去工程と、を有し、前記補強部材配設工程において、前記補強部材が前記被覆部材よりも前記高分子電解質膜側に位置するように前記複合部材が設けられ、前記触媒層塗工工程において、前記複合部材の開口から前記開口の周辺部にはみ出すように前記触媒層が塗工されてもよい。   The method for producing a membrane-electrode assembly according to the present invention further includes a composite member having the reinforcing member and a covering member that has substantially the same planar shape as the reinforcing member and covers one side of the reinforcing member. A composite member forming step for forming, and a covering member removing step for removing the covering member from the reinforcing member after coating the catalyst layer, wherein the reinforcing member is covered with the covering member in the reinforcing member disposing step. The composite member is provided so as to be positioned closer to the polymer electrolyte membrane than the member, and in the catalyst layer coating step, the catalyst layer is applied so as to protrude from the opening of the composite member to the periphery of the opening. May be.

かかる方法により、触媒層を塗工した後に被覆部材を除去することで、補強部材の主面が触媒粒子により汚染されることがなくなる。被覆部材上の触媒粒子を回収することで、触媒の利用効率を向上させることができる。なお、実質的に同じ平面形状とは、例えば補強部材と被覆部材のいずれか一方が微小な切り欠きや穴を有する場合や、製造上の誤差により補強部材と被覆部材の大きさが若干異なる場合に、補強部材と被覆部材に重ならない部分を有するものを含む。   By this method, the covering member is removed after the catalyst layer is applied, so that the main surface of the reinforcing member is not contaminated by the catalyst particles. By collecting the catalyst particles on the covering member, the utilization efficiency of the catalyst can be improved. Note that substantially the same planar shape means, for example, when either the reinforcing member or the covering member has a minute notch or a hole, or when the size of the reinforcing member and the covering member is slightly different due to manufacturing errors. In addition, those having a portion that does not overlap the reinforcing member and the covering member are included.

また、本発明の膜−電極接合体の製造方法において、前記複合部材形成工程は、2枚の樹脂シートを貼り合わせて打ち抜くことで前記複合部材を形成してもよい。   In the method for manufacturing a membrane-electrode assembly of the present invention, the composite member forming step may form the composite member by bonding and punching two resin sheets.

かかる方法により、複合部材を容易に作成できる。被覆部材と補強部材は同じ形状を有するため、除去した被覆部材を補強部材に使用したり、被覆部材として繰り返し使用することもできる。   By this method, a composite member can be easily created. Since the covering member and the reinforcing member have the same shape, the removed covering member can be used as the reinforcing member or repeatedly used as the covering member.

また、本発明の膜−電極接合体の製造方法において、前記補強部材配設工程は、開口を囲むように枠部が形成された第1の補強部材を、前記枠部で第1の高分子電解質膜の少なくとも一方の面の周縁部を被覆するように前記第1の高分子電解質膜上に設ける第1の補強部材配設工程と、開口を囲むように枠部が形成された第2の補強部材を、前記枠部で第2の高分子電解質膜の少なくとも一方の面の周縁部を被覆するように前記第2の高分子電解質膜上に設ける第2の補強部材配設工程と、を有し、前記触媒層塗工工程は、少なくとも前記第1の補強部材の開口に露出する前記第1の高分子電解質膜の全面に第1の触媒層を塗工する第1の触媒層塗工工程と、少なくとも前記第2の補強部材の開口に露出する前記第2の高分子電解質膜の全面に第2の触媒層を塗工する第2の触媒層塗工工程と、を有し、さらに、前記第1の触媒層を塗工した前記第1の高分子電解質膜において前記第1の触媒層を塗工されていない面と、前記第2の触媒層を塗工した前記第2の高分子電解質膜において前記第2の触媒層を塗工されていない面と、を当接させる高分子電解質膜当接工程を有してもよい。   In the method of manufacturing a membrane-electrode assembly according to the present invention, the reinforcing member disposing step may include a first polymer having a frame formed so as to surround the opening, and the first polymer in the frame. A first reinforcing member disposing step provided on the first polymer electrolyte membrane so as to cover a peripheral portion of at least one surface of the electrolyte membrane; and a second portion in which a frame portion is formed so as to surround the opening. A second reinforcing member disposing step of providing a reinforcing member on the second polymer electrolyte membrane so that the frame portion covers a peripheral portion of at least one surface of the second polymer electrolyte membrane; And the catalyst layer coating step includes a first catalyst layer coating for coating the first catalyst layer on the entire surface of the first polymer electrolyte membrane exposed at least in the opening of the first reinforcing member. And an entire surface of the second polymer electrolyte membrane exposed at least in the opening of the second reinforcing member And a second catalyst layer coating step for coating the second catalyst layer, and in the first polymer electrolyte membrane coated with the first catalyst layer, the first catalyst layer And a surface of the second polymer electrolyte membrane coated with the second catalyst layer that is not coated with the second catalyst layer. You may have a film | membrane contact process.

かかる方法により、2枚の高分子電解質膜について別々に触媒層の塗工を行うことができる。   By this method, the catalyst layer can be separately applied to the two polymer electrolyte membranes.

また、本発明の膜−電極接合体の製造方法は、さらに、前記第1の補強部材と前記第1の補強部材と実質的に同じ平面形状を有し前記第1の補強部材の片面を被覆する第1の被覆部材とを有する第1の複合部材を形成する第1の複合部材形成工程と、前記第2の補強部材と前記第2の補強部材と実質的に同じ平面形状を有し前記第2の補強部材の片面を被覆する第2の被覆部材とを有する第2の複合部材を形成する第2の複合部材形成工程と、前記第1の触媒層を塗工した後に前記第1の被覆部材を前記第1の補強部材から除去する第1の被覆部材除去工程と、前記第2の触媒層を塗工した後に前記第2の被覆部材を前記第2の補強部材から除去する第2の被覆部材除去工程と、を有し、前記第1の補強部材配設工程において、前記第1の補強部材が前記第1の被覆部材よりも前記第1の高分子電解質膜側に位置するように前記第1の複合部材が設けられ、前記第2の補強部材配設工程において、前記第2の補強部材が前記第2の被覆部材よりも前記第2の高分子電解質膜側に位置するように前記第2の複合部材が設けられ、前記第1の触媒層塗工工程において、前記第1の複合部材の開口から前記開口の周辺部にはみ出すように前記第1の触媒層が塗工され、前記第2の触媒層塗工工程において、前記第2の複合部材の開口から前記開口の周辺部にはみ出すように前記第2の触媒層が塗工されてもよい。   In the method of manufacturing a membrane-electrode assembly according to the present invention, the first reinforcing member and the first reinforcing member have substantially the same planar shape and cover one side of the first reinforcing member. A first composite member forming step of forming a first composite member having a first covering member that has substantially the same planar shape as the second reinforcing member and the second reinforcing member; A second composite member forming step of forming a second composite member having a second covering member that covers one side of the second reinforcing member; and after applying the first catalyst layer, the first composite member A first covering member removing step of removing the covering member from the first reinforcing member; and a second step of removing the second covering member from the second reinforcing member after applying the second catalyst layer. A covering member removing step, wherein in the first reinforcing member disposing step, the first auxiliary member is disposed. The first composite member is provided so that the member is positioned closer to the first polymer electrolyte membrane than the first covering member. In the second reinforcing member disposing step, the second reinforcing member is provided. The second composite member is provided such that the member is positioned closer to the second polymer electrolyte membrane than the second covering member, and in the first catalyst layer coating step, the first composite layer is provided. The first catalyst layer is applied so as to protrude from the opening of the member to the periphery of the opening. In the second catalyst layer application step, the opening of the second composite member is extended to the periphery of the opening. The second catalyst layer may be applied so as to protrude.

かかる方法により、触媒層を塗工した後に被覆部材を除去することで、補強部材の主面が触媒粒子により汚染されることがなくなる。被覆部材上の触媒粒子を回収することで、触媒の利用効率を向上させることができる。同時に、2枚の高分子電解質膜について別々に触媒層の塗工を行うこともできる。   By this method, the covering member is removed after the catalyst layer is applied, so that the main surface of the reinforcing member is not contaminated by the catalyst particles. By collecting the catalyst particles on the covering member, the utilization efficiency of the catalyst can be improved. At the same time, the catalyst layers can be separately applied to the two polymer electrolyte membranes.

また、本発明の膜−電極接合体の製造方法は、さらに、第1の裏打ち部材の一方の面に前記第1の高分子電解質膜を保持する第1の高分子電解質膜保持工程と、第2の裏打ち部材の一方の面に前記第2の高分子電解質膜を保持する第2の高分子電解質膜保持工程と、を有し、前記第1の補強部材配設工程は、前記第1の補強部材が前記第1の高分子電解質膜における前記第1の裏打ち部材に保持されない面を被覆するように前記第1の複合部材を前記第1の高分子電解質膜に設ける工程であり、前記第2の補強部材配設工程は、前記第2の補強部材が前記第2の高分子電解質膜における前記第2の裏打ち部材に保持されない面を被覆するように前記第2の複合部材を前記第2の高分子電解質膜に設ける工程であり、さらに、前記高分子電解質膜当接工程の前に前記第1の触媒層が塗工された前記第1の高分子電解質膜から前記第1の裏打ち部材を除去する第1の裏打ち部材除去工程と、前記高分子電解質膜当接工程の前に前記第2の触媒層が塗工された前記第2の高分子電解質膜から前記第2の裏打ち部材を除去する第2の裏打ち部材除去工程と、を有してもよい。   The method for producing a membrane-electrode assembly according to the present invention further includes a first polymer electrolyte membrane holding step of holding the first polymer electrolyte membrane on one surface of the first backing member, A second polymer electrolyte membrane holding step for holding the second polymer electrolyte membrane on one surface of the two backing members, wherein the first reinforcing member disposing step comprises A step of providing the first composite member on the first polymer electrolyte membrane so that a reinforcing member covers a surface of the first polymer electrolyte membrane that is not held by the first backing member; In the second reinforcing member disposing step, the second composite member is attached to the second composite member so that the second reinforcing member covers a surface of the second polymer electrolyte membrane that is not held by the second backing member. A step of providing the polymer electrolyte membrane, and further comprising the polymer electrolyte A first backing member removing step of removing the first backing member from the first polymer electrolyte membrane coated with the first catalyst layer before the contact step; and the polymer electrolyte membrane contact And a second backing member removing step of removing the second backing member from the second polymer electrolyte membrane coated with the second catalyst layer before the contacting step.

かかる方法によれば、触媒層を塗工した後に被覆部材を除去することで、補強部材の主面が触媒粒子により汚染されることがなくなる。被覆部材上の触媒粒子を回収することで、触媒の利用効率を向上させることができる。また、高分子電解質膜を裏打ち部材に固定したまま触媒層の塗工を行うため、高分子電解質膜におけるしわの発生を確実に防止できる。   According to this method, the main surface of the reinforcing member is not contaminated by the catalyst particles by removing the covering member after applying the catalyst layer. By collecting the catalyst particles on the covering member, the utilization efficiency of the catalyst can be improved. In addition, since the catalyst layer is applied while the polymer electrolyte membrane is fixed to the backing member, wrinkles in the polymer electrolyte membrane can be reliably prevented.

なお、「当接」とは、必ずしも2つの部材が直接接触するように貼り合わされる場合のみを指すのではなく、何らかの部材(補強材や別の高分子電解質層等)を介して2つの部材が貼り合わされる場合も含む。   Note that “abutment” does not necessarily refer to the case where the two members are bonded together so that they are in direct contact, but the two members via some member (such as a reinforcing material or another polymer electrolyte layer). Including the case where is attached.

本発明の膜−電極接合体製造方法は、上述のような構成を有しており、以下のような効果を奏する。すなわち、高分子電解質膜の周縁部に補強部材が配設され、補強部材の内側に隙間なく触媒層が形成され、スタック組み立て時の押圧により触媒層にゆがみや破損の生じにくい膜−電極接合体を効率よく製造する方法を提供することが可能となる。   The method for producing a membrane-electrode assembly of the present invention has the above-described configuration, and has the following effects. That is, a membrane-electrode assembly in which a reinforcing member is disposed on the periphery of the polymer electrolyte membrane, a catalyst layer is formed without gaps inside the reinforcing member, and the catalyst layer is less likely to be distorted or damaged by pressing during stack assembly. It is possible to provide a method for efficiently manufacturing the process.

以下、本発明の実施の形態を、図面を参照しながら説明する。
(第1実施形態)
[工程]
図1−A乃至図1−Dは、本発明の第1実施形態の膜−電極接合体製造方法の一例を模式的に示す工程図である。図1−Aは、高分子電解質膜のみの状態を示す図である。図1−Bは、高分子電解質膜に補強部材が取り付けられる工程を示す図である。図1−Cは、補強部材の上から触媒層が塗工されて膜−電極接合体となった状態を示す図である。図1−Dは、触媒層の上にガス拡散層が形成されて膜−電極−ガス拡散層接合体となった状態を示す図である。以下、図1−A乃至図1−Dを参照しながら、本実施形態の膜−電極接合体製造方法について説明する。なお、図はあくまで各工程における各部材の位置関係を例示すための模式図であって、相対的な大きさや形状、厚さなどを限定するものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
[Process]
1A to 1D are process diagrams schematically showing an example of the method for producing a membrane-electrode assembly according to the first embodiment of the present invention. FIG. 1A is a diagram showing a state of only a polymer electrolyte membrane. FIG. 1B is a diagram illustrating a process in which a reinforcing member is attached to the polymer electrolyte membrane. FIG. 1C is a diagram illustrating a state in which a catalyst layer is applied from above the reinforcing member to form a membrane-electrode assembly. FIG. 1-D is a diagram showing a state where a gas diffusion layer is formed on the catalyst layer to form a membrane-electrode-gas diffusion layer assembly. Hereinafter, the membrane-electrode assembly manufacturing method of the present embodiment will be described with reference to FIGS. 1-A to 1 -D. In addition, the figure is a schematic diagram for illustrating the positional relationship of each member in each process to the last, and does not limit the relative size, shape, thickness, and the like.

図1−Aに示す工程において、高分子電解質膜102が用意される。高分子電解質膜102は、プロトン電導性を有する膜が好ましく、例えば、パーフルオロスルホン酸膜が好適に用いられる。   In the step shown in FIG. 1-A, a polymer electrolyte membrane 102 is prepared. The polymer electrolyte membrane 102 is preferably a membrane having proton conductivity. For example, a perfluorosulfonic acid membrane is suitably used.

図1−Bに示す工程において、高分子電解質膜102の周縁部の両面に、補強部材104A、104Bが取り付けられる(補強部材配設工程)。補強部材104A、104Bは、開口123A、123Bを囲むように枠部が形成され、枠部の外周は高分子電解質膜102の外周とほぼ同一の形状を有する。補強部材104A、104Bの枠部により、高分子電解質膜102の両面の周縁部が被覆される。補強部材104A、104Bの材料は、耐食性(耐酸性)と耐熱性を有するものが好ましく、例えば、ポリテトラフルオロエチレン樹脂(PTFE)が好適に用いられる。補強部材104A、104Bは、例えば、PTFEのシートを例えばトムソン型で打ち抜いて作製される。高分子電解質膜102へ補強部材104A、104Bを取り付ける方法は、適度な強度で取り付けができるものが好ましく、例えば、熱圧着、接着剤による接着などが用いられる。   In the step shown in FIG. 1B, the reinforcing members 104A and 104B are attached to both surfaces of the peripheral edge of the polymer electrolyte membrane 102 (reinforcing member disposing step). The reinforcing members 104A and 104B are formed with a frame portion so as to surround the openings 123A and 123B, and the outer periphery of the frame portion has substantially the same shape as the outer periphery of the polymer electrolyte membrane 102. The peripheral portions on both sides of the polymer electrolyte membrane 102 are covered with the frame portions of the reinforcing members 104A and 104B. The material of the reinforcing members 104A and 104B is preferably one having corrosion resistance (acid resistance) and heat resistance. For example, polytetrafluoroethylene resin (PTFE) is suitably used. The reinforcing members 104A and 104B are manufactured, for example, by punching a PTFE sheet with a Thomson type, for example. The method of attaching the reinforcing members 104A and 104B to the polymer electrolyte membrane 102 is preferably one that can be attached with an appropriate strength. For example, thermocompression bonding or adhesion using an adhesive is used.

図1−Cに示す工程において、触媒層109A、109B(電極)が塗工される(触媒層塗工工程)。触媒層109A、109Bは、例えば、白金等の触媒をカーボン粒子に担持させた触媒担持粒子と高分子電解質とを混合したものが好適に用いられる。触媒層109A、109Bの塗工は、例えば、アルコールやアルコールと水の混合物等の溶媒に高分子電解質の樹脂を混合して分散液とし、さらに触媒担持粒子を混ぜて触媒分散液を調整する。この触媒分散液を、スプレー法、スピンコート法、ドクターブレード法、ダイコート法、スクリーン印刷等の公知の薄膜製造技術を用いて高分子電解質膜102および補強部材104の上に塗工し、乾燥させて溶媒を揮散させることで、触媒層109A、109Bが形成される。触媒層の塗工方法としては、スプレー法が最も好適である。   In the step shown in FIG. 1-C, the catalyst layers 109A and 109B (electrodes) are applied (catalyst layer application step). As the catalyst layers 109A and 109B, for example, a mixture of catalyst supporting particles in which a catalyst such as platinum is supported on carbon particles and a polymer electrolyte is preferably used. For coating the catalyst layers 109A and 109B, for example, a polymer electrolyte resin is mixed with a solvent such as alcohol or a mixture of alcohol and water to form a dispersion liquid, and catalyst-supported particles are further mixed to adjust the catalyst dispersion liquid. The catalyst dispersion is applied onto the polymer electrolyte membrane 102 and the reinforcing member 104 using a known thin film manufacturing technique such as spraying, spin coating, doctor blade, die coating, or screen printing, and dried. The catalyst layers 109A and 109B are formed by volatilizing the solvent. As a method for applying the catalyst layer, a spray method is most preferable.

触媒分散液を塗工すると高分子電解質膜にしわが生じる場合がある。しわの発生を防ぐためには、触媒層の塗工時に高分子電解質膜を固定しておくのが好ましい。固定方法としては、例えば、吸引により高分子電解質膜を加工ステージに固定可能な吸引固定装置(減圧方式による吸引固定装置)による固定や裏打ち部材の使用が挙げられる。   When the catalyst dispersion is applied, wrinkles may occur in the polymer electrolyte membrane. In order to prevent the generation of wrinkles, it is preferable to fix the polymer electrolyte membrane during the application of the catalyst layer. Examples of the fixing method include fixing by a suction fixing device (a suction fixing device by a decompression method) capable of fixing the polymer electrolyte membrane to the processing stage by suction and use of a backing member.

吸引固定装置(減圧方式による吸引固定装置)を使用する場合には、高分子電解質膜を吸引固定装置(減圧方式による吸引固定装置)の加工ステージ上に載せて一方の面(面A)を吸引することで膜を固定し、反対面(面B)へ補強部材を取り付けた後に触媒層を塗工する。面Bへの触媒層の塗工後、高分子電解質膜を吸引固定装置(減圧方式による吸引固定装置)の加工ステージから取り外し、反転させて面B側を吸引させて再び高分子電解質膜を固定し、面Aについて補強部材の取り付けと触媒層の塗工を行う。   When using a suction fixing device (vacuum fixing device), place the polymer electrolyte membrane on the processing stage of the suction fixing device (vacuum suction device) and suck one surface (surface A). In this way, the membrane is fixed, and after the reinforcing member is attached to the opposite surface (surface B), the catalyst layer is applied. After coating the catalyst layer on the surface B, remove the polymer electrolyte membrane from the processing stage of the suction fixing device (suction fixing device by decompression method), invert it and suck the surface B side to fix the polymer electrolyte membrane again Then, the reinforcing member is attached to the surface A and the catalyst layer is applied.

裏打ち部材を使用する場合には、まず、高分子電解質膜を裏打ち部材の上に保持し、裏打ち部材に接する面(面A)の反対側の面(面B)へ補強部材を取り付けた後に触媒層を塗工する。面Bへの触媒層の塗工後、裏打ち部材を高分子電解質膜から取り外し、面Aについて、補強部材の取り付けと触媒層の塗工を行う。   When the backing member is used, first, the polymer electrolyte membrane is held on the backing member, and the reinforcing member is attached to the surface (surface B) opposite to the surface (surface A) in contact with the backing member. Apply the layer. After applying the catalyst layer to the surface B, the backing member is removed from the polymer electrolyte membrane, and the reinforcing member is attached to the surface A and the catalyst layer is applied to the surface A.

触媒層109Aは、補強部材104Aの開口123Aに露出する高分子電解質膜102の全面において高分子電解質膜102を覆い、かつ開口123Aの周辺部にはみ出すように塗工される。触媒層109Bは、補強部材104Bの開口123Bに露出する高分子電解質膜102の全面において高分子電解質膜102を覆い、かつ開口123Bの周辺部にはみ出すように塗工される。触媒層109A、109Bの塗工により、膜−電極接合体113が得られる。   The catalyst layer 109A is applied so as to cover the polymer electrolyte membrane 102 over the entire surface of the polymer electrolyte membrane 102 exposed to the opening 123A of the reinforcing member 104A and to protrude to the peripheral portion of the opening 123A. The catalyst layer 109B is applied so as to cover the polymer electrolyte membrane 102 over the entire surface of the polymer electrolyte membrane 102 exposed in the opening 123B of the reinforcing member 104B and to protrude from the peripheral portion of the opening 123B. The membrane-electrode assembly 113 is obtained by applying the catalyst layers 109A and 109B.

図1−Dに示す工程において、触媒層109A、109Bを被覆するようにガス拡散層114A、114Bが形成される(ガス拡散層配設工程)。ガス拡散層114A、114Bは、十分なガス透過性と導電性を有するものが好ましく、例えばカーボンクロス等が好適に用いられる。ガス拡散層114A、114Bの取り付け方法は、適度な強度で接合できるものが好ましく、例えば、接着剤による接着などが用いられる。ただし、セパレータ等で挟持する場合には、単に、膜−電極接合体113とガス拡散層114A、114Bを接着せずに積層するだけでもよい。ガス拡散層114A、114Bは、触媒層109A、109Bと等しいか、より小さい構成が好ましい。なお、ガス拡散層と触媒層は必ずしも直接に接している必要はなく、両者の間に他の層を有していてもよい。ガス拡散層114A、114Bを形成することで、膜−電極−ガス拡散層接合体115が得られる。
[構造]
図2は、本発明の第1実施形態の膜−電極接合体製造方法により作製された膜−電極−ガス拡散層接合体の使用状態における断面を示す模式図である。図2に示すように、使用時において、膜−電極−ガス拡散層接合体115は、ガス拡散層114A、114Bの外周が枠状のガスケット119A、119Bにより囲まれる。さらに、膜−電極−ガス拡散層接合体115およびガスケット119A、119Bは、内面に流路122の刻まれたセパレータ120A、120Bにより、流路122がガス拡散層114A、114Bに接するように挟持される。第1実施形態の膜−電極接合体製造方法によれば、高分子電解質膜102の周縁部に取り付けられた補強部材104A、104Bの上にまではみだしてそれぞれ触媒層109A、109Bが形成されている。ガス拡散層114A、114Bは、それぞれ触媒層109A、109Bの上に設けられる。ガス拡散層114A、114Bとガスケット119A、119Bの間には、隙間121が生じるが、隙間121は高分子電解質膜102に接していない。かかる構造により、ガス拡散層114A、114Bから供給されるガスは、全量が、触媒層109A、109Bを通過して高分子電解質膜102に達することになる。
[特徴および効果]
本実施形態の特徴は、高分子電解質膜102の上に補強部材104A、104Bを取り付け、その上から触媒層109が補強部材104A、104Bの上にはみ出すように塗工される点にある。かかる方法によれば、触媒層109A、109Bはそれぞれ開口123A、123Bに露出する高分子電解質膜102の全面を覆うことになり、触媒層109A、109Bと補強部材104A、104Bの間に隙間が生じることがなくなる。かかる構造により、ガス拡散層114A、114Bからガスが直接に(触媒層109A、109Bを通過せずに隙間を通過して)高分子電解質膜102に到達することがなくなる。また、触媒層109は高分子電解質膜102の上に直接塗工されるため、ガス拡散層114A、114Bが補強部材104A、104Bに乗り上げて、ガス拡散層にゆがみや破損が生じても、触媒層が破損することはない。
1D, gas diffusion layers 114A and 114B are formed so as to cover the catalyst layers 109A and 109B (gas diffusion layer disposing step). The gas diffusion layers 114A and 114B are preferably those having sufficient gas permeability and conductivity. For example, carbon cloth or the like is suitably used. As a method for attaching the gas diffusion layers 114A and 114B, those that can be joined with an appropriate strength are preferable. However, when sandwiched between separators or the like, the membrane-electrode assembly 113 and the gas diffusion layers 114A and 114B may be simply laminated without bonding. The gas diffusion layers 114A and 114B are preferably configured to be equal to or smaller than the catalyst layers 109A and 109B. The gas diffusion layer and the catalyst layer are not necessarily in direct contact with each other, and another layer may be provided between them. By forming the gas diffusion layers 114A and 114B, the membrane-electrode-gas diffusion layer assembly 115 is obtained.
[Construction]
FIG. 2 is a schematic view showing a cross section of the membrane-electrode-gas diffusion layer assembly produced by the membrane-electrode assembly manufacturing method according to the first embodiment of the present invention in use. As shown in FIG. 2, in use, in the membrane-electrode-gas diffusion layer assembly 115, the outer periphery of the gas diffusion layers 114A and 114B is surrounded by frame-shaped gaskets 119A and 119B. Further, the membrane-electrode-gas diffusion layer assembly 115 and the gaskets 119A, 119B are sandwiched between the inner surfaces of the gas diffusion layers 114A, 114B by the separators 120A, 120B in which the channel 122 is engraved. The According to the membrane-electrode assembly manufacturing method of the first embodiment, catalyst layers 109A and 109B are formed on the reinforcing members 104A and 104B attached to the peripheral edge of the polymer electrolyte membrane 102, respectively. . The gas diffusion layers 114A and 114B are provided on the catalyst layers 109A and 109B, respectively. A gap 121 is formed between the gas diffusion layers 114A and 114B and the gaskets 119A and 119B, but the gap 121 is not in contact with the polymer electrolyte membrane 102. With this structure, the total amount of gas supplied from the gas diffusion layers 114A and 114B passes through the catalyst layers 109A and 109B and reaches the polymer electrolyte membrane 102.
[Features and effects]
The feature of this embodiment is that reinforcing members 104A and 104B are attached on the polymer electrolyte membrane 102, and the catalyst layer 109 is coated so as to protrude from the reinforcing members 104A and 104B. According to this method, the catalyst layers 109A and 109B cover the entire surface of the polymer electrolyte membrane 102 exposed in the openings 123A and 123B, respectively, and a gap is generated between the catalyst layers 109A and 109B and the reinforcing members 104A and 104B. Nothing will happen. With this structure, gas does not reach the polymer electrolyte membrane 102 directly from the gas diffusion layers 114A and 114B (through the gaps without passing through the catalyst layers 109A and 109B). In addition, since the catalyst layer 109 is applied directly on the polymer electrolyte membrane 102, the catalyst layer 109A, 114B can run over the reinforcing members 104A, 104B, and the gas diffusion layer can be distorted or damaged. The layer will not break.

以上の記述からも明らかなように、第1実施形態の膜−電極接合体製造方法によれば、高分子電解質膜の周縁部に補強部材が配設され、前記補強部材の内側に隙間なく触媒層が形成され、スタック組み立て時の押圧により触媒層にゆがみや破損の生じにくい膜−電極接合体を効率よく製造することができる。   As is clear from the above description, according to the membrane-electrode assembly manufacturing method of the first embodiment, the reinforcing member is disposed on the peripheral edge of the polymer electrolyte membrane, and the catalyst is formed without any gap inside the reinforcing member. A membrane-electrode assembly in which a layer is formed and the catalyst layer is less likely to be distorted or damaged by pressing during stack assembly can be efficiently produced.

また、第1実施形態の膜−電極接合体製造方法では、後述する第2実施形態乃至第3実施形態の膜−電極接合体製造方法と異なり、補強部材に乗り上げるように高分子電解質膜が直接塗工される。かかる構成により、被覆部材が不要となり、部材数を削減できる。
(第2実施形態)
[工程]
図3−A乃至図3−Eは、本発明の第2実施形態の膜−電極接合体製造方法の一例を模式的に示す工程図である。図3−Aは、高分子電解質膜のみの状態を示す図である。図3−Bは、高分子電解質膜に補強部材と被覆部材が取り付けられる工程を示す図である。図3−Cは、被覆部材の上から触媒層が塗工された状態を示す図である。図3−Dは、被覆部材が除去された状態を示す図である。図3−Eは、触媒層の上にガス拡散層が形成されて膜−電極−ガス拡散層接合体となった状態を示す図である。以下、図3−A乃至図3−Eを参照しながら、本実施形態の膜−電極接合体製造方法について説明する。なお、図はあくまで各工程における各部材の位置関係を例示すための模式図であって、相対的な大きさや形状、厚さなどを限定するものではない。また、第2実施形態においても、第1実施形態と同様な変形が可能であることは言うまでもない。
Also, in the membrane-electrode assembly manufacturing method of the first embodiment, unlike the membrane-electrode assembly manufacturing method of the second to third embodiments described later, the polymer electrolyte membrane is directly applied so as to ride on the reinforcing member. Coated. With this configuration, a covering member is not necessary, and the number of members can be reduced.
(Second Embodiment)
[Process]
FIG. 3A to FIG. 3E are process diagrams schematically showing an example of the membrane-electrode assembly manufacturing method of the second embodiment of the present invention. FIG. 3-A is a diagram showing a state of only the polymer electrolyte membrane. FIG. 3-B is a diagram illustrating a process in which the reinforcing member and the covering member are attached to the polymer electrolyte membrane. FIG. 3C is a diagram illustrating a state in which a catalyst layer is applied from above the covering member. FIG. 3D is a diagram illustrating a state where the covering member is removed. FIG. 3E is a diagram showing a state where a gas diffusion layer is formed on the catalyst layer to form a membrane-electrode-gas diffusion layer assembly. Hereinafter, the membrane-electrode assembly manufacturing method of the present embodiment will be described with reference to FIGS. In addition, the figure is a schematic diagram for illustrating the positional relationship of each member in each process to the last, and does not limit the relative size, shape, thickness, and the like. Needless to say, the second embodiment can be modified similarly to the first embodiment.

第2実施形態の膜−電極接合体製造方法は、1)単体の補強部材の代わりに補強部材と被覆部材を接合した複合部材を用いる点、2)触媒層を塗工後に被覆部材を補強部材から除去する点、以外は、第1実施形態の膜−電極接合体製造方法と同様である。よって、共通する部材や方法については同一の名称を付すこととし、詳細な説明は省略する。   The membrane-electrode assembly manufacturing method of the second embodiment is 1) a point in which a composite member in which a reinforcing member and a covering member are joined is used instead of a single reinforcing member, and 2) the covering member is used as a reinforcing member after coating the catalyst layer. The method is the same as the method for manufacturing the membrane-electrode assembly according to the first embodiment except that it is removed. Therefore, the same name is attached | subjected about a common member and method, and detailed description is abbreviate | omitted.

図3−Aに示す工程において、高分子電解質膜202が用意される。   In the step shown in FIG. 3A, a polymer electrolyte membrane 202 is prepared.

図3−Bに示す工程において、高分子電解質膜202の周縁部の片面に、補強部材204Aと被覆部材205Aとからなる複合部材206Aが、補強部材204Aが高分子電解質膜202に当接するように(補強部材204Aが被覆部材205Aよりも高分子電解質膜202側に位置するように)取り付けられ、高分子電解質膜202の周縁部のもう一方の面に、補強部材204Bと被覆部材205Bとからなる複合部材206Bが、補強部材206Bが高分子電解質膜202に当接するように(補強部材206Bが被覆部材205Bよりも高分子電解質膜202側に位置するように)取り付けられる(補強部材配設工程)。被覆部材205Aは、補強部材204Aと同一の材料からなり、また、補強部材204Aと実質的に同じ平面形状を有し、補強部材204Aの片面を被覆する。被覆部材205Bは、補強部材204Bと同一の材料からなり、また、補強部材204Bと実質的に同じ平面形状を有し、補強部材204Bの片面を被覆する。補強部材204Aと被覆部材205Aは、開口223Aを有する。補強部材204Bと被覆部材205Bは、開口223Bを有する。補強部材204A、204Bと被覆部材205A、205Bは、触媒層の塗工後に被覆部材205A、205Bのみを除去できるように接合される。例えば、接着力の弱い接着剤により2枚のPTFEシートが接着される。その後、例えばトムソン型を用いた打ち抜き加工により、開口223Aを有する複合部材206Aが形成される(複合部材形成工程)。複合部材206Bも同様の方法で形成される。なお、被覆部材205A、205Bは、必ずしも補強部材204A、204Bと同一の材料からなる必要はなく、別の材料(マスキングテープ等)であってもよい。例えば、被覆部材205A、205Bが枠状の金属板で構成されていてもよい。かかる構成では、製造工程において被覆部材を何回も再利用でき効率的である。補強部材204A、204Bと、被覆部材205A、205Bとは必ずしも接着されている必要はなく、補強部材の上に被覆部材を単に載置してスプレーすることとしてもよい。かかる構成では接着工程が不要となり、被覆部材の取り外しも容易になるため、作業効率が向上する。被覆部材と補強部材の形状は、開口部が一致すればよく、外縁部は必ずしも一致しなくてもよい。   In the step shown in FIG. 3B, the composite member 206A composed of the reinforcing member 204A and the covering member 205A is placed on one side of the peripheral edge of the polymer electrolyte membrane 202 so that the reinforcing member 204A abuts the polymer electrolyte membrane 202. It is attached (so that the reinforcing member 204A is positioned on the polymer electrolyte membrane 202 side with respect to the covering member 205A), and is composed of the reinforcing member 204B and the covering member 205B on the other surface of the peripheral edge of the polymer electrolyte membrane 202. The composite member 206B is attached (so that the reinforcing member 206B is positioned closer to the polymer electrolyte membrane 202 than the covering member 205B) so that the reinforcing member 206B contacts the polymer electrolyte membrane 202 (reinforcing member disposing step). . The covering member 205A is made of the same material as the reinforcing member 204A, has substantially the same planar shape as the reinforcing member 204A, and covers one side of the reinforcing member 204A. The covering member 205B is made of the same material as that of the reinforcing member 204B, and has substantially the same planar shape as the reinforcing member 204B, and covers one side of the reinforcing member 204B. The reinforcing member 204A and the covering member 205A have an opening 223A. The reinforcing member 204B and the covering member 205B have an opening 223B. The reinforcing members 204A and 204B and the covering members 205A and 205B are joined so that only the covering members 205A and 205B can be removed after the catalyst layer is applied. For example, two PTFE sheets are bonded by an adhesive having a weak adhesive force. Thereafter, the composite member 206A having the opening 223A is formed by punching using, for example, a Thomson mold (composite member forming step). The composite member 206B is also formed by the same method. Note that the covering members 205A and 205B are not necessarily made of the same material as the reinforcing members 204A and 204B, and may be made of another material (such as a masking tape). For example, the covering members 205A and 205B may be configured by a frame-shaped metal plate. In such a configuration, the covering member can be reused many times in the manufacturing process, which is efficient. The reinforcing members 204A and 204B and the covering members 205A and 205B are not necessarily bonded, and the covering member may be simply placed on the reinforcing member and sprayed. Such a configuration eliminates the need for an adhesion step and facilitates removal of the covering member, thereby improving work efficiency. The shape of the covering member and that of the reinforcing member only need to match the opening, and the outer edge may not necessarily match.

図3−Cに示す工程において、触媒分散液層208A、208B(電極)が塗工される。触媒分散液層208Aは、開口223Aに露出する高分子電解質膜202の全面を隙間なく覆い、さらに開口223Aの周辺部にはみ出すように塗工され、触媒分散液層208Bは、開口223Bに露出する高分子電解質膜202の全面を隙間なく覆い、開口223Bの周辺部にはみ出すように塗工される(触媒層塗工工程)。第1実施形態と同様、触媒分散液を塗工すると高分子電解質膜にしわが生じる場合には、吸引固定装置(減圧方式による吸引固定装置)や裏打ち部材により高分子電解質膜を固定しながら塗工を行うことが好ましい。   In the step shown in FIG. 3C, catalyst dispersion layers 208A and 208B (electrodes) are applied. The catalyst dispersion layer 208A covers the entire surface of the polymer electrolyte membrane 202 exposed to the opening 223A without any gap, and is further coated so as to protrude from the periphery of the opening 223A. The catalyst dispersion layer 208B is exposed to the opening 223B. The entire surface of the polymer electrolyte membrane 202 is covered without any gap, and is applied so as to protrude from the periphery of the opening 223B (catalyst layer coating step). As in the first embodiment, when wrinkles occur in the polymer electrolyte membrane when the catalyst dispersion is applied, the coating is performed while fixing the polymer electrolyte membrane with a suction fixing device (a suction fixing device using a reduced pressure method) or a backing member. It is preferable to carry out.

図3−Dに示す工程において、触媒分散液層208A、208Bが開口223A、223Bの周辺部にはみ出した部分は、被覆部材205A、205Bと共に除去される。被覆部材205Aは、補強部材204Aと取り外し可能に接着されており、容易に本体部分から除去され、被覆部材205Bも、補強部材204Bと取り外し可能に接着されており、容易に本体部分から除去される(被覆部材除去工程)この工程により、補強部材204Aの開口223Aに露出する高分子電解質膜202の全面に隙間なく触媒層209A(第1の触媒層)が形成され、補強部材204Bの開口223Bに露出する高分子電解質膜202の全面に隙間なく触媒層209B(第2の触媒層)が形成され、膜−電極接合体213が得られる。触媒分散液の塗工時に、補強部材204A、204Bの主面を被覆部材205A、205Bで保護することにより、補強部材204A、204Bの主面が触媒粒子により汚れるのを防ぐことができる。   In the step shown in FIG. 3D, portions where the catalyst dispersion layers 208A and 208B protrude from the peripheral portions of the openings 223A and 223B are removed together with the covering members 205A and 205B. The covering member 205A is detachably bonded to the reinforcing member 204A and easily removed from the main body portion, and the covering member 205B is also detachably bonded to the reinforcing member 204B and easily removed from the main body portion. (Coating member removing step) By this step, the catalyst layer 209A (first catalyst layer) is formed without gaps on the entire surface of the polymer electrolyte membrane 202 exposed to the opening 223A of the reinforcing member 204A, and the opening 223B of the reinforcing member 204B is formed. A catalyst layer 209B (second catalyst layer) is formed on the entire surface of the exposed polymer electrolyte membrane 202 without a gap, and a membrane-electrode assembly 213 is obtained. When the catalyst dispersion liquid is applied, the main surfaces of the reinforcing members 204A and 204B are protected by the covering members 205A and 205B, thereby preventing the main surfaces of the reinforcing members 204A and 204B from being contaminated by the catalyst particles.

図3−Eに示す工程において、触媒層209A、209Bの上にガス拡散層214A、214Bが形成される(ガス拡散層配設工程)。ガス拡散層214A、214Bを形成することで、膜−電極−ガス拡散層接合体215が得られる。なお、図3−Eの工程を図3−Dの工程の前に行ってもよい。
[構造]
図4は、本発明の第2実施形態の膜−電極接合体製造方法により作製された膜−電極−ガス拡散層接合体215の使用状態における断面を示す模式図である。図4に示すように、使用時において、膜−電極−ガス拡散層接合体215は、ガス拡散層214A、214Bの外周がそれぞれ枠状のガスケット219A、219Bにより囲まれる。さらに、膜−電極−ガス拡散層接合体215およびガスケット219A、219Bは、内面に流路222の刻まれたセパレータ220A、220Bにより、流路222がガス拡散層214A、214B側に接するように挟持される。第2実施形態の膜−電極接合体製造方法によれば、触媒層209A、209Bは、それぞれ補強部材204A、204Bの上にはみだすことなく、かつ、それぞれ補強部材204A、204Bとの間に隙間を作ることなく形成されている。ガス拡散層214A、214Bは、それぞれ触媒層209A、209Bの上に設けられる。ガス拡散層214A、214Bとガスケット219A、219Bの間には、隙間221が生じるが、隙間221は高分子電解質膜202に接していない。かかる構造により、ガス拡散層214A、214Bから供給されるガスは、全量が、それぞれ触媒層209A、209Bを通過して高分子電解質膜202に達することになる。触媒層209A、209Bは、それぞれ補強部材204A、204Bの上にはみ出すことがないため、ガス拡散層209A、209Bと補強部材204A、204Bがそれぞれ直接当接する。
[特徴および効果]
第2実施形態の膜−電極接合体製造方法によれば、第1実施形態と同様に、高分子電解質膜の周縁部に補強部材が配設され、前記補強部材の内側に隙間なく触媒層が形成され、スタック組み立て時の押圧により触媒層にゆがみや破損の生じにくい膜−電極接合体を効率よく製造することができる。
In the step shown in FIG. 3E, gas diffusion layers 214A and 214B are formed on the catalyst layers 209A and 209B (gas diffusion layer disposing step). By forming the gas diffusion layers 214A and 214B, the membrane-electrode-gas diffusion layer assembly 215 is obtained. In addition, you may perform the process of FIG. 3-E before the process of FIG. 3-D.
[Construction]
FIG. 4 is a schematic diagram showing a cross-section of the membrane-electrode-gas diffusion layer assembly 215 produced by the membrane-electrode assembly manufacturing method of the second embodiment of the present invention in use. As shown in FIG. 4, in use, in the membrane-electrode-gas diffusion layer assembly 215, the outer circumferences of the gas diffusion layers 214A and 214B are surrounded by frame-shaped gaskets 219A and 219B, respectively. Further, the membrane-electrode-gas diffusion layer assembly 215 and gaskets 219A, 219B are sandwiched by separators 220A, 220B in which the channel 222 is engraved on the inner surface so that the channel 222 is in contact with the gas diffusion layers 214A, 214B. Is done. According to the membrane-electrode assembly manufacturing method of the second embodiment, the catalyst layers 209A and 209B do not protrude above the reinforcing members 204A and 204B, respectively, and there are gaps between the reinforcing members 204A and 204B, respectively. Formed without making. The gas diffusion layers 214A and 214B are provided on the catalyst layers 209A and 209B, respectively. A gap 221 is formed between the gas diffusion layers 214A and 214B and the gaskets 219A and 219B, but the gap 221 is not in contact with the polymer electrolyte membrane 202. With this structure, the total amount of gas supplied from the gas diffusion layers 214A and 214B passes through the catalyst layers 209A and 209B, respectively, and reaches the polymer electrolyte membrane 202. Since the catalyst layers 209A and 209B do not protrude above the reinforcing members 204A and 204B, the gas diffusion layers 209A and 209B and the reinforcing members 204A and 204B are in direct contact with each other.
[Features and effects]
According to the membrane-electrode assembly manufacturing method of the second embodiment, the reinforcing member is disposed on the periphery of the polymer electrolyte membrane, and the catalyst layer has no gap inside the reinforcing member, as in the first embodiment. A membrane-electrode assembly which is formed and hardly distorts or breaks the catalyst layer due to pressing during stack assembly can be efficiently produced.

さらに、第2実施形態では以下のような特徴および効果を有する。第1実施形態では、補強部材の表面に触媒層がはみ出すことになる。触媒層が粒子状の物質から構成される場合には、ガス拡散層と補強部材の間にはみ出した触媒層が入り込み、触媒層の粒子によってガス拡散層と補強部材の接着性が悪くなることがある。また、触媒層の触媒として白金等の貴金属が利用される場合には、経済性の観点から、製造時に使用する触媒粒子の量をできるだけ少なくする必要が生じる。はみ出した触媒層の上からガス拡散層を形成すれば、はみ出した部分の触媒は電極の反応に寄与しなくなり、過剰使用となる。本実施形態の膜−電極接合体製造方法によれば、被覆部材の上から触媒層を塗工した後に、被覆部材を補強部材から除去する。かかる方法によれば、補強部材の主面上に触媒層がはみ出すことがなく(触媒粒子により汚染されておらず)、補強部材とガス拡散層の接着性が向上する。また、スタック組み立て時には膜−電極接合体の周縁部がガスケット等で挟みこみまれ圧着されるが、周縁部のシール性が低いとガス漏れなどの問題が生じる。本実施形態では補強部材の表面に触媒粒子が残ることはないため、補強部材とガスケット等の間に隙間が生じにくく、膜−電極接合体周縁部のシール性が向上する。はみ出した触媒層は、被覆部材と共に回収して再利用することができ、触媒の過剰使用も防止できる。
(第3実施形態)
[工程」
図5−A乃至図5−Fは、本発明の第3実施形態の膜−電極接合体製造方法の一例を模式的に示す工程図である。図5−Aは、高分子電解質膜のみの状態を示す図である。図5−Bは、高分子電解質膜に補強部材と被覆部材が取り付けられる工程を示す図である。図5−Cは、被覆部材の上から触媒層が塗工された状態を示す図である。図5−Dは、被覆部材が除去された状態を示す図である。図5−Eは、高分子電解質膜同士が接合され、膜−電極接合体となった状態を示す図である。図5−Fは、触媒層の上にガス拡散層が形成されて膜−電極−ガス拡散層接合体となった状態を示す図である。以下、図5−A乃至図5−Fを参照しながら、本実施形態の膜−電極接合体製造方法について説明する。なお、図はあくまで各工程における各部材の位置関係を例示すための模式図であって、相対的な大きさや形状、厚さなどを限定するものではない。また、第3実施形態においても、第1実施形態および第2実施形態と同様な変形が可能であることは言うまでもない。
Further, the second embodiment has the following features and effects. In the first embodiment, the catalyst layer protrudes from the surface of the reinforcing member. When the catalyst layer is composed of a particulate material, the catalyst layer that protrudes between the gas diffusion layer and the reinforcing member may enter, and the adhesion between the gas diffusion layer and the reinforcing member may deteriorate due to the particles of the catalyst layer. is there. Further, when a noble metal such as platinum is used as a catalyst for the catalyst layer, it is necessary to reduce the amount of catalyst particles used at the time of production as much as possible from the viewpoint of economy. If a gas diffusion layer is formed on the protruding catalyst layer, the protruding portion of the catalyst does not contribute to the reaction of the electrode and is excessively used. According to the membrane-electrode assembly manufacturing method of the present embodiment, the coating member is removed from the reinforcing member after the catalyst layer is applied from above the covering member. According to such a method, the catalyst layer does not protrude from the main surface of the reinforcing member (not contaminated by the catalyst particles), and the adhesion between the reinforcing member and the gas diffusion layer is improved. Further, at the time of stack assembly, the peripheral portion of the membrane-electrode assembly is sandwiched between the gasket and the like and is pressure-bonded. However, if the sealing performance of the peripheral portion is low, problems such as gas leakage occur. In the present embodiment, since catalyst particles do not remain on the surface of the reinforcing member, a gap is hardly generated between the reinforcing member and the gasket or the like, and the sealing performance of the peripheral portion of the membrane-electrode assembly is improved. The protruding catalyst layer can be collected and reused together with the covering member, and excessive use of the catalyst can be prevented.
(Third embodiment)
[Process]
FIG. 5-A to FIG. 5-F are process charts schematically showing an example of the membrane-electrode assembly manufacturing method of the third embodiment of the present invention. FIG. 5-A is a diagram showing a state of only the polymer electrolyte membrane. FIG. 5-B is a diagram illustrating a process in which the reinforcing member and the covering member are attached to the polymer electrolyte membrane. FIG. 5-C is a diagram showing a state in which a catalyst layer is applied from above the covering member. FIG. 5-D is a diagram illustrating a state where the covering member is removed. FIG. 5-E is a diagram showing a state in which polymer electrolyte membranes are joined to form a membrane-electrode assembly. FIG. 5-F is a diagram showing a state where a gas diffusion layer is formed on the catalyst layer to form a membrane-electrode-gas diffusion layer assembly. Hereinafter, the membrane-electrode assembly manufacturing method of the present embodiment will be described with reference to FIGS. In addition, the figure is a schematic diagram for illustrating the positional relationship of each member in each process to the last, and does not limit the relative size, shape, thickness, and the like. Needless to say, the third embodiment can be modified in the same manner as in the first and second embodiments.

第3実施形態の膜−電極接合体製造方法は、1枚の高分子電解質膜の両側に補強部材や触媒層を形成するのではなく、2枚の高分子電解質膜の上にそれぞれアノード側およびカソード側の補強部材や触媒層を形成し、その後に高分子電解質膜を貼り合わせる点以外は、第2実施形態の膜−電極接合体製造方法と同様である。よって、共通する部材や方法については同一の名称を付すこととし、詳細な説明は省略する。   The membrane-electrode assembly manufacturing method of the third embodiment does not form reinforcing members or catalyst layers on both sides of one polymer electrolyte membrane, but on the anode side and two polymer electrolyte membranes, respectively. The method is the same as that of the membrane-electrode assembly manufacturing method of the second embodiment, except that a cathode-side reinforcing member and a catalyst layer are formed and then a polymer electrolyte membrane is bonded. Therefore, the same name is attached | subjected about a common member and method, and detailed description is abbreviate | omitted.

図5−Aに示す工程において、高分子電解質膜302A(第1の高分子電解質膜)および高分子電解質膜302B(第2の高分子電解質膜)が用意される。   In the step shown in FIG. 5-A, a polymer electrolyte membrane 302A (first polymer electrolyte membrane) and a polymer electrolyte membrane 302B (second polymer electrolyte membrane) are prepared.

図5−Bに示す工程において、高分子電解質膜302Aの片面の周縁部に、補強部材304A(第1の補強部材)と被覆部材305A(第1の被覆部材)からなる複合部材306A(第1の複合部材)が、補強部材304Aが高分子電解質膜302Aに当接するように(補強部材304Aが被覆部材305Aよりも高分子電解質膜302A側に位置するように)取り付けられる(第1の補強部材配設工程)。高分子電解質膜302Bの片面の周縁部に、補強部材304B(第2の補強部材)と被覆部材305B(第2の被覆部材)からなる複合部材306B(第2の複合部材)が、補強部材304Bが高分子電解質膜302Bに当接するように(補強部材304Bが被覆部材305Bよりも高分子電解質膜302B側に位置するように)取り付けられる(第2の補強部材配設工程)。補強部材304Aと被覆部材305Aは、開口323Aを有する。補強部材304Bと被覆部材305Bは、開口323Bを有する。複合部材306A、306Bは、第2実施形態と同様の方法で作成される(第1の複合部材形成工程、第2の複合部材形成工程)。   In the step shown in FIG. 5-B, a composite member 306A (first member) composed of a reinforcing member 304A (first reinforcing member) and a covering member 305A (first covering member) is formed on the peripheral edge of one surface of the polymer electrolyte membrane 302A. Are attached so that the reinforcing member 304A abuts on the polymer electrolyte membrane 302A (so that the reinforcing member 304A is positioned on the polymer electrolyte membrane 302A side with respect to the covering member 305A). Arrangement process). A composite member 306B (second composite member) composed of a reinforcing member 304B (second reinforcing member) and a covering member 305B (second covering member) is provided on the peripheral edge of one surface of the polymer electrolyte membrane 302B. Is attached to the polymer electrolyte membrane 302B (so that the reinforcing member 304B is positioned on the polymer electrolyte membrane 302B side of the covering member 305B) (second reinforcing member disposing step). The reinforcing member 304A and the covering member 305A have an opening 323A. The reinforcing member 304B and the covering member 305B have an opening 323B. The composite members 306A and 306B are created by the same method as in the second embodiment (first composite member forming step, second composite member forming step).

図5−Cに示す工程において、触媒分散液層308A(電極)が、開口323Aから開口323Aの周辺部にはみ出すように塗工され(第1の触媒層塗工工程)、触媒分散液層308B(電極)が、開口323Bから開口323Bの周辺部にはみ出すように塗工される(第2の触媒層塗工工程)。第1実施形態および第2実施形態と同様、触媒分散液を塗工すると高分子電解質膜にしわが生じる場合には、吸引固定装置(減圧方式による吸引固定装置)や裏打ち部材により高分子電解質膜を固定しながら塗工を行うことが好ましい。本実施形態では、両面につき各1枚ずつ、高分子電解質膜302A、302Bが用意されるため、高分子電解質膜302A、302Bを固定したまま複合部材306A、306Bを取り付け、触媒層309A(第1の触媒層)、309B(第2の触媒層)を形成させるのが好適である。あるいは、高分子電解質膜302A、302Bを裏打ち部材の上に保持し、裏打ち部材の上に高分子電解質膜302A、302Bを固定したままで、複合部材306A、306Bを取り付け、触媒層309A、309Bを形成させてもよい。   In the step shown in FIG. 5C, the catalyst dispersion layer 308A (electrode) is applied so as to protrude from the opening 323A to the periphery of the opening 323A (first catalyst layer application step), and the catalyst dispersion layer 308B. (Electrode) is applied so as to protrude from the opening 323B to the periphery of the opening 323B (second catalyst layer coating step). As in the first and second embodiments, when wrinkling occurs in the polymer electrolyte membrane when the catalyst dispersion is applied, the polymer electrolyte membrane is removed with a suction fixing device (a suction fixing device using a reduced pressure system) or a backing member. It is preferable to perform coating while fixing. In this embodiment, since one polymer electrolyte membrane 302A, 302B is prepared for each of both surfaces, the composite members 306A, 306B are attached while the polymer electrolyte membranes 302A, 302B are fixed, and the catalyst layer 309A (first 309B (second catalyst layer) is preferably formed. Alternatively, the polymer electrolyte membranes 302A and 302B are held on the backing member, and the composite members 306A and 306B are attached while the polymer electrolyte membranes 302A and 302B are fixed on the backing member, and the catalyst layers 309A and 309B are attached. It may be formed.

図5−Dに示す工程において、触媒分散液層308Aが被覆部材305Aの開口部323Aの周辺部にはみ出した部分は、被覆部材305Aと共に除去される(第1の被覆部材除去工程)。触媒分散液層308Bが被覆部材305Bの開口部323Bの周辺部にはみ出した部分は、被覆部材305Bと共に除去される(第2の被覆部材除去工程)。この工程により、補強部材304Aの開口323Aに露出する高分子電解質膜302Aの全面に隙間なく触媒層309Bが形成され、補強部材304Bの開口304Bに露出する高分子電解質膜302Bの全面に隙間なく触媒層309Bが形成された構造体が得られる。   In the step shown in FIG. 5-D, the portion where the catalyst dispersion layer 308A protrudes from the periphery of the opening 323A of the covering member 305A is removed together with the covering member 305A (first covering member removing step). The portion where the catalyst dispersion layer 308B protrudes from the periphery of the opening 323B of the covering member 305B is removed together with the covering member 305B (second covering member removing step). By this step, the catalyst layer 309B is formed on the entire surface of the polymer electrolyte membrane 302A exposed to the opening 323A of the reinforcing member 304A without gaps, and the catalyst is formed on the entire surface of the polymer electrolyte membrane 302B exposed to the openings 304B of the reinforcing member 304B. A structure in which the layer 309B is formed is obtained.

図5−Eに示す工程において、第4の工程で得られた構造体が、触媒層の存在しない側で貼り合わせられる。高分子電解質膜302Aが吸引固定装置(減圧方式による吸引固定装置)あるいは裏打ち部材から取り外され、高分子電解質膜302Bが吸引固定装置(減圧方式による吸引固定装置)あるいは裏打ち部材から取り外され、高分子電解質膜302A、302Bにおいて吸引固定装置(減圧方式による吸引固定装置)あるいは裏打ち部材と接していた面同士が当接され、貼り合わされる(高分子電解質膜当接工程)。貼り合わせには、熱プレスが好適に用いられる。熱プレスにより、高分子電解質膜302A、302Bの間にはさまれた空気等のガスが抜けやすくなり、高分子電解質膜302A、302Bが接合して、1枚の高分子電解質膜312を形成する。この工程により、補強部材304Aの開口323Aに露出する高分子電解質膜312の全面に隙間なく触媒層309A(第1の触媒層)が形成され、補強部材304Bの開口323Bに露出する高分子電解質膜312の全面に隙間なく触媒層309B(第1の触媒層)が形成された膜−電極接合体313が得られる。   In the step shown in FIG. 5-E, the structure obtained in the fourth step is bonded on the side where the catalyst layer does not exist. The polymer electrolyte membrane 302A is removed from the suction fixing device (vacuum fixing device) or the backing member, and the polymer electrolyte membrane 302B is removed from the suction fixing device (vacuum suction device) or the backing member. The surfaces of the electrolyte membranes 302A and 302B that have been in contact with the suction fixing device (the suction fixing device by the decompression method) or the backing member are brought into contact with each other and bonded together (polymer electrolyte membrane contact step). A heat press is suitably used for the bonding. By hot pressing, a gas such as air that is sandwiched between the polymer electrolyte membranes 302A and 302B is easily released, and the polymer electrolyte membranes 302A and 302B are joined to form a single polymer electrolyte membrane 312. . By this step, the catalyst layer 309A (first catalyst layer) is formed on the entire surface of the polymer electrolyte membrane 312 exposed in the opening 323A of the reinforcing member 304A without any gap, and the polymer electrolyte membrane exposed in the opening 323B of the reinforcing member 304B. A membrane-electrode assembly 313 in which the catalyst layer 309B (first catalyst layer) is formed on the entire surface of 312 without a gap is obtained.

図5−Fに示す工程において、触媒層309A、309Bの上にそれぞれガス拡散層314A、314Bが配設される(ガス拡散層配設工程)。ガス拡散層314A、314Bを配設することで、膜−電極−ガス拡散層接合体315が得られる。   In the step shown in FIG. 5F, gas diffusion layers 314A and 314B are disposed on the catalyst layers 309A and 309B, respectively (gas diffusion layer disposition step). By disposing the gas diffusion layers 314A and 314B, the membrane-electrode-gas diffusion layer assembly 315 is obtained.

なお、図5−Dの工程、図5−Eの工程、図5−Fの工程は、どのような順番で行ってもよい。
[構造]
図6は、本発明の第3実施形態の膜−電極接合体製造方法により作製された膜−電極−ガス拡散層接合体315の使用状態における断面を示す模式図である。図6に示すように、第3実施形態の膜−電極接合体製造方法によれば、高分子電解質膜302Aおよび高分子電解質膜302Bは一体化して、1枚の高分子電解質膜312となっている。使用時において、膜−電極−ガス拡散層接合体315は、ガス拡散層314Aの外周が枠状のガスケット319Aにより囲まれ、ガス拡散層314Bの外周が枠状のガスケット319Bにより囲まれる。さらに、膜−電極−ガス拡散層接合体315およびガスケット319A、319Bは、内面に流路322の刻まれたセパレータ320A、320Bにより、それぞれの流路322がそれぞれガス拡散層314A、314B側に接するように挟持される。第3実施形態の膜−電極接合体製造方法によれば、触媒層309Aは、補強部材304Aにはみだすことなく、かつ、補強部材304Aとの間に隙間を作ることなく形成され、触媒層309Bは、補強部材304Bにはみだすことなく、かつ、補強部材304Bとの間に隙間を作ることなく形成される。ガス拡散層314Aは触媒層309Aを、ガス拡散層314Bは触媒層309Bを被覆するように設けられる。ガス拡散層314Aとガスケット319A、ガス拡散層314Bとガスケット319Bとの間には、隙間221が生じるが、隙間321は高分子電解質膜312に接していない。かかる構造により、ガス拡散層314A、314Bから供給されるガスが高分子電解質膜312に達する場合、必ず触媒層309Aまたは309Bを通過することになる。触媒層309A、309Bは、補強部材304A、304Bの上にはみ出すことがないため、ガス拡散層309Aと補強部材304A、ガス拡散層309Bと補強部材304Bがそれぞれ直接当接する。
[特徴および効果]
第3実施形態の膜−電極接合体製造方法によれば、第2実施形態と同様に、高分子電解質膜の周縁部に補強部材が配設され、前記補強部材の内側に隙間なく触媒層が形成された膜−電極接合体を効率よく製造できる。また、補強部材とガス拡散層の接着性が向上するとともに、スタック組み立て時のシール性も向上する。はみ出した触媒層を被覆部材と共に回収し再利用することで触媒の無駄も防止できる。
The process of FIG. 5-D, the process of FIG. 5-E, and the process of FIG. 5-F may be performed in any order.
[Construction]
FIG. 6 is a schematic diagram showing a cross section of the membrane-electrode-gas diffusion layer assembly 315 used in the method of manufacturing the membrane-electrode assembly according to the third embodiment of the present invention in use. As shown in FIG. 6, according to the membrane-electrode assembly manufacturing method of the third embodiment, the polymer electrolyte membrane 302A and the polymer electrolyte membrane 302B are integrated into a single polymer electrolyte membrane 312. Yes. In use, in the membrane-electrode-gas diffusion layer assembly 315, the outer periphery of the gas diffusion layer 314A is surrounded by the frame-shaped gasket 319A, and the outer periphery of the gas diffusion layer 314B is surrounded by the frame-shaped gasket 319B. Further, the membrane-electrode-gas diffusion layer assembly 315 and the gaskets 319A, 319B are in contact with the gas diffusion layers 314A, 314B, respectively, by the separators 320A, 320B in which the channel 322 is engraved. So that it is pinched. According to the membrane-electrode assembly manufacturing method of the third embodiment, the catalyst layer 309A is formed without protruding from the reinforcing member 304A and without forming a gap with the reinforcing member 304A, and the catalyst layer 309B is formed. It is formed without protruding from the reinforcing member 304B and without forming a gap with the reinforcing member 304B. The gas diffusion layer 314A is provided so as to cover the catalyst layer 309A, and the gas diffusion layer 314B is provided so as to cover the catalyst layer 309B. A gap 221 is formed between the gas diffusion layer 314A and the gasket 319A, and between the gas diffusion layer 314B and the gasket 319B, but the gap 321 is not in contact with the polymer electrolyte membrane 312. With this structure, when the gas supplied from the gas diffusion layers 314A and 314B reaches the polymer electrolyte membrane 312, it always passes through the catalyst layer 309A or 309B. Since the catalyst layers 309A and 309B do not protrude above the reinforcing members 304A and 304B, the gas diffusion layer 309A and the reinforcing member 304A directly contact the gas diffusion layer 309B and the reinforcing member 304B, respectively.
[Features and effects]
According to the membrane-electrode assembly manufacturing method of the third embodiment, the reinforcing member is disposed on the periphery of the polymer electrolyte membrane, and the catalyst layer has no gap inside the reinforcing member, as in the second embodiment. The formed membrane-electrode assembly can be produced efficiently. In addition, the adhesion between the reinforcing member and the gas diffusion layer is improved, and the sealing property during stack assembly is also improved. By collecting and reusing the protruding catalyst layer together with the covering member, waste of the catalyst can be prevented.

さらに、第3実施形態では、以下のような特徴および効果を有する。第1実施形態および第2実施形態では、単一の高分子電解質膜の両面に触媒層を塗工するため、片面の塗工後に、いったん高分子電解質膜を吸引固定装置(減圧方式による吸引固定装置)や裏打ち部材から取り外し、反転させて再び固定する必要がある。高分子電解質膜が繊細でしわの生じやすい材料で構成されている場合には、吸引固定装置(減圧方式による吸引固定装置)や裏打ち部材から取り外すだけで膜に深刻なしわが生じる場合がある。第3実施形態の膜−電極接合体製造方法によれば、両面につき1枚ずつ、合計2枚の高分子電解質膜が用意され、それぞれの高分子電解質膜を固定したまま、補強部材の取り付けや触媒層の塗工を行うことができる。かかる方法によれば、高分子電解質膜のしわを効果的に防止できる。
(変形例)
以下、第1乃至第3実施形態において可能な変形例について例示する。高分子電解質、補強部材、開口等の形態(平面形状、厚さ等)は特に限定されない。補強部材は高分子電解質膜の周縁部を枠状に被覆するものが好ましいが、補強部材と高分子電解質膜の外周が一致していなくてもよい。被覆部材は補強部材と同一の形状でなくてもよいが、少なくとも補強部材の開口の周辺部(触媒層を塗工する際にはみ出す部分)を被覆するものであることが好ましい。高分子電解質膜は、その内部に補強膜を有していてもよい。補強部材、触媒層およびガス形成層の配設は、高分子電解質膜の片面のみについて行ってもよい。各工程の順序は上述のものに限られず、入れ替えてもよい。複合部材は、必ずしも高分子電解質膜と独立して形成して取り付ける必要はなく、高分子電解質膜と補強部材と被覆部材が積層する構造がどのような順番で形成されてもよい。例えば、高分子電解質膜の上に補強部材と被覆部材を順次積層することで形成されてもよい。第3実施形態において、被覆部材を設けずに、補強部材のみで高分子電解質膜を被覆してもよい。吸引固定装置(減圧方式による吸引固定装置)を使用して触媒層を塗工する際、ヒータ等で温めながら塗工を行ってもよい。
(実施例1)
実施例1は、本発明の実施形態3の実施例であって、高分子電解質膜を裏打ち部材の上に固定し、その上で補強部材の取り付けと触媒層の塗工を行うものである。図7−A乃至図7−Eは、本発明の実施例1による膜−触媒層−ガス拡散層接合体の製造方法を模式的に示す工程図である。図7−Aは、裏打ち部材の上に高分子電解質膜が保持された状態を示す図である。図7−Bは、高分子電解質膜に補強部材と被覆部材が取り付けられた状態を示す図である。図7−Cは、被覆部材の上から触媒層が塗工された状態を示す図である。図7−Dは、被覆部材が除去された状態を示す図である。図7−Eは、高分子電解質膜同士が接合され、膜−電極接合体となった状態を示す図である。図7−Fは、触媒層の上にガス拡散層が形成されて膜−電極−ガス拡散層接合体となった状態を示す図である。図7−Gは、膜−電極−ガス拡散層接合体にガスケットとセパレータが接合されてセルとなった状態を示す図である。以下、図7−A乃至図7−Gを参照しつつ、実施例1による膜−触媒層−ガス拡散層接合体の製造方法を詳細に説明する。なお、図はあくまで各工程における各部材の位置関係を例示すための模式図であって、相対的な大きさや形状、厚さなどを実際の比率に合わせたものではない。
[膜の調製]
厚さが約100μm、主面の一辺が200mmの正方形の形状を有するポリエチレンテレフタレート(PET)からなるPET基材401A(第1の裏打ち部材)、401B(第2の裏打ち部材)を用意し、その表面をシリコン系離型剤で処理した。
Further, the third embodiment has the following features and effects. In the first embodiment and the second embodiment, since the catalyst layer is applied to both surfaces of a single polymer electrolyte membrane, the polymer electrolyte membrane is once attached to a suction fixing device (suction fixing by a decompression method) after coating one surface. It is necessary to remove it from the device) and the backing member, invert it and fix it again. When the polymer electrolyte membrane is made of a delicate and easily wrinkled material, the membrane may be severely wrinkled simply by removing it from a suction fixing device (a suction fixing device using a reduced pressure method) or a backing member. According to the membrane-electrode assembly manufacturing method of the third embodiment, a total of two polymer electrolyte membranes are prepared, one on each side, and the reinforcing member is attached while the respective polymer electrolyte membranes are fixed. The catalyst layer can be applied. According to this method, wrinkles of the polymer electrolyte membrane can be effectively prevented.
(Modification)
Examples of possible modifications in the first to third embodiments will be described below. The form (planar shape, thickness, etc.) of the polymer electrolyte, the reinforcing member, and the opening is not particularly limited. The reinforcing member preferably covers the periphery of the polymer electrolyte membrane in a frame shape, but the outer periphery of the reinforcing member and the polymer electrolyte membrane may not coincide. The covering member may not have the same shape as the reinforcing member, but preferably covers at least the periphery of the opening of the reinforcing member (the portion protruding when the catalyst layer is applied). The polymer electrolyte membrane may have a reinforcing membrane inside. The reinforcing member, the catalyst layer, and the gas forming layer may be disposed only on one side of the polymer electrolyte membrane. The order of each process is not restricted to the above-mentioned thing, You may replace. The composite member is not necessarily formed and attached independently of the polymer electrolyte membrane, and the structure in which the polymer electrolyte membrane, the reinforcing member, and the covering member are laminated may be formed in any order. For example, the reinforcing member and the covering member may be sequentially laminated on the polymer electrolyte membrane. In the third embodiment, the polymer electrolyte membrane may be covered only with the reinforcing member without providing the covering member. When the catalyst layer is applied using a suction fixing device (a suction fixing device using a reduced pressure system), the coating may be performed while warming with a heater or the like.
Example 1
Example 1 is an example of Embodiment 3 of the present invention, in which a polymer electrolyte membrane is fixed on a backing member, and a reinforcing member is attached and a catalyst layer is applied thereon. 7A to 7E are process diagrams schematically showing a method for producing a membrane-catalyst layer-gas diffusion layer assembly according to Example 1 of the present invention. FIG. 7A is a diagram showing a state in which the polymer electrolyte membrane is held on the backing member. FIG. 7-B is a diagram showing a state where the reinforcing member and the covering member are attached to the polymer electrolyte membrane. FIG. 7-C is a diagram showing a state in which a catalyst layer is applied from above the covering member. FIG. 7D is a diagram illustrating a state where the covering member is removed. FIG. 7-E is a diagram showing a state in which polymer electrolyte membranes are joined to form a membrane-electrode assembly. FIG. 7-F is a diagram showing a state where a gas diffusion layer is formed on the catalyst layer to form a membrane-electrode-gas diffusion layer assembly. FIG. 7G is a diagram showing a state where a gasket and a separator are joined to the membrane-electrode-gas diffusion layer assembly to form a cell. Hereinafter, the manufacturing method of the membrane-catalyst layer-gas diffusion layer assembly according to Example 1 will be described in detail with reference to FIGS. 7-A to 7-G. The drawings are merely schematic diagrams for illustrating the positional relationship of each member in each process, and the relative size, shape, thickness, and the like are not adjusted to the actual ratio.
[Preparation of membrane]
A PET base material 401A (first backing member) and 401B (second backing member) made of polyethylene terephthalate (PET) having a square shape with a thickness of about 100 μm and a main surface of 200 mm on one side are prepared. The surface was treated with a silicon release agent.

CF=CFに基づく繰り返し単位とCF=CF−OCFCF(CF)−OCFCFSOHに基づく繰り返し単位とからなるイオン交換樹脂の分散液(イオン交換容量:1.1ミリ当量/グラム乾燥樹脂、商品名:フレミオン、旭硝子社製、以下、分散液Aという)を用意し、ダイコート法により、PET基材401A、401Bの一方の面に、厚みが15μm、一辺が160mmの正方形になるように塗工した。PET基材401A、401Bの上で分散液Aを90℃で30分乾燥させた。かかる工程により、PET基材401Aの上に高分子電解質膜402A(第1の高分子電解質膜)が載った、基材−膜接合体403Aを作成し(第1の高分子電解質膜保持工程)、PET基材401Bの上に高分子電解質膜402B(第2の高分子電解質膜)が載った、基材−膜接合体403Bを作成した(第2の高分子電解質膜保持工程)(図7−A)。これにより、高分子電解質膜402A、402Bは、それぞれPET基材401A、401Bの上に保持され、固定された。高分子電解質膜402A、402BとPET基材401A、401Bの接着力は、触媒層を塗工してもしわが発生せず、かつ、塗工後にPET基材401A、401Bから高分子電解質膜402A、402Bを容易に取り外すことができるという点で好適なものであった。
[枠の作製と取り付け]
厚さが約100μm、主面の一辺が150mmの正方形であるポリテトラフルオロエチレン(PTFE)製基材(以下、PTFE基材)を2枚用意し、これら2枚を接合した。接着された2枚のPTFE基材を、一辺が100mmの正方形の開口423A(穴)が中央に開くように、トムソン型で打ち抜いた。これにより、PTFE基材からなる枠体404A(第1の補強部材)とPTFE基材からなるマスク体405A(第1の被覆部材)の二重構造を有する多層枠体406A(第1の複合部材)が得られた(第1の複合部材形成工程)。同様にして、PTFE基材からなる枠体404B(第2の補強部材)とPTFE基材からなるマスク体405B(第2の被覆部材)の二重構造を有し、開口423Bを有する多層枠体406B(第2の複合部材)が得られた(第2の複合部材形成工程)。多層枠体406A、406Bの外周には、ガイド用の切り欠きを形成した([高分子電解質膜の貼り合わせ]の項を参照)。
CF 2 = repeating unit CF 2 = CF-OCF 2 CF (CF 3) based on CF 2 -OCF 2 CF 2 SO 3 dispersion of the ion-exchange resin consisting of repeating units based on H (ion exchange capacity: 1. 1 milliequivalent / gram dry resin, trade name: Flemion, manufactured by Asahi Glass Co., Ltd., hereinafter referred to as Dispersion A), and by a die coating method, a thickness of 15 μm and one side of one side of the PET base materials 401A and 401B are prepared. Coating was performed so as to form a 160 mm square. Dispersion A was dried at 90 ° C. for 30 minutes on PET substrates 401A and 401B. Through this step, a base material-membrane assembly 403A in which the polymer electrolyte membrane 402A (first polymer electrolyte membrane) is placed on the PET base material 401A is prepared (first polymer electrolyte membrane holding step). Then, a base material-membrane assembly 403B in which the polymer electrolyte membrane 402B (second polymer electrolyte membrane) was placed on the PET base material 401B was prepared (second polymer electrolyte membrane holding step) (FIG. 7). -A). As a result, the polymer electrolyte membranes 402A and 402B were held and fixed on the PET base materials 401A and 401B, respectively. The adhesion between the polymer electrolyte membranes 402A and 402B and the PET base materials 401A and 401B does not generate wrinkles even when the catalyst layer is applied, and the polymer electrolyte membranes 402A and 401A from the PET base materials 401A and 401B after application. It was suitable in that 402B can be easily removed.
[Fabrication and installation of frame]
Two bases made of polytetrafluoroethylene (PTFE) (hereinafter referred to as PTFE base material) having a thickness of about 100 μm and a main surface having a square of 150 mm were prepared, and the two were joined. The two bonded PTFE substrates were punched with a Thomson type so that a square opening 423A (hole) with a side of 100 mm opened in the center. Accordingly, a multilayer frame 406A (first composite member) having a double structure of a frame body 404A (first reinforcing member) made of a PTFE base material and a mask body 405A (first covering member) made of a PTFE base material. ) Was obtained (first composite member forming step). Similarly, a multilayer frame body having a double structure of a frame body 404B (second reinforcing member) made of a PTFE base material and a mask body 405B (second covering member) made of a PTFE base material and having an opening 423B. 406B (second composite member) was obtained (second composite member forming step). Cutouts for guides were formed on the outer circumferences of the multilayer frames 406A and 406B (see “Lamination of polymer electrolyte membrane”).

基材−膜接合体403Aの上面中央に多層枠体406Aを、枠体404Aが高分子電解質膜402Aに当接するように(補強部材404Aが高分子電解質膜402Aにおける裏打ち部材401Aに保持されない面を被覆するように)接着剤で接着した。かかる工程により、PET基材401Aの上に高分子電解質膜402A、枠体404A、マスク体405Aが順次積層された、基材−膜−枠体接合体407Aが作成された(第1の補強部材配設工程)。また、基材−膜接合体403Bの上面中央に多層枠体406Bを、枠体404Bが高分子電解質膜402Bに当接するように(補強部材404Bが高分子電解質膜402Bにおける裏打ち部材401Bに保持されない面を被覆するように)接着剤で接着した。かかる工程により、PET基材401Bの上に高分子電解質膜402B、枠体404B、マスク体405Bが順次積層された、基材−膜−枠体接合体407Bが作成された(第2の補強部材配設工程)(図7−B)。
[触媒層の塗工]
分散液Aと、アセチレンブラック系カ−ボン粉末に平均粒径約3nmの白金触媒を50質量%担持させた触媒担持カ−ボン粉末とを、エタノールと水の混合分散媒(質量比で1:1)に分散させ、固形分濃度14質量%の分散液(以下、電極用触媒分散液)を調製した。次に、電極用触媒分散液を、基材−膜−枠体接合体407Aに対し、多層枠体406Aの開口423Aに露出する高分子電解質膜402Aの全面を隙間なく覆うように、かつ、マスク体405Aの上まではみ出るように(開口423Aの周辺部にはみだすように)スプレーした(第1の触媒層塗工工程)。また、電極用触媒分散液を、基材−膜−枠体接合体407Bに対し、多層枠体406Bの開口423Bに露出する高分子電解質膜402Bの全面を隙間なく覆うように、かつ、マスク体405Bの上まではみ出るように(開口423Bの周辺部にはみだすように)スプレーした(第2の触媒層塗工工程)。かかる工程により、開口部423A、423Bに露出する高分子電解質膜402の全面およびマスク体405A、405Bの一部が電極用触媒分散液層408で覆われることとなった(図7−C)。
The multilayer frame body 406A is placed at the center of the upper surface of the substrate-membrane assembly 403A, and the reinforcing member 404A is not held by the backing member 401A of the polymer electrolyte membrane 402A so that the frame body 404A abuts the polymer electrolyte membrane 402A. Glued with adhesive (as coated). Through this process, a base material-membrane-frame body assembly 407A in which the polymer electrolyte membrane 402A, the frame body 404A, and the mask body 405A were sequentially laminated on the PET base material 401A was produced (first reinforcing member). Arrangement process). Further, the multilayer frame 406B is placed at the center of the upper surface of the substrate-membrane assembly 403B, and the reinforcing member 404B is not held by the backing member 401B in the polymer electrolyte membrane 402B so that the frame 404B contacts the polymer electrolyte membrane 402B. Glued with adhesive (to cover the surface). Through this step, a base material-membrane-frame body assembly 407B in which the polymer electrolyte membrane 402B, the frame body 404B, and the mask body 405B were sequentially laminated on the PET base material 401B was produced (second reinforcing member). Arrangement process) (FIG. 7B).
[Catalyst layer coating]
Dispersion A and a catalyst-supported carbon powder in which 50% by mass of a platinum catalyst having an average particle diameter of about 3 nm is supported on an acetylene black-based carbon powder are mixed with an ethanol and water dispersion medium (1: 1 by mass ratio). 1), a dispersion having a solid content of 14% by mass (hereinafter referred to as electrode catalyst dispersion) was prepared. Next, the electrode catalyst dispersion is applied to the base material-membrane-frame assembly 407A so as to cover the entire surface of the polymer electrolyte membrane 402A exposed in the opening 423A of the multilayer frame 406A without any gaps, and in a mask. Spraying was performed so as to protrude above the body 405A (so as to protrude from the periphery of the opening 423A) (first catalyst layer coating step). Further, the electrode catalyst dispersion is applied to the base material-membrane-frame assembly 407B so as to cover the entire surface of the polymer electrolyte membrane 402B exposed in the opening 423B of the multilayer frame 406B without any gaps, and a mask body Spraying was performed so as to protrude above 405B (so as to protrude into the periphery of the opening 423B) (second catalyst layer coating step). Through this process, the entire surface of the polymer electrolyte membrane 402 exposed to the openings 423A and 423B and a part of the mask bodies 405A and 405B were covered with the electrode catalyst dispersion layer 408 (FIG. 7C).

基材−膜−枠体接合体407A、407Bの上で電極用触媒分散液層408A、408Bを90℃で30分乾燥させ、マスク体405A、405Bをはがした(第1の被覆部材除去工程、第2の被覆部材除去工程)。かかる工程により、枠体404A、404Bの開口423A、423Bに露出する高分子電解質膜402A、402Bの全面がそれぞれ触媒層409A(第1の触媒層)、409B(第2の触媒層)で覆われることとなった。かかる工程により、高分子電解質膜402Aの上に枠体404Aが積層され、枠体404Aの開口423Aに露出する高分子電解質膜402Aの全面が触媒層409Aにより隙間なく覆われた、膜−枠体−触媒層接合体410Aが形成された。また、高分子電解質膜402Bの上に枠体404Bが積層され、枠体404Bの開口423Bに露出する高分子電解質膜402Bの全面が触媒層409Bにより隙間なく覆われた、膜−枠体−触媒層接合体410Bが形成された。以上の方法により、膜−枠体−触媒層接合体410A、BがそれぞれPET基材401A、401Bの上に保持された、基材−膜−枠体−触媒層接合体411A、411B(図7−D)を作製した。
[高分子電解質膜の貼り合わせ]
金属棒を、枠体404A、404Bの切り欠き部分に嵌合する間隔で、板に垂直にはめ込み、ガイド枠を作製した。基材−膜−枠体−触媒層接合体411BをPET基材401Bからはがし(第2の裏打ち部材除去工程)、得られた膜−枠体−触媒層接合体410Bを、枠体の切り欠きが金属棒と嵌合し、かつ高分子電解質膜402Bが上を向くように、ガイド枠に嵌め込んだ。さらに、基材−膜−枠体−触媒層接合体411AからPET基材401Aをはがし(第1の裏打ち部材除去工程)、得られた膜−枠体−触媒層接合体410Aを、枠体の切り欠きが金属棒と嵌合し、かつ高分子電解質膜402Aが下を向くように、ガイド枠に嵌め込んだ。膜−枠体−触媒層接合体410A、410Bをガイド枠に沿って当接させ、ガイド枠から取り外して、約150℃、50kg/cm、20分間のホットプレスにより接合した(高分子電解質膜当接工程)。接合により、高分子電解質膜402A、402Bは一体化して一枚の高分子電解質膜412となった。接合後、枠体404A、404Bからはみ出ている高分子電解質膜412を切り取った。切り欠きをガイド枠に嵌め合わせることにより、膜−枠体−触媒層接合体410A、410Bを、外周にずれが生じないように重ねることができた。以上の方法により、高分子電解質膜412の両面の周縁部が枠体404A、404Bにより補強され、枠体404A、404Bの開口423A、423Bに露出する高分子電解質膜412の全面が触媒層409により隙間なく覆われた、膜−触媒層接合体413(膜−電極接合体)を1枚作製した(図7−E)。
[ガス拡散層の形成]
厚さ約300μmのカーボンクロス基材の一方の面に、カーボンブラックとポリテトラフルオロエチレン粒子とからなる厚さ約10μmの導電層を形成し、104mm角の正方形にトムソン型で打ち抜いて、導電層つきカーボンクロス414A(第1のガス拡散層)、414B(第2のガス拡散層)を作製した。導電層つきカーボンクロス414Aの導電層が触媒層409Aに接し、かつ触媒層409Aの全面を覆うように、導電層つきカーボンクロス414Aを配設した(第1のガス拡散層形成工程)。また、導電層つきカーボンクロス414Bの導電層が触媒層409Bに接し、かつ触媒層409Bの全面を覆うように、導電層つきカーボンクロス414Bを配設した(第2のガス拡散層形成工程)。かかる工程により、一枚の高分子電解質膜412の両面の周縁部がそれぞれ枠体404A、404Bにより補強され、枠体の開口423A、423Bに露出する高分子電解質膜412の全面が触媒層409A、409Bにより隙間なく覆われ、触媒層409A、409Bの全面がそれぞれ導電層つきカーボンクロス414A、414Bにより覆われた、膜−触媒層−ガス拡散層接合体415(膜−電極−ガス拡散層接合体)を1枚作製した(図7−F)。
[ガスケットとセパレータによる組み立て]
厚さが約100μm、主面の一辺が150mmの正方形であるポリテトラフルオロエチレン(PTFE)製基材(以下、PTFE基材)を2枚用意し、一辺が120mmの正方形の穴が中央に開くように、トムソン型で打ち抜いた。得られたPTFE製の枠を、ガスケット419A、419Bとして用いた。
The electrode catalyst dispersion layers 408A and 408B were dried on the substrate-membrane-frame assembly 407A and 407B at 90 ° C. for 30 minutes, and the mask bodies 405A and 405B were peeled off (first covering member removing step) Second covering member removing step). Through this process, the entire surfaces of the polymer electrolyte membranes 402A and 402B exposed in the openings 423A and 423B of the frames 404A and 404B are respectively covered with the catalyst layers 409A (first catalyst layer) and 409B (second catalyst layer). It became a thing. Through this process, the frame body 404A is laminated on the polymer electrolyte membrane 402A, and the entire surface of the polymer electrolyte membrane 402A exposed to the opening 423A of the frame body 404A is covered with the catalyst layer 409A without any gaps. -The catalyst layer assembly 410A was formed. Also, a membrane-frame-catalyst in which a frame 404B is laminated on the polymer electrolyte membrane 402B, and the entire surface of the polymer electrolyte membrane 402B exposed in the opening 423B of the frame 404B is covered with a catalyst layer 409B without any gaps. A layer assembly 410B was formed. By the above method, the membrane-frame-catalyst layer assemblies 410A, B are held on the PET substrates 401A, 401B, respectively, and the substrate-membrane-frame-catalyst layer assemblies 411A, 411B (FIG. 7). -D) was produced.
[Polymer electrolyte membrane bonding]
A metal rod was fitted vertically into the plate at an interval at which the metal rods were fitted into the cutout portions of the frame bodies 404A and 404B to produce a guide frame. The base material-membrane-frame body-catalyst layer assembly 411B is peeled from the PET base material 401B (second backing member removing step), and the obtained membrane-frame body-catalyst layer assembly 410B is cut out from the frame body. Was fitted in the guide frame so that the polymer electrolyte membrane 402B faced upward. Furthermore, the PET base material 401A is peeled from the base material-membrane-frame body-catalyst layer assembly 411A (first backing member removing step), and the obtained membrane-frame body-catalyst layer assembly 410A is removed from the frame body. The cutout was fitted in the guide frame so that the notch was fitted to the metal rod and the polymer electrolyte membrane 402A was directed downward. The membrane-frame-catalyst layer assemblies 410A and 410B are brought into contact with the guide frame, removed from the guide frame, and joined by hot pressing at about 150 ° C., 50 kg / cm 2 for 20 minutes (polymer electrolyte membrane Contact process). By the joining, the polymer electrolyte membranes 402A and 402B were integrated into a single polymer electrolyte membrane 412. After joining, the polymer electrolyte membrane 412 protruding from the frames 404A and 404B was cut off. By fitting the notches into the guide frame, the membrane-frame-catalyst layer assemblies 410A and 410B could be stacked so that no deviation occurred on the outer periphery. By the above method, the peripheral portions on both sides of the polymer electrolyte membrane 412 are reinforced by the frames 404A and 404B, and the entire surface of the polymer electrolyte membrane 412 exposed to the openings 423A and 423B of the frames 404A and 404B is covered by the catalyst layer 409. One membrane-catalyst layer assembly 413 (membrane-electrode assembly) covered without a gap was produced (FIG. 7-E).
[Formation of gas diffusion layer]
A conductive layer having a thickness of about 10 μm made of carbon black and polytetrafluoroethylene particles is formed on one surface of a carbon cloth substrate having a thickness of about 300 μm, and punched into a 104 mm square square with a Thomson type. A carbon cloth 414A (first gas diffusion layer) and 414B (second gas diffusion layer) were produced. The carbon cloth 414A with the conductive layer was disposed so that the conductive layer of the carbon cloth 414A with the conductive layer was in contact with the catalyst layer 409A and covered the entire surface of the catalyst layer 409A (first gas diffusion layer forming step). Further, the carbon cloth 414B with the conductive layer was disposed so that the conductive layer of the carbon cloth 414B with the conductive layer was in contact with the catalyst layer 409B and covered the entire surface of the catalyst layer 409B (second gas diffusion layer forming step). Through this process, the peripheral portions of both surfaces of one polymer electrolyte membrane 412 are reinforced by the frames 404A and 404B, respectively, and the entire surface of the polymer electrolyte membrane 412 exposed to the openings 423A and 423B of the frame is the catalyst layer 409A, Membrane-catalyst layer-gas diffusion layer assembly 415 (membrane-electrode-gas diffusion layer assembly) covered with 409B without gaps, and the entire surfaces of the catalyst layers 409A, 409B are covered with carbon cloths 414A, 414B with conductive layers, respectively. ) Was produced (FIG. 7-F).
[Assembly with gasket and separator]
Two polytetrafluoroethylene (PTFE) base materials (hereinafter referred to as PTFE base materials) having a thickness of about 100 μm and a main surface having a side of 150 mm are prepared, and a square hole having a side of 120 mm is opened in the center. So punched with Thomson type. The obtained PTFE frame was used as gaskets 419A and 419B.

また、厚さ2mm、主面の一辺が150mmの正方形のカーボン製プレートを2枚用意し、それぞれについて一方の面に、幅5mm、間隔7mmで蛇行した流路を刻み、流路422とした。得られた流路つきのカーボン製プレートを、セパレータ420A、420Bとして用いた。   In addition, two square carbon plates having a thickness of 2 mm and a main surface of 150 mm were prepared, and a flow path snaked with a width of 5 mm and an interval of 7 mm was engraved on one surface of each plate to form a flow path 422. The obtained carbon plates with flow paths were used as separators 420A and 420B.

ガスケット419A、419Bを、膜−触媒層−ガス拡散層接合体415の両面に、それぞれガス拡散層414A、414Bを取り囲むように取り付けた。膜−電極−ガス拡散層接合体415およびガスケット419A、419Bを、セパレータ420A、420Bにより、それぞれの流路422がそれぞれガス拡散層414A、414B側に接するように挟持させて接合した(図7−G)。以上の方法により、セル424が得られた。
[断面の確認]
以上のようにして得られたセル424を、開口423A、423Bを通る直線に沿って切断し、断面を顕微鏡で観察した(図7−Gの拡大図部分)。図7−Gに示すように、触媒層409Aと枠体404Aの間には有意な隙間は認められなかった。ガス拡散層(導電層つきカーボンクロス414A)とガスケット419Aの間には、隙間421が認められたものの、隙間421は高分子電解質膜412に接していなかった。かかる構成により、ガス拡散層(導電層つきカーボンクロス414A、414B)から高分子電解質膜412へ直接に(触媒層409A、409Bを通過せずに)燃料ガスや酸化剤ガスが通流することを防止できることが確認された。
[変形例]
なお、外周にずれが生じないように重ねるためには、必ずしもガイド枠と切り欠きを用いる必要はなく、例えば位置合わせ用のマーク(トンボ等)を四隅に形成し、このマークをCCD等で確認しながら位置合わせを行っても好適な結果が得られた。
(比較例1)
比較例1は、高分子電解質膜の上に触媒層を形成し、その後で枠を取り付けるものである。図8−A乃至図8−Eは、本発明の比較例1による膜−触媒層−ガス拡散層接合体の製造方法を模式的に示す工程図である。図8−Aは、裏打ち部材の上に高分子電解質膜が保持された状態を示す図である。図8−Bは、高分子電解質膜に触媒層が塗工された状態を示す図である。図8−Cは、触媒層の外周に枠体が取り付けられた状態を示す図である。図8−Dは、高分子電解質膜同士が接合され、膜−電極接合体となった状態を示す図である。図8−Eは、触媒層の上にガス拡散層が形成されて膜−電極−ガス拡散層接合体となった状態を示す図である。図8−Fは、膜−電極−ガス拡散層接合体にガスケットとセパレータが接合されてセルとなった状態を示す図である。以下、図8−A乃至図8−Fを参照しつつ、比較例1による膜−触媒層−ガス拡散層接合体の製造方法を詳細に説明する。
[膜の調製]
実施例と同様の方法により、PET基材と高分子電解質膜とからなる基材−膜接合体503A、503B(図8−A)を作製した。
[触媒層の塗工]
実施例と同様の方法により、電極用触媒分散液を調製した。次に、電極用触媒分散液を、基材−膜接合体503A、503Bの一方の主面中央に、スクリーン印刷法により、印刷面が一辺が98mmの正方形となるように塗工した。基材−膜接合体503A、503Bの上で電極用触媒分散液を90℃で30分乾燥させた。かかる工程より、高分子電解質膜の上に触媒層が積層されて、膜−触媒層接合体516A、516Bが形成された。以上の方法により、膜−触媒層接合体がPET基材の上に保持された、基材−膜−触媒層接合体517A、517B(図8−B)を1枚作製した。
[枠の作製と取り付け]
厚さが約100μm、主面の一辺が150mmの正方形であるポリテトラフルオロエチレン(PTFE)製基材(以下、PTFE基材)を用意し、一辺が100mmの正方形の穴(開口)が中央に開くように、PTFE基材をトムソン型で打ち抜いた。これにより、PTFE基材の枠体504A、504Bが得られた。実施例1と同様に、枠体504A、504Bの外周にガイド用の切り欠きを形成した。
Gaskets 419A and 419B were attached to both surfaces of the membrane-catalyst layer-gas diffusion layer assembly 415 so as to surround the gas diffusion layers 414A and 414B, respectively. The membrane-electrode-gas diffusion layer assembly 415 and the gaskets 419A, 419B are joined by the separators 420A, 420B so that the respective flow paths 422 are in contact with the gas diffusion layers 414A, 414B, respectively (FIG. 7-). G). The cell 424 was obtained by the above method.
[Check cross section]
The cell 424 obtained as described above was cut along a straight line passing through the openings 423A and 423B, and the cross section was observed with a microscope (an enlarged view portion of FIG. 7-G). As shown in FIG. 7G, no significant gap was observed between the catalyst layer 409A and the frame 404A. Although a gap 421 was observed between the gas diffusion layer (carbon cloth with conductive layer 414A) and the gasket 419A, the gap 421 was not in contact with the polymer electrolyte membrane 412. With this configuration, the fuel gas and the oxidant gas can flow directly from the gas diffusion layer (carbon cloth 414A, 414B with conductive layer) to the polymer electrolyte membrane 412 (without passing through the catalyst layers 409A and 409B). It was confirmed that it can be prevented.
[Modification]
Note that it is not always necessary to use a guide frame and a notch in order to overlap the outer periphery so that no deviation occurs. For example, alignment marks (register marks, etc.) are formed at the four corners, and these marks are confirmed by a CCD or the like. However, favorable results were obtained even when alignment was performed.
(Comparative Example 1)
In Comparative Example 1, a catalyst layer is formed on a polymer electrolyte membrane, and then a frame is attached. 8A to 8E are process diagrams schematically showing a method for producing a membrane-catalyst layer-gas diffusion layer assembly according to Comparative Example 1 of the present invention. FIG. 8-A is a diagram showing a state in which the polymer electrolyte membrane is held on the backing member. FIG. 8-B is a diagram showing a state in which a catalyst layer is applied to the polymer electrolyte membrane. FIG. 8C is a diagram illustrating a state where a frame is attached to the outer periphery of the catalyst layer. FIG. 8-D is a diagram showing a state in which polymer electrolyte membranes are joined to form a membrane-electrode assembly. FIG. 8E is a diagram showing a state where a gas diffusion layer is formed on the catalyst layer to form a membrane-electrode-gas diffusion layer assembly. FIG. 8F is a diagram showing a state where a gasket and a separator are joined to the membrane-electrode-gas diffusion layer assembly to form a cell. Hereinafter, the method for producing the membrane-catalyst layer-gas diffusion layer assembly according to Comparative Example 1 will be described in detail with reference to FIGS.
[Preparation of membrane]
Substrate-membrane assemblies 503A and 503B (FIG. 8A) composed of a PET substrate and a polymer electrolyte membrane were produced by the same method as in the example.
[Catalyst layer coating]
An electrode catalyst dispersion was prepared in the same manner as in the examples. Next, the electrode catalyst dispersion was applied to the center of one main surface of each of the base material-membrane assemblies 503A and 503B by screen printing so that the printed surface was a square having a side of 98 mm. The electrode catalyst dispersion was dried at 90 ° C. for 30 minutes on the substrate-membrane assemblies 503A and 503B. From this step, the catalyst layer was laminated on the polymer electrolyte membrane to form membrane-catalyst layer assemblies 516A and 516B. By the above method, one substrate-membrane-catalyst layer assembly 517A, 517B (FIG. 8-B) in which the membrane-catalyst layer assembly was held on the PET substrate was produced.
[Fabrication and installation of frame]
A polytetrafluoroethylene (PTFE) base material (hereinafter referred to as PTFE base material) having a thickness of about 100 μm and a main surface having a side of 150 mm is prepared, and a square hole (opening) having a side of 100 mm is at the center. The PTFE substrate was punched with a Thomson mold so as to open. As a result, PTFE-based frames 504A and 504B were obtained. As in Example 1, notches for guides were formed on the outer periphery of the frame bodies 504A and 504B.

基材−膜−触媒層接合体517A、517Bの高分子電解質膜および触媒層が配設されている側の主面中央に、枠体504A、504Bを、内周が触媒層509A、509Bと重ならないように載せ、約150℃で20分間熱プレスした。以上の方法により、PET基材の上に高分子電解質膜と枠体が順次積層され、枠体の開口の内側に触媒層が嵌め込まれた、基材−膜−枠体−触媒層接合体511A、511Bを作成した(図8−C)。
[高分子電解質膜の貼り合わせ]
実施例と同様の方法で、基材−膜−枠体−触媒層接合体511A、511BのそれぞれからPET基材501をはがして高分子電解質膜502の側を貼り合わせた。貼り合わせにより、高分子電解質膜512の両面に枠体504A、504Bが取り付けられ、その内側に触媒層509A、509Bが嵌め込まれた、膜−触媒層接合体513(膜−電極接合体)を1枚作製した(図8−D)。
[ガス拡散層の形成]
実施例と同様の方法で、導電層つきカーボンクロス514A、514Bを作製した。触媒層509Aの上に、導電層が触媒層509Aに接するように、導電層つきカーボンクロス514Aを取り付け、触媒層509Bの上に、導電層が触媒層509Bに接するように、導電層つきカーボンクロス514Bを取り付け、膜−触媒層−ガス拡散層接合体515(膜−電極−ガス拡散層接合体)を1枚作製した(図8−E)。
[ガスケットとセパレータによる組み立て]
実施例と同様の方法で、ガスケット519A、519Bおよびセパレータ520A、520Bを作製し、膜−触媒層−ガス拡散層接合体515と接合させることで、セル524が得られた(図8−F)。
[断面の確認]
以上のようにして得られたセル524を、枠体504A、504Bの開口の内側を通る直線に沿って切断し、断面を顕微鏡で観察した(図8−Fの拡大図部分)。図8−Fに示すように、断面には、ガス拡散層(導電層つきカーボンクロス514A)とガスケット519Aの間に生じた隙間521に加え、触媒層509Aと枠体504Aの内周との間にも1mm程度の隙間518が認められた。かかる構成では、ガス拡散層(導電層つきカーボンクロス514A、514B)から高分子電解質膜512へ、隙間518を通って直接に(触媒層509A、509Bを通過せずに)燃料ガスや酸化剤ガスが通流することが予想された。
(実施例1と比較例1の比較)
実施例1と比較例1に使用した高分子電解質膜では、その上に電極用触媒分散液を塗工すると、高分子電解質膜が大きく伸縮(200mmにつき10〜20mm程度)するものであった。また、伸縮の程度は湿度や膜の厚さ等によって大きく変化し、どの程度伸縮するかを予測することは困難であった。
Frames 504A and 504B are arranged at the center of the main surface of the base material-membrane-catalyst layer assembly 517A, 517B on the side where the polymer electrolyte membrane and the catalyst layer are disposed, and the inner periphery overlaps with the catalyst layers 509A, 509B. It was mounted so as not to become hot, and was hot-pressed at about 150 ° C. for 20 minutes. By the above method, the polymer electrolyte membrane and the frame body are sequentially laminated on the PET base material, and the base material-membrane-frame body-catalyst layer assembly 511A in which the catalyst layer is fitted inside the opening of the frame body. 511B was created (FIG. 8-C).
[Polymer electrolyte membrane bonding]
In the same manner as in the example, the PET substrate 501 was peeled off from each of the substrate-membrane-frame-catalyst layer assembly 511A, 511B, and the polymer electrolyte membrane 502 side was bonded. The membrane-catalyst layer assembly 513 (membrane-electrode assembly) in which the frame bodies 504A and 504B are attached to both surfaces of the polymer electrolyte membrane 512 by bonding and the catalyst layers 509A and 509B are fitted inside thereof is 1 A sheet was produced (FIG. 8-D).
[Formation of gas diffusion layer]
Carbon cloths 514A and 514B with conductive layers were produced in the same manner as in the example. A carbon cloth with a conductive layer 514A is attached on the catalyst layer 509A so that the conductive layer is in contact with the catalyst layer 509A, and a carbon cloth with a conductive layer is provided on the catalyst layer 509B so that the conductive layer is in contact with the catalyst layer 509B. 514B was attached, and one membrane-catalyst layer-gas diffusion layer assembly 515 (membrane-electrode-gas diffusion layer assembly) was produced (FIG. 8-E).
[Assembly with gasket and separator]
Gaskets 519A and 519B and separators 520A and 520B were produced in the same manner as in Example, and were joined to membrane-catalyst layer-gas diffusion layer assembly 515 to obtain cell 524 (FIG. 8-F). .
[Check cross section]
The cell 524 obtained as described above was cut along a straight line passing through the inside of the openings of the frame bodies 504A and 504B, and the cross section was observed with a microscope (enlarged portion of FIG. 8F). As shown in FIG. 8F, in addition to the gap 521 formed between the gas diffusion layer (carbon cloth with a conductive layer 514A) and the gasket 519A, the cross section is between the catalyst layer 509A and the inner periphery of the frame 504A. In addition, a gap 518 of about 1 mm was observed. In such a configuration, fuel gas or oxidant gas directly from the gas diffusion layer (carbon cloth 514A, 514B with conductive layer) to the polymer electrolyte membrane 512 through the gap 518 (without passing through the catalyst layers 509A, 509B). Was expected to flow through.
(Comparison between Example 1 and Comparative Example 1)
In the polymer electrolyte membranes used in Example 1 and Comparative Example 1, when the electrode catalyst dispersion was applied thereon, the polymer electrolyte membrane was greatly expanded and contracted (about 10 to 20 mm per 200 mm). Further, the degree of expansion / contraction varies greatly depending on humidity, film thickness, etc., and it has been difficult to predict how much the expansion / contraction will occur.

比較例1では、高分子電解質膜に枠を取り付ける前に触媒層を塗工した。伸縮の程度を踏まえると、触媒層と枠が重ならないようにするには、触媒層を最低でも両側1mmずつ枠より小さく形成する必要があり、必然的に隙間が生じることになった。   In Comparative Example 1, the catalyst layer was applied before attaching the frame to the polymer electrolyte membrane. Considering the degree of expansion and contraction, in order to prevent the catalyst layer and the frame from overlapping each other, it is necessary to form the catalyst layer at least 1 mm on both sides smaller than the frame, and a gap is inevitably generated.

一方、実施例1では、高分子電解質膜の上に触媒層を塗工する前に枠を取り付け、枠に一部重なるように触媒層を塗工した。かかる方法により、触媒層と枠体の間に隙間も重なりもなく(枠体の内周と触媒層の外周が隙間なく接しており)、触媒層と枠体とが密に接する構造を容易に作製できた。また、補強部材には触媒層がはみ出さないため、補強部材とガス拡散層の接着性が向上した。はみ出した触媒層を被覆部材と共に回収して再利用すれば、触媒の無駄も防止できることが示唆された。単体の高分子電解質膜に触媒層を塗工すると、伸縮によりしわが生じ、その後の加工が困難となる場合がある。実施例1では、PET基材上に高分子電解質膜を固定したまま、触媒層を塗工することで、しわの発生を効果的に防止できた。   On the other hand, in Example 1, a frame was attached before applying the catalyst layer on the polymer electrolyte membrane, and the catalyst layer was applied so as to partially overlap the frame. By this method, there is no gap between the catalyst layer and the frame (the inner periphery of the frame and the outer periphery of the catalyst layer are in contact with each other without a gap), and a structure in which the catalyst layer and the frame are in close contact with each other can be easily obtained. I was able to make it. Moreover, since the catalyst layer did not protrude from the reinforcing member, the adhesion between the reinforcing member and the gas diffusion layer was improved. It was suggested that waste of the catalyst could be prevented if the protruding catalyst layer was collected and reused together with the covering member. When a catalyst layer is applied to a single polymer electrolyte membrane, wrinkles occur due to expansion and contraction, and subsequent processing may be difficult. In Example 1, the generation of wrinkles could be effectively prevented by applying the catalyst layer while the polymer electrolyte membrane was fixed on the PET substrate.

本発明の膜−電極接合体の製造方法は、高分子電解質膜の周縁部に補強部材が配設され、補強部材の内側に隙間なく触媒層が形成され、スタック組み立て時の押圧により触媒層にゆがみや破損の生じにくい膜−電極接合体を効率よく製造する方法として有用である。   In the method for producing a membrane-electrode assembly according to the present invention, a reinforcing member is disposed on the periphery of the polymer electrolyte membrane, and a catalyst layer is formed on the inner side of the reinforcing member without any gap. This is useful as a method for efficiently producing a membrane-electrode assembly that is unlikely to be distorted or damaged.

本発明の第1実施形態の膜−電極接合体製造方法の一例を模式的に示す工程図であって、高分子電解質膜のみの状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method of 1st Embodiment of this invention, Comprising: It is a figure which shows the state of only a polymer electrolyte membrane. 本発明の第1実施形態の膜−電極接合体製造方法の一例を模式的に示す工程図であって、高分子電解質膜に補強部材が取り付けられる工程を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method of 1st Embodiment of this invention, Comprising: It is a figure which shows the process in which a reinforcement member is attached to a polymer electrolyte membrane. 本発明の第1実施形態の膜−電極接合体製造方法の一例を模式的に示す工程図であって、補強部材の上から触媒層が塗工されて膜−電極接合体となった状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method of 1st Embodiment of this invention, Comprising: The state which became a membrane-electrode assembly by applying the catalyst layer from the reinforcement member is shown. FIG. 本発明の第1実施形態の膜−電極接合体製造方法の一例を模式的に示す工程図であって、触媒層の上にガス拡散層が形成されて膜−電極−ガス拡散層接合体となった状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method of 1st Embodiment of this invention, Comprising: A gas diffusion layer is formed on a catalyst layer, and a membrane-electrode-gas diffusion layer assembly and It is a figure which shows the state which became. 本発明の第1実施形態の膜−電極接合体製造方法により作製された膜−電極−ガス拡散層接合体の使用状態における断面を示す模式図である。It is a schematic diagram which shows the cross section in the use condition of the membrane-electrode-gas diffusion layer assembly produced by the membrane-electrode assembly manufacturing method of the first embodiment of the present invention. 本発明の第2実施形態の膜−電極接合体製造方法の一例を模式的に示す工程図であって、高分子電解質膜のみの状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method of 2nd Embodiment of this invention, Comprising: It is a figure which shows the state of only a polymer electrolyte membrane. 本発明の第2実施形態の膜−電極接合体製造方法の一例を模式的に示す工程図であって、高分子電解質膜に補強部材と被覆部材が取り付けられる工程を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method of 2nd Embodiment of this invention, Comprising: It is a figure which shows the process in which a reinforcement member and a coating | coated member are attached to a polymer electrolyte membrane. 本発明の第2実施形態の膜−電極接合体製造方法の一例を模式的に示す工程図であって、被覆部材の上から触媒層が塗工された状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method of 2nd Embodiment of this invention, Comprising: It is a figure which shows the state by which the catalyst layer was coated from the coating | coated member. 本発明の第2実施形態の膜−電極接合体製造方法の一例を模式的に示す工程図であって、被覆部材が除去された状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method of 2nd Embodiment of this invention, Comprising: It is a figure which shows the state from which the coating | coated member was removed. 本発明の第2実施形態の膜−電極接合体製造方法の一例を模式的に示す工程図であって、触媒層の上にガス拡散層が形成されて膜−電極−ガス拡散層接合体となった状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method of 2nd Embodiment of this invention, Comprising: A gas diffusion layer is formed on a catalyst layer, and a membrane-electrode-gas diffusion layer assembly and It is a figure which shows the state which became. 本発明の第2実施形態の膜−電極接合体製造方法により作製された膜−電極−ガス拡散層接合体の使用状態における断面を示す模式図である。It is a schematic diagram which shows the cross section in the use condition of the membrane-electrode-gas diffusion layer assembly produced by the membrane-electrode assembly manufacturing method of the second embodiment of the present invention. 本発明の第3実施形態の膜−電極接合体製造方法の一例を模式的に示す工程図であって、高分子電解質膜のみの状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method of 3rd Embodiment of this invention, Comprising: It is a figure which shows the state of only a polymer electrolyte membrane. 本発明の第3実施形態の膜−電極接合体製造方法の一例を模式的に示す工程図であって、高分子電解質膜に補強部材と被覆部材が取り付けられる工程を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method of 3rd Embodiment of this invention, Comprising: It is a figure which shows the process in which a reinforcement member and a coating | coated member are attached to a polymer electrolyte membrane. 本発明の第3実施形態の膜−電極接合体製造方法の一例を模式的に示す工程図であって、被覆部材の上から触媒層が塗工された状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method of 3rd Embodiment of this invention, Comprising: It is a figure which shows the state by which the catalyst layer was coated from on the coating | coated member. 本発明の第3実施形態の膜−電極接合体製造方法の一例を模式的に示す工程図であって、被覆部材が除去された状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method of 3rd Embodiment of this invention, Comprising: It is a figure which shows the state from which the coating | coated member was removed. 本発明の第3実施形態の膜−電極接合体製造方法の一例を模式的に示す工程図であって、高分子電解質膜同士が接合され、膜−電極接合体となった状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method of 3rd Embodiment of this invention, Comprising: Polymer electrolyte membranes are joined and the figure which shows the state used as the membrane-electrode assembly. is there. 本発明の第3実施形態の膜−電極接合体製造方法の一例を模式的に示す工程図であって、触媒層の上にガス拡散層が形成されて膜−電極−ガス拡散層接合体となった状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method of 3rd Embodiment of this invention, Comprising: A gas diffusion layer is formed on a catalyst layer, and a membrane-electrode-gas diffusion layer assembly and It is a figure which shows the state which became. 本発明の第3実施形態の膜−電極接合体製造方法により作製された膜−電極−ガス拡散層接合体の使用状態における断面を示す模式図である。It is a schematic diagram which shows the cross section in the use condition of the membrane-electrode-gas diffusion layer assembly produced by the membrane-electrode assembly manufacturing method of the third embodiment of the present invention. 本発明の実施例1による膜−触媒層−ガス拡散層接合体の製造方法を模式的に示す工程図であって、裏打ち部材の上に高分子電解質膜が保持された状態を示す図である。It is process drawing which shows typically the manufacturing method of the membrane-catalyst layer-gas diffusion layer assembly by Example 1 of this invention, Comprising: It is a figure which shows the state by which the polymer electrolyte membrane was hold | maintained on the backing member. . 本発明の実施例1による膜−電極接合体製造方法の一例を模式的に示す工程図であって、高分子電解質膜に補強部材と被覆部材が取り付けられた状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method by Example 1 of this invention, Comprising: It is a figure which shows the state by which the reinforcement member and the coating | coated member were attached to the polymer electrolyte membrane. 本発明の実施例1による膜−電極接合体製造方法の一例を模式的に示す工程図であって、被覆部材の上から触媒層が塗工された状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method by Example 1 of this invention, Comprising: It is a figure which shows the state in which the catalyst layer was coated from the coating | coated member. 本発明の実施例1による膜−電極接合体製造方法の一例を模式的に示す工程図であって、被覆部材が除去された状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method by Example 1 of this invention, Comprising: It is a figure which shows the state from which the coating | coated member was removed. 本発明の実施例1による膜−電極接合体製造方法の一例を模式的に示す工程図であって、高分子電解質膜同士が接合され、膜−電極接合体となった状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method by Example 1 of this invention, Comprising: The polymer electrolyte membranes are joined and the figure which shows the state used as the membrane-electrode assembly. . 本発明の実施例1による膜−電極接合体製造方法の一例を模式的に示す工程図であって、触媒層の上にガス拡散層が形成されて膜−電極−ガス拡散層接合体となった状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method by Example 1 of this invention, Comprising: A gas diffusion layer is formed on a catalyst layer, and it becomes a membrane-electrode-gas diffusion layer assembly. FIG. 本発明の実施例1による膜−電極接合体製造方法の一例を模式的に示す工程図であって、膜−電極−ガス拡散層接合体にガスケットとセパレータが接合されてセルとなった状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method by Example 1 of this invention, Comprising: The state which became a cell by joining a gasket and a separator to the membrane-electrode-gas diffusion layer assembly FIG. 本発明の比較例1による膜−触媒層−ガス拡散層接合体の製造方法を模式的に示す工程図であって、裏打ち部材の上に高分子電解質膜が保持された状態を示す図である。It is process drawing which shows typically the manufacturing method of the membrane-catalyst layer-gas diffusion layer assembly by the comparative example 1 of this invention, Comprising: It is a figure which shows the state by which the polymer electrolyte membrane was hold | maintained on the backing member. . 本発明の比較例1による膜−電極接合体製造方法の一例を模式的に示す工程図であって、高分子電解質膜に触媒層が塗工された状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method by the comparative example 1 of this invention, Comprising: It is a figure which shows the state by which the catalyst layer was applied to the polymer electrolyte membrane. 本発明の比較例1による膜−電極接合体製造方法の一例を模式的に示す工程図であって、触媒層の外周に枠体が取り付けられた状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method by the comparative example 1 of this invention, Comprising: It is a figure which shows the state by which the frame was attached to the outer periphery of a catalyst layer. 本発明の比較例1による膜−電極接合体製造方法の一例を模式的に示す工程図であって、高分子電解質膜同士が接合され、膜−電極接合体となった状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method by the comparative example 1 of this invention, Comprising: Polymer electrolyte membranes are joined and the figure which shows the state used as the membrane-electrode assembly. . 本発明の比較例1による膜−電極接合体製造方法の一例を模式的に示す工程図であって、触媒層の上にガス拡散層が形成されて膜−電極−ガス拡散層接合体となった状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method by the comparative example 1 of this invention, Comprising: A gas diffusion layer is formed on a catalyst layer, and it becomes a membrane-electrode-gas diffusion layer assembly. FIG. 本発明の比較例1による膜−電極接合体製造方法の一例を模式的に示す工程図であって、膜−電極−ガス拡散層接合体にガスケットとセパレータが接合されてセルとなった状態を示す図である。It is process drawing which shows typically an example of the membrane-electrode assembly manufacturing method by the comparative example 1 of this invention, Comprising: The state which became a cell by joining a gasket and a separator to a membrane-electrode-gas diffusion layer assembly FIG.

符号の説明Explanation of symbols

102 高分子電解質膜
104A、104B 補強部材
109A、109B 触媒層
113 膜−電極接合体
114A、114B ガス拡散層
115 膜−電極−ガス拡散層接合体
119A、119B ガスケット
120A、120B セパレータ
121 隙間
122 流路
123A、123B 開口
202 高分子電解質膜
204A、204B 補強部材
205A、205B 被覆部材
206A、206B 複合部材
208A、208B 触媒分散液層
209A、209B 触媒層
213 膜−電極接合体
214A、214B ガス拡散層
215 膜−電極−ガス拡散層接合体
219A、219B ガスケット
220A、220B セパレータ
221 隙間
222 流路
223A、223B 開口
302A、302B 高分子電解質膜
304A、304B 補強部材
305A、305B 被覆部材
306A、306B 複合部材
308A、308B 触媒分散液層
309A、309B 触媒層
312 高分子電解質膜
313 膜−電極接合体
314A、314B ガス拡散層
315 膜−電極−ガス拡散層接合体
319A、319B ガスケット
320A、320B セパレータ
321 隙間
322 流路
323 開口
401A、401B PET基材
402A、402B 高分子電解質膜
403A、403B 基材−膜接合体
404A、404B 枠体
405A、405B マスク体
406A、406B 多層枠体
407A、407B 基材−膜−枠体接合体
408A、408B 電極用触媒分散液層
409A、409B 触媒層
410A、410B 膜−枠体−触媒層接合体
411A、411B 基材−膜−枠体−触媒層接合体
412 高分子電解質膜
413 膜−触媒層接合体
414A、414B 導電層つきカーボンクロス
415 膜−触媒層−ガス拡散層接合体
419A、419B ガスケット
420A、420B セパレータ
421 隙間
422 流路
423A、423B 開口
424 セル
501A、501B PET基材
502A、502B 高分子電解質膜
503A、503B 基材−膜接合体
504A、504B 枠体
509A、509B 触媒層
511A、511B 基材−膜−枠体−触媒層接合体
512 高分子電解質膜
513 膜−触媒層接合体
514A、514B 導電層つきカーボンクロス
515 膜−触媒層−ガス拡散層接合体
516A、516B 膜−触媒層接合体
517A、517B 基材−膜−触媒層接合体
518 隙間
519A、519B ガスケット
520A、520B セパレータ
521 隙間
522 流路
524 セル
102 Polymer electrolyte membrane 104A, 104B Reinforcing member 109A, 109B Catalyst layer 113 Membrane-electrode assembly 114A, 114B Gas diffusion layer 115 Membrane-electrode-gas diffusion layer assembly 119A, 119B Gasket 120A, 120B Separator 121 Gap 122 Flow path 123A, 123B Opening 202 Polymer electrolyte membrane 204A, 204B Reinforcement member 205A, 205B Cover member 206A, 206B Composite member 208A, 208B Catalyst dispersion layer 209A, 209B Catalyst layer 213 Membrane-electrode assembly 214A, 214B Gas diffusion layer 215 Membrane -Electrode-Gas diffusion layer assembly 219A, 219B Gasket 220A, 220B Separator 221 Gap 222 Channel 223A, 223B Opening 302A, 302B Polymer electrolyte membrane 304A, 304B Supplement Member 305A, 305B Cover member 306A, 306B Composite member 308A, 308B Catalyst dispersion layer 309A, 309B Catalyst layer 312 Polymer electrolyte membrane 313 Membrane-electrode assembly 314A, 314B Gas diffusion layer 315 Membrane-electrode-gas diffusion layer assembly 319A, 319B Gasket 320A, 320B Separator 321 Gap 322 Flow path 323 Opening 401A, 401B PET base material 402A, 402B Polymer electrolyte membrane 403A, 403B Base material-membrane assembly 404A, 404B Frame body 405A, 405B Mask body 406A, 406B Multilayer frame 407A, 407B Substrate-membrane-frame assembly 408A, 408B Electrode dispersion liquid layer 409A, 409B Catalyst layer 410A, 410B Membrane-frame-catalyst layer assembly 411A, 411B Substrate-membrane-frame Body Catalyst layer assembly 412 Polymer electrolyte membrane 413 Membrane-catalyst layer assembly 414A, 414B Carbon cloth with conductive layer 415 Membrane-catalyst layer-gas diffusion layer assembly 419A, 419B Gasket 420A, 420B Separator 421 Gap 422 Channel 423A, 423B Opening 424 Cell 501A, 501B PET base material 502A, 502B Polymer electrolyte membrane 503A, 503B Base material-membrane assembly 504A, 504B Frame body 509A, 509B Catalyst layer 511A, 511B Base material- membrane-frame body-catalyst layer joint Body 512 polymer electrolyte membrane 513 membrane-catalyst layer assembly 514A, 514B carbon cloth with conductive layer 515 membrane-catalyst layer-gas diffusion layer assembly 516A, 516B membrane-catalyst layer assembly 517A, 517B base material-membrane-catalyst Layer assembly 518 gap 519A, 19B gasket 520A, 520B separator 521 gap 522 passage 524 cells

Claims (7)

開口を囲むように枠部が形成された補強部材を、前記枠部で高分子電解質膜の少なくとも一方の面の周縁部を被覆するように前記高分子電解質膜上に設ける補強部材配設工程と、
少なくとも前記補強部材の開口に露出する前記高分子電解質膜の全面に触媒層を塗工する触媒層塗工工程と、
前記触媒層を被覆するようにガス拡散層を配設するガス拡散層配設工程と、
を有し、
前記触媒層塗工工程は、前記触媒層の厚み方向から見た場合に、前記触媒層が前記開口の周辺部にはみ出すように触媒層を塗工するものである、膜−電極接合体製造方法。
A reinforcing member disposing step in which a reinforcing member having a frame portion so as to surround the opening is provided on the polymer electrolyte membrane so that a peripheral portion of at least one surface of the polymer electrolyte membrane is covered with the frame portion; ,
A catalyst layer coating step of coating a catalyst layer over the entire surface of the polymer electrolyte membrane exposed at least in the opening of the reinforcing member;
A gas diffusion layer disposing step of disposing a gas diffusion layer so as to cover the catalyst layer;
I have a,
The method for producing a membrane-electrode assembly, wherein the catalyst layer coating step is to coat the catalyst layer so that the catalyst layer protrudes from the periphery of the opening when viewed from the thickness direction of the catalyst layer. .
前記触媒層塗工工程において、スプレーにより前記触媒層を塗工する、請求項1に記載の膜−電極接合体製造方法。   The method for producing a membrane-electrode assembly according to claim 1, wherein in the catalyst layer coating step, the catalyst layer is applied by spraying. さらに、前記補強部材と前記補強部材と実質的に同じ平面形状を有し前記補強部材の片面を被覆する被覆部材とを有する複合部材を形成する複合部材形成工程と、
前記触媒層を塗工した後に前記被覆部材を前記補強部材から除去する被覆部材除去工程と、を有し、
前記補強部材配設工程において、前記補強部材が前記被覆部材よりも前記高分子電解質膜側に位置するように前記複合部材が設けられ、
前記触媒層塗工工程において、前記複合部材の開口から前記開口の周辺部にはみ出すように前記触媒層が塗工される、請求項1に記載の膜−電極接合体製造方法。
Further, a composite member forming step of forming a composite member having the reinforcing member and a covering member that has substantially the same planar shape as the reinforcing member and covers one side of the reinforcing member;
A covering member removing step of removing the covering member from the reinforcing member after applying the catalyst layer,
In the reinforcing member disposing step, the composite member is provided so that the reinforcing member is positioned on the polymer electrolyte membrane side with respect to the covering member,
The method for producing a membrane-electrode assembly according to claim 1, wherein, in the catalyst layer coating step, the catalyst layer is coated so as to protrude from the opening of the composite member to the periphery of the opening.
前記複合部材形成工程は、2枚の樹脂シートを貼り合わせて打ち抜くことで前記複合部材を形成する、請求項3に記載の膜−電極接合体製造方法。   The said composite member formation process is a membrane-electrode assembly manufacturing method of Claim 3 which forms the said composite member by bonding and punching out two resin sheets. 前記補強部材配設工程は、開口を囲むように枠部が形成された第1の補強部材を、前記枠部で第1の高分子電解質膜の少なくとも一方の面の周縁部を被覆するように前記第1の高分子電解質膜上に設ける第1の補強部材配設工程と、開口を囲むように枠部が形成された第2の補強部材を、前記枠部で第2の高分子電解質膜の少なくとも一方の面の周縁部を被覆するように前記第2の高分子電解質膜上に設ける第2の補強部材配設工程と、を有し、
前記触媒層塗工工程は、少なくとも前記第1の補強部材の開口に露出する前記第1の高分子電解質膜の全面に第1の触媒層を塗工する第1の触媒層塗工工程と、少なくとも前記第2の補強部材の開口に露出する前記第2の高分子電解質膜の全面に第2の触媒層を塗工する第2の触媒層塗工工程と、を有し、
さらに、前記第1の触媒層を塗工した前記第1の高分子電解質膜において前記第1の触媒層を塗工されていない面と、前記第2の触媒層を塗工した前記第2の高分子電解質膜において前記第2の触媒層を塗工されていない面と、を当接させる高分子電解質膜当接工程を有する、請求項1に記載の膜−電極接合体製造方法。
In the reinforcing member disposing step, the first reinforcing member having a frame portion so as to surround the opening is covered with a peripheral portion of at least one surface of the first polymer electrolyte membrane with the frame portion. A first reinforcing member disposing step provided on the first polymer electrolyte membrane; and a second reinforcing member having a frame portion formed so as to surround the opening. A second reinforcing member disposing step provided on the second polymer electrolyte membrane so as to cover a peripheral portion of at least one surface of
The catalyst layer coating step includes a first catalyst layer coating step of coating the first catalyst layer on the entire surface of the first polymer electrolyte membrane exposed at least in the opening of the first reinforcing member; A second catalyst layer coating step of coating a second catalyst layer on the entire surface of the second polymer electrolyte membrane exposed at least in the opening of the second reinforcing member,
Furthermore, the surface of the first polymer electrolyte membrane coated with the first catalyst layer that is not coated with the first catalyst layer, and the second polymer electrolyte membrane that is coated with the second catalyst layer. The method for producing a membrane-electrode assembly according to claim 1, further comprising a polymer electrolyte membrane contact step of contacting a surface of the polymer electrolyte membrane not coated with the second catalyst layer.
さらに、前記第1の補強部材と前記第1の補強部材と実質的に同じ平面形状を有し前記第1の補強部材の片面を被覆する第1の被覆部材とを有する第1の複合部材を形成する第1の複合部材形成工程と、
前記第2の補強部材と前記第2の補強部材と実質的に同じ平面形状を有し前記第2の補強部材の片面を被覆する第2の被覆部材とを有する第2の複合部材を形成する第2の複合部材形成工程と、
前記第1の触媒層を塗工した後に前記第1の被覆部材を前記第1の補強部材から除去する第1の被覆部材除去工程と、
前記第2の触媒層を塗工した後に前記第2の被覆部材を前記第2の補強部材から除去する第2の被覆部材除去工程と、を有し、
前記第1の補強部材配設工程において、前記第1の補強部材が前記第1の被覆部材よりも前記第1の高分子電解質膜側に位置するように前記第1の複合部材が設けられ、
前記第2の補強部材配設工程において、前記第2の補強部材が前記第2の被覆部材よりも前記第2の高分子電解質膜側に位置するように前記第2の複合部材が設けられ、
前記第1の触媒層塗工工程において、前記第1の複合部材の開口から前記開口の周辺部にはみ出すように前記第1の触媒層が塗工され、
前記第2の触媒層塗工工程において、前記第2の複合部材の開口から前記開口の周辺部にはみ出すように前記第2の触媒層が塗工される、請求項5に記載の膜−電極接合体製造方法
And a first composite member having a first covering member that has substantially the same planar shape as the first reinforcing member and covers one surface of the first reinforcing member. A first composite member forming step to be formed;
A second composite member is formed having the second reinforcing member and a second covering member that has substantially the same planar shape as the second reinforcing member and covers one surface of the second reinforcing member. A second composite member forming step;
A first covering member removing step of removing the first covering member from the first reinforcing member after applying the first catalyst layer;
A second covering member removing step of removing the second covering member from the second reinforcing member after applying the second catalyst layer,
In the first reinforcing member disposing step, the first composite member is provided such that the first reinforcing member is located closer to the first polymer electrolyte membrane than the first covering member;
In the second reinforcing member disposing step, the second composite member is provided such that the second reinforcing member is located on the second polymer electrolyte membrane side with respect to the second covering member,
In the first catalyst layer coating step, the first catalyst layer is applied so as to protrude from the opening of the first composite member to the periphery of the opening,
The membrane-electrode according to claim 5, wherein, in the second catalyst layer coating step, the second catalyst layer is coated so as to protrude from the opening of the second composite member to the peripheral portion of the opening. Bonded body manufacturing method
さらに、第1の裏打ち部材の一方の面に前記第1の高分子電解質膜を保持する第1の高分子電解質膜保持工程と、
第2の裏打ち部材の一方の面に前記第2の高分子電解質膜を保持する第2の高分子電解質膜保持工程と、を有し、
前記第1の補強部材配設工程は、前記第1の補強部材が前記第1の高分子電解質膜における前記第1の裏打ち部材に保持されない面を被覆するように前記第1の複合部材を前記第1の高分子電解質膜に設ける工程であり、
前記第2の補強部材配設工程は、前記第2の補強部材が前記第2の高分子電解質膜における前記第2の裏打ち部材に保持されない面を被覆するように前記第2の複合部材を前記第2の高分子電解質膜に設ける工程であり、
さらに、前記高分子電解質膜当接工程の前に前記第1の触媒層が塗工された前記第1の高分子電解質膜から前記第1の裏打ち部材を除去する第1の裏打ち部材除去工程と、
前記高分子電解質膜当接工程の前に前記第2の触媒層が塗工された前記第2の高分子電解質膜から前記第2の裏打ち部材を除去する第2の裏打ち部材除去工程と、を有する、請求項5に記載の膜−電極接合体製造方法。
And a first polymer electrolyte membrane holding step for holding the first polymer electrolyte membrane on one surface of the first backing member;
A second polymer electrolyte membrane holding step of holding the second polymer electrolyte membrane on one surface of the second backing member,
In the first reinforcing member disposing step, the first composite member is formed so that the first reinforcing member covers a surface of the first polymer electrolyte membrane that is not held by the first backing member. A step of providing the first polymer electrolyte membrane;
In the second reinforcing member disposing step, the second composite member is disposed on the second composite member so as to cover a surface of the second polymer electrolyte membrane that is not held by the second backing member. A step of providing the second polymer electrolyte membrane;
A first backing member removing step of removing the first backing member from the first polymer electrolyte membrane coated with the first catalyst layer before the polymer electrolyte membrane contact step; ,
A second backing member removing step of removing the second backing member from the second polymer electrolyte membrane coated with the second catalyst layer before the polymer electrolyte membrane contact step; The method for producing a membrane-electrode assembly according to claim 5.
JP2006090677A 2005-06-20 2006-03-29 Membrane-electrode assembly manufacturing method Active JP5052024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090677A JP5052024B2 (en) 2005-06-20 2006-03-29 Membrane-electrode assembly manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005179908 2005-06-20
JP2005179908 2005-06-20
JP2006090677A JP5052024B2 (en) 2005-06-20 2006-03-29 Membrane-electrode assembly manufacturing method

Publications (2)

Publication Number Publication Date
JP2007035612A JP2007035612A (en) 2007-02-08
JP5052024B2 true JP5052024B2 (en) 2012-10-17

Family

ID=37794584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090677A Active JP5052024B2 (en) 2005-06-20 2006-03-29 Membrane-electrode assembly manufacturing method

Country Status (1)

Country Link
JP (1) JP5052024B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056661A1 (en) * 2006-11-07 2008-05-15 Panasonic Corporation Film-film reinforcing film assembly, film-catalyst layer assembly, film-electrode assembly, and polymer electrolyte fuel cell
EP2112705A4 (en) * 2007-01-22 2013-10-09 Panasonic Corp Film-film reinforcing member bonded body, film-catalyst layer bonded body, film-electrode bonded body, and polyelectrolyte type fuel cell
CN101542801B (en) * 2007-01-29 2012-04-18 松下电器产业株式会社 Film-film reinforcing member bonded body, film-catalyst layer bonded body, film-electrode bonded body, and polyelectrolyte type fuel cell
WO2008126350A1 (en) * 2007-03-14 2008-10-23 Panasonic Corporation Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, polymer electrolyte fuel cell, and process for producing membrane-electrode assembly
JP5312820B2 (en) * 2008-02-22 2013-10-09 パナソニック株式会社 FUEL CELL, FUEL CELL STACK HAVING THE SAME AND FUEL CELL MANUFACTURING METHOD
EP2131433A1 (en) * 2008-06-05 2009-12-09 Reinz-Dichtungs-Gmbh Electrochemical cell and method for its manufacturing
JP2010092731A (en) * 2008-10-08 2010-04-22 Toyota Motor Corp Method of manufacturing electrode for fuel cell
JP5343529B2 (en) * 2008-11-26 2013-11-13 日産自動車株式会社 Method for producing fuel cell electrode laminate
JP5273541B2 (en) * 2008-12-11 2013-08-28 独立行政法人日本原子力研究開発機構 Polymer fuel cell
JP5653015B2 (en) 2009-08-12 2015-01-14 日本ゴア株式会社 Method for manufacturing reinforced membrane electrode assembly and reinforced membrane electrode assembly
KR101385729B1 (en) 2010-09-15 2014-04-15 도요타 지도샤(주) Membrane electrode assembly, manufacturing method thereof, and fuel cells
JP2012164422A (en) * 2011-02-03 2012-08-30 Honda Motor Co Ltd Method and apparatus of manufacturing membrane electrode assembly for fuel cell
CN104205449B (en) * 2012-03-22 2016-10-19 日产自动车株式会社 The cellular construction of fuel cell
JP6533028B2 (en) * 2013-09-03 2019-06-19 株式会社フジクラ Fuel cell membrane electrode assembly
JP6551646B2 (en) * 2014-12-09 2019-07-31 凸版印刷株式会社 Film laminate and fuel cell member using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176317A (en) * 1993-12-20 1995-07-14 Sanyo Electric Co Ltd Manufacture of electrode/ion exchange thin membrane connection body and electrode/ion exchange thin membrane/electrode connection body
JP3466082B2 (en) * 1998-03-31 2003-11-10 松下電器産業株式会社 Manufacturing method of fuel cell electrode
JP3580172B2 (en) * 1999-04-02 2004-10-20 富士電機ホールディングス株式会社 Solid polymer electrolyte fuel cell
JP2003100314A (en) * 2001-09-25 2003-04-04 Mitsubishi Heavy Ind Ltd Fabricating method of cell for solid polymer electrolyte fuel cell and its fabricating method
JP4116328B2 (en) * 2002-05-27 2008-07-09 本田技研工業株式会社 Membrane electrode structure and manufacturing method thereof
JP2004200063A (en) * 2002-12-19 2004-07-15 Aisin Seiki Co Ltd Manufacturing method of membrane electrode junction and solid polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP2007035612A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP5052024B2 (en) Membrane-electrode assembly manufacturing method
WO2006137203A1 (en) Method for manufacturing film-electrode bonded body
EP2009720B1 (en) Electrolyte membrane-electrode assembly for fuel cell
JP4818546B2 (en) Membrane / electrode structure
JP5363335B2 (en) Gas diffusion layer with built-in gasket
JP4540316B2 (en) Catalyst coated ionomer membrane with protective film layer and membrane electrode assembly made from the membrane
JP5124273B2 (en) Membrane electrode assembly
JP5326189B2 (en) Electrolyte membrane-electrode assembly and method for producing the same
JP4738350B2 (en) Method of manufacturing a durable membrane electrode assembly in which the catalyst-coated diffusion medium is not bonded to the membrane
JP2009129777A (en) Manufacturing method for membrane-electrode assembly of fuel cell
JPH08148169A (en) Sealing method for solid polymeric fuel cell
JP2006339022A (en) Electrolyte membrane-electrode assembly with mask film for solid polymer fuel cell, and method of manufacturing same
JP2006286430A (en) Electrolyte membrane-electrode conjugate with gasket for solid polymer fuel cell and its manufacturing method
US20080182150A1 (en) Method of forming membrane electrode assemblies for electrochemical devices
JP2008123957A (en) Solid polymer fuel cell
JP2007087728A (en) Laminate, method of manufacturing it, as well as fuel cell
JP5273207B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
KR20180126708A (en) Gasket-integrated membrane electrode assembly and preparation method of the same
JP2011210735A (en) Manufacturing method of electrolyte membrane-electrode conjugant with gasket for solid polymer fuel cell
JP4350297B2 (en) Manufacturing method of electrolyte membrane / electrode structure
EP1984967A1 (en) Method of forming membrane electrode assemblies for electrochemical devices
JP2004214001A (en) Jointing method and jointing device for electrode and solid polyelectrolyte membrane
JP7226350B2 (en) FUEL BATTERY CELL AND METHOD FOR MANUFACTURING FUEL BATTERY CELL
KR20220148877A (en) Method for making membrane electrode assembly (MEA) for fuel cell with catalyst-free edge in frame, fuel cell with MEA and MEA
JP2022158098A (en) Method for manufacturing electrode sheet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080408

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120724

R150 Certificate of patent or registration of utility model

Ref document number: 5052024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250