JP5051608B2 - Method of joining dissimilar metals by resistance spot welding - Google Patents

Method of joining dissimilar metals by resistance spot welding Download PDF

Info

Publication number
JP5051608B2
JP5051608B2 JP2006253753A JP2006253753A JP5051608B2 JP 5051608 B2 JP5051608 B2 JP 5051608B2 JP 2006253753 A JP2006253753 A JP 2006253753A JP 2006253753 A JP2006253753 A JP 2006253753A JP 5051608 B2 JP5051608 B2 JP 5051608B2
Authority
JP
Japan
Prior art keywords
joined
electrode
joining
materials
dissimilar metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006253753A
Other languages
Japanese (ja)
Other versions
JP2007326146A (en
Inventor
千花 山本
健二 宮本
成幸 中川
晃 福島
寛 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006253753A priority Critical patent/JP5051608B2/en
Publication of JP2007326146A publication Critical patent/JP2007326146A/en
Application granted granted Critical
Publication of JP5051608B2 publication Critical patent/JP5051608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Description

本発明は、例えばスチール材とアルミニウム合金材など、異種金属の抵抗スポット溶接による接合技術に係わり、特に被接合材である両金属材料の間にインサート材として介在させた第3の金属材料と被接合材との間に生じる共晶反応を利用した異種金属の接合方法に関するものである。
The present invention relates to a joining technique by resistance spot welding of dissimilar metals such as a steel material and an aluminum alloy material, and more particularly, a third metal material interposed as an insert material between the two metal materials as the material to be joined and the material to be covered. The present invention relates to a method for joining dissimilar metals using a eutectic reaction generated between the joining materials.

一般に異種金属を接合する場合、同種材同士の溶接のように双方の被接合材料を溶融させてしまうと、脆弱な金属間化合物が生成し、十分な継手強度が得られないことがある。
例えば、アルミニウム合金と鋼材とを異種溶接する場合、高硬度で脆弱なFeAlやFeAlなどの金属間化合物が生成するため、継手強度を確保するためには、これら金属間化合物の制御が必要となる。
Generally, when dissimilar metals are joined, if both of the materials to be joined are melted like welding of the same kind of materials, a fragile intermetallic compound may be generated, and sufficient joint strength may not be obtained.
For example, when different types of aluminum alloy and steel are welded, intermetallic compounds such as Fe 2 Al 5 and FeAl 3 that are brittle and hard are generated. Therefore, in order to ensure joint strength, control of these intermetallic compounds is required. Is required.

しかし、アルミニウム合金表面には、緻密で強固な酸化皮膜が形成されており、それを除去するためには接合時に大きな熱量を投与することが必要となる。その結果、厚い金属間化合物層が成長し、接合部の強度が低くなってしまうという問題があった。   However, a dense and strong oxide film is formed on the aluminum alloy surface, and in order to remove it, it is necessary to administer a large amount of heat at the time of bonding. As a result, there is a problem that a thick intermetallic compound layer grows and the strength of the joint portion is lowered.

そこで、このような異種金属材料を組み合わせて使用する場合には、従来、ボルトやリベットなどによる機械的締結によってこれら材料を接合するようにしていたが、この場合には重量やコストが増加する点に問題がある。   Therefore, when such dissimilar metal materials are used in combination, conventionally, these materials have been joined by mechanical fastening with bolts or rivets, but in this case the weight and cost increase. There is a problem.

また、このような異種金属の接合には、摩擦圧接が実用化されているが、このような摩擦圧接方法は、対称性のよい回転体同士の接合など、その対象が限られている。
さらに、爆着や熱間圧延なども知られているが、設備面や能率面での問題が多く、一般の異種金属接合に広く適用することはできないという問題がある。
In addition, friction welding is put into practical use for joining different kinds of metals. However, such a friction welding method has a limited object such as joining of rotating bodies having good symmetry.
Furthermore, explosion deposition and hot rolling are also known, but there are many problems in terms of equipment and efficiency, and there is a problem that they cannot be widely applied to general dissimilar metal joining.

このような異種金属接合の問題点の改善例としては、異種金属材料の間に、当該異種金属と同じ2種の材料から成るクラッド材をそれぞれ同種の材料同士が接するように介在させた状態で、10ms以下の通電時間で抵抗溶接を行うようにする方法が提案されている(特許文献1参照)。   As an improvement example of such a problem of dissimilar metal bonding, a clad material composed of the same two kinds of materials as the dissimilar metal is interposed between the dissimilar metal materials so that the same kind of materials are in contact with each other. A method of performing resistance welding with an energization time of 10 ms or less has been proposed (see Patent Document 1).

また、アルミニウムと鋼の抵抗溶接において、アルミニウム材と接する鋼表面に、Al量が20wt%以上のアルミニウム合金又は純アルミニウムを2μm以上の厚さとなるようにめっきし、このめっき面をアルミニウム材に重ねて通電し、めっき層を優先的に溶融させ、鋼材側をほとんど溶融させないようにして、これら材料を接合する方法が開示されている(特許文献2参照)。
特開平4−127973号公報 特開平6−39558号公報
In resistance welding of aluminum and steel, the surface of the steel in contact with the aluminum material is plated with an aluminum alloy or pure aluminum having an Al content of 20 wt% or more so as to have a thickness of 2 μm or more. A method of joining these materials by energizing them, preferentially melting the plating layer and hardly melting the steel material side is disclosed (see Patent Document 2).
JP-A-4-127773 JP-A-6-39558

しかしながら、クラッド材を用いる特許文献1に記載の方法の場合、本来2枚の板を接合すべきところ、3枚の接合ということになり、実際の施工を考えた場合には、クラッド材の挿入と共に、固定の工程が必要となって、現状の溶接ラインに新たな設備を組み入れなければならなくなり、コストアップ要因となる。また、例えばアルミニウムと鋼を接合する場合、アルミニウムクラッド鋼自体も異種材同士を接合することにより製造されるため、製造条件が厳しく、性能の安定した安価なクラッド材を入手することが困難であるという問題点がある。   However, in the case of the method described in Patent Document 1 using a clad material, the two plates should be joined together, which means that the three pieces are joined. At the same time, a fixing process is required, and it is necessary to incorporate new equipment into the current welding line, which causes a cost increase. In addition, for example, when aluminum and steel are joined, aluminum clad steel itself is also produced by joining dissimilar materials to each other, so that it is difficult to obtain an inexpensive clad material with strict production conditions and stable performance. There is a problem.

他方、鋼表面にアルミニウムめっきを施した状態で抵抗溶接する特許文献2に記載の方法においては、アルミニウムめっき面とアルミニウム材を接合する際、アルミニウム表面に存在する強固な酸化皮膜を破壊するために大入熱を投入することが必要となって、アルミニウムめっきと鋼の界面に脆弱な金属間化合物が生成され、これから破壊が生じる可能性があった。   On the other hand, in the method described in Patent Document 2 in which resistance welding is performed in a state where aluminum plating is performed on the steel surface, when the aluminum plating surface and the aluminum material are joined, the strong oxide film existing on the aluminum surface is destroyed. It was necessary to input a large amount of heat, and a brittle intermetallic compound was generated at the interface between the aluminum plating and the steel, which could cause destruction.

本発明は、従来の異種金属の接合方法における上記課題に鑑みてなされたものであって、その目的とするところは、抵抗スポット溶接により異種金属を接合するに際して、接合過程における金属間化合物の生成を抑制しながら、接合界面における酸化被膜を除去することができ、新生面同士の強固な接合が可能な異種金属の接合方法を提供することを目的としている。
The present invention has been made in view of the above-described problems in conventional methods for joining dissimilar metals, and the object of the present invention is to generate intermetallic compounds in the joining process when joining dissimilar metals by resistance spot welding. It is an object of the present invention to provide a dissimilar metal joining method capable of removing an oxide film at a joining interface while suppressing the above-described problem and capable of firmly joining new surfaces.

本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、接合しようとする異種金属材料の間に、これら材料の少なくとも一方の金属との間に共晶反応を生じる第3の金属材料を介在させ、接合に際して共晶溶融を生じさせることによって、母材異種金属の融点より低い温度で酸化被膜を除去することができ、大入熱を投入する必要がないことから、金属間化合物の生成を抑えることができると共に、抵抗スポット溶接に用いる電極の先端を曲面形状とすることによって、上記目的が達成できることを見出し、本発明を完成するに到った。   As a result of intensive investigations to achieve the above object, the inventors of the present invention have developed a third metal that causes a eutectic reaction between at least one metal of these materials between different metal materials to be joined. By interposing the material and causing eutectic melting at the time of joining, the oxide film can be removed at a temperature lower than the melting point of the base metal dissimilar metal, and it is not necessary to input large heat input. It has been found that the above object can be achieved by making the tip of the electrode used for resistance spot welding a curved surface, and the present invention has been completed.

本発明は上記知見に基づくものであって、本発明の異種金属の接合方法においては、互いに異なる金属材料同士を重ね合わせて成る被接合材の間にこれら金属材料とは異なる金属から成る第3の材料を介在させ、電極による加圧と通電によって上記被接合材の一方の材料の酸化皮膜の一部を破壊して第3の材料と局部接触させ、該接触部を起点として一方の材料と第3の材料との間に生じた共晶溶融を拡大させて、接合界面の酸化皮膜を破壊し、接合界面から共晶溶融金属と共に酸化皮膜を排除して被接合材を抵抗スポット溶接するに際し、先端部に曲面を有する電極を少なくとも一方の電極として使用するようにしたことを特徴としている。
The present invention is based on the above knowledge, and in the dissimilar metal bonding method of the present invention, a third metal made of a metal different from these metal materials is interposed between the metal materials different from each other. The material is interposed, and a part of the oxide film of one of the materials to be bonded is destroyed by local contact with the third material by pressurization and energization with an electrode, When expanding the eutectic melting that occurs between the third material, destroying the oxide film at the bonding interface, and excluding the oxide film together with the eutectic molten metal from the bonding interface to perform resistance spot welding of the materials to be bonded An electrode having a curved surface at the tip is used as at least one of the electrodes.

本発明によれば、互いに異なる異種金属材料同士を抵抗スポット溶接によって接合するに際して、両金属材料の間にこれら金属材料の少なくとも一方の金属と共晶反応を生じる第3の金属材料を介在させ、少なくとも一方の先端部を曲面とした電極を用いて通電、加圧し、第3の金属材料と一方の金属材料との間で抵抗発熱による共晶溶融を生じさせて接合するようにしていることから、母材金属材料の融点よりも低い低温状態において酸化皮膜を除去することができ、接合界面温度の制御が可能になって金属間化合物の生成が抑制されると同時に、接合過程で生じる共晶金属や、被接合材表面の酸化被膜、反応生成物などの接合部からの円滑な排出が実現でき、被接合材の新生面同士が強固に接合した構造が得られることになり、接合界面にこれらが残存することによる強度低下を防止することができ、強固な接合状態が得られることになる。   According to the present invention, when different metal materials different from each other are joined by resistance spot welding, a third metal material that causes a eutectic reaction with at least one of these metal materials is interposed between both metal materials, Since current is applied and pressed using an electrode having a curved surface at least at one of the ends, eutectic melting is caused between the third metal material and the one metal material by resistance heating, thereby joining. The oxide film can be removed at a low temperature lower than the melting point of the base metal material, and the control of the bonding interface temperature is possible, so that the formation of intermetallic compounds is suppressed and at the same time the eutectic formed in the bonding process. Smooth discharge of metal, oxide film on the surface of the material to be bonded, reaction products, etc. from the bonded part can be realized, and a structure in which the new surfaces of the material to be bonded are firmly bonded together can be obtained. These can be prevented strength reduction caused by the remaining, so that strong bonding state can be obtained.

以下に、抵抗溶接による本発明の異種金属の接合方法について、さらに詳細かつ具体的に説明する。   Below, the joining method of the dissimilar metals of this invention by resistance welding is demonstrated further in detail and concretely.

図1は、Al−Zn系2元状態図を示すものであって、図に示すようにAl−Zn系における共晶点(T)は、655Kであり、Alの融点933Kよりもはるかに低い温度で共晶反応が生じる。
したがって、図に示した共晶点を利用してAlとZnの共晶溶融を作り出し、アルミニウム材の接合時における酸化皮膜除去や相互拡散などの接合作用に利用することによって、低温接合が実施できるため、FeAlやFeAlなどの金属間化合物の接合界面における成長を極めて効果的に抑制することができる。
FIG. 1 shows an Al—Zn based binary phase diagram. As shown in the figure, the eutectic point (T E ) in the Al—Zn system is 655 K, which is much higher than the melting point 933 K of Al. Eutectic reactions occur at low temperatures.
Therefore, by using the eutectic points shown in the figure to create eutectic melting of Al and Zn, and using them for bonding actions such as oxide film removal and interdiffusion during bonding of aluminum materials, low temperature bonding can be performed. Therefore, it is possible to extremely effectively suppress the growth at the joint interface of intermetallic compounds such as Fe 2 Al 5 and FeAl 3 .

ここで、共晶溶融とは共晶反応を利用した溶融であって、2つの金属(又は合金)が相互拡散して生じた相互拡散域の組成が共晶組成となった場合に、保持温度が共晶温度以上であれば共晶反応により液相が形成される。例えばアルミニウムと亜鉛の場合、アルミニウムの融点は933K、亜鉛の融点は692.5Kであり、この共晶金属はそれぞれの融点より低い655Kにて溶融する。
したがって、両金属の清浄面を接触させ、655K以上に加熱保持すると反応が生じる。これを共晶溶融といい、Al−95%Znが共晶組成となるが、共晶反応自体は合金成分に無関係な一定の変化であり、合金組成は共晶反応の量を増減するに過ぎない。
Here, eutectic melting is melting using a eutectic reaction, and when the composition of an interdiffusion region formed by mutual diffusion of two metals (or alloys) becomes a eutectic composition, the holding temperature If is equal to or higher than the eutectic temperature, a liquid phase is formed by the eutectic reaction. For example, in the case of aluminum and zinc, the melting point of aluminum is 933 K, the melting point of zinc is 692.5 K, and this eutectic metal melts at 655 K which is lower than the respective melting points.
Therefore, a reaction occurs when the clean surfaces of both metals are brought into contact and heated to 655K or higher. This is called eutectic melting, and Al-95% Zn has a eutectic composition, but the eutectic reaction itself is a constant change unrelated to the alloy components, and the alloy composition only increases or decreases the amount of eutectic reaction. Absent.

一方、アルミニウム材の表面には強固な酸化皮膜が存在するが、これは抵抗溶接時の通電と加圧によってアルミニウム材に塑性変形が生じることにより物理的に破壊されることになる。
すなわち、加圧によって材料表面の微視的な凸部同士が擦れ合うことから、一部の酸化皮膜の局所的な破壊によってアルミニウムと亜鉛が接触した部分から共晶溶融が生じ、この液相の生成によって近傍の酸化皮膜が破砕、分解されてさらに共晶溶融が全面に拡がる反応の拡大によって、酸化皮膜破壊の促進と液相を介した接合が達成される。
On the other hand, a strong oxide film is present on the surface of the aluminum material, which is physically destroyed by plastic deformation of the aluminum material caused by energization and pressurization during resistance welding.
That is, microscopic projections on the surface of the material rub against each other by pressurization, so eutectic melting occurs from the part where aluminum and zinc contact due to local destruction of some oxide films, and this liquid phase is generated. By accelerating the reaction in which the nearby oxide film is crushed and decomposed and further eutectic melting spreads over the entire surface, the destruction of the oxide film and the joining via the liquid phase are achieved.

共晶組成は相互拡散によって自発的達成されるため、組成のコントロールは必要ない。必須条件は2種の金属あるいは合金の間に、低融点の共晶反応が存在することであり、アルミニウムと亜鉛の共晶溶融の場合、亜鉛に代えてZn−Al合金を用いる場合には、少なくとも亜鉛が95%以上の組成でなければならない。   Since the eutectic composition is spontaneously achieved by interdiffusion, composition control is not necessary. The essential condition is that a low melting eutectic reaction exists between the two metals or alloys. In the case of eutectic melting of aluminum and zinc, when using Zn-Al alloy instead of zinc, The composition must be at least 95% zinc.

図2(a)〜(e)は、本発明による異種金属の接合プロセスを示す概略図である。
まず、図2(a)に示すように、その表面に、Alと共晶を形成する第3の金属材料として機能する亜鉛めっき層1pが施された亜鉛めっき鋼板1と、アルミニウム合金材2を用意し、図2(b)に示すように、これら亜鉛めっき鋼板1とアルミニウム合金材2を亜鉛めっき層1pが内側になるように重ねる。なお、アルミニウム合金材2の表面には酸化皮膜2cが生成している。
2A to 2E are schematic views showing a dissimilar metal joining process according to the present invention.
First, as shown in FIG. 2 (a), a galvanized steel sheet 1 provided with a galvanized layer 1p functioning as a third metal material that forms a eutectic with Al on the surface, and an aluminum alloy material 2 are provided. As shown in FIG. 2B, the galvanized steel sheet 1 and the aluminum alloy material 2 are stacked so that the galvanized layer 1p is on the inside. An oxide film 2 c is generated on the surface of the aluminum alloy material 2.

次に、抵抗スポット溶接装置の電極による加圧と通電による加熱によって、図2(c)に示すように材料表面の微視的な接触部で局部的な酸化皮膜2cの破壊を生じさせる。   Next, the oxide film 2c is locally broken at the microscopic contact portion of the material surface as shown in FIG. 2 (c) by pressurization by the electrode of the resistance spot welding apparatus and heating by energization.

これによって、亜鉛とアルミニウムの局部的な接触が生じ、そのときの温度状態に応じて、図2(d)に示すように、亜鉛とアルミニウムの共晶溶融が生じ、共晶溶融金属3と共に酸化皮膜2cや接合界面の不純物などが接合部の外側に排出され、所定の接合面積が確保され、その結果、図2(e)に示すように、アルミニウムと鋼の新生面同士が直接接合され、鋼板1とアルミニウム合金材2の強固な金属接合が得られることなる。   As a result, local contact between zinc and aluminum occurs, and as shown in FIG. 2 (d), eutectic melting of zinc and aluminum occurs and oxidizes together with the eutectic molten metal 3 according to the temperature state at that time. The film 2c and impurities at the bonding interface are discharged to the outside of the bonded portion, and a predetermined bonding area is secured. As a result, as shown in FIG. 2 (e), the new surfaces of aluminum and steel are directly bonded to each other. A strong metal bond between 1 and the aluminum alloy material 2 is obtained.

本発明の異種金属接合方法における被接合材の具体的な組み合せとしては、例えば鋼材とアルミニウム合金材の組み合せを挙げることができ、このとき両材料の間に介在させる第3の金属材料としては、アルミニウム合金と低融点共晶を形成する材料でありさえすれば特に限定されることはなく、例えば、上記した亜鉛(Zn)の他には、銅(Cu)、錫(Sn)、銀(Ag)、ニッケル(Ni)などを用いることができる。
すなわち、これら金属とAlとの共晶金属は、母材であるアルミニウム合金材の融点以下の温度で溶融するため、脆弱な金属間化合物が生成し易い鋼材とアルミニウム合金材の接合においても、低温で酸化皮膜を除去することができ、接合過程での接合界面における金属間化合物の生成が抑制でき、強固な接合が可能になる。
As a specific combination of the materials to be bonded in the dissimilar metal bonding method of the present invention, for example, a combination of a steel material and an aluminum alloy material can be mentioned, and as a third metal material interposed between both materials at this time, The material is not particularly limited as long as it is a material that forms a low melting point eutectic with an aluminum alloy. For example, besides zinc (Zn) described above, copper (Cu), tin (Sn), silver (Ag) ), Nickel (Ni), or the like can be used.
In other words, the eutectic metal of these metals and Al melts at a temperature lower than the melting point of the aluminum alloy material, which is the base material. Therefore, even in the joining of steel materials and aluminum alloy materials where fragile intermetallic compounds are easily formed, Thus, the oxide film can be removed, the formation of intermetallic compounds at the bonding interface during the bonding process can be suppressed, and strong bonding becomes possible.

また、本発明の接合方法を自動車ボディの組み立てに適用することを考えた場合、被接合材は鋼材とアルミニウムとの組み合せがほとんどであるが、将来的には鋼材とマグネシウム、あるいはアルミニウムとマグネシウムとの組み合せなども考えられる。
鋼材とマグネシウムとの接合に際しては、後述する実施例と同様に鋼材側にめっきした亜鉛とマグネシウムの間に共晶反応を生じさせて接合することが可能である。さらに、アルミニウムとマグネシウムを接合する場合においても、亜鉛や銀を第3の金属材料として利用することが可能である。
Further, when considering that the joining method of the present invention is applied to the assembly of an automobile body, the material to be joined is mostly a combination of steel and aluminum, but in the future, steel and magnesium, or aluminum and magnesium. Combinations of these are also possible.
When joining the steel material and magnesium, it is possible to produce a eutectic reaction between zinc and magnesium plated on the steel material side in the same manner as in the examples described later. Furthermore, even when aluminum and magnesium are joined, zinc or silver can be used as the third metal material.

なお、本発明においては、第3の金属材料として、上記したような純金属に限定される必要はなく、共晶金属は2元合金も3元合金も存在するため、これらの少なくとも1種の金属を含む合金であってもよい。   In the present invention, the third metal material need not be limited to the pure metal as described above, and eutectic metals include both binary alloys and ternary alloys. Therefore, at least one of these eutectic metals exists. An alloy containing a metal may be used.

本発明の異種金属接合方法は、上記したように接合しようとする異種金属材料間に、これら材料と共晶反応を生じる第3の金属材料を介在させると共に、上記異種金属材料の少なくとも一方の材料と第3の材料との間に共晶溶融を生じさせて抵抗スポット溶接するに際して、少なくとも一方の電極として、先端部に曲面を備えた電極を使用するものであるが、上記第3の金属材料を被接合材の間に介在させるための具体的手段としては、例えば、被接合材である両異種金属材料の間に、第3の金属材料から成るインサート材を挿入するようになすことができる。   In the dissimilar metal joining method of the present invention, a third metal material that causes a eutectic reaction with these materials is interposed between the dissimilar metal materials to be joined as described above, and at least one of the dissimilar metal materials When the resistance spot welding is performed by causing eutectic melting between the first metal and the third material, an electrode having a curved surface at the tip is used as at least one of the electrodes. As a specific means for interposing the material between the materials to be joined, for example, an insert material made of a third metal material can be inserted between the dissimilar metal materials that are the materials to be joined. .

また、被接合材の少なくとも一方の材料に第3の材料をあらかじめめっきしておくことが望ましく、これによって第3の材料をインサート材として被接合材間に挟み込む工程を省略でき、作業効率が向上すると共に、共晶反応によって溶融されためっき層が表面の不純物と共に接合部の周囲に排出された後に、めっき層の下から極めて清浄な新生面が現れることになり、より強固な接合が可能となる。   In addition, it is desirable that at least one of the materials to be bonded be pre-plated with the third material, so that the step of sandwiching the third material as an insert material between the materials to be bonded can be omitted, and work efficiency is improved. At the same time, after the plating layer melted by the eutectic reaction is discharged around the joint together with the impurities on the surface, a very clean new surface appears from the bottom of the plating layer, which enables stronger bonding. .

そして、例えば、上記したアルミニウム合金材やマグネシウム合金材と鋼材との異材接合に際しては、鋼材として、アルミニウムやマグネシウムと低融点共晶を形成する第3の金属材料である亜鉛がその表面にあらかじめめっきされている、いわゆる亜鉛めっき鋼板を用いることができ、この場合には、特別な準備を要することもなく、防錆目的で亜鉛めっきを施した通常の市販鋼材をそのまま使用することができ、極めて簡便かつ安価に、異種金属の強固な接合が可能になる。   For example, when dissimilar joining of the above-mentioned aluminum alloy material or magnesium alloy material and steel material is performed, the surface is pre-plated with zinc, which is a third metal material that forms a low melting point eutectic with aluminum or magnesium. So-called galvanized steel sheets can be used, and in this case, no special preparation is required, and ordinary commercial steel materials plated with zinc for rust prevention purposes can be used as they are. It is possible to simply and inexpensively join different metals firmly and easily.

本発明の異種金属接合方法においては、抵抗スポット溶接に際して、被接合材の加圧・通電に用いる電極の少なくとも一方の先端部を曲面形状としたものを用いるようにしており、これによって、接合界面に存在する共晶金属や酸化被膜、接合過程で生じる応生成物など種々の夾雑物が接合部から円滑に排出され、被接合材の新生面同士が強固に接合されることになる。   In the dissimilar metal joining method of the present invention, at the time of resistance spot welding, at least one tip portion of an electrode used for pressurization / energization of a material to be joined is used in a curved shape. Thus, various impurities such as eutectic metal, oxide film, and reaction product generated in the joining process are smoothly discharged from the joined portion, and the new surfaces of the materials to be joined are firmly joined together.

このとき、電極先端部の曲面形状としては、図3に、スポット溶接用電極先端部の曲率半径Rと強度因子の関係を定性的に示すように、先端部の曲率半径Rの増大は均一な電流密度分布領域、加圧分布領域の増大に寄与し、強度向上に寄与する一方で、第3の材料、共晶溶融金属、除去された酸化皮膜等の接合部からの排出性が低下することになり、これら夾雑物が接合界面に残存することによって強度の低下を招く。
したがって、図中に示すように、これらを両立させることのできる領域の曲率半径Rを有する電極を用いることによって、異材接合部の高強度化を実現することができる。
At this time, as the curved surface shape of the electrode tip, the increase in the radius of curvature R of the tip is uniform so as to qualitatively show the relationship between the radius of curvature R of the electrode tip for spot welding and the strength factor in FIG. Contributes to the increase of current density distribution region and pressure distribution region and contributes to strength improvement, while lowering discharge properties from the joint of third material, eutectic molten metal, removed oxide film, etc. Therefore, these contaminants remain at the bonding interface, resulting in a decrease in strength.
Therefore, as shown in the drawing, the strength of the dissimilar material joint can be increased by using an electrode having a radius of curvature R in a region where both of these can be achieved.

具体的には、被接合材の片方がアルミニウム合金材とし、この板厚をt、電極先端面の曲率半径をRとすると、板厚tが0.8mmに満たないときには、曲率半径Rを50mm未満とし、板厚tが0.8mm以上1.6mm未満のときには、曲率半径Rを75mm未満、板厚tが1.6mm以上2.3mm未満のときには、曲率半径Rを10mm以上75mm未満の範囲、さらに板厚tが2.3mm以上3.2mm以下のときには、曲率半径Rを10mm以上150mm未満の範囲内とすることが望ましく、これによって接合面内のナゲット形成領域における温度の均一化と、接合界面における接合過程に生じる共晶溶融、被接合材表面の酸化皮膜等の排出性との両立を図ることができ、接合材の新生面同士の強固な接合構造をより確実に得ることができるようになる。   Specifically, if one of the materials to be joined is an aluminum alloy material, the plate thickness is t, and the curvature radius of the electrode tip surface is R, the curvature radius R is 50 mm when the plate thickness t is less than 0.8 mm. When the plate thickness t is 0.8 mm or more and less than 1.6 mm, the curvature radius R is less than 75 mm, and when the plate thickness t is 1.6 mm or more and less than 2.3 mm, the curvature radius R is in the range of 10 mm or more and less than 75 mm. Further, when the plate thickness t is 2.3 mm or more and 3.2 mm or less, it is desirable that the radius of curvature R is in the range of 10 mm or more and less than 150 mm, thereby making the temperature uniform in the nugget formation region in the joint surface, The eutectic melting that occurs in the bonding process at the bonding interface and the discharge properties of the oxide film on the surface of the material to be bonded can be achieved at the same time, and a firm bonding structure between the new surfaces of the bonding material can be obtained more reliably. It becomes possible.

また、電極先端面の中心部における直径dの円形領域内を曲面形状とした場合、この曲面の曲率半径をrとするとき、中心部曲面径dが6.4mm以下の場合には、その曲率半径rを50mm未満、曲面径dが6.4mmを超え9.4mm未満の場合には、曲率半径rを75mm未満、曲面径dが9.4mm以上11.5mm以下の場合には、曲率半径rを10mm以上150mm未満とすることが望ましく、こうすることによっても上記同様の効果が得られる。   In addition, when the inside of the circular area of the diameter d at the center of the electrode tip surface is a curved surface, when the curvature radius of the curved surface is r, and the center curved surface diameter d is 6.4 mm or less, the curvature is When the radius r is less than 50 mm and the curved surface diameter d is more than 6.4 mm and less than 9.4 mm, the curvature radius r is less than 75 mm and when the curved surface diameter d is 9.4 mm or more and 11.5 mm or less, the curvature radius. It is desirable that r be 10 mm or more and less than 150 mm, and by doing so, the same effect as described above can be obtained.

さらに、上記電極形状については、先端部を曲面形状とすると共に、図4(a)〜(c)に示すように、その断面形状(接合面に平行な断面)を円形や正方形ではなく、横長な形状にすることも望ましい。
このような断面形状の電極E1を用いることによって、電極中心から接合部周囲までの距離が短縮されるため、接合界面における接合過程に生じる共晶溶融、被接合材表面の酸化皮膜等の長辺側からの排出が促進され、高強度な接合継手を得ることができる。さらに、電極中心から接合部周囲までの距離の短縮によって、接合面内の温度分布も均一化され、良好で均一な接合界面が得られる結果、高強度な接合継手を得ることができる。
Further, with respect to the electrode shape described above, the tip portion is curved, and as shown in FIGS. 4A to 4C, the cross-sectional shape (cross-section parallel to the bonding surface) is not circular or square, but is horizontally long. It is also desirable to have a simple shape.
By using the electrode E1 having such a cross-sectional shape, the distance from the center of the electrode to the periphery of the joint is shortened. Therefore, eutectic melting that occurs in the joining process at the joining interface, long sides such as an oxide film on the surface of the material to be joined The discharge from the side is promoted, and a high-strength joint joint can be obtained. Furthermore, by shortening the distance from the center of the electrode to the periphery of the joint, the temperature distribution in the joint surface is also made uniform, and a good and uniform joint interface is obtained. As a result, a high-strength joint joint can be obtained.

また、このような断面形状の電極においては、断面積を一定とした場合(電流密度一定)、電極の幅寸法を小さくできることから、このような電極をスポット溶接に適用することによって、接合フランジや接合部の幅を小さくすることができ、材料コストや重量を軽減することができる。   Moreover, in such an electrode having a cross-sectional shape, when the cross-sectional area is constant (current density is constant), the width dimension of the electrode can be reduced. Therefore, by applying such an electrode to spot welding, The width of the joint can be reduced, and the material cost and weight can be reduced.

なお、後述する実施例においては、図4(c)に示すように、電極断面の縦横比(b/a)については3.0のものを用いたが、本発明においては電極断面の縦横aとbの長さについて差異がある組合せであれば、排出距離の関係から選択的に長辺から排出され、長さが等しい等辺の組み合わせのものよりも効果的に排出が促進されると考えられる。したがって、上記電極の形状としては、1.1<b/a<5.0の範囲のものを用いることが好ましい。
また、上記電極断面形状としては、図4(c)に示したような矩形断面のみならず、長方形の角部が落ちた擬楕円(小判型)、楕円、ひし形等の多角形など、縦横方向の寸法が異なるものを適用することができる。
In the examples described later, as shown in FIG. 4C, the aspect ratio (b / a) of the electrode cross section is 3.0, but in the present invention, the aspect ratio a of the electrode cross section is used. If there is a difference between the lengths of b and b, it will be discharged from the long side selectively from the relationship of the discharge distance, and the discharge will be promoted more effectively than the combination of equal sides having the same length. . Therefore, it is preferable to use the electrode having a shape in the range of 1.1 <b / a <5.0.
The electrode cross-sectional shape is not only a rectangular cross-section as shown in FIG. 4C, but also a pseudo-ellipse (oval type) with a rectangular corner dropped, a polygon such as an ellipse, a rhombus, etc. Those with different dimensions can be applied.

このとき、電極の配置方向としては、接合フランジ部の長手方向に電極断面の長手方向を一致させることが望ましく、これによって上記したように接合フランジ幅を小さくすることができ、意匠やデザイン性を向上することができると共に、材料コストや重量を軽減することが可能になる。
また、接合過程に生じる共晶溶融、被接合材表面の酸化皮膜等や、後述するシール材の接合界面からの排出が電極の長辺側から主体に行われるようになり、フランジの幅方向に円滑に排出できるようになる。
At this time, as the electrode arrangement direction, it is desirable to match the longitudinal direction of the electrode cross section with the longitudinal direction of the joining flange portion, so that the joining flange width can be reduced as described above, and the design and design can be reduced. It is possible to improve the material cost and weight.
In addition, eutectic melting that occurs during the joining process, oxide film on the surface of the material to be joined, and discharge from the joining interface of the sealing material described later are mainly performed from the long side of the electrode in the flange width direction. It becomes possible to discharge smoothly.

上記した異種金属接合方法によれば、異種金属から成る被接合材の新生面同士が直接接合されており、この接合部の周囲に、被接合材の少なくとも一方の材料との間で共晶溶融を生じる第三の材料、被接合材、第三の材料と被接合材との反応生成物、接合過程に生成される反応物などの少なくとも一種が排出されたせ都合構造が得られ、母材の融点より低い低温状態にて被接合材表面の酸化皮膜の除去ができ、接合界面温度を共晶温度以上、被接合材双方の融点の低い側の材料の融点以下に制御することにより、接合過程での金属間化合物の生成を抑制することができ、相互拡散により強固な接合を得ることが可能となる。このとき、第3の材料、共晶溶融、除去された酸化皮膜等の接合界面での残存は強度の低下を招くことから、加圧によってこれらの排出を促進する結果、被接合材の表面には電極先端形状に応じた圧痕が形成されることになる。
後述するシール材をはさんだ場合には、上記被接合材の新生面同士が直接接合されており、この接合部の周囲に、被接合材の少なくとも一方の材料との間で共晶溶融を生じる第3の材料、被接合材、第3の材料と被接合材との反応生成物及び接合過程で生成される反応物から成る群より選ばれる少なくとも一種と、シール材が排出されており、最外周部は排出されたシール材によって外部雰囲気から遮断(シール)されており、被接合材の表面に、上記電極の先端形状に応じた圧痕が形成されていることになる。
According to the dissimilar metal bonding method described above, the new surfaces of the materials to be bonded made of different metals are directly bonded to each other, and eutectic melting is performed between at least one of the materials to be bonded around the bonded portion. At least one of the generated third material, the material to be joined, the reaction product of the third material and the material to be joined, the reaction product produced in the joining process, etc. is discharged to obtain a convenient structure, and the melting point of the base material The oxide film on the surface of the material to be bonded can be removed at a lower temperature, and the bonding interface temperature is controlled above the eutectic temperature and below the melting point of the material with the lower melting point of both materials to be bonded. The formation of the intermetallic compound can be suppressed, and it is possible to obtain a strong bond by mutual diffusion. At this time, the remaining at the bonding interface such as the third material, eutectic melt, and removed oxide film causes a decrease in strength. Indentation corresponding to the shape of the electrode tip is formed.
When a sealing material described later is sandwiched, the new surfaces of the materials to be bonded are directly bonded to each other, and eutectic melting occurs between at least one material of the materials to be bonded around the bonded portion. 3 material, the material to be bonded, the reaction product of the third material and the material to be bonded, and at least one selected from the group consisting of the reaction material generated in the bonding process, and the sealing material are discharged, The portion is shielded (sealed) from the external atmosphere by the discharged sealing material, and an indentation corresponding to the tip shape of the electrode is formed on the surface of the material to be joined.

上記した異種金属接合方法を自動車用部品の接合に適用した場合、例えばルーフパネルにアルミニウム合金等の軽合金、車体骨格部材に亜鉛めっき鋼板を適用することによって、軽量、高剛性かつ低重心な運動性能の高い車両を低コストで容易に製造することができ、これら部品を安価に提供することができるようになる。   When the dissimilar metal joining method described above is applied to the joining of automobile parts, for example, by applying a light alloy such as an aluminum alloy to the roof panel and a galvanized steel sheet to the vehicle body skeleton member, a lightweight, high rigidity and low center of gravity motion A high-performance vehicle can be easily manufactured at low cost, and these components can be provided at low cost.

さらに、本発明の異種金属接合方法においては、必要に応じて、上記被接合材の少なくとも一方と第3の材料との間にシール材を介在させた状態で接合することもでき、これによって、シール材が接合部への水の浸入を防止し、強度と、防錆(異種金属接触による電食)を同時に実現することができる。さらに本発明のような抵抗溶接の場合、シール材の電気抵抗によって使用電流値を抑制でき、エネルギ効率を向上させることが可能となる。
このとき、先端が曲率を有する断面が円形の電極だけではなく、図4に示したように横長の断面形状を有する電極を用いることによって、被接合材間に介在するシール材を接合部から円滑に排出することができる。
Furthermore, in the dissimilar metal joining method of the present invention, if necessary, it is possible to join in a state where a sealing material is interposed between at least one of the materials to be joined and the third material, The sealing material prevents water from entering the joint and can simultaneously achieve strength and rust prevention (electrolytic corrosion due to contact with different metals). Furthermore, in the case of resistance welding as in the present invention, the current value can be suppressed by the electrical resistance of the sealing material, and the energy efficiency can be improved.
At this time, by using not only an electrode having a curvature at the tip but a circular cross section but also an electrode having a horizontally long cross section as shown in FIG. Can be discharged.

なお、本発明において、上記シール材としては、例えば、エポキシ樹脂系、合成ゴム系、合成ゴム/PVC系材料などを用いることができ、このような材料を溶液状にして被接合材料の接合面に塗布したり、シート状にしたものを両材料の間に挟んだりすることができる。   In the present invention, as the sealing material, for example, an epoxy resin-based material, a synthetic rubber-based material, a synthetic rubber / PVC-based material, or the like can be used. It can be applied to a sheet, or a sheet can be sandwiched between both materials.

図5(a)は、図4に示したような矩形状断面を有する電極E1を用いて、亜鉛めっき鋼板1とアルミニウム合金材2の間にシール材5を挟んだ状態の被接合材を抵抗スポット溶接する要領を説明するものであって、電極E1,E1は、被接合材の接合フランジ部の長手方向に電極断面の長さ方向が一致するように配置される。
このように電極を配置することでフランジ幅を短縮でき軽量化をはかることができる。さらに図12(a)に対して図12(b)のように、アルミのルーフとサイドメンバにこの接合を用いた場合、接合幅(e)を短縮することができ、意匠性が向上する。
そして、これら電極E1,E1による押し付け荷重が増すと共に、シール材5が接合界面から排出され、亜鉛めっき鋼板1とアルミニウム合金材2が接触することによって、電極E1,E1を介して両材料間に電流が流れ、図2に示したような過程によって、共晶溶融が生じ、両材料が接合される。
FIG. 5A shows a resistance of a material to be bonded in a state in which the seal material 5 is sandwiched between the galvanized steel plate 1 and the aluminum alloy material 2 by using the electrode E1 having a rectangular cross section as shown in FIG. The procedure for spot welding will be described. The electrodes E1 and E1 are arranged so that the longitudinal direction of the electrode cross section coincides with the longitudinal direction of the joining flange portion of the joined material.
By arranging the electrodes in this way, the flange width can be shortened and the weight can be reduced. Further, as shown in FIG. 12 (b) with respect to FIG. 12 (a), when this joining is used for the aluminum roof and the side member, the joining width (e) can be shortened and the design is improved.
And while the pressing load by these electrodes E1 and E1 increases, the sealing material 5 is discharged | emitted from a joining interface, and when the galvanized steel plate 1 and the aluminum alloy material 2 contact, between both materials via electrodes E1 and E1 Electric current flows, and eutectic melting occurs by the process as shown in FIG. 2, and both materials are joined.

このとき、電極E1,E1は、上記したように矩形状断面を有し、しかも先端部が曲面となっていることから、図中に矢印で示すように、シール材5が接合フランジ部の幅方向に円滑に排出され、排出されたシール材5が接合部端部を水密状態とし、鋼とアルミニウムの接触による異種金属接触腐食を防止することができる。   At this time, since the electrodes E1 and E1 have a rectangular cross section as described above, and the tip portion is a curved surface, the sealing material 5 has a width of the joining flange portion as indicated by an arrow in the figure. The discharged sealing material 5 is smoothly discharged in the direction, and the joint end portion is made watertight, so that different metal contact corrosion due to contact between steel and aluminum can be prevented.

また、このとき、図5(a)に示したように,亜鉛めっき鋼板1の側にハット状の加工を施すことにより、接合界面からのシール材5の排出が容易に行われるようになり、排出効率を高めることができる。
なお、ハット形状は亜鉛めっき鋼板1の側のみならず、図5(b)に示すように、アルミニウム合金材2の側や、図5(c)に示すように、亜鉛めっき鋼板1とアルミニウム合金材2の両方に形成するようにしてもよい。
At this time, as shown in FIG. 5 (a), by performing a hat-like process on the side of the galvanized steel sheet 1, the sealing material 5 is easily discharged from the bonding interface. Emission efficiency can be increased.
The hat shape is not only on the galvanized steel sheet 1 side, but also on the aluminum alloy material 2 side as shown in FIG. 5 (b), and on the galvanized steel sheet 1 and aluminum alloy as shown in FIG. 5 (c). You may make it form in both of the material 2. FIG.

さらに、このとき、図6(a)〜(c)に示すように、予めアルミニウム合金材2の接合フランジ部に凹部2gを設けたり、亜鉛めっき鋼板1のフランジ部に凹部1gを設けたりすることができ、このような凹部2g、1gに接合部から排出されたシール材5が入り込むことによって、シール材5の接合部からの排出が円滑に行なわれるようになり、フランジ部の幅が広い場合でもシール材5の排出を効率よく実行することができる。   Further, at this time, as shown in FIGS. 6A to 6C, the recess 2 g is provided in advance in the joint flange portion of the aluminum alloy material 2, or the recess 1 g is provided in the flange portion of the galvanized steel sheet 1. When the sealing material 5 discharged from the joint portion enters the recesses 2g and 1g, the sealing material 5 is smoothly discharged from the joint portion, and the width of the flange portion is wide. However, the discharge of the sealing material 5 can be performed efficiently.

図7は、上記のように電極E1の長辺側をフランジ端縁に平行に配置した状況を示し、このような電極配置を採用することによって、電極E1の長辺側からのシール材5のフランジ幅方向(矢印方向)への排出が促進される結果、接合フランジの長手方向におけるシール材5の相互干渉が減り、シール材5の流れが滞らず、接合界面からシール材5を効率良く排出することができる。また、接合フランジ幅の短縮による意匠やデザイン性の向上と共に、部材の軽量化も可能になる。   FIG. 7 shows a situation in which the long side of the electrode E1 is arranged in parallel to the flange edge as described above. By adopting such an electrode arrangement, the sealing material 5 from the long side of the electrode E1 is shown. As a result of promoting the discharge in the flange width direction (arrow direction), the mutual interference of the sealing material 5 in the longitudinal direction of the joining flange is reduced, the flow of the sealing material 5 is not delayed, and the sealing material 5 is efficiently discharged from the joining interface. can do. In addition, the design and design can be improved by shortening the joint flange width, and the weight of the member can be reduced.

以下、本発明を実施例に基づいて具体的に説明するが、本発明は、これら実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by these Examples.

(実施例1)
図8に示したような交流電源タイプの抵抗スポット溶接装置を用いて、0.6mm〜3.2mmの板厚を有する6000系アルミニウム合金材2と、板厚0.55mm〜2.8mmの亜鉛めっき鋼板1との接合を行った。
なお、亜鉛めっき鋼板1の亜鉛めっき厚さについては、約20μmのめっき厚のものを使用した。
Example 1
6000 series aluminum alloy material 2 having a thickness of 0.6 mm to 3.2 mm and zinc having a thickness of 0.55 mm to 2.8 mm using an AC power source type resistance spot welding apparatus as shown in FIG. Bonding with the plated steel sheet 1 was performed.
In addition, about the galvanization thickness of the galvanized steel plate 1, the thing of the plating thickness of about 20 micrometers was used.

このとき、図9に示すような先端形状を有し、電極径16mm、先端面の曲率半径Rが5mm〜200mmの範囲の電極E2,E2を用いて接合を実施した。先端面の曲率半径Rは、被接合材の板厚に応じて決まる。一例として、板厚0.55mmの亜鉛めっき鋼板と板厚1.0mmの6000系アルミニウム合金材の組み合せにおける溶接条件を示すと、電極先端の曲率半径Rは40mm、溶接電流30000A、通電時間0.24秒、加圧力300kgfにて接合を実施した。シール材を入れた場合にはシール材が無い場合に比べて、上述したとおり溶接電流を抑制することが可能となる。また、シール材の残存は強度低下につながることから、継手強度確保のためにはシール材の良好な排出が望まれる。そのため、シール材がない場合に比べて、シール材がある場合の電極先端形状の最適領域は被接合材の板厚が同じ場合、均一な電流密度分布や加圧分布の均一さを損なわない程度に曲率が小さい領域に若干シフトする。
各スポット溶接継手の強度をそれぞれ調査し、シール材無しの場合の結果を表1に示す なお、継手強度については、アルミニウム材同士のJIS規格基準(JIS Z 3140)を大幅に上回るものを極めて良好「◎」、上記JIS規格をクリアするものを良好「○」、上記JIS規格を僅かに下回るものをやや不良「△」、上記JIS規格を下回るものを不良「×」として評価し、これらの記号を表中に記載した。
At this time, joining was performed using electrodes E2 and E2 having a tip shape as shown in FIG. 9 and having an electrode diameter of 16 mm and a radius of curvature R of the tip surface of 5 mm to 200 mm. The curvature radius R of the front end surface is determined according to the thickness of the material to be joined. As an example, welding conditions in a combination of a galvanized steel sheet having a thickness of 0.55 mm and a 6000 series aluminum alloy material having a thickness of 1.0 mm are shown. The curvature radius R of the electrode tip is 40 mm, the welding current is 30000 A, and the energization time is 0. Bonding was performed for 24 seconds at a pressure of 300 kgf. When the sealing material is added, the welding current can be suppressed as described above as compared with the case where there is no sealing material. Further, since the remaining seal material leads to a decrease in strength, it is desired that the seal material be discharged well in order to secure the joint strength. Therefore, compared to the case where there is no seal material, the optimum region of the electrode tip shape when there is a seal material is the degree that does not impair the uniformity of the uniform current density distribution and pressure distribution when the plate thickness of the material to be joined is the same. Slightly shifts to a region where the curvature is small.
The strength of each spot welded joint is investigated, and the results without seal material are shown in Table 1. Note that the joint strength is extremely good when it greatly exceeds the JIS standard (JIS Z 3140) between aluminum materials. “◎”, those that pass the above JIS standards are evaluated as “good”, those that are slightly below the above JIS standards are evaluated as “bad”, those that are below the above JIS standards are evaluated as “poor”, and these symbols Is described in the table.

Figure 0005051608
Figure 0005051608

この結果、例えば板厚tが1.0mmのアルミニウム合金材の場合、曲率半径Rが5mm、10mmのときに、上記JIS規格に比べて良好、曲率半径Rが20mm、40mm、50mmのときに極めて良好、曲率半径Rが75mmのときにやや不良、そして曲率半径Rが100mmを超えると不良となった。また、アルミニウム合金材の板厚が大きくなると、それに伴って電極先端面の曲率半径Rの好適範囲が、大径側に移行する傾向が確認された。   As a result, for example, in the case of an aluminum alloy material having a plate thickness t of 1.0 mm, when the curvature radius R is 5 mm or 10 mm, it is better than the JIS standard, and when the curvature radius R is 20 mm, 40 mm or 50 mm, Good, slightly poor when the radius of curvature R was 75 mm, and poor when the radius of curvature R exceeded 100 mm. Moreover, when the plate | board thickness of aluminum alloy material became large, the tendency for the suitable range of the curvature radius R of an electrode front end surface to transfer to the large-diameter side was confirmed in connection with it.

(実施例2)
上記実施例1と同様に、図8に示した交流電源タイプの抵抗スポット溶接装置を用い、板厚1.0mmの6000系アルミニウム合金材2と、板厚0.55mmの亜鉛めっき鋼板1(めっき厚さ約5μm)との接合を行った。
このとき、図10に示すような先端形状を有し、電極径Dが16mmであって、先端中心部の曲面加工範囲径dを6.4mm〜11.5mm、その曲面の曲率半径rを5mm〜200mmの範囲の変えた電極E2,E2を用いて接合を実施した。先端の曲面の曲率半径rは曲面加工範囲径dに応じて決まる。一例として、板厚0.55mmの亜鉛めっき鋼板と板厚1.0mmの6000系アルミニウム合金材の組み合せにおける溶接条件を示すと、電極の曲率半径rは75mm、曲面加工範囲径dは8mm、溶接電流24000A、通電時間0.24秒、加圧力200kgfにて接合を実施した。同様に、シール材を入れた場合にはシール材が無い場合に比べて、上述したとおり溶接電流を抑制することが可能となる。上記同様、シール材の残存は強度低下につながることから、継手強度確保のためにはシール材の良好な排出が望まれる。そのため、シール材がない場合に比べて、シール材がある場合の電極先端形状の最適領域は被接合材の板厚が同じ場合、均一な電流密度分布や加圧分布の均一さを損なわない程度に曲率が小さい領域に若干シフトする。
各スポット溶接継手の強度をそれぞれ調査し、シール材無しの場合の結果を表2に示す。
なお、継手強度の評価基準は、上記実施例1と同様である。
(Example 2)
In the same manner as in Example 1, the AC power source type resistance spot welding apparatus shown in FIG. 8 was used, and a 6000 series aluminum alloy material 2 having a thickness of 1.0 mm and a galvanized steel sheet 1 having a thickness of 0.55 mm (plating) And a thickness of about 5 μm).
At this time, it has a tip shape as shown in FIG. 10, the electrode diameter D is 16 mm, the curved surface processing range diameter d of the tip center portion is 6.4 mm to 11.5 mm, and the curvature radius r of the curved surface is 5 mm. Bonding was performed using the electrodes E2 and E2 in the range of ˜200 mm. The curvature radius r of the curved surface at the tip is determined according to the curved surface processing range diameter d. As an example, the welding conditions in the combination of a galvanized steel sheet having a thickness of 0.55 mm and a 6000 series aluminum alloy material having a thickness of 1.0 mm are shown. The curvature radius r of the electrode is 75 mm, the curved surface processing range diameter d is 8 mm, welding Joining was performed at an electric current of 24000 A, an energization time of 0.24 seconds, and a pressure of 200 kgf. Similarly, when the sealing material is inserted, the welding current can be suppressed as described above as compared with the case where there is no sealing material. As described above, since the remaining seal material leads to a decrease in strength, good discharge of the seal material is desired for securing the joint strength. Therefore, compared to the case where there is no seal material, the optimum region of the electrode tip shape when there is a seal material is the degree that does not impair the uniformity of the uniform current density distribution and pressure distribution when the plate thickness of the material to be joined is the same. Slightly shifts to a region where the curvature is small.
The strength of each spot welded joint was investigated, and the results in the case of no sealant are shown in Table 2.
In addition, the evaluation criteria of joint strength are the same as the said Example 1.

Figure 0005051608
Figure 0005051608

この結果、例えば、電極先端中心部の曲面加工範囲径dが8.0mmの場合、先端の曲率半径rが5mm、10mmのときに、上記JIS規格に比べて良好、曲率半径rが20mm、40mm、50mmのときに極めて良好、曲率半径rが75mmのときにやや不良、そして曲率半径rが100mmを超えると不良となることが判った。また、電極先端部の加工範囲径dが大きくなると、それに伴って先端面の曲率半径rの好適範囲も大径側に僅かに移行する傾向が認められた。   As a result, for example, when the curved surface processing range diameter d at the center of the electrode tip is 8.0 mm, when the radius of curvature r of the tip is 5 mm or 10 mm, it is better than the JIS standard, and the radius of curvature r is 20 mm or 40 mm. It was found that the film was extremely good when the radius of curvature was 50 mm, slightly poor when the radius of curvature r was 75 mm, and poor when the radius of curvature r exceeded 100 mm. Further, when the machining range diameter d of the electrode tip portion was increased, the tendency that the preferred range of the curvature radius r of the tip surface also slightly shifted to the larger diameter side was recognized.

(実施例3)
図8に示したような交流電源タイプの抵抗スポット溶接装置を用いて、図11(a)及び(b)に示すように、板厚0.55mmの亜鉛めっき鋼板1と、板厚1.0mmの6000系アルミニウム合金材2から成り、接合フランジ部を有するピラーやシルを組み立てるに際して、図9に示したような先端部が曲面形状をなす直径15mmの円柱状をなす電極E2と、図4に示したように、12mm×4mmの矩形状断面を有する電極E1を用いて、上記フランジ部をそれぞれ抵抗スポット溶接した。
なお、溶接条件としては、溶接電流30000A、通電時間12サイクル、加圧力120kgfの条件を採用した。
(Example 3)
Using an AC power source type resistance spot welding apparatus as shown in FIG. 8, as shown in FIGS. 11 (a) and 11 (b), a galvanized steel sheet 1 having a thickness of 0.55 mm and a thickness of 1.0 mm When the pillar or sill comprising the 6000 series aluminum alloy material 2 and having the joining flange portion is assembled, the electrode E2 having a cylindrical shape with a diameter of 15 mm, the tip portion having a curved shape as shown in FIG. 9, and FIG. As shown, the flange portions were each resistance spot welded using an electrode E1 having a rectangular cross section of 12 mm × 4 mm.
As welding conditions, a welding current of 30000 A, energization time of 12 cycles, and a pressure of 120 kgf were employed.

その結果、いずれの場合も電極先端部が曲面を備えていることから、亜鉛や、溶融共晶金属、酸化皮膜等の反応生成物が接合界面から円滑に排出され、被接合材の新生面同士が直接強固に接合されることが確認されたが、図11(a)に示したように円柱状電極を用いた場合のフランジ幅bに較べて、図11(b)に示すように矩形状断面電極を用いた場合には、断面積が同等の場合、電極幅を小さくすることができることから、接合フランジ幅cを小さくすることができ、部品の軽量化及び材料コストの低減を実現することができた。   As a result, since the electrode tip has a curved surface in any case, reaction products such as zinc, molten eutectic metal, and oxide film are smoothly discharged from the bonding interface, and the new surfaces of the materials to be bonded are As shown in FIG. 11 (b), it was confirmed that the material was directly and firmly joined, but compared to the flange width b when using a cylindrical electrode as shown in FIG. 11 (a). When the electrodes are used, if the cross-sectional areas are the same, the electrode width can be reduced. Therefore, the joint flange width c can be reduced, and the weight of the component and the material cost can be reduced. did it.

(実施例4)
図8に示したような交流電源タイプの抵抗スポット溶接装置を用いて、図12に示すように、板厚0.55mmの亜鉛めっき鋼板製のレールアウタ11a及びレールインナ11bから成る車体骨格部材に、板厚1.0mmの6000系アルミニウム合金材から成るルーフパネル12を接合するに際して、図4に示したような矩形状断面を有する電極E1を用いてスポット溶接することによって、図12(a)に示すように、リベットを用いて接合する従来方法における接合部幅dに較べて、図12(b)に示すようにルーフパネル12と車体骨格部材の間の接合部幅eを小さくすることができ、形状自由度が増すと共に、意匠性やデザイン性が向上する。
さらに、ルーフパネル12が軽合金で、車体骨格部材が亜鉛めっき鋼板であることから、軽量、高剛性しかも低重心な運動性能の高い車両を低コストで製造することができるようになった。
Example 4
Using an AC power source type resistance spot welding apparatus as shown in FIG. 8, as shown in FIG. 12, a vehicle body skeleton member composed of a rail outer 11 a and a rail inner 11 b made of a galvanized steel plate having a thickness of 0.55 mm is used. When joining the roof panel 12 made of a 6000 series aluminum alloy material having a plate thickness of 1.0 mm, spot welding is performed using the electrode E1 having a rectangular cross section as shown in FIG. As shown in FIG. 12B, the joint width e between the roof panel 12 and the vehicle body frame member can be made smaller than the joint width d in the conventional method of joining using rivets. As the degree of freedom of shape increases, design and design are improved.
Furthermore, since the roof panel 12 is a light alloy and the vehicle body skeleton member is a galvanized steel sheet, a vehicle with high movement performance that is lightweight, highly rigid and has a low center of gravity can be manufactured at low cost.

Al−Zn系2元状態図における共晶点を示すグラフである。It is a graph which shows the eutectic point in an Al-Zn type binary phase diagram. (a)〜(e)は本発明による異種金属の接合過程を概略的に示す工程図である。(A)-(e) is process drawing which shows roughly the joining process of the dissimilar metal by this invention. スポット溶接用電極先端部の曲率半径Rと強度因子の関係を定性的に説明するグラフである。It is a graph which illustrates qualitatively the relationship between the radius of curvature R of the spot welding electrode tip and the strength factor. 本発明に用いる電極の実施形態の一例を示す縦断面図(a)、斜視図(b)及び横断面図(c)である。It is the longitudinal cross-sectional view (a), perspective view (b), and cross-sectional view (c) which show an example of embodiment of the electrode used for this invention. 亜鉛めっき鋼板とアルミニウム合金材の間にシール材を挟持した被接合材を矩形状断面を有する電極Eを用いて抵抗スポット溶接する例を示す斜視図である。It is a perspective view which shows the example which carries out resistance spot welding of the to-be-joined material which clamped the sealing material between the galvanized steel plate and the aluminum alloy material using the electrode E which has a rectangular cross section. 図5に示した被接合材の抵抗スポット溶接に際して被接合材にシール材を流入させる凹部を形成した例を示す斜視図である。It is a perspective view which shows the example which formed the recessed part into which a sealing material flows in into a to-be-joined material at the time of resistance spot welding of the to-be-joined material shown in FIG. 電極の長辺側をフランジ端縁に平行に配置した場合のシール材の排出状況を概念的に示す斜視である。It is a perspective view which shows notionally the discharge condition of the sealing material at the time of arrange | positioning the long side of an electrode in parallel with a flange edge. 本発明の実施例に用いた抵抗スポット溶接装置を示す概略図である。It is the schematic which shows the resistance spot welding apparatus used for the Example of this invention. 本発明の実施例1に用いた電極形状及び抵抗スポット溶接要領を示す説明図である。It is explanatory drawing which shows the electrode shape and the resistance spot welding procedure used for Example 1 of this invention. 本発明の実施例2に用いた電極形状及び抵抗スポット溶接要領を示す説明図である。It is explanatory drawing which shows the electrode shape and the resistance spot welding procedure used for Example 2 of this invention. 本発明の実施例3として自動車部材の抵抗スポット溶接要領を説明する斜視図である。It is a perspective view explaining the resistance spot welding point of a motor vehicle member as Example 3 of the present invention. 本発明の実施例3として自動車部材の抵抗スポット溶接要領を説明する断面図である。It is sectional drawing explaining the resistance spot welding procedure of a motor vehicle member as Example 3 of this invention.

符号の説明Explanation of symbols

1 亜鉛めっき鋼板(被接合材)
1p 亜鉛めっき層(第3の材料)
1g 凹部
2 アルミニウム合金材(被接合材)
2g 凹部
5 シール材
E1、E2 電極
1 Galvanized steel sheet (material to be joined)
1p Zinc plating layer (third material)
1g Concavity 2 Aluminum alloy material (material to be joined)
2g Concave part 5 Sealing material E1, E2 Electrode

Claims (9)

互いに異なる金属材料同士を重ね合わせた被接合材の間に上記金属材料とは異なる金属から成る第3の材料を介在させ、電極による加圧と通電によって上記被接合材の一方の材料の酸化皮膜の一部を破壊して第3の材料と局部接触させ、該接触部を起点として一方の材料と第3の材料との間に生じた共晶溶融を拡大させて、接合界面の酸化皮膜を破壊し、接合界面から共晶溶融金属と共に酸化皮膜を排除して被接合材を抵抗スポット溶接するに際し、先端部に曲面を有する電極を少なくとも一方の電極として使用することを特徴とする異種金属接合方法。 A third material made of a metal different from the above metal material is interposed between the materials to be joined which are made by stacking different metal materials, and an oxide film of one material of the material to be joined by pressurization and energization by an electrode A portion of the material is destroyed and brought into local contact with the third material, and the eutectic melting generated between the one material and the third material is expanded from the contact portion as a starting point, thereby forming an oxide film at the bonding interface. Dissimilar metal bonding characterized in that an electrode having a curved surface at the tip is used as at least one of the electrodes when breaking and removing the oxide film together with the eutectic molten metal from the bonding interface to perform resistance spot welding. Method. 上記被接合材の少なくとも一方の材料に第3の材料が被覆もしくは被接合材の間にインサートされていることを特徴とする請求項1に記載の異種金属接合方法。   2. The dissimilar metal joining method according to claim 1, wherein a third material is inserted into at least one of the materials to be joined and is covered or covered between the materials to be joined. 上記被接合材の一方の材料が亜鉛めっき鋼板であって、当該亜鉛めっき鋼板にめっきされている亜鉛を第3の材料として利用することを特徴とする請求項2に記載の異種金属接合方法。   3. The dissimilar metal joining method according to claim 2, wherein one of the materials to be joined is a galvanized steel sheet, and the zinc plated on the galvanized steel sheet is used as the third material. 上記電極の接合面に略平行な断面形状における縦横方向の寸法が相違することを特徴とする請求項1〜3のいずれか1つの項に記載の異種金属接合方法。   The dissimilar metal joining method according to any one of claims 1 to 3, wherein dimensions in a longitudinal and transverse direction in a cross-sectional shape substantially parallel to the joining surface of the electrode are different. 上記被接合材に接合フランジ部を設け、該フランジ部において被接合材を接合するに際し、接合フランジ部の長手方向に電極の長手方向を一致させることを特徴とする請求項4に記載の異種金属接合方法。   The dissimilar metal according to claim 4, wherein a joining flange portion is provided in the material to be joined, and the longitudinal direction of the electrode coincides with the longitudinal direction of the joining flange portion when joining the material to be joined at the flange portion. Joining method. 被接合材の他方がアルミニウム合金材であって、上記電極における先端面の曲率半径をR、上記アルミニウム合金材の板厚をtとするとき、t<0.8mmの場合はR<50mm、0.8mm≦t<1.6mmの場合はR<75mm、1.6mm≦t<2.3mmの場合は10mm≦R<75mm、2.3mm≦t≦3.2mmの場合は10mm≦R<150mmであることを特徴とする請求項1〜3のいずれか1つの項に記載の異種金属接合方法。   When the other material to be joined is an aluminum alloy material, the radius of curvature of the tip surface of the electrode is R, and the plate thickness of the aluminum alloy material is t, when t <0.8 mm, R <50 mm, 0 0.8 mm ≦ t <1.6 mm, R <75 mm, 1.6 mm ≦ t <2.3 mm, 10 mm ≦ R <75 mm, 2.3 mm ≦ t ≦ 3.2 mm, 10 mm ≦ R <150 mm The dissimilar metal joining method according to claim 1, wherein the dissimilar metal joining method is provided. 上記電極における先端面の中心部が直径dの円形領域に亘って曲率半径rの曲面をなしており、d≦6.4mmの場合にはr<50mm、6.4mm<d<9.4mmの場合にはr<75mm、9.4mm≦d≦11.5mmの場合には10mm≦r<150mmであることを特徴とする請求項1〜3のいずれか1つの項に記載の異種金属接合方法。   The central portion of the tip surface of the electrode has a curved surface with a radius of curvature r over a circular region having a diameter d. When d ≦ 6.4 mm, r <50 mm and 6.4 mm <d <9.4 mm. 4. The dissimilar metal bonding method according to claim 1, wherein r <75 mm, and 9.4 mm ≦ d ≦ 11.5 mm, 10 mm ≦ r <150 mm. . 上記被接合材の少なくとも一方と第3の材料との間にシール材を介在させることを特徴とする請求項4又は5に記載の異種金属接合方法。   6. The dissimilar metal joining method according to claim 4, wherein a sealing material is interposed between at least one of the materials to be joined and the third material. 上記被接合材の少なくとも一方に、接合部から排出されたシール材が流入する凹部を形成することを特徴とする請求項8に記載の異種金属接合方法。   9. The dissimilar metal joining method according to claim 8, wherein a recess into which the sealing material discharged from the joining portion flows is formed in at least one of the materials to be joined.
JP2006253753A 2006-05-12 2006-09-20 Method of joining dissimilar metals by resistance spot welding Active JP5051608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006253753A JP5051608B2 (en) 2006-05-12 2006-09-20 Method of joining dissimilar metals by resistance spot welding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006133875 2006-05-12
JP2006133875 2006-05-12
JP2006253753A JP5051608B2 (en) 2006-05-12 2006-09-20 Method of joining dissimilar metals by resistance spot welding

Publications (2)

Publication Number Publication Date
JP2007326146A JP2007326146A (en) 2007-12-20
JP5051608B2 true JP5051608B2 (en) 2012-10-17

Family

ID=38926996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006253753A Active JP5051608B2 (en) 2006-05-12 2006-09-20 Method of joining dissimilar metals by resistance spot welding

Country Status (1)

Country Link
JP (1) JP5051608B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104646814A (en) * 2013-10-04 2015-05-27 通用汽车环球科技运作有限责任公司 Aluminum Alloy to Steel Welding Process

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5495093B2 (en) 2008-01-17 2014-05-21 日産自動車株式会社 Joining method and structure of dissimilar metals
JP5326862B2 (en) 2008-09-08 2013-10-30 日産自動車株式会社 Dissimilar metal joining method of magnesium alloy and steel
JP2014208377A (en) * 2013-03-29 2014-11-06 シロキ工業株式会社 Method for welding galvanized steel sheet and raw steel sheet, and method for welding vehicular door sash
JP6795881B2 (en) * 2015-09-02 2020-12-02 日本製鉄株式会社 Feeding electrode for high frequency resistance welding of plated steel sheet
EP3254795A1 (en) * 2016-06-09 2017-12-13 Outokumpu Oyj Resistance spot welding electrode and use of the electrode
KR102200155B1 (en) * 2019-12-06 2021-01-07 주식회사 포스코 Method for manufacturing of welded structure, and welded structure manufactured by thereof
JP7534057B2 (en) 2020-03-31 2024-08-14 ダイハツ工業株式会社 Method for monitoring the current flow state of a welded portion and control device for a resistance welding machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096793A (en) * 1983-10-31 1985-05-30 Isuzu Motors Ltd Rust inhibiting method of panel connection part
JPH01107974A (en) * 1987-10-21 1989-04-25 Hitachi Ltd Sealing structure in sample room
JP2861819B2 (en) * 1993-11-11 1999-02-24 住友金属工業株式会社 Resistance welding method for dissimilar metals
JP3569591B2 (en) * 1996-02-19 2004-09-22 本田技研工業株式会社 Resistance welding method between Fe-based member and Al-based member
JPH09122924A (en) * 1995-10-27 1997-05-13 Yamaha Motor Co Ltd Resistance joining method between different materials
JPH11170061A (en) * 1997-12-11 1999-06-29 Central Motor Co Ltd Welding equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104646814A (en) * 2013-10-04 2015-05-27 通用汽车环球科技运作有限责任公司 Aluminum Alloy to Steel Welding Process
US10166627B2 (en) 2013-10-04 2019-01-01 GM Global Technology Operations LLC Aluminum alloy to steel welding process
US11123816B2 (en) 2013-10-04 2021-09-21 GM Global Technology Operations LLC Aluminum alloy to steel welding process

Also Published As

Publication number Publication date
JP2007326146A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
JP5376391B2 (en) Dissimilar metal joining method and joining structure
JP4905766B2 (en) Method and structure for joining dissimilar metals by resistance welding
JP5051608B2 (en) Method of joining dissimilar metals by resistance spot welding
JP4601052B2 (en) Dissimilar metal joining method
JP4961532B2 (en) Method and apparatus for joining dissimilar metals
JP4957093B2 (en) Dissimilar metal joining method
JP2009000700A (en) Different-mental joining method and joined sructure
JP5326862B2 (en) Dissimilar metal joining method of magnesium alloy and steel
JP4941876B2 (en) Method and structure for joining dissimilar metals by resistance welding
JP5120864B2 (en) Dissimilar materials joining method
JP2008105087A (en) Joining method of iron member with aluminum member, and iron-aluminum joined structure
JP2008284570A (en) Method and apparatus for joining different kinds of metal
JP4961530B2 (en) Method of joining dissimilar metals by resistance spot welding
CN107160022A (en) For aluminium workpiece and steel workpiece resistance spot welding match somebody with somebody composite electrode
US10611125B2 (en) Method for joining dissimilar metals and articles comprising the same
JP2007118059A (en) Method and structure of welding different kind of metallic material
JP5071752B2 (en) Dissimilar metal joining method by resistance seam welding
JP2012152789A (en) Method for joining dissimilar metal plates by overlapping and electric resistance brazing, and brazing joint formed by the same
JP2007144473A (en) Joined body of dissimilar material
JP5186796B2 (en) Joining method and structure of dissimilar metals
JP5077615B2 (en) Resistance seam welding method and welded structure of dissimilar metals
JP2006224145A (en) Method for joining different materials and filler metal therefor
JP4631429B2 (en) Dissimilar materials joining method
JP4962907B2 (en) Dissimilar metal joining method and joining structure
JP2012254484A (en) Method for joining dissimilar metals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 5051608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3