JP5051030B2 - ガスバリア性積層体 - Google Patents

ガスバリア性積層体 Download PDF

Info

Publication number
JP5051030B2
JP5051030B2 JP2008175264A JP2008175264A JP5051030B2 JP 5051030 B2 JP5051030 B2 JP 5051030B2 JP 2008175264 A JP2008175264 A JP 2008175264A JP 2008175264 A JP2008175264 A JP 2008175264A JP 5051030 B2 JP5051030 B2 JP 5051030B2
Authority
JP
Japan
Prior art keywords
epoxy resin
gas barrier
carbonate
group
barrier laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008175264A
Other languages
English (en)
Other versions
JP2010012708A (ja
Inventor
栄一 本多
佳奈 熊本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2008175264A priority Critical patent/JP5051030B2/ja
Publication of JP2010012708A publication Critical patent/JP2010012708A/ja
Application granted granted Critical
Publication of JP5051030B2 publication Critical patent/JP5051030B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は食品や医薬品などの包装材料に好適に使用される、印刷工程後においても安定したガスバリア性能を発揮するガスバリア性積層体に関する。
近年、内容物保存を目的とした包装材料には、透明性、軽量性、経済性等の理由からプラスチックフィルムやシート、あるいはそれらの成形加工品の使用が主流になっている。食品、医薬品、化粧品などの包装に用いられるプラスチックフィルムの要求性能としては、各種ガスに対するバリア性、透明性、耐レトルト処理性、耐屈曲性、柔軟性、ヒートシール性などが挙げられるが、内容物の性能あるいは性質を保持するという目的から、酸素、水蒸気、その他内容物を変質させる気体による影響を防止する必要があり、これらの気体に対する高いバリア性が特に要求されている。
一般に熱可塑性プラスチックフィルムのガスバリア性はそれほど高いものではないことから、これらのフィルムにガスバリア性を付与する手段としては従来、ポリ塩化ビニリデン(PVDC)樹脂をコーティングする手法が主に用いられてきた。しかし、この手法で作製されるPVDCコートフィルムはハロゲン原子を含有しているため焼却時にダイオキシンなどの有害ガスを発生することが問題となっている。
これに代わる技術としてエチレン-酢酸ビニル共重合けん化物(EVOH樹脂)フィルムやポリビニルアルコール(PVA)コーティングなどのガスバリア性積層体が使用されてきたが、EVOH樹脂フィルムやPVAコートフィルムは高湿度下で水分に暴露されたり、煮沸処理やレトルト処理を施すとそのガスバリア性が著しく低下するという問題がある。
熱可塑性ポリマーフィルムにシリカやアルミナなどを蒸着した透明無機蒸着フィルムは高いガスバリア性を有することが知られている(特許文献1〜6参照)。しかしながら、透明無機蒸着フィルムはガスバリア層が硬い無機化合物の蒸着により形成されるため、屈曲によりガスバリア層にクラックやピンホールが発生し、ガスバリア性が著しく低下するという問題がある。
また、透明無機蒸着フィルムは無機蒸着層面に直接接着剤を塗布して張り合わる場合や、無機蒸着層面に直接印刷を行う場合、とりわけ酸化チタンを顔料とする白インキを使用して印刷を行った場合、無機蒸着層に欠損が生じる可能性が高く、ガスバリア性が大きく低下する問題がある。一方、そのような各種工程における、無機蒸着層の欠損を改良する目的で、無機蒸着層の表面に樹脂コート層を設けた透明無機蒸着フィルムが販売されているが、ガスバリア性の低下を十分に防ぐことができないだけでなく、コート層を設ける際に工程が増え、経済的に不利である。
特開平5−269914号公報 特開平5−309777号公報 特開平5−9317号公報 特開平7−137192号公報 特開平10−71663号公報 特開2001−270026号公報
本発明の課題は、上記問題点を解決し、高湿度条件下においてもガスバリア性の低下が少なく、また、無機蒸着層に直接印刷した場合の印刷工程後においても安定したガスバリア性能を発揮するガスバリア性積層体に関する。
本発明者らは上記課題を解決するため鋭意検討した結果、特定の組成のエポキシ樹脂組成物を基材もしくは無機蒸着層面にコートし、引き続き印刷することにより上記課題を解決できることを見出し、本発明に至った。
すなわち、本発明は、次のとおりである。
1. 基材、エポキシ樹脂硬化物層ならびに印刷層が順次積層されている積層体であって、該エポキシ樹脂硬化物層がエポキシ樹脂及びエポキシ樹脂硬化剤からなるエポキシ樹脂組成物を主成分とするものであり、かつ該エポキシ樹脂硬化剤が下記の(A)と(B)と(D)の反応生成物、又は(A)と(B)と(C)と(D)の反応生成物であることを特徴とするガスバリア性積層体。
(A)メタキシリレンジアミン又はパラキシリレンジアミン
(B)ポリアミンとの反応によりアミド基部位を形成し、且つオリゴマーを形成し得る、少なくとも1つのアシル基を有する多官能性化合物
(C)炭素数1〜8の一価カルボン酸及び/又はその誘導体
(D)ポリアミンとの反応により式(1)で示されるカーバメート部位を形成する、式(2)で示されるカーボネート部位を少なくとも1つ有する官能性化合物
Figure 0005051030
2. 前記基材と前記エポキシ樹脂硬化物層との間に無機酸化物からなる蒸着層を有する第1項記載のガスバリア性積層体。
3. 前記エポキシ樹脂組成物中のエポキシ樹脂及びエポキシ樹脂硬化剤の配合割合が、エポキシ樹脂中のエポキシ基に対するエポキシ樹脂硬化剤中の活性水素の当量比(活性水素/エポキシ基)として、0.2〜5.0の範囲であることを特徴とする第1項又は第2項記載のガスバリア性積層体。
4. (A)と(B)と(D)の反応、又は(A)と(B)と(C)と(D)の反応を行う際の(A)の活性水素数に対する、(B)の炭素−炭素二重結合数、(B)のアシル基数の2倍、(C)のカルボキシル基及びその誘導官能基の数ならびに(D)のカーボネート部位数の和の比が、0.25〜0.99の範囲であることを特徴とする第1項〜第3項のいずれかに記載のガスバリア性積層体。
5. 前記エポキシ樹脂硬化物層の酸素透過係数が、10.0ml・mm/(m・day・MPa)以下である第1項〜第4項のいずれかに記載のガスバリア性積層体。
6. 前記(A)が、メタキシリレンジアミンである第1項〜第5項のいずれかに記載のガスバリア性積層体。
7. 前記(B)多官能性化合物が、アクリル酸、メタクリル酸及び/又はそれらの誘導体である第1項〜第5項のいずれかに記載のガスバリア性積層体。
8. 前記(C)炭素数1〜8の一価カルボン酸及び/又はそれらの誘導体が、蟻酸、酢酸、プロピオン酸、酪酸、乳酸、グリコール酸、安息香酸及び/又はその誘導体である第1項〜第5項のいずれかに記載のガスバリア性積層体。
9. 前記(D)が、エチレンカーボネート、プロピレンカーボネート、トリメチレンカーボネート、1,2−ブチレンカーボネート及び/又はグリセリンカーボネートである第1項〜第5項のいずれかに記載のガスバリア性積層体。
10. 前記エポキシ樹脂硬化剤が、(a)メタキシリレンジアミンと、(b)アクリル酸、メタクリル酸及び/又はそれらの誘導体と、(d)エチレンカーボネート、プロピレンカーボネート、トリメチレンカーボネート、1,2−ブチレンカーボネート及び/又はグリセリンカーボネートとの反応生成物である請求項1〜4のいずれかに記載のガスバリア性積層体。
11. 前記(a)と(b)と(d)の反応モル比((a)対(b)対(d))が1対0.7〜0.95対0.1〜0.7の範囲である第10項に記載のガスバリア性積層体。
12. 前記エポキシ樹脂がメタキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、1,3−ビス(アミノメチル)シクロヘキサンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、ジアミノジフェニルメタンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、パラアミノフェノールから誘導されたグリシジルアミノ基及び/又はグリシジルオキシ基を有するエポキシ樹脂、ビスフェノールAから誘導されたグリシジルオキシ基を有するエポキシ樹脂、ビスフェノールFから誘導されたグリシジルオキシ基を有するエポキシ樹脂、フェノールノボラックから誘導されたグリシジルオキシ基を有するエポキシ樹脂及びレゾルシノールから誘導されたグリシジルオキシ基を有するエポキシ樹脂からなる群より選ばれる少なくとも1つの樹脂である第1項〜第11項のいずれかに記載のガスバリア性積層体。
13. 前記エポキシ樹脂が、メタキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、及び/又はビスフェノールFから誘導されたグリシジルオキシ基を有するエポキシ樹脂を主成分とするものである第1項〜第11項のいずれかに記載のガスバリア性積層体。
14. 前記エポキシ樹脂が、メタキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂を主成分とするものである第1項〜第11項のいずれかに記載のガスバリア性積層体。
15. 第1項又は第2項に記載の積層体を製造する際に、基材もしくは基材上に形成された無機酸化物からなる蒸着層上にエポキシ樹脂組成物を塗布、乾燥し、次いで該エポキシ樹脂組成物上に印刷層を形成することを特徴とするガスバリア性積層体の製造方法。
本発明によれば、ガスバリア性に加え、非ハロゲン系材料であることから、例えば、食品、医薬品及び工業用品等の種々の物品を包装するために有用なガスバリア性積層体を得ることができる。
本発明のガスバリア性積層体は少なくとも、基材、エポキシ樹脂硬化物層及び印刷層の3層からなる。以下、本発明についてさらに詳しく説明する。
本発明に用いられる基材としてのフィルム材料は、例えばポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系フィルム;ナイロン6、ナイロン6,6、メタキシレンアジパミド(N−MXD6)などのポリアミド系フィルム;低密度ポリエチレン、高密度ポリエチレン、直線状低密度ポリエチレン、ポリプロピレンなどのポリオレフィン系フィルム;ポリ乳酸などの生分解性フィルム;ポリアクリロニトリル系フィルム;ポリ(メタ)アクリル系フィルム;ポリスチレン系フィルム;ポリカーボネート系フィルム;エチレン−ビニルアルコール共重合体(EVOH)系フィルム;ポリビニルアルコール系フィルム;カートンなどの紙類;アルミや銅などの金属箔が挙げられる。また、これらの基材として用いられる各種材料にポリ塩化ビニリデン(PVDC)樹脂やポリビニルアルコール樹脂、エチレン−酢酸ビニル共重合体けん化物系樹脂、アクリル系樹脂などの各種ポリマーによるコーティングを施したフィルム;無機フィラーなどを分散させたフィルム;酸素捕捉機能を付与したフィルムなどが使用できる。また、コーティングする各種ポリマーについても無機フィラーを分散させることができる。無機フィラーとしては、シリカ、アルミナ、マイカ、タルク、アルミニウムフレーク、ガラスフレークなどが挙げられるが、モンモリロナイトなどの層状珪酸塩が好ましく、またその分散方法としては例えば押出混錬法や樹脂溶液への混合分散法など従来公知の方法が使用できる。酸素捕捉機能を付与させる方法としては、例えば、ヒンダードフェノール類、ビタミンC、ビタミンE、有機燐化合物、没食子酸、ピロガロール等の酸素と反応する低分子有機化合物や、コバルト、マンガン、ニッケル、鉄、銅等の遷移金属化合物等を含む組成物を少なくとも一部に使用する方法等が挙げられる。
これらのフィルム材料の厚さとしては10〜300μm程度、好ましくは10〜100μm程度、より好ましくは10〜50μm程度が実用的であり、プラスチックフィルムの場合は一軸ないし二軸方向に延伸されているものでもよい。また、基材は、単層構成でも多層構成でもよい。
本発明においては、上記基材と後述するエポキシ硬化物層との間に無機酸化物からなる蒸着層が存在してもよい。無機酸化物からなる蒸着層は、珪素、アルミニウム、マグネシウム、亜鉛、錫、ニッケル、あるいはそれらの混合物などの無機酸化物の蒸着膜からなり、透明性を有しかつ酸素、水蒸気等のガスバリア性を有する層であればよい。各種殺菌耐性を配慮すると、これらの中では酸化ケイ素、酸化アルミニウムが特に好ましい。該無機蒸着層は真空蒸着法、スパッタリング法、プラズマ気相成長法(CVD法)などの真空プロセスにより上記基材上に形成され、その膜厚は、20〜6000オングストロームの範囲が適している。20オングストローム未満では薄膜の連続性の問題やガスバリア性が落ちてくる。また、6000オングストロームを超えるとクラックが発生しやすい。なお、基材と無機蒸着層との密着性を向上させるために、アンカーコート層を設けても良い。
本発明におけるエポキシ樹脂は、脂肪族化合物、脂環式化合物、芳香族化合物又は複素環式化合物のいずれであってもよいが、高いガスバリア性の発現を考慮した場合には芳香族部位を分子内に含むエポキシ樹脂が好ましく、下記(3)式の骨格構造を分子内に含むエポキシ樹脂がより好ましい。
Figure 0005051030
具体例としては、メタキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、1,3−ビス(アミノメチル)シクロヘキサンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、ジアミノジフェニルメタンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、パラアミノフェノールから誘導されたグリシジルアミノ基及び/又はグリシジルオキシ基を有するエポキシ樹脂、ビスフェノールAから誘導されたグリシジルオキシ基を有するエポキシ樹脂、ビスフェノールFから誘導されたグリシジルオキシ基を有するエポキシ樹脂、フェノールノボラックから誘導されたグリシジルオキシ基を有するエポキシ樹脂及びレゾルシノールから誘導されたグリシジルオキシ基を有するエポキシ樹脂などが挙げられる。中でもメタキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、1,3−ビス(アミノメチル)シクロヘキサンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、ビスフェノールFから誘導されたグリシジルオキシ基を有するエポキシ樹脂及びレゾルシノールから誘導されたグリシジルオキシ基を有するエポキシ樹脂が好ましい。
更に、ビスフェノールFから誘導されたグリシジルオキシ基を有するエポキシ樹脂やメタキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂を主成分として使用することがより好ましく、メタキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂を主成分として使用することが特に好ましい。
また、柔軟性や耐衝撃性、耐湿熱性などの諸性能を向上させるために、上記の種々のエポキシ樹脂を適切な割合で混合して使用することもできる。
前記エポキシ樹脂は、アルコール類、フェノール類又はアミン類とエピハロヒドリンの反応により得られる。例えば、メタキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂は、メタキシリレンジアミンにエピクロルヒドリンを付加させることで得られる。メタキシリレンジアミンは4つのアミノ水素を有するので、モノ−、ジ−、トリ−及びテトラグリシジル化合物が生成する。グリシジル基の数はメタキシリレンジアミンとエピクロルヒドリンとの反応比率を変えることで変更することができる。例えば、メタキシリレンジアミンに約4倍モルのエピクロルヒドリンを付加反応させることにより、主として4つのグリシジル基を有するエポキシ樹脂が得られる。
前記エポキシ樹脂は、各種アルコール類、フェノール類及びアミン類に対し過剰のエピハロヒドリンを水酸化ナトリウム等のアルカリ存在下、20〜140℃、好ましくはアルコール類、フェノール類の場合は50〜120℃、アミン類の場合は20〜70℃の温度条件で反応させ、生成するアルカリハロゲン化物を分離することにより合成される。生成したエポキシ樹脂の数平均分子量は各種アルコール類、フェノール類及びアミン類に対するエピハロヒドリンのモル比により異なるが、約80〜4000であり、約200〜1000であることが好ましく、約200〜500であることがより好ましい。
本発明におけるエポキシ樹脂硬化剤は、下記の(A)と(B)と(D)の反応生成物、又は(A)と(B)と(C)と(D)の反応生成物である。
(A)メタキシリレンジアミン又はパラキシリレンジアミン、
(B)ポリアミンとの反応によりアミド基部位を形成し、且つオリゴマーを形成し得る、少なくとも1つのアシル基を有する多官能性化合物、
(C)炭素数1〜8の一価カルボン酸及び/又はその誘導体、
(D)ポリアミンとの反応により上記式(1)で示されるカーバメート部位を形成する、上記式(2)で示されるカーボネート部位を少なくとも1つ有する官能性化合物。
前記(A)メタキシリレンジアミン又はパラキシリレンジアミンとしては、メタキシリレンジアミンがより好ましい。
前記(B)多官能性化合物としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸、こはく酸、リンゴ酸、酒石酸、アジピン酸、イソフタル酸、テレフタル酸、ピロメリット酸、トリメリット酸などのカルボン酸及び/又はその誘導体、例えばエステル、アミド、酸無水物、酸塩化物などが挙げられ、特にアクリル酸、メタクリル酸及び/又はそれらの誘導体のように、アシル基と共役系にある炭素−炭素二重結合を有するものが好ましい。
また、前記(C)の炭素数1〜8の一価カルボン酸及び/又はその誘導体としては、蟻酸、酢酸、プロピオン酸、酪酸、乳酸、グリコール酸、安息香酸などの一価のカルボン酸及び/又はそれらの誘導体、例えばエステル、アミド、酸無水物、酸塩化物などが挙げられる。これらを前記(B)多官能性化合物と併用してポリアミンと反応させても良い。反応により導入されるアミド基部位は高い凝集力を有しており、エポキシ樹脂硬化剤中に高い割合でアミド基部位が存在することにより、より高い酸素バリア性及び各種フィルム材料への良好な接着強度が得られる。
前記(D)官能性化合物は、ポリアミンとの反応によりカーバメート部位を形成する、少なくとも1つのカーボネート部位を有するものである。このような化合物としては、カーボネート部位を有する鎖状の化合物(以下、鎖状カーボネート化合物ということがある)や、カーボネート部位を有する環状の化合物(以下、環状カーボネート化合物ということがある)などが挙げられ、鎖状カーボネート化合物及び環状カーボネート化合物としては、各々以下の一般式(4)及び一般式(5)で示されるものが、好ましく挙げられる。
Figure 0005051030
式(4)中、R及びRは、それぞれ独立に水素原子、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、ベンジル基、フェニル基、ピリジル基、ベンゾチアゾール基、ビフェニル基、ピリジルフェニル基、炭素数3〜10のシクロアルキル基、炭素数3〜10のシクロアルケン基、下記一般式(6)で示される1価の基を示す。R及びRにおけるアルキル基及びアルケニル基は、直鎖状、分岐状、環状のいずれであってもよい。R及びRは、置換基を有していてもよく、置換基としては、例えばF、Cl、Brなどのハロゲン原子、アミノ基などが挙げられ、R及びRが芳香環、あるいは複素環を有する場合は、前記のほか、例えばアルコキシ基、炭素数1〜4の直鎖状、分岐状又は環状のアルキル基、アルケニル基、アルキリジン基や、チオール基、炭素数1〜10のアルキルチオ基、アミノ基、シアノ基、炭素数1〜10のアルキルアミノ基などの硫黄原子あるいは窒素原子を含む官能基などが挙げられる。R及びRが芳香環、あるいは複素環を有する場合は、当該環系を構成する原子のなかに、窒素原子、酸素原子、硫黄原子などのヘテロ原子を含んでいてもよい。なお、上記したR及びRの基は、一例であり、例えば芳香環や複素環を有する基としては、単環式の他、多環式、縮合多環式のいずれであってもよい。
Figure 0005051030
式(6)中、Rは、水素原子、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、ベンジル基、フェニル基、ピリジル基、ベンゾチアゾール基、ビフェニル基、ピリジルフェニル基、炭素数3〜10のシクロアルキル基、炭素数3〜10のシクロアルケン基、及び−ORで示される1価の基などを示す。Rは、単結合、炭素数1〜10のアルキレン基、炭素数2〜10のアルケニレン基、フェニレン基、炭素数3〜10のシクロアルケニル基、炭素数3〜10のシクロアルケニレン基などの2価の基を示す。Rは、水素原子、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、ベンジル基、フェニル基、ピリジル基、ベンゾチアゾール基、ビフェニル基、ピリジルフェニル基、炭素数3〜10のシクロアルキル基、炭素数3〜10のシクロアルケン基などの1価の基を示す。R、R及びRにおけるアルキル基、アルケニル基、アルキレン基、及びアルケニレン基は直鎖状、分岐状、環状のいずれであってもよい。R、R及びRは、置換基を有していてもよく、置換基としては、例えばF、Cl、Brなどのハロゲン原子、アミノ基などが挙げられ、R及びRが芳香環、あるいは複素環を有する場合は、前記のほか、例えばアルコキシ基、炭素数1〜4の直鎖状、分岐状又は環状のアルキル基、アルケニル基、アルキリジン基や、チオール基、炭素数1〜10のアルキルチオ基、アミノ基、シアノ基、炭素数1〜10のアルキルアミノ基などの硫黄原子あるいは窒素原子を含む官能基などが挙げられる。R、R及びRが芳香環、あるいは複素環を有する場合は、当該環系を構成する原子のなかに、窒素原子、酸素原子、硫黄原子などのヘテロ原子を含んでいてもよい。なお、上記したR、R及びRの基は、一例であり、例えば芳香環や複素環を有する基としては、単環式の他、多環式、縮合多環式のいずれであってもよい。
式(5)中、Rは、ハロゲン原子、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、ベンジル基、フェニル基、ピリジル基、ベンゾチアゾール基、ビフェニル基、ピリジルフェニル基、炭素数3〜10のシクロアルキル基、炭素数3〜10のシクロアルケン基、下記一般式(7)で示される1価の基や、炭素数1〜10のアルキレン基、炭素数2〜10のアルケニレン基、フェニレン基、炭素数3〜10のシクロアルケニル基、炭素数3〜10のシクロアルケニレン基などの2価の基などを示す。mは1〜4の整数を示し、kは0〜2×(m+1)の整数を示す。Rにおけるアルキル基、アルケニル基、アルキレン基、及びアルケニレン基は、直鎖状、分岐状、環状のいずれであってもよい。Rは、置換基を有していてもよく、置換基としては、例えばF、Cl、Brなどのハロゲン原子、アミノ基などが挙げられ、R及びRが芳香環、あるいは複素環を有する場合は、前記のほか、例えばアルコキシ基、炭素数1〜4の直鎖状、分岐状又は環状のアルキル基、アルケニル基、アルキリジン基や、チオール基、炭素数1〜10のアルキルチオ基、アミノ基、シアノ基、炭素数1〜10のアルキルアミノ基などの硫黄原子あるいは窒素原子を含む官能基などが挙げられる。Rが芳香環、あるいは複素環を有する場合は、当該環系を構成する原子のなかに、窒素原子、酸素原子、硫黄原子などのヘテロ原子を含んでいてもよい。なお、上記したRは、一例であり、例えば芳香環や複素環を有する基としては、単環式の他、多環式、縮合多環式のいずれであってもよい。複数のRは、たがいに同じでも異なっていてもよい。
Figure 0005051030
式(7)中、Rはハロゲン原子、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、ベンジル基、フェニル基、ピリジル基、ベンゾチアゾール基、ビフェニル基、ピリジルフェニル基、炭素数3〜10のシクロアルキル基、炭素数3〜10のシクロアルケン基などの1価の基や、炭素数1〜10のアルキレン基、炭素数2〜10のアルケニレン基、フェニレン基、炭素数3〜10のシクロアルケニル基、炭素数3〜10のシクロアルケニレン基などの2価の基を示す。nは1〜4の整数を示し、lは0〜2×nの整数を示す。Rにおけるアルキル基、アルケニル基、アルキレン基、及びアルケニレン基は、直鎖状、分岐状、環状のいずれであってもよい。Rは、置換基を有していてもよく、置換基としては、例えばF、Cl、Brなどのハロゲン原子、アミノ基などが挙げられ、R及びRが芳香環、あるいは複素環を有する場合は、前記のほか、例えばアルコキシ基、炭素数1〜4の直鎖状、分岐状又は環状のアルキル基、アルケニル基、アルキリジン基や、チオール基、炭素数1〜10のアルキルチオ基、アミノ基、シアノ基、炭素数1〜10のアルキルアミノ基などの硫黄原子あるいは窒素原子を含む官能基などが挙げられる。Rが芳香環、あるいは複素環を有する場合は、当該環系を構成する原子のなかに、窒素原子、酸素原子、硫黄原子などのヘテロ原子を含んでいてもよい。なお、上記したRは、一例であり、例えば芳香環や複素環を有する基としては、単環式の他、多環式、縮合多環式のいずれであってもよい。複数のRは、たがいに同じでも異なっていてもよい。
上記した一般式(4)で示される鎖状カーボネート化合物としては、例えばジメチルカーボネート、ジエチルカーボネート、1−クロロエチルエチルカーボネート、ジプロピルカーボネート、アリルメチルカーボネート、ジアリルカーボネート、ジイソブチルカーボネート、エチルフェニルカーボネート、ジフェニルカーボネート、ジベンジルカーボネート、エチル−m−トリルカーボネート、エチル−3,5−キシリルカーボネート、tert−ブチルフェニルカーボネート、tert−ブチル−4−ビニルフェニルカーボネート、ジ−p−トリルカーボネート、tert−ブチル−8−キノリニルカーボネート、α−ジクロロベンジルメチルカーボネート、ビストリクロロエチルカーボネート、1−クロロエチル−4−クロロフェニルカーボネート、tert−ブチル−2,4,5−トリクロロフェニルカーボネート、メチル−2,3,4,6−テトラクロロフェニルカーボネート、イソプロピル−2,3,4,6−テトラクロロフェニルカーボネート、tert−ブチル−4−ホルミルフェニルカーボネート、1−クロロエチル−3−トリフルオロメチルフェニルカーボネート、4−メトキシベンジルフェニルカーボネート、4−メトキシフェニル−N−(ブトキシカルボニルオキシメチル)カーボネート、ビス−ニトロフェニルカーボネート、ビス−(2−メトキシカルボニルフェニル)カーボネート、メチル−2−メチル−6−ニトロフェニルカーボネート、エチル−3−メチル−4−ニトロフェニルカーボネート、ベンジル−4−ニトロフェニルカーボネート、4−ニトロフェニル−2−トリメチルシリルエチルカーボネート、2,4−ジニトロ−1−ナフチルメチルカーボネート、3,6−ジクロロ−2,4−ジニトロフェニルエチルカーボネート、2−sec−ブチル−4,6−ジニトロフェニルプロピルカーボネート、2−sec−ブチル−4,6−ジニトロフェニルイソプロピルカーボネート、4−ニトロフェニル[(2S,3s)−3−フェニル−2−オキシラニル]メチルカーボネート、2,4−ジクロロ−6−ニトロフェニルメチルカーボネート、2−クロロ−4−フルオロ−5−ニトロフェニルエチルカーボネート、メチル−2−メチル−4,6−ジニトロフェニルカーボネート、2−クロロ−4−メチル−6−ニトロフェニルイソプロピルカーボネート、4−クロロ−3,5−ジメチル−2,6−ニジトロフェニルメチルカーボネート、2−メチルスルフォニルエチル−4−ニトロフェニルカーボネート、エチル−4−スルフォ−1−ナフチルカーボネート、3−ジメチルアミノプロピルエチルカーボネート、エチル−4−フェニルアゾフェニルカーボネート、4−クロロ−3,5−ジメチルフェニルメチルカーボネート、1,3−ベンゾチアゾール−2−イル−2−プロピニルカーボネート、イソブチル−3−オキソ−3H−フェノキサジン−7−イル−カーボネート、4−(イミノメチレン−スルフェニル)−2,5−ジメチルフェニルメチル、5−o−メトキシカルボニル−1,2−o−(1−メチルエチリデン)−α−D−キシロフラノース、エチレングリコールビス−(メチルカーボネート)、o−カルボメトキシ−サリチル酸、カルボン酸−1,1−ジメチル−2−オキソプロピルエステルメチルエステル、カルボン酸−ジ−o−トリルエステル、カルボン酸−2−エチニルシクロヘキシルエステルフェニルエステル、カルボン酸−エチルエステル−(2−オキソベンゾトリアゾール−3−イル)メチルエステル、カルボン酸−2−クロロエチルエステル−(2−オキソベンゾトリアゾール−3−イル)エステル、カルボン酸−アリルエステル−(2−オキソベンゾチアゾール−3−イル)メチルエステル、カルボン酸−ヘキシルエステル−(2−オキソベンゾチアゾール−3−イル)メチルエステル、カルボン酸−ベンジルエステル−(2−オキソベンゾチアゾール−3−イル)メチルエステル、カルボン酸−(ジナフタレン−1−イル)エステル、ジメチルジカーボネート、ジエチルジカーボネート、ジ−tert−ブチルジカーボネート、ジ−tert−アミルジカーボネート、ジアリルジカーボネート、ジベンジルジカーボネートなどが挙げられる。
上記した一般式(5)で示される環状カーボネート化合物としては、例えばエチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、グリセリンカーボネート、ビニレンカーボネート、1,3−ジオキサン−2−オン、4−ビニル−1,3−ジオキソラン−2−オン、4−ヒドロキシメチル−1,3−ジオキソラン−2−オン、4−メトキシメチル−1,3−ジオキソラン−2−オン、4−クロロ−1,3−ジオキソラン−2−オン、4,4−ジメチル−5−メチレン−1,3−ジオキソラン−2−オン、(クロロメチル)エチレンカーボネート、5,5−ジエチル−1,3−ジオキサン−2−オン、5−メチル−5−プロピル−1,3−ジオキサン−2−オン、エリスリトールビスカーボネート、4,5−ジフェニル−1,3−ジオキソール−2−オン、4,6−ジフェニルチエノ−[3,4−d]−1,3−ジオキソール−2−オン−5,5−ジオキシドなどが挙げられる。
上記したなかでも、一般式(4)で示される鎖状カーボネート化合物としては、ジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート、トリメチレンカーボネートが好ましく、一般式(5)で示される環状カーボネート化合物としてはポリアミンとの反応性の観点から、エチレンカーボネート、プロピレンカーボネート、トリメチレンカーボネート、1,2−ブチレンカーボネート及び/又グリセリンカーボネートが好ましく、エチレンカーボネート、プロピレンカーボネートがより好ましい。また、それぞれ単独又は任意の範囲で混合して用いても良い。
(A)と(B)と(D)の反応生成物、又は(A)と(B)と(C)と(D)の反応生成物は、(A)に対して(B)と(C)と(D)、又は(B)と(D)を反応させることにより得られる。反応は、(B)と(C)と(D)、又は(B)と(D)を任意の順序もしくは混合して反応することができるが、始めに(A)と(B)とを反応させることが好ましい。
(A)と(B)との反応は、(B)としてカルボン酸、エステル、アミドを使用する場合には0〜100℃の条件下で(A)と(B)とを混合し、100〜300℃、好ましくは130〜250℃の条件下で脱水、脱アルコール、脱アミンによるアミド基形成反応を行うことにより実施される。アミド基形成反応の際には反応を完結させるために必要に応じて反応の最終段階において反応装置内を減圧処理することもできる。また、必要に応じて非反応性の溶剤を使用して希釈することもできる。更に脱水剤、脱アルコール剤として、亜リン酸エステル類などの触媒を添加することもできる。一方、(B)として酸無水物、酸塩化物を使用する場合には0〜150℃、好ましくは0〜100℃の条件下で混合後、アミド基形成反応を行うことにより実施される。アミド基形成反応の際には反応を完結させるために必要に応じて反応の最終段階において反応装置内を減圧処理することもできる。また、必要に応じて非反応性の溶剤を使用して希釈することもできる。更にピリジン、ピコリン、ルチジン、トリアルキルアミンなどの3級アミンを添加することもできる。
上記反応により導入されるアミド基部位は高い凝集力を有しており、硬化剤中に高い割合でアミド基部位が存在することにより、より高い酸素バリア性及び金属やコンクリート、プラスチックなどの基材への良好な接着強度が得られる。
また、(A)と(B)の反応比は、モル比((B)/(A))が0.3〜0.95の範囲が好ましい。上記範囲とすることにより、エポキシ樹脂硬化剤中に十分な量のアミド基が生成するとともに、エポキシ樹脂との反応に必要なアミノ基の量が確保されるので、高いガスバリア性と優れた接着性を発現し、塗布時の作業性も良好なエポキシ樹脂硬化剤を得ることができる。
(A)と(D)との反応は、40〜200℃の条件下で(A)と(D)とを混合し、40〜200℃、好ましくは60〜180℃の条件下で付加反応によるウレタン基形成反応を行うことにより実施される。また必要に応じナトリウムメトキシド、ナトリウムエトキシド、t−ブチトキシカリウムなどの触媒を使用することが出来る。カーバメート部位形成反応の際には、反応を促進するために必要に応じて(D)を溶融もくしは非反応性の溶剤を使用して希釈することもできる。
上記反応により導入されるカーバメート部位は高い凝集力とエポキシ樹脂とエポキシ樹脂硬化剤との反応性を低下する特性を有しており、硬化剤中に高い割合でカーバメート部位が存在することにより、より長いポットライフ、すなわちより良い作業性とより高い酸素バリア性及び金属やコンクリート、プラスチックなどの基材への良好な接着強度が得られる。
また、(A)と(D)の反応比は、モル比((D)/(A))が0.05〜1.5の範囲の任意の比率で可能であり、0.1〜0.7の範囲が好ましい。上記範囲とすることにより、硬化剤中に十分な量のカーバメート部位が生成し、高いガスバリア性と長いポットライフが発現する良好な硬化剤を得ることが出来る。
(A)と(C)との反応は、(A)と(B)との反応と同様な条件で行うことができる。
(A)と(B)と(D)の反応、又は(A)と(B)と(C)と(D)の反応を行う際、(B)、(C)、(D)の比率に制約はないが、(A)の活性水素数(1分子あたり4個)に対する、(B)の炭素−炭素二重結合数、(B)のアシル基数の2倍、(C)のカルボキシル基及びその誘導官能基の数ならびに(D)のカーボネート部位数の和の比が、0.25〜0.99の範囲であることが好ましく、0.25〜0.67の範囲がより好ましい。上記範囲とすることにより、エポキシ樹脂硬化剤中に十分な量のアミド基及びカーバメート部位が生成するとともに、エポキシ樹脂との反応に必要なアミノ基の量が確保されるので、高いガスバリア性と優れた塗膜性能を発現し、塗装時の作業性も良好なエポキシ樹脂硬化剤を得ることができる。
高いガスバリア性、長いポットライフ及び良好な接着性の発現を考慮した場合には、(A)と(B)と(D)との反応モル比((A)対(B)対(D))を、1対0.7〜0.95対0.1〜0.7、好ましくは1対0.75〜0.9対0.1〜0.5、特に好ましくは1対0.8〜0.9対0.1〜0.4の範囲とし、反応生成物であるオリゴマーの平均分子量を高くしたエポキシ樹脂硬化剤を使用することが好ましい。
より好ましいエポキシ樹脂硬化剤は、(a)メタキシリレンジアミンと、(b)アクリル酸、メタクリル酸及び/又はそれらの誘導体と、(d)エチレンカーボネート、プロピレンカーボネート、トリメチレンカーボネート、1,2−ブチレンカーボネート、及び/又グリセリンカーボネートとの反応生成物である。ここで、(a)と(b)と(d)の反応モル比((a)対(b)対(d))は、好ましくは1対0.7〜0.95対0.1〜0.7、より好ましくは1対0.75〜0.9対0.1〜0.5、特に好ましくは1対0.8〜0.9対0.1〜0.4である。
本発明においてエポキシ樹脂とエポキシ樹脂硬化剤の配合割合については、一般にエポキシ樹脂とエポキシ樹脂硬化剤との反応によりエポキシ樹脂硬化物を作製する場合の標準的な配合範囲であってよい。具体的には、エポキシ樹脂中のエポキシ基の数に対するエポキシ樹脂硬化剤中の活性水素数の比が0.2〜5.0、好ましくは0.2〜4.0、より好ましくは0.3〜3.0の範囲である。この範囲とすることにより、良好な密着性とガスバリア性を発現できる。
本発明においてエポキシ樹脂硬化物層中に上記(1)式の骨格構造が高いレベルで含有されることにより、高いガスバリア性が発現するが、本発明においてはエポキシ樹脂硬化物中に上記(1)式の骨格構造が40重量%以上含まれていることが好ましい。より好ましくは45重量%以上、特に好ましくは50重量%以上である。本発明によれば、23℃60%RHでの酸素透過係数10.0ml・mm/(m・day・MPa)以下の酸素バリア性を有するエポキシ樹脂硬化物層を得ることができる。
また、本発明において、前記エポキシ樹脂組成物には、必要に応じて、本発明の効果を損なわない範囲で、ポリウレタン系樹脂組成物、ポリアクリル系樹脂組成物、ポリウレア系樹脂組成物等の熱硬化性樹脂組成物を混合してもよい。
また、本発明に用いるエポキシ樹脂組成物は前記エポキシ樹脂組成物を主成分とするものであるが、該エポキシ樹脂組成物を各種フィルム材料に塗布時の表面の湿潤を助けるために、必要に応じてシリコンあるいはアクリル系化合物といった湿潤剤を前記エポキシ樹脂組成物に添加しても良い。適切な湿潤剤としては、ビック・ケミー社から入手しうるBYK331、BYK333、BYK340、BYK347、BYK348、BYK354、BYK380、BYK381などがある。これらを添加する場合には、エポキシ樹脂組成物の全重量を基準として0.01重量%〜2.0重量%の範囲が好ましい。
発明に用いるエポキシ樹脂組成物には必要に応じ、低温硬化性を増大させるための例えば三フッ化ホウ素モノエチルアミン錯体などの三フッ化ホウ素のアミン錯体、三フッ化ホウ素ジメチルエーテル錯体、三フッ化ホウ素ジエチルエーテル錯体、三フッ化ホウ素ジ−n−ブチルエーテル錯体などの三フッ化ホウ素のエーテル錯体、2−フェニルイミダゾールなどのイミダゾール類、安息香酸、サリチル酸、N−エチルモルホリン、ジブチル錫ジラウレート、ナフテン酸コバルト、塩化第一錫などの硬化促進触媒、ベンジルアルコールなどの有機溶剤、リン酸亜鉛、リン酸鉄、モリブデン酸カルシウム、酸化バナジウム、水分散シリカ、ヒュームドシリカなどの防錆添加剤、フタロシアニン系有機顔料、縮合多環系有機顔料などの有機顔料、酸化チタン、酸化亜鉛、炭酸カルシウム、硫酸バリウム、アルミナ、カーボンブラックなどの無機顔料等の各成分を必要割合量添加しても良い。
また、本発明におけるエポキシ樹脂硬化物層のガスバリア性、耐衝撃性、耐熱性などの諸性能を向上させるために、エポキシ樹脂組成物の中にシリカ、アルミナ、マイカ、タルク、アルミニウムフレーク、ガラスフレークなどの無機充填剤を添加しても良い。フィルムの透明性を考慮した場合には、このような無機フィラーが平板状であることが好ましい。これらを添加する場合には、エポキシ樹脂組成物の全重量を基準として0.01重量%〜10.0重量%の範囲が好ましい。
また、本発明におけるエポキシ樹脂組成物には、必要に応じて、酸素捕捉機能を有する化合物等を添加してもよい。酸素捕捉機能を有する化合物としては、例えば、ヒンダードフェノール類、ビタミンC、ビタミンE、有機燐化合物、没食子酸、ピロガロール等の酸素と反応する低分子有機化合物や、コバルト、マンガン、ニッケル、鉄、銅等の遷移金属化合物等が挙げられる。
さらに、本発明におけるエポキシ樹脂硬化物層の各種材料に対する接着性を向上させるために、エポキシ樹脂組成物の中にシランカップリング剤、チタンカップリング剤などのカップリング剤を添加しても良い。カップリング剤としては、一般に市販されているものが使用できるが、中でもチッソ(株)、東レ・ダウコーニング(株)、信越化学工業(株)等から入手しうるN−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、N,N‘−ビス[3−トリメトキシシリル]プロピル]エチレンジアミン等のアミノ系シランカップリング剤、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3、4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン等のエポキシ系シランカップリング剤、3−メタクリロキシプロピルトリメトキシシラン等のメタクリロキシ系シランカップリング剤、3−メルカプトプロピルトリメトキシシラン等のメルカプト系シランカップリング剤、3−イソシアネートプロピルトリエトキシシラン等のイソシアネート系シランカップリング剤、東レ・ダウコーニング(株)製のSH−6026、Z−6050、Z−6040、Z−6041、Z−6042、Z−6044などのアミノシラン系カップリング剤、信越化学工業(株)製のKP−390、KC−223、KBM−403、KBE−402、KBE−403、KBE−603、KBE−903、などのアミノ基含有アルコキシシラン等の本発明のガスバリア性樹脂組成物と反応しうる有機官能基を有するものが望ましい。これらを添加する場合には、エポキシ樹脂組成物の全重量を基準として0.01重量%〜5.0重量%の範囲が好ましい。なお、基材がシリカ、アルミナなどの各種無機化合物を蒸着させたフィルムの場合は、シランカップリング剤がより好ましい。
本発明におけるエポキシ樹脂硬化物層は好適な各種材料への密着性能に加え、高いガスバリア性を有する事を特徴としており、低湿度条件から高湿度条件に至る広い範囲において高いガスバリア性を示す。また、無機蒸着フィルムに顕在化する不意の折り曲げによるガスバリア性の著しい劣化に関し、エポキシ樹脂硬化物をコートすることにより、そのガスバリア性の劣化度合いを著しく低減させることもできる。
さらに、本発明におけるエポキシ樹脂硬化物層は、靭性、耐湿熱性に優れることから、耐衝撃性、耐煮沸処理性、耐レトルト処理性などに優れたガスバリアフィルムが得られる。
本発明におけるエポキシ樹脂組成物を各種材料に塗布する場合、エポキシ樹脂組成物の濃度は選択した材料の種類及びモル比、コーティング方法などにより、溶剤を用いない場合から、ある種の適切な有機溶剤及び/又は水を用いて約5重量%程度の組成物濃度に希釈して塗布液を調製する場合までの様々な状態をとり得る。使用される有機溶剤としては、エポキシ樹脂硬化物との溶解性を有するあらゆる溶剤が使用し得る。例えばトルエン、キシレン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、アセトン、メチルエチルケトンなどの非水溶性系溶剤、2−メトキシエタノール、2−エトキシエタノール、2−プロポキシエタノール、2−ブトキシエタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、1−プロポキシ−2−プロパノールなどのグリコールエーテル類、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノールなどのアルコール類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N−メチルピロリドンなどの非プロトン性極性溶剤などが挙げられる。なお、これらの溶剤は、エポキシ樹脂硬化剤の調製時に使用してもよい。
溶剤で希釈したエポキシ樹脂組成物(塗布液)は、そのザーンカップ(No.3)粘度が5〜30秒(25℃)の範囲となるような濃度で希釈され得る。ザーンカップ(No.3)粘度が5秒未満では接着剤が被塗物に十分塗布されず、ロールの汚染などの原因となる。またザーンカップ(No.3)粘度が30秒を超えると、エポキシ樹脂組成物がロールに十分移行せず、均一なエポキシ樹脂硬化物層を形成するのは困難となる。たとえばグラビア印刷機ではザーンカップ(No.3)粘度はその使用中に10〜20秒(25℃)であることが好ましい。
本発明における塗布液を調製する際に塗布液の泡立ちを抑えるために、塗布液の中に、シリコンあるいはアクリル系化合物といった消泡剤を添加しても良い。適切な消泡剤としては、ビック・ケミー社から入手しうるBYK019、BYK052、BYK065、BYK066N、BYK067N、BYK070、BYK080、などがあげられるが、特にBYK065が好ましい。また、これら消泡剤を添加する場合には、塗布液中のエポキシ樹脂組成物の全重量を基準として0.01重量%〜3.0重量%の範囲が好ましく、0.02重量%〜2.0重量%がより好ましい。
また、溶剤を使用した場合には、エポキシ樹脂組成物を塗布後の溶剤乾燥温度は20℃から140℃までの様々なものであってよいが、溶剤の沸点に近く、被塗物への影響が及ばない温度が望ましい。乾燥温度が20℃未満ではフィルム中に溶剤が残存し、接着不良や臭気の原因となる。また乾燥温度が140℃を超えると、ポリマーフィルムの軟化などにより、良好な外観のフィルムを得るのが困難となる。例えば無機蒸着層を有するポリエチレンテレフタレートフィルムに塗布する際は、40℃〜120℃が望ましい。
エポキシ樹脂組成物を塗布する際の塗装形式としては、グラビア印刷機、フレキソ印刷機、オフセット印刷機等の従来のポリマーフィルムへの印刷に用いられてきた一般的な印刷設備やロール塗布やスプレー塗布、エアナイフ塗布、浸漬、はけ塗り、ダイコーティングなどの塗装形式のいずれも使用され得る。印刷機又はロール塗布が好ましい。例えば、グラビアインキをポリマーフィルムに塗布する場合と同様のグラビア印刷機あるいはロールコート及び設備が適用され得る。
本発明におけるエポキシ樹脂組成物を各種材料等に塗布、乾燥した後のエポキシ樹脂硬化物層の厚さは0.05〜10μm、好ましくは0.1〜5μmが実用的である。0.05μm未満では十分なガスバリア性が発揮し難く、一方10μmを超えると乾燥性が不良となるばかりでなく、均一な厚みのエポキシ樹脂硬化物層を形成することが困難になる。
本発明における印刷層は、ポリウレタン樹脂、ポリエステル系樹脂、ポリウレタンウレア樹脂、アクリル変性ウレタン樹脂、アクリル変性ウレタンウレア樹脂等のポリウレタン系樹脂;塩化ビニル−酢酸ビニル共重合系樹脂;ロジン変性マレイン酸樹脂等のロジン系樹脂;ポリアミド系樹脂;塩素化ポリプロピレン樹脂等の塩素化オレフィン系樹脂、アクリル系樹脂、ニトロセルロース系樹脂、ゴム系樹脂等の従来から用いられているインキバインダー樹脂に各種顔料、体質顔料、安定剤等を添加して成るインキにより形成される塗膜であり、このインキ塗膜により文字、絵柄が形成されている。比較的柔軟で接着力があることから、インキバインダー樹脂は、ポリウレタン系樹脂及び/又は塩化ビニル−酢酸ビニル共重合体系樹脂が好ましい。これらの樹脂は単独でも混合物としても使用できる。これらの樹脂を水、メタノール、エタノール、2-プロパノール、酢酸エチル、酢酸プロピル、酢酸ブチル、メチルエチルケトン、トルエン等の溶剤に溶解させて、グラビア法、ロールコート法などで塗布することで印刷層を形成することができる。印刷層の形成には、グラビア印刷機、フレキソ印刷機、オフセット印刷機等の従来のポリマーフィルムへの印刷に用いられてきた一般的な印刷設備が同様に適用され得る。なお、印刷層の厚さは5μm以下が望ましい。5μmを超える場合、インキの乾燥性が不良となる場合がある。
印刷層(インキ塗膜)を形成するインキは1液硬化タイプでも2液硬化タイプでも良いが、2液硬化タイプの場合、硬化剤としてポリイソシアネートを使用することが望ましい。具体的には、トルエンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)などの芳香族ポリイソシアネート、又はヘキサメチレンジイソシアネート(HMDI)、イソホロンジイソシアネート(IPDI)、キシレンジイソシアネート(XDI)などの脂肪族ポリイソシアネートが挙げられる。
溶剤で希釈したインキ(塗工液)は、そのザーンカップ(No.3)粘度が5〜30秒(25℃)の範囲となるような濃度で希釈され得る。ザーンカップ(No.3)粘度が5秒未満では接着剤が被塗物に十分塗布されず、ロールの汚染などの原因となる。またザーンカップ(No.3)粘度が30秒を超えると、インキがロールに十分移行せず、均一なインキ層を形成するのは困難となる。たとえばグラビア印刷機ではザーンカップ(No.3)粘度はその使用中に10〜20秒(25℃)であることが好ましい。
また、インキを塗布後の溶剤乾燥温度は20℃から140℃までの様々なものであってよいが、溶剤の沸点に近く、被塗物への影響が及ばない温度が望ましい。乾燥温度が20℃未満ではフィルム中に溶剤が残存し、接着不良や臭気の原因となる。また乾燥温度が140℃を超えると、ポリマーフィルムの軟化などにより、良好な外観のフィルムを得るのが困難となる。例えばインキを延伸ポリプロピレンフィルムに塗布する際は、40℃〜120℃が望ましい。
本発明のガスバリア性積層体を得るためには、基材上に(基材上に無機酸化物からなる蒸着層を形成した場合には該蒸着層上に)エポキシ樹脂組成物を塗布、乾燥させ、次いで該エポキシ樹脂組成物上に印刷層を形成する。この印刷層を形成させた後にロールに巻き取ることが必要である。印刷層を形成せずに巻き取った場合、エポキシ樹脂組成物の乾燥が不十分の場合はブロッキングが発生する問題がある。
本発明のガスバリア性積層体の表面に、必要に応じて、コロナ処理、オゾン処理、フレーム処理等の前処理を施した上で、ポリエステル系、イソシアネート系(ウレタン系)、ポリエチレンイミン系、ポリブタジェン系、有機チタン系等のアンカーコーティング剤、あるいはポリウレタン系、ポリアクリル系、ポリエステル系、エポキシ系、ポリ酢酸ビニル系、セルロース系、その他のラミネート用接着剤等を使用して、ヒートシール性樹脂等、公知の包装材料をラミネートする方法等によりラミネートフィルムを製造することができる。ここで、ラミネート方法は特に限定されず、例えば、ウエットラミネーション法、ドライラミネーション法、無溶剤型ドライラミネーション法、押し出しラミネーション法、Tダイ押し出し成形法、共押し出しラミネーション法、インフレーション法、共押し出しインフレーション法、その他の方法等を使用することができる。
前記ヒートシール性樹脂層としては可撓性ポリマーフィルムを使用することが好ましく、良好なヒートシール性の発現を考慮し、ポリエチレンフィルムやポリプロピレンフィルム、エチレン−酢酸ビニル共重合体、アイオノマー樹脂、EAA樹脂、EMAA樹脂、EMA樹脂、EMMA樹脂、生分解樹脂などが好ましい。これらのフィルムの厚さは、10〜300μm程度、好ましくは10〜100μm程度が実用的であり、フィルムの表面には火炎処理やコロナ放電処理などの各種表面処理が実施されていてもよい。
また、ガスバリア性積層体とヒートシール性樹脂との間に紙又はプラスチックフィルムを少なくとも1層以上積層してもよい。プラスチックフィルムとしては、基材を構成するプラスチックから成るフィルムが使用できる。
次に、本発明のガスバリア性積層体を使用して、製袋ないし製函する方法について説明する。例えば、包装用容器として高分子フィルム等からなる軟包装袋を形成する場合、上記のような方法で製造した積層体又は上記ラミネートフィルムを使用し、その内層のヒートシール性樹脂層の面を対向させて、それを折り重ねるか、或いはその二枚を重ね合わせ、更にその周辺端部をヒートシールしてシール部を設けて袋体を構成することができる。また、その製袋方法としては、積層体を、その内層の面を対向させて折り曲げるか、あるいはその二枚を重ね合わせ、更にその外周の周辺端部を、例えば、側面シール型、二方シール型、三方シール型、四方シール型、封筒貼りシール型、合掌貼りシール型(ピローシール型)、ひだ付シール型、平底シール型、角底シール型、その他等のヒートシール形態によりヒートシールして、種々の形態の包装用容器を製造することもできる。その他、例えば、自立性包装袋(スタンディングパウチ)等も製造することが可能であり、上記の積層体を使用してチューブ容器等を製造することもできる。ここで、ヒートシールの方法としては、例えば、バーシール、回転ロールシール、ベルトシール、インパルスシール、高周波シール、超音波シール等の公知の方法で行うことができる。なお、上記のような包装用容器には、例えば、ワンピースタイプ、ツウーピースタイプ、その他の注出口、あるいは開閉用ジッパー等を任意に取り付けることができる。
また、包装用容器として、紙基材を含む液体充填用紙容器を製造する場合、例えば、積層体として、本発明の製造方法で得られたガスバリア性積層体に紙基材を積層した積層体を製造し、該積層体から所望の紙容器を製造するブランク板を製造後、このブランク板を使用して胴部、底部、頭部等を製函して、例えば、ブリックタイプ、フラットタイプあるいはゲーベルトップタイプの液体用紙容器等を製造することができる。また、その容器の形状は、角形容器、丸形等の円筒状の紙缶等のいずれのものでも製造することができる。
本発明のガスバリア性積層体を使用した容器は、酸素ガス等に対するガスバリア性、耐衝撃性等に優れ、更に、ラミネート加工、印刷加工、製袋ないし製函加工等の後加工適性に優れ、また、バリア性膜としての無機物の剥離を防止し、かつ、その熱的クラックの発生を阻止し、その劣化を防止して、バリア性膜として優れた耐性を発揮し、例えば、食品、医薬品、洗剤、シャンプー、オイル、歯磨き、接着剤、粘着剤等の化学品ないし化粧品、その他等の種々の物品の包装適性、保存適性等に優れているものである。
以下に本発明の実施例を紹介するが、本発明はこれらの実施例により何ら制限されるものではない。
<エポキシ樹脂硬化剤A>
反応容器に1モルのメタキシリレンジアミンを仕込んだ。窒素気流下60℃に昇温し、0.88モルのアクリル酸メチルを1時間かけて滴下した。生成するメタノールを留去しながら165℃まで昇温し、2.5時間165℃を保持した。100℃まで冷却し、固形分濃度が65重量%になるように所定量のメタノールを加え、65℃に冷却した後、溶融したエチレンカーボネート0.27molを30分かけて滴下し、5時間65℃に保持し、エポキシ樹脂硬化剤Aを得た。
<エポキシ樹脂硬化剤B>
反応容器に1モルのメタキシリレンジアミンを仕込んだ。窒素気流下60℃に昇温し、0.93モルのアクリル酸メチルを1時間かけて滴下した。生成するメタノールを留去しながら165℃まで昇温し、2.5時間165℃を保持した。100℃まで冷却し、固形分濃度が65重量%になるように所定量のメタノールを加え、エポキシ樹脂硬化剤Bを得た。
<ウレタン系接着剤>
ポリウレタン樹脂からなる主剤(東洋モートン(株)製;TM−329)を50重量部及びポリイソシアネート樹脂からなる硬化剤(東洋モートン(株)製;CAT−8B)を50重量部含む酢酸エチル溶液(固形分濃度;25重量%)を作製し、よく攪拌し、ウレタン系接着剤塗布液を得た。
また、ポットライフ、ガスバリア性、耐屈曲性の評価方法は以下の通りである。
<ポットライフ (hr)>
エポキシ樹脂、エポキシ樹脂硬化剤、溶剤を混合した溶液(塗料溶液)を25℃に保持した。ザーンカップNo.3にて粘度を30分毎に測定し、保持時間とザーンカップ粘度(秒)との関係を調べた。塗料溶液を調製してからザーンカップ粘度20秒に到達するまでの時間をポットライフとした。
<ガスバリア性>
酸素透過率測定装置(モダンコントロール社製、OX−TRAN10/50A)を使用して、フィルムの酸素透過率(ml/m・day・MPa)を23℃、相対湿度60%の条件下で測定した。
<耐屈曲性>
ゲルボーフレックステスター(理学工業社製)を用いて360℃のひねりを50回加えたフィルムの酸素透過率(ml/m・day・MPa)を23℃、相対湿度90%の条件下で測定した。
<実施例1>
メタキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂(三菱ガス化学(株)製;TETRAD−X)を50重量部及びエポキシ樹脂硬化剤Aを245重量部、メタノールを980重量部、酢酸エチルを118重量部(固形分濃度;15重量%)、シリコン系消泡剤(ビック・ケミー社製;BYK065)を0.1重量部、シランカップリング剤(チッソ(株)製;サイラエースS330)を2重量部加えよく攪拌し、ザーンカップ(No.3)粘度11秒(25℃)の塗布液A(エポキシ樹脂組成物)を得た。
基材として厚み12μmのシリカ蒸着ポリエステルフィルム(三菱樹脂(株)製テックバリアL)を用い、版深26μmロールを使用して蒸着層に塗布液Aを塗布し、70℃の乾燥オーブンで乾燥させた後、グラビアインキ(NT−ハイラミック−701R白;大日精化工業(株)製、NT―ハイラミックハードナー;大日精化工業(株)製5%入り)を酢酸エチル/MEK/IPA=4/4/2の混合溶剤を加えてザーンカップ(No.3)粘度16秒(25℃)に調整して塗工液Aを調製し、版深26μmロールを使用してエポキシ樹脂組成物塗布面に塗工液Aを塗布し、70℃の乾燥オーブンで乾燥後、巻き取り速度120m/minで巻取り、印刷層を有するガスバリアフィルム(ガスバリア性積層体)を得た。
このガスバリアフィルムにウレタン系接着剤を140線/inch深さ75μmグラビアロールを使用して接着剤を塗布し(塗布量:2.5 g/m(固形分))、次いで60℃(入り口付近)〜90℃(出口付近)の乾燥オーブンで乾燥させた後、厚み40μmの直鎖状低密度ポリエチレンフィルム(東セロ(株)製TUX−MCS)を70℃に加熱したニップロールにより貼り合わせ、巻取り速度120m/minで巻取り、40℃で2日間エージングすることによりラミネートフィルムを得た。
得られたラミネートフィルムについて、そのガスバリア性、耐屈曲性を評価した。結果を表1に示す。エポキシ樹脂硬化物層中の(1)式の骨格構造の含有率は62.0重量%であった。また、エポキシ樹脂硬化物層の厚みは1.0μmであり、酸素透過率から計算される酸素透過係数は0.3ml・mm/m・day・MPa(23℃60%RH)であった。
<実施例2>
厚み12μmのシリカ蒸着ポリエステルフィルムの代わりに、厚み12μmのアルミナ蒸着ポリエステルフィルム(東レフィルム加工(株)製バリアロックス1011HG)を使用した以外は実施例1と同様の方法でラミネートフィルムを作製した。結果を表1に示す。
<実施例3>
厚み12μmのシリカ蒸着ポリエステルフィルムの代わりに、厚み12μmのシリカ−アルミナ二元蒸着ポリエステルフィルム(東洋紡績(株)製エコシアールVE100)を使用した以外は実施例1と同様の方法でラミネートフィルムを作製した。結果を表1に示す。
<実施例4>
厚み12μmのシリカ蒸着ポリエステルフィルムの代わりに、厚み15μmのシリカ蒸着ナイロンフィルム(三菱樹脂(株)製テックバリアNR)を使用した以外は実施例1と同様の方法でラミネートフィルムを作製した。結果を表1に示す。
<実施例5>
厚み12μmのシリカ蒸着ポリエステルフィルムの代わりに、厚み12μmのアルミナ蒸着ポリエステルフィルム(凸版印刷(株)製GL−AEH)を使用し、シランカップリング剤チッソ社製サイラエースS330の代わりに東レダウコーニングシリコーン社製Z−6050を使用した以外は実施例1と同様の方法でラミネートフィルムを作製した。結果を表1に示す。
<実施例6>
アンカーコート装置、単軸押出機、Tダイ、冷却ロール及びスリッター及び巻取機からなる押出ラミネーター装置を用い、実施例1のガスバリアフィルムの印刷面に、200線/inch深さ38μmグラビアロールを使用し、アンカーコート剤として塗布液Aを塗布した(塗布量:1.1 g/m(固形分))。次いで該フィルムを80℃の乾燥オーブンで乾燥させた後、シーラント層として繰り出される厚み40μmの直鎖状低密度ポリエチレンフィルム(東セロ(株)製TUX−MCS)との間に低密度ポリエチレンフィルム(日本ポリエチレン(株)製ノバテックLC−600A)を厚さ20μmで押出ラミネートし、巻取り速度100m/minで巻取り、40℃で1日間エージングすることによりラミネートフィルムを得た。
<実施例7>
厚み12μmのシリカ蒸着ポリエステルフィルムの代わりに、厚み15μmの延伸ナイロンフィルム(東洋紡績(株)製ハーデンフィルムN1102)を使用した以外は実施例1と同様の方法でラミネートフィルムを作製した。結果を表1に示す。
<実施例8>
厚み12μmのシリカ蒸着ポリエステルフィルムの代わりに、厚み12μmの延伸ポリエステルフィルム(東洋紡績(株)製エステルフィルムE5100)を使用した以外は実施例1と同様の方法でラミネートフィルムを作製した。結果を表1に示す。
<実施例9>
厚み12μmのシリカ蒸着ポリエステルフィルムの代わりに、厚み20μmの延伸ポリプロピレンフィルム(東洋紡績(株)製パイレンフィルムP2161)を使用した以外は実施例1と同様の方法でラミネートフィルムを作製した。結果を表1に示す。
<実施例10>
メタノールを478重量部、酢酸エチルを63重量部(固形分濃度;25重量%)とし、版深26μmロールの代わりに版深13μmロールを使用した以外は実施例1と同様の方法でラミネートフィルムを作製した。結果を表1に示す。
<比較例1>
塗布液A(エポキシ樹脂組成物)を塗布しなかったこと以外は実施例1と同様にしてラミネートフィルムを作製した。結果を表1に示す。
<比較例2>
厚み12μmのシリカ蒸着ポリエステルフィルムの代わりに、厚み12μmのアルミナ蒸着ポリエステルフィルム(東レフィルム加工(株)製バリアロックス1011HG)を使用した以外は比較例1と同様の方法でラミネートフィルムを作製した。結果を表1に示す。
<比較例3>
厚み12μmのシリカ蒸着ポリエステルフィルムの代わりに、厚み12μmの延伸ポリエステルフィルム(東洋紡績(株)製エステルフィルムE5100)を使用した以外は比較例1と同様の方法でラミネートフィルムを作製した。結果を表1に示す。
<比較例4>
エポキシ樹脂硬化剤Aの代わりにエポキシ樹脂硬化剤Bを163重量部用い、メタノールを365重量部、酢酸エチルを47重量部用いた以外は実施例1と同様の方法でラミネートフィルムを作製した。結果を表1に示す。
<比較例5>
厚み12μmのシリカ蒸着ポリエステルフィルムの代わりに、厚み20μmのPVAコート延伸ポリプロピレンフィルム(東セロ(株)製A―OP―BH)を使用した以外は比較例1と同様の方法でラミネートフィルムを作製した。結果を表1に示す。
Figure 0005051030

Claims (15)

  1. 基材、エポキシ樹脂硬化物層ならびに印刷層が順次積層されている積層体であって、該エポキシ樹脂硬化物層がエポキシ樹脂及びエポキシ樹脂硬化剤からなるエポキシ樹脂組成物を主成分とするものであり、かつ該エポキシ樹脂硬化剤が下記の(A)と(B)と(D)の反応生成物、又は(A)と(B)と(C)と(D)の反応生成物であることを特徴とするガスバリア性積層体。
    (A)メタキシリレンジアミン又はパラキシリレンジアミン
    (B)ポリアミンとの反応によりアミド基部位を形成し、且つオリゴマーを形成し得る、少なくとも1つのアシル基を有する多官能性化合物
    (C)炭素数1〜8の一価カルボン酸及び/又はその誘導体
    (D)ポリアミンとの反応により式(1)で示されるカーバメート部位を形成する、式(2)で示されるカーボネート部位を少なくとも1つ有する官能性化合物
    Figure 0005051030
  2. 前記基材と前記エポキシ樹脂硬化物層との間に無機酸化物からなる蒸着層を有する請求項1記載のガスバリア性積層体。
  3. 前記エポキシ樹脂組成物中のエポキシ樹脂及びエポキシ樹脂硬化剤の配合割合が、エポキシ樹脂中のエポキシ基に対するエポキシ樹脂硬化剤中の活性水素の当量比(活性水素/エポキシ基)として、0.2〜5.0の範囲であることを特徴とする請求項1又は2記載のガスバリア性積層体。
  4. (A)と(B)と(D)の反応、又は(A)と(B)と(C)と(D)の反応を行う際の(A)の活性水素数に対する、(B)の炭素−炭素二重結合数、(B)のアシル基数の2倍、(C)のカルボキシル基及びその誘導官能基の数ならびに(D)のカーボネート部位数の和の比が、0.25〜0.99の範囲であることを特徴とする請求項1〜3のいずれかに記載のガスバリア性積層体。
  5. 前記エポキシ樹脂硬化物層の酸素透過係数が10.0ml・mm/(m・day・MPa)以下である請求項1〜4のいずれかに記載のガスバリア性積層体。
  6. 前記(A)が、メタキシリレンジアミンである請求項1〜5のいずれかに記載のガスバリア性積層体。
  7. 前記(B)多官能性化合物が、アクリル酸、メタクリル酸及び/又はそれらの誘導体である請求項1〜5のいずれかに記載のガスバリア性積層体。
  8. 前記(C)炭素数1〜8の一価カルボン酸及び/又はそれらの誘導体が、蟻酸、酢酸、プロピオン酸、酪酸、乳酸、グリコール酸、安息香酸及び/又はその誘導体である請求項1〜5のいずれかに記載のガスバリア性積層体。
  9. 前記(D)が、エチレンカーボネート、プロピレンカーボネート、トリメチレンカーボネート、1,2−ブチレンカーボネート及び/又はグリセリンカーボネートである請求項1〜5のいずれかに記載のガスバリア性積層体。
  10. 前記エポキシ樹脂硬化剤が、(a)メタキシリレンジアミンと、(b)アクリル酸、メタクリル酸及び/又はそれらの誘導体と、(d)エチレンカーボネート、プロピレンカーボネート、トリメチレンカーボネート、1,2−ブチレンカーボネート及び/又はグリセリンカーボネートとの反応生成物である請求項1〜4のいずれかに記載のガスバリア性積層体。
  11. 前記(a)と(b)と(d)の反応モル比((a)対(b)対(d))が1対0.7〜0.95対0.1〜0.7の範囲である請求項10に記載のガスバリア性積層体。
  12. 前記エポキシ樹脂がメタキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、1,3−ビス(アミノメチル)シクロヘキサンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、ジアミノジフェニルメタンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、パラアミノフェノールから誘導されたグリシジルアミノ基及び/又はグリシジルオキシ基を有するエポキシ樹脂、ビスフェノールAから誘導されたグリシジルオキシ基を有するエポキシ樹脂、ビスフェノールFから誘導されたグリシジルオキシ基を有するエポキシ樹脂、フェノールノボラックから誘導されたグリシジルオキシ基を有するエポキシ樹脂及びレゾルシノールから誘導されたグリシジルオキシ基を有するエポキシ樹脂からなる群より選ばれる少なくとも1つの樹脂である請求項1〜11のいずれかに記載のガスバリア性積層体。
  13. 前記エポキシ樹脂が、メタキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、及び/又はビスフェノールFから誘導されたグリシジルオキシ基を有するエポキシ樹脂を主成分とするものである請求項1〜11のいずれかに記載のガスバリア性積層体。
  14. 前記エポキシ樹脂が、メタキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂を主成分とするものである請求項1〜11のいずれかに記載のガスバリア性積層体。
  15. 請求項1又は2に記載の積層体を製造する際に、基材もしくは基材上に形成された無機酸化物からなる蒸着層上にエポキシ樹脂組成物を塗布、乾燥し、次いで該エポキシ樹脂組成物上に印刷層を形成することを特徴とするガスバリア性積層体の製造方法。
JP2008175264A 2008-07-04 2008-07-04 ガスバリア性積層体 Active JP5051030B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008175264A JP5051030B2 (ja) 2008-07-04 2008-07-04 ガスバリア性積層体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008175264A JP5051030B2 (ja) 2008-07-04 2008-07-04 ガスバリア性積層体

Publications (2)

Publication Number Publication Date
JP2010012708A JP2010012708A (ja) 2010-01-21
JP5051030B2 true JP5051030B2 (ja) 2012-10-17

Family

ID=41699290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008175264A Active JP5051030B2 (ja) 2008-07-04 2008-07-04 ガスバリア性積層体

Country Status (1)

Country Link
JP (1) JP5051030B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2582740B1 (de) * 2010-06-15 2015-03-25 Basf Se Verwendung von cyclischen carbonaten in epoxidharzzusammensetzungen
WO2013161480A1 (ja) * 2012-04-27 2013-10-31 三菱瓦斯化学株式会社 エポキシ樹脂硬化剤、エポキシ樹脂組成物、及びガスバリア性接着剤、並びにガスバリア性積層体

Also Published As

Publication number Publication date
JP2010012708A (ja) 2010-01-21

Similar Documents

Publication Publication Date Title
WO2018105282A1 (ja) ガスバリア性フィルム
JP5320924B2 (ja) ガスバリア性積層体
JP4929769B2 (ja) ガスバリア性樹脂組成物、塗料および接着剤
US6861147B2 (en) Gas barrier film having excellent flexibility
WO2021029171A1 (ja) ガスバリア性包装材
JP5257148B2 (ja) ガスバリア性樹脂組成物、塗料および接着剤
JP2004027014A (ja) ガスバリア性樹脂組成物、塗料および接着剤
JP4867574B2 (ja) ガスバリアフィルム及びその製造方法
JP5051030B2 (ja) ガスバリア性積層体
JP2005111983A (ja) ガスバリア性積層フィルム
JP5195122B2 (ja) ガスバリア性容器
JP4117451B2 (ja) 耐屈曲性に優れたガスバリア性積層フィルム
JP2004136515A (ja) スタンディングパウチ用積層フィルム及びスタンディングパウチ
JP2003251752A (ja) 高湿度下でのガスバリア性に優れたラミネートフィルム
JP2004025616A (ja) ガスバリア性ポリオレフィン積層フィルム
JP3928726B2 (ja) ガスバリア性容器
JP2008222761A (ja) アミン系揮発物質の透過防止方法
JP2008056883A (ja) ガスバリア性樹脂組成物、塗料および接着剤
JP6960422B2 (ja) 接着剤組成物及び積層体
JP4742848B2 (ja) ガスバリア性容器
JP2011068835A (ja) ガスバリア性コートフィルム
JP4940683B2 (ja) ガスバリア性容器
JP2012131861A (ja) エポキシ樹脂系接着剤塗布機の洗浄方法
JP5584999B2 (ja) ガスバリアコートフィルム及びその製造方法
JP4143811B2 (ja) ガスバリア性延伸ポリエステル積層フィルム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110526

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R151 Written notification of patent or utility model registration

Ref document number: 5051030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3