JP5048810B2 - Heat treatment apparatus and heat treatment method - Google Patents

Heat treatment apparatus and heat treatment method Download PDF

Info

Publication number
JP5048810B2
JP5048810B2 JP2010142366A JP2010142366A JP5048810B2 JP 5048810 B2 JP5048810 B2 JP 5048810B2 JP 2010142366 A JP2010142366 A JP 2010142366A JP 2010142366 A JP2010142366 A JP 2010142366A JP 5048810 B2 JP5048810 B2 JP 5048810B2
Authority
JP
Japan
Prior art keywords
substrate
processed
heat treatment
chamber
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010142366A
Other languages
Japanese (ja)
Other versions
JP2012009527A (en
Inventor
義広 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2010142366A priority Critical patent/JP5048810B2/en
Priority to KR1020110060677A priority patent/KR20110139663A/en
Priority to TW100121820A priority patent/TW201216365A/en
Priority to CN2011101850029A priority patent/CN102299047A/en
Publication of JP2012009527A publication Critical patent/JP2012009527A/en
Application granted granted Critical
Publication of JP5048810B2 publication Critical patent/JP5048810B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Tunnel Furnaces (AREA)

Description

本発明は、被処理基板を平流し搬送しながら前記被処理基板に熱処理を施す熱処理装置及び熱処理方法に関する。   The present invention relates to a heat treatment apparatus and a heat treatment method for performing heat treatment on a substrate to be processed while the substrate to be processed is flown and conveyed.

例えば、FPD(フラットパネルディスプレイ)の製造においては、いわゆるフォトリソグラフィ工程により回路パターンを形成することが行われている。
具体的には、ガラス基板等の被処理基板に所定の膜を成膜した後、処理液であるフォトレジスト(以下、レジストと呼ぶ)を塗布してレジスト膜を形成し、回路パターンに対応してレジスト膜を露光し、これを現像処理するものである。
For example, in manufacturing an FPD (flat panel display), a circuit pattern is formed by a so-called photolithography process.
Specifically, after a predetermined film is formed on a substrate to be processed such as a glass substrate, a photoresist (hereinafter referred to as a resist) as a processing liquid is applied to form a resist film, which corresponds to the circuit pattern. The resist film is exposed to light and developed.

ところで近年、このフォトリソグラフィ工程では、スループット向上の目的により、被処理基板を略水平姿勢の状態で搬送しながら、その被処理面に対しレジストの塗布、乾燥、加熱、冷却処理等の各処理を施す構成が多く採用されている。
例えば、基板を加熱し、レジスト膜の乾燥や現像処理後の乾燥を行う熱処理装置では、特許文献1に開示されるように、基板を水平方向に平流し搬送しながら、搬送路に沿って配置されたヒータによって加熱処理する構成が普及している。
このような平流し搬送構造を有する熱処理装置にあっては、複数の基板を搬送路上に連続的に流しながら熱処理を行うことができるため、スループットの向上を期待することができる。
By the way, in recent years, in this photolithography process, for the purpose of improving throughput, each process such as resist coating, drying, heating, and cooling is performed on the surface to be processed while the substrate to be processed is conveyed in a substantially horizontal posture. Many configurations are used.
For example, in a heat treatment apparatus that heats a substrate and performs drying of a resist film or drying after development processing, as disclosed in Patent Document 1, the substrate is disposed along a conveyance path while being conveyed in a horizontal direction. A configuration in which heat treatment is performed by a heated heater has become widespread.
In the heat treatment apparatus having such a flat flow conveyance structure, it is possible to perform the heat treatment while continuously flowing a plurality of substrates on the conveyance path, so that an improvement in throughput can be expected.

図12(a)〜(d)に一例を挙げて具体的に説明すると、図示する熱処理装置60は、複数の搬送コロ61が回転可能に敷設されてなる平流しの基板搬送路62を備え、この基板搬送路62に沿って熱処理空間を形成するチャンバ65が設けられている。チャンバ65には、スリット状の基板搬入口65aと基板搬出口65bとが設けられている。
即ち、基板搬送路62を搬送される基板G(G1,G2,G3,・・・)は、基板搬入口65aから連続的にチャンバ65内に搬入されて所定の熱処理が施され、基板搬出口65bから搬出されるようになっている。
Specifically, referring to FIGS. 12A to 12D, the illustrated heat treatment apparatus 60 includes a flat-flowing substrate transfer path 62 in which a plurality of transfer rollers 61 are rotatably laid, A chamber 65 for forming a heat treatment space is provided along the substrate transfer path 62. The chamber 65 is provided with a slit-shaped substrate carry-in port 65a and a substrate carry-out port 65b.
That is, the substrates G (G1, G2, G3,...) Transported through the substrate transport path 62 are continuously carried into the chamber 65 from the substrate carry-in port 65a, subjected to a predetermined heat treatment, and the substrate carry-out port. It is carried out from 65b.

チャンバ65内には、基板G(G1,G2,G3,・・・)に対し予備加熱を行い、基板Gを所定温度まで昇温するプレヒータ部63と、基板温度を維持するための主加熱を行うメインヒータ部64とが連続して設けられている。
プレヒータ部63は、各搬送コロ61の間に設けられた下部ヒータ66と、天井部に設けられた上部ヒータ67とを備え、メインヒータ部64は、各搬送コロ61の間に設けられた下部ヒータ69と、天井部に設けられた上部ヒータ70とを備えている。
In the chamber 65, preheating is performed on the substrate G (G1, G2, G3,...), And a preheater unit 63 that raises the temperature of the substrate G to a predetermined temperature, and main heating for maintaining the substrate temperature are performed. The main heater part 64 to perform is provided continuously.
The pre-heater unit 63 includes a lower heater 66 provided between the conveyance rollers 61 and an upper heater 67 provided on the ceiling, and the main heater unit 64 is a lower portion provided between the conveyance rollers 61. The heater 69 and the upper heater 70 provided in the ceiling part are provided.

このように構成された熱処理装置60にあっては、プレヒータ部63において、基板Gを所定温度(例えば100℃)まで加熱するために、下部ヒータ66及び上部ヒータ67が所定の設定温度(例えば160℃)となされる。
一方、メインヒータ部64にあっては、プレヒータ部63において加熱された基板Gの温度を維持し、熱処理を効率的に行うために、下部ヒータ69及び上部ヒータ70が所定の熱処理温度(例えば100℃)とされる。
In the heat treatment apparatus 60 configured as described above, the lower heater 66 and the upper heater 67 have a predetermined set temperature (for example, 160) in order to heat the substrate G to a predetermined temperature (for example, 100 ° C.) in the preheater unit 63. ° C).
On the other hand, in the main heater section 64, the lower heater 69 and the upper heater 70 are heated to a predetermined heat treatment temperature (for example, 100) in order to maintain the temperature of the substrate G heated in the preheater section 63 and efficiently perform the heat treatment. ° C).

そして、図12(a)〜(d)に時系列に状態を示すように、ロット単位で複数の基板G(G1,G2,G3,・・・)が連続的に搬入口65aからプレヒータ部63に搬入され、そこで各基板Gは所定温度(例えば100℃)まで加熱される。
プレヒータ部63において昇温された各基板Gは、続けてメインヒータ部64に搬送され、そこで基板温度が維持されて所定の熱処理(例えば、レジスト中の溶剤を蒸発させる処理)が施され、搬出口65bから連続して搬出される。
12A to 12D, a plurality of substrates G (G1, G2, G3,...) Are continuously fed from the carry-in entrance 65a to the preheater unit 63 in units of lots. Then, each substrate G is heated to a predetermined temperature (for example, 100 ° C.).
Each substrate G whose temperature has been raised in the pre-heater unit 63 is subsequently transferred to the main heater unit 64, where the substrate temperature is maintained and a predetermined heat treatment (for example, a process for evaporating the solvent in the resist) is performed. It is continuously carried out from the outlet 65b.

特開2007−158088号公報JP 2007-158088 A

しかしながら、図12(a)〜図12(d)に示した平流し搬送構造の熱処理装置にあっては、プレヒータ部63による予備加熱後の基板温度が、基板Gの前部領域及び後部領域と、中央部の領域とで異なる傾向があった。
具体的には、基板Gの前部領域は、前方に続く基板面(輻射熱を吸収、反射する面)が無いため、下部ヒータ66及び上部ヒータ67による輻射熱をそれぞれ基板両面で受け、中央部領域よりも高温になっていた。
一方、基板Gの後部領域にあっては、後方に続く基板面(輻射熱を吸収、反射する面)が無いため、前部領域と同様に、下部ヒータ66及び上部ヒータ67による輻射熱をそれぞれ基板両面で受け、中央部領域よりも高温になっていた。
このため、プレヒータ部63で昇温された基板Gに対しメインヒータ部64において所定の加熱処理を施す際に、基板面内の温度ばらつきによって、配線パターンの線幅が不均一になるという課題があった。
However, in the heat treatment apparatus having the flat flow conveying structure shown in FIGS. 12A to 12D, the substrate temperature after the preheating by the preheater unit 63 is the same as the front region and the rear region of the substrate G. Tended to be different in the central area.
Specifically, since the front region of the substrate G has no substrate surface (surface that absorbs and reflects radiant heat) that continues forward, it receives the radiant heat from the lower heater 66 and the upper heater 67 on both surfaces of the substrate G, and the central region. It was hotter than.
On the other hand, in the rear region of the substrate G, since there is no substrate surface (surface that absorbs and reflects radiant heat) that follows the radiant heat from the lower heater 66 and the upper heater 67, respectively, on both surfaces of the substrate. It was hotter than the central area.
For this reason, when a predetermined heat treatment is performed in the main heater unit 64 on the substrate G that has been heated by the preheater unit 63, there is a problem that the line width of the wiring pattern becomes non-uniform due to temperature variations in the substrate surface. there were.

本発明は、上記のような従来技術の問題点に鑑みてなされたものであり、被処理基板を平流し搬送しながら熱処理を施す熱処理装置において、基板面内における熱処理温度のばらつきを抑制し、基板面内における配線パターンの線幅をより均一化することのできる熱処理装置及び熱処理方法を提供する。   The present invention has been made in view of the above-described problems of the prior art, and in a heat treatment apparatus that performs heat treatment while flowing and transporting a substrate to be processed, suppressing variation in heat treatment temperature in the substrate surface, Provided are a heat treatment apparatus and a heat treatment method capable of making the line width of a wiring pattern in a substrate plane more uniform.

前記した課題を解決するために、本発明に係る熱処理装置は、平流し搬送される被処理基板に対し熱処理を施す熱処理装置であって、基板搬送路を形成し、前記被処理基板を前記基板搬送路に沿って平流し搬送する基板搬送手段と、前記基板搬送路の所定区間を覆うと共に、前記基板搬送路を搬送される前記被処理基板に対する熱処理空間を形成する第一のチャンバと、前記第一のチャンバ内を加熱可能な第一の手段と、前記基板搬送路を搬送される前記被処理基板に対し所定温度に冷却されたエアを吹き付け、局所的に冷却可能な第二の手段と、前記第一のチャンバの前段に設けられ、前記基板搬送路を搬送される前記被処理基板を検出する基板検出手段と、前記基板検出手段の検出信号が供給されると共に、前記第二の手段による冷却動作のオン/オフ切換を行う制御手段とを備え、前記制御手段は、前記基板検出手段の検出信号により被処理基板の搬送位置を取得し、基板搬送方向に沿って複数に分けられた被処理基板の領域ごとに、前記第二の手段による冷却動作のオン/オフ切換を行い、前記被処理基板は、前記第二の手段の冷却動作により、その前部領域及び後部領域の温度が、中央部領域の温度よりも低い状態となされ、更に前記第一の手段による加熱処理が施されることに特徴を有する。   In order to solve the above-described problems, a heat treatment apparatus according to the present invention is a heat treatment apparatus for performing a heat treatment on a substrate to be processed which is carried in a flat flow, wherein a substrate transfer path is formed, and the substrate to be processed is attached to the substrate. A substrate transfer means for carrying and carrying a flat flow along the transfer path, a first chamber for covering a predetermined section of the substrate transfer path and forming a heat treatment space for the substrate to be processed being transferred on the substrate transfer path; A first means capable of heating the inside of the first chamber; and a second means capable of locally cooling the substrate to be processed which is transported through the substrate transport path by blowing air cooled to a predetermined temperature. A substrate detecting means provided in a preceding stage of the first chamber, for detecting the substrate to be processed being transported through the substrate transport path, and a detection signal from the substrate detecting means being supplied, and the second means Cooling motion by Control means for performing on / off switching of the substrate, the control means acquires a transfer position of the substrate to be processed by a detection signal of the substrate detection means, and is divided into a plurality of substrates to be processed along the substrate transfer direction For each region, the cooling operation by the second means is switched on / off, and the temperature of the front region and the rear region of the substrate to be processed is changed to the central portion by the cooling operation of the second means. The temperature is lower than the temperature of the region, and the heat treatment is further performed by the first means.

或いは、前記した課題を解決するために、本発明に係る熱処理装置は、平流し搬送される被処理基板に対し熱処理を施す熱処理装置であって、基板搬送路を形成し、前記被処理基板を前記基板搬送路に沿って平流し搬送する基板搬送手段と、前記基板搬送路の所定区間を覆うと共に、前記基板搬送路を搬送される前記被処理基板に対する熱処理空間を形成する第一のチャンバと、前記第一のチャンバ内を加熱可能な第一の手段と、前記基板搬送路を搬送される被処理基板の下方に昇降移動可能な熱源を有し、前記熱源を被処理基板に近づけることにより前記被処理基板を局所的に加熱可能な第二の手段と、前記第一のチャンバの前段に設けられ、前記基板搬送路を搬送される前記被処理基板を検出する基板検出手段と、前記基板検出手段の検出信号が供給されると共に、前記第二の手段が有する熱源の昇降移動を制御する制御手段とを備え、前記制御手段は、前記基板検出手段の検出信号により被処理基板の搬送位置を取得し、基板搬送方向に沿って複数に分けられた被処理基板の領域ごとに、前記第二の手段が有する熱源の昇降移動を制御し、前記被処理基板は、前記第二の手段の加熱動作により、その中央部領域の温度が、前部領域及び後部領域の温度よりも高い状態となされ、更に前記第一の手段による加熱処理が施されることに特徴を有する。   Alternatively, in order to solve the above-described problems, a heat treatment apparatus according to the present invention is a heat treatment apparatus that performs a heat treatment on a substrate to be processed to be flown flatly, and forms a substrate transfer path, and the substrate to be processed is formed. A substrate transfer means for carrying and flowing along the substrate transfer path; a first chamber for covering a predetermined section of the substrate transfer path and forming a heat treatment space for the substrate to be processed being transferred through the substrate transfer path; And a first means capable of heating the inside of the first chamber, and a heat source that can be moved up and down below the substrate to be processed that is transported through the substrate transport path, and bringing the heat source close to the substrate to be processed. A second means capable of locally heating the substrate to be processed; a substrate detecting means provided in a preceding stage of the first chamber; for detecting the substrate to be processed being transported through the substrate transport path; and the substrate. Detection of detection means And a control means for controlling the raising and lowering movement of the heat source of the second means, wherein the control means obtains the transport position of the substrate to be processed by the detection signal of the substrate detection means, For each region of the substrate to be processed divided into a plurality along the substrate conveyance direction, the movement of the heat source of the second means is controlled, and the substrate to be processed is heated by the second means, The temperature of the central region is higher than the temperatures of the front region and the rear region, and the heat treatment by the first means is further performed.

或いは、前記した課題を解決するために、本発明に係る熱処理装置は、平流し搬送される被処理基板に対し熱処理を施す熱処理装置であって、基板搬送路を形成し、前記被処理基板を前記基板搬送路に沿って平流し搬送する基板搬送手段と、前記基板搬送路の所定区間を覆うと共に、前記基板搬送路を搬送される前記被処理基板に対する熱処理空間を形成する第一のチャンバと、前記第一のチャンバ内を加熱可能な第一の手段と、前記基板搬送路を搬送される被処理基板の下方に設けられた熱源の上方に強制対流を形成することにより前記被処理基板を局所的に加熱可能な第二の手段と、前記第一のチャンバの前段に設けられ、前記基板搬送路を搬送される前記被処理基板を検出する基板検出手段と、前記基板検出手段の検出信号が供給されると共に、前記第二の手段による強制対流形成動作のオン/オフ切換を行う制御手段とを備え、前記制御手段は、前記基板検出手段の検出信号により被処理基板の搬送位置を取得し、基板搬送方向に沿って複数に分けられた被処理基板の領域ごとに、前記第二の手段による強制対流形成動作のオン/オフ切換を行い、前記被処理基板は、前記第二の手段の加熱動作により、その中央部領域の温度が、前部領域及び後部領域の温度よりも高い状態となされ、更に前記第一の手段による加熱処理が施されることに特徴を有する。   Alternatively, in order to solve the above-described problems, a heat treatment apparatus according to the present invention is a heat treatment apparatus that performs a heat treatment on a substrate to be processed to be flown flatly, and forms a substrate transfer path, and the substrate to be processed is formed. A substrate transfer means for carrying and flowing along the substrate transfer path; a first chamber for covering a predetermined section of the substrate transfer path and forming a heat treatment space for the substrate to be processed being transferred through the substrate transfer path; The substrate to be processed is formed by forming forced convection above a first means capable of heating the inside of the first chamber and a heat source provided below the substrate to be processed that is transported through the substrate transport path. A second means capable of locally heating; a substrate detecting means provided in a preceding stage of the first chamber; for detecting the substrate to be processed being transported through the substrate transport path; and a detection signal of the substrate detecting means Is supplied And a control means for switching on / off the forced convection forming operation by the second means, wherein the control means obtains a transport position of the substrate to be processed by a detection signal of the substrate detection means, and transports the substrate. For each region of the substrate to be processed divided into a plurality along the direction, the forced convection forming operation by the second means is switched on / off, and the substrate to be processed is heated by the heating operation of the second means. The temperature of the central region is higher than the temperatures of the front region and the rear region, and the heat treatment by the first means is further performed.

以上のいずれの構成によっても、第一のチャンバ内における加熱処理の開始時において、被処理基板の前部領域及び後部領域は、その基板温度が中央部領域の温度よりも低い状態となされる。これにより、第一のチャンバでの加熱処理後における基板温度の目標値に対する必要昇温幅は、基板の前部領域及び後部領域において、中央部領域よりも大きくなる。
しかしながら、第一のチャンバにおいて、高温雰囲気中を搬送される基板にあっては、その前部領域及び後部領域の受ける熱量は、中央部領域の受ける熱量よりも大きい。そのため、第一のチャンバを搬出された際の基板の温度は、結果的に略面内均一となり、基板面内における温度ばらつきが抑制され、配線パターンの線幅をより均一化することができる。
In any of the above configurations, the substrate temperature of the front region and the rear region of the substrate to be processed is lower than the temperature of the central region at the start of the heat treatment in the first chamber. As a result, the necessary temperature increase width with respect to the target value of the substrate temperature after the heat treatment in the first chamber is larger in the front region and the rear region of the substrate than in the central region.
However, in the first chamber, in the substrate transported in the high temperature atmosphere, the amount of heat received by the front region and the rear region is larger than the amount of heat received by the central region. Therefore, the temperature of the substrate when the first chamber is carried out becomes substantially uniform in the surface as a result, temperature variations in the substrate surface are suppressed, and the line width of the wiring pattern can be made more uniform.

また、前記した課題を解決するために、本発明に係る熱処理方法は、被処理基板を基板搬送路に沿って平流し搬送し、所定温度に加熱された第一のチャンバ内に前記被処理基板を搬入すると共に、前記第一のチャンバ内に搬入された被処理基板に対し所定の熱処理を施す熱処理方法であって、前記基板搬送路を搬送される被処理基板を前記第一のチャンバへの搬入前に検出するステップと、前記被処理基板の検出により被処理基板の搬送位置を取得し、基板搬送方向に沿って分けられた被処理基板の前部領域と後部領域とに対し、所定温度に冷却されたエアを吹き付け、前記前部領域及び後部領域の温度が中央部領域の温度よりも低い状態とするステップと、前記所定温度に加熱された前記第一のチャンバ内において前記被処理基板に対し所定の加熱処理を施すステップとを含むことに特徴を有する。   Further, in order to solve the above-described problems, the heat treatment method according to the present invention includes a substrate to be processed in a first chamber heated to a predetermined temperature by transferring the substrate to be processed along a substrate transfer path. And a predetermined heat treatment for the substrate to be processed carried into the first chamber, wherein the substrate to be processed transported through the substrate transport path is transferred to the first chamber. A step of detecting before carrying in, and obtaining a transfer position of the substrate to be processed by detecting the substrate to be processed, and a predetermined temperature with respect to the front region and the rear region of the substrate to be processed divided along the substrate transfer direction Spraying the cooled air to make the temperature of the front region and the rear region lower than the temperature of the central region, and the substrate to be processed in the first chamber heated to the predetermined temperature. Against Characterized in that comprising the step of applying a heat treatment.

或いは、前記した課題を解決するために、本発明に係る熱処理方法は、被処理基板を基板搬送路に沿って平流し搬送し、所定温度に加熱された第一のチャンバ内に前記被処理基板を搬入すると共に、前記第一のチャンバ内に搬入された被処理基板に対し所定の熱処理を施す熱処理方法であって、前記基板搬送路を搬送される被処理基板を前記第一のチャンバへの搬入前に検出するステップと、前記被処理基板の検出により被処理基板の搬送位置を取得し、基板搬送方向に沿って分けられた被処理基板の中央部領域に対し、昇降移動可能に設けられた熱源を上昇移動させて近づけ、前記中央部領域の温度が前部領域及び後部領域の温度よりも高い状態とするステップと、前記所定温度に加熱された前記第一のチャンバ内において前記被処理基板に対し所定の加熱処理を施すステップとを含むことに特徴を有する。   Alternatively, in order to solve the above-described problem, the heat treatment method according to the present invention includes a substrate to be processed that is flown and transported along a substrate transport path and is heated to a predetermined temperature in the first chamber. And a predetermined heat treatment for the substrate to be processed carried into the first chamber, wherein the substrate to be processed transported through the substrate transport path is transferred to the first chamber. Detecting before carrying in and obtaining the transfer position of the substrate to be processed by detecting the substrate to be processed, provided to be movable up and down with respect to the central region of the substrate to be processed divided along the substrate transfer direction Moving the heated heat source closer to bring the temperature of the central region higher than the temperatures of the front region and the rear region, and the object to be processed in the first chamber heated to the predetermined temperature. substrate Characterized in that comprising the step of performing a predetermined heat treatment against.

或いは、前記した課題を解決するために、本発明に係る熱処理方法は、被処理基板を基板搬送路に沿って平流し搬送し、所定温度に加熱された第一のチャンバ内に前記被処理基板を搬入すると共に、前記第一のチャンバ内に搬入された被処理基板に対し所定の熱処理を施す熱処理方法であって、前記基板搬送路を搬送される被処理基板を前記第一のチャンバへの搬入前に検出するステップと、前記被処理基板の検出により被処理基板の搬送位置を取得し、基板搬送方向に沿って分けられた被処理基板の中央部領域に対し、基板下方に設けられた熱源の上方に強制対流を形成することにより更に加熱し、前記中央部領域の温度が前部領域及び後部領域の温度よりも高い状態とするステップと、前記所定温度に加熱された前記第一のチャンバ内において前記被処理基板に対し所定の加熱処理を施すステップとを含むことに特徴を有する。   Alternatively, in order to solve the above-described problem, the heat treatment method according to the present invention includes a substrate to be processed that is flown and transported along a substrate transport path and is heated to a predetermined temperature in the first chamber. And a predetermined heat treatment for the substrate to be processed carried into the first chamber, wherein the substrate to be processed transported through the substrate transport path is transferred to the first chamber. A step of detecting before carrying in and a detection position of the substrate to be processed are obtained by a detection position of the substrate to be processed, and the substrate is provided below the central region of the substrate to be processed divided along the substrate transfer direction. Further heating by forming forced convection above the heat source, the temperature of the central region is higher than the temperature of the front region and the rear region, and the first heated to the predetermined temperature In the chamber With respect to the substrate to be processed it had characterized in that comprising the step of performing a predetermined heat treatment.

以上のいずれの方法によっても、第一のチャンバ内における加熱処理の開始時において、被処理基板の前部領域及び後部領域は、その基板温度が中央部領域の温度よりも低い状態となされる。これにより、第一のチャンバでの加熱処理後における基板温度の目標値に対する必要昇温幅は、基板の前部領域及び後部領域において、中央部領域よりも大きくなる。
しかしながら、第一のチャンバにおいて、高温雰囲気中を搬送される基板にあっては、その前部領域及び後部領域の受ける熱量は、中央部領域の受ける熱量よりも大きい。そのため、第一のチャンバを搬出された際の基板の温度は、結果的に略面内均一となり、基板面内における温度ばらつきが抑制され、配線パターンの線幅をより均一化することができる。
In any of the above methods, at the start of the heat treatment in the first chamber, the substrate temperature of the front region and the rear region of the substrate to be processed is lower than the temperature of the central region. As a result, the necessary temperature increase width with respect to the target value of the substrate temperature after the heat treatment in the first chamber is larger in the front region and the rear region of the substrate than in the central region.
However, in the first chamber, in the substrate transported in the high temperature atmosphere, the amount of heat received by the front region and the rear region is larger than the amount of heat received by the central region. Therefore, the temperature of the substrate when the first chamber is carried out becomes substantially uniform in the surface as a result, temperature variations in the substrate surface are suppressed, and the line width of the wiring pattern can be made more uniform.

本発明によれば、被処理基板を平流し搬送しながら熱処理を施す熱処理装置において、基板面内における熱処理温度のばらつきを抑制し、基板面内における配線パターンの線幅を均一化することのできる熱処理装置及び熱処理方法を得ることができる。   According to the present invention, in a heat treatment apparatus that performs heat treatment while flowing and transporting a substrate to be processed, variation in heat treatment temperature in the substrate surface can be suppressed, and the line width of the wiring pattern in the substrate surface can be made uniform. A heat treatment apparatus and a heat treatment method can be obtained.

図1は、本発明にかかる第一の実施形態の全体概略構成を示す断面図である。FIG. 1 is a cross-sectional view showing an overall schematic configuration of a first embodiment according to the present invention. 図2は、本発明にかかる第一の実施形態の全体概略構成を示す平面図である。FIG. 2 is a plan view showing the overall schematic configuration of the first embodiment according to the present invention. 図3は、図1の熱処理装置の動作の流れを示すフローである。FIG. 3 is a flow showing the flow of operation of the heat treatment apparatus of FIG. 図4(a)〜(d)は、図3のフローに対応する熱処理装置の動作を説明するための断面図である。4A to 4D are cross-sectional views for explaining the operation of the heat treatment apparatus corresponding to the flow of FIG. 図5は、本発明にかかる第二の実施形態の一部概略構成を示す断面図である。FIG. 5 is a cross-sectional view showing a partial schematic configuration of the second embodiment according to the present invention. 図6は、図5の熱処理装置の動作の流れを示すフローである。FIG. 6 is a flow showing the flow of operation of the heat treatment apparatus of FIG. 図7(a)〜(d)は、図6のフローに対応する熱処理装置の動作を説明するための断面図である。7A to 7D are cross-sectional views for explaining the operation of the heat treatment apparatus corresponding to the flow of FIG. 図8は、本発明にかかる第二の実施形態の変形例であって、一部概略構成を示す断面図である。FIG. 8 is a cross-sectional view showing a partial schematic configuration as a modification of the second embodiment according to the present invention. 図9は、本発明にかかる第二の実施形態の他の変形例であって、一部概略構成を示す断面図である。FIG. 9 is a cross-sectional view showing a partial schematic configuration of another modification of the second embodiment according to the present invention. 図10は、本発明にかかる第二の実施形態の他の変形例であって、一部概略構成を示す断面図である。FIG. 10 is a cross-sectional view showing a partial schematic configuration as another modification of the second embodiment according to the present invention. 図11は、図10の熱処理装置の一部概略構成を示す平面図である。FIG. 11 is a plan view showing a partial schematic configuration of the heat treatment apparatus of FIG. 図12(a)〜(d)は、従来の熱処理装置の課題を説明するための断面図である。12A to 12D are cross-sectional views for explaining the problems of the conventional heat treatment apparatus.

以下、本発明の熱処理装置にかかる実施形態を、図面に基づいて説明する。尚、この実施形態にあっては、熱処理装置を、被処理基板であるガラス基板(以下、基板Gと呼ぶ)に対し加熱処理する加熱処理ユニットに適用した場合を例にとって説明する。
また、以下の説明において用いる基板Gの前部(領域)とは、例えば基板全長に対して基板前端から四分の一程度(基板全長を2000mmとすれば500mm)までの領域とし、基板Gの後部(領域)とは、基板全長に対して基板後端から四分の一程度までの領域とする。また、基板Gの中央部(領域)とは、前記基板Gの前部及び後部を除く領域とする。
Hereinafter, an embodiment according to a heat treatment apparatus of the present invention will be described with reference to the drawings. In this embodiment, a case where the heat treatment apparatus is applied to a heat treatment unit that heat-treats a glass substrate (hereinafter referred to as a substrate G) that is a substrate to be treated will be described as an example.
Further, the front portion (region) of the substrate G used in the following description is, for example, a region from the front end of the substrate to about a quarter (500 mm if the total substrate length is 2000 mm) with respect to the total length of the substrate. The rear portion (region) is a region from the rear end of the substrate to about a quarter with respect to the entire length of the substrate. The central portion (region) of the substrate G is a region excluding the front portion and the rear portion of the substrate G.

図1は、加熱処理ユニット1の第一の実施形態に係る全体の概略構成を示す断面図、図2は、図1の加熱処理ユニット1の(平面方向の断面を示す)平面図である。
この加熱処理ユニット1は、図1、図2に示すように、回転可能に敷設された複数のコロ20によって基板GをX方向に向かって搬送する基板搬送路2を具備する。この基板搬送路2に沿って、上流側から順に(X方向に向かって)、基板搬入部3と、予備加熱を行うプレヒータ部4と、主加熱を行うメインヒータ部5と、基板搬出部6とが配置されている。
FIG. 1 is a cross-sectional view showing an overall schematic configuration according to the first embodiment of the heat treatment unit 1, and FIG. 2 is a plan view (showing a cross section in the plane direction) of the heat treatment unit 1 of FIG.
As shown in FIGS. 1 and 2, the heat treatment unit 1 includes a substrate transport path 2 that transports a substrate G in the X direction by a plurality of rollers 20 laid rotatably. Along the substrate conveyance path 2, in order from the upstream side (toward the X direction), the substrate carry-in unit 3, the preheater unit 4 that performs preheating, the main heater unit 5 that performs main heating, and the substrate carry-out unit 6. And are arranged.

基板搬送路2は、図2に示すようにY方向に延びる円柱状のコロ20(基板搬送手段)を複数有し、それら複数のコロ20は、X方向に所定の間隔をあけて、それぞれ回転可能に配置されている。また、基板搬入部3におけるコロ20と、プレヒータ部4におけるコロ20と、メインヒータ部5におけるコロ20とは、それぞれ駆動系が独立して設けられている。具体的には、基板搬入部3における複数のコロ20は、その回転軸21の回転がベルト22aによって連動可能に設けられ、1つの回転軸21がモータ等のコロ駆動装置10aに接続されている。   As shown in FIG. 2, the substrate transport path 2 has a plurality of cylindrical rollers 20 (substrate transport means) extending in the Y direction, and the plurality of rollers 20 rotate at predetermined intervals in the X direction. Arranged to be possible. Further, the rollers 20 in the substrate carry-in unit 3, the rollers 20 in the preheater unit 4, and the rollers 20 in the main heater unit 5 are each provided with a drive system independently. Specifically, the plurality of rollers 20 in the substrate carry-in unit 3 are provided such that the rotation shaft 21 can be rotated by a belt 22a, and one rotation shaft 21 is connected to a roller driving device 10a such as a motor. .

また、プレヒータ部4における複数のコロ20は、その回転軸21の回転がベルト22bによって連動可能に設けられ、1つの回転軸21がモータ等のコロ駆動装置10bに接続されている。
また、メインヒータ部5における複数のコロ20は、その回転軸21の回転がベルト22cによって連動可能に設けられ、1つの回転軸21がモータ等のコロ駆動装置10cに接続されている。
更に、基板搬出部6における複数のコロ20は、その回転軸21の回転がベルト22dによって連動可能に設けられ、1つの回転軸21がモータ等のコロ駆動装置10dに接続されている。
In addition, the plurality of rollers 20 in the preheater unit 4 are provided such that the rotation shaft 21 can be rotated by a belt 22b, and one rotation shaft 21 is connected to a roller driving device 10b such as a motor.
The plurality of rollers 20 in the main heater unit 5 are provided so that the rotation of the rotation shaft 21 can be interlocked by a belt 22c, and one rotation shaft 21 is connected to a roller driving device 10c such as a motor.
Further, the plurality of rollers 20 in the substrate carry-out section 6 are provided such that the rotation shaft 21 can be rotated by a belt 22d, and one rotation shaft 21 is connected to a roller driving device 10d such as a motor.

尚、各コロ20は、その周面が基板Gの全幅にわたって接するように設けられ、加熱された基板Gの熱が伝達しにくいように、外周面部が樹脂等の熱伝導率の低い材料、例えば、PEEK(ポリエーテルエーテルケトン)で形成されている。また、コロ20の回転軸21は、アルミニウム、ステンレス、セラミック等の高強度かつ低熱伝導率の材料で形成されている。   Each roller 20 is provided so that its peripheral surface is in contact with the entire width of the substrate G, and the outer peripheral surface portion is made of a material having a low thermal conductivity such as a resin so that the heat of the heated substrate G is not easily transmitted. , PEEK (polyetheretherketone). Further, the rotating shaft 21 of the roller 20 is formed of a material having high strength and low thermal conductivity such as aluminum, stainless steel, and ceramic.

また、加熱処理ユニット1は所定の熱処理空間を形成するためのチャンバ8を備える。チャンバ8は、基板搬送路2の周りを覆う薄型の箱状に形成され、このチャンバ8内において、コロ搬送される基板Gに対しプレヒータ部4による予備加熱とメインヒータ部5による主加熱とが連続して行われる。尚、本実施形態においては、チャンバ8は、プレヒータ部4の熱処理空間を形成する第一のチャンバ8Aと、この第一のチャンバ8Aの後端から連続形成され、メインヒータ部5の熱処理空間を形成する第二のチャンバ8Bとからなるものとする。   The heat treatment unit 1 includes a chamber 8 for forming a predetermined heat treatment space. The chamber 8 is formed in a thin box shape that covers the periphery of the substrate transfer path 2. In this chamber 8, preheating by the preheater unit 4 and main heating by the main heater unit 5 are performed on the substrate G to be roller-transferred. It is done continuously. In the present embodiment, the chamber 8 is formed continuously from the first chamber 8A that forms the heat treatment space of the preheater section 4 and the rear end of the first chamber 8A, and the heat treatment space of the main heater section 5 is formed. It shall consist of the 2nd chamber 8B to form.

図1に示すようにチャンバ8の前部側壁には、Y方向に延びるスリット状の搬入口51が設けられている。この搬入口51を基板搬送路2上の基板Gが通過し、チャンバ8内に搬入されるように構成されている。
また、チャンバ8の後部側壁には、基板搬送路2上の基板Gが通過可能なY方向に延びるスリット状の搬出口52が設けられている。即ち、この搬出口52を基板搬送路2上の基板Gが通過し、チャンバ8から搬出されるように構成されている。
As shown in FIG. 1, a slit-shaped inlet 51 extending in the Y direction is provided on the front side wall of the chamber 8. The substrate G on the substrate transport path 2 passes through the carry-in port 51 and is carried into the chamber 8.
A slit-shaped carry-out port 52 extending in the Y direction through which the substrate G on the substrate transfer path 2 can pass is provided on the rear side wall of the chamber 8. That is, the substrate G on the substrate transport path 2 passes through the carry-out port 52 and is unloaded from the chamber 8.

また、チャンバ8の上下左右の壁部は、互いに空間をあけて設けられた内壁12及び外壁13を備えた二重壁構造を有しており、内壁12及び外壁13の間の空間14が、チャンバ8内外を断熱する空気断熱層として機能する。尚、外壁13の内側面には、断熱材15が設けられている。
また、図2に示すように、チャンバ8において、Y方向に対向する(前記内壁12と外壁13とからなる)側壁には、軸受け19が設けられ、その軸受け19によって、基板搬送路2のコロ20がそれぞれに回転可能に支持されている。
Further, the upper, lower, left and right wall portions of the chamber 8 have a double wall structure including an inner wall 12 and an outer wall 13 provided with a space therebetween, and a space 14 between the inner wall 12 and the outer wall 13 is It functions as an air insulation layer that insulates the inside and outside of the chamber 8. A heat insulating material 15 is provided on the inner side surface of the outer wall 13.
As shown in FIG. 2, in the chamber 8, a bearing 19 is provided on the side wall facing the Y direction (consisting of the inner wall 12 and the outer wall 13), and the bearing 19 supports the roller of the substrate transport path 2. 20 is rotatably supported by each.

また、図1に示すようにチャンバ8において、搬入口51付近の上壁部には排気口25が設けられ、下壁部には排気口26が設けられ、それぞれ排気量可変な排気装置31,32に接続されている。
さらに、チャンバ8の搬出口52付近の上壁部には排気口27が設けられ、下壁部には排気口28が設けられ、それぞれ排気量可変な排気装置33、34に接続されている。
即ち、前記排気装置31〜34が稼働することにより排気口25〜28を介してチャンバ8内の排気が行われ、チャンバ内温度をより安定化させる構成となされている。
As shown in FIG. 1, in the chamber 8, an exhaust port 25 is provided in the upper wall portion near the carry-in port 51, and an exhaust port 26 is provided in the lower wall portion. 32.
Further, an exhaust port 27 is provided in the upper wall portion near the carry-out port 52 of the chamber 8, and an exhaust port 28 is provided in the lower wall portion, which are connected to exhaust devices 33 and 34 having variable exhaust amounts, respectively.
That is, when the exhaust devices 31 to 34 are operated, the chamber 8 is exhausted through the exhaust ports 25 to 28, and the chamber temperature is further stabilized.

また、図1に示すようにプレヒータ部4は、基板搬送路2に沿ってチャンバ8内に配列された、複数の下部面状ヒータ17及び上部面状ヒータ18(第一の手段)を備える。これら下部面状ヒータ17及び上部面状ヒータ18は、それぞれに駆動電流が供給されることにより発熱する構成となされている。
下部面状ヒータ17は、それぞれ短冊状のプレートからなり、各プレートは下方から基板Gを加熱するよう隣り合うコロ部材20の間に敷設されている。
また、上部面状ヒータ18は、それぞれ短冊状のプレートからなり、図1に示すように上方から基板Gを加熱するようチャンバ8の天井部に敷設されている。
また、下部面状ヒータ17と上部面状ヒータ18には、ヒータ電源36により駆動電流が供給され、ヒータ電源36は、コンピュータからなる制御部40(制御手段)によって制御される。
As shown in FIG. 1, the pre-heater unit 4 includes a plurality of lower planar heaters 17 and upper planar heaters 18 (first means) arranged in the chamber 8 along the substrate transport path 2. The lower planar heater 17 and the upper planar heater 18 are configured to generate heat when supplied with a drive current.
The lower planar heaters 17 are each formed of a strip-shaped plate, and each plate is laid between adjacent roller members 20 so as to heat the substrate G from below.
The upper planar heaters 18 are each formed of a strip-shaped plate, and are laid on the ceiling portion of the chamber 8 so as to heat the substrate G from above as shown in FIG.
A driving current is supplied to the lower planar heater 17 and the upper planar heater 18 by a heater power source 36, and the heater power source 36 is controlled by a control unit 40 (control means) including a computer.

一方、メインヒータ部5は、基板搬送路2に沿ってチャンバ8内に設けられた短冊状のプレートからなる下部面状ヒータ23及び上部面状ヒータ24(第三の手段)を備える。このうち、下部面状ヒータ23は、基板Gの下方から加熱するよう隣り合うコロ部材20の間に敷設され、上部面状ヒータ24は、基板Gの上方から加熱するようチャンバ8の天井部に敷設されている。前記下部面状ヒータ23と上部面状ヒータ24には、ヒータ電源39により駆動電流が供給され、ヒータ電源39は制御部40によって制御されるよう構成されている。   On the other hand, the main heater unit 5 includes a lower planar heater 23 and an upper planar heater 24 (third means) made of strip-shaped plates provided in the chamber 8 along the substrate transport path 2. Among these, the lower planar heater 23 is laid between adjacent roller members 20 to be heated from below the substrate G, and the upper planar heater 24 is formed on the ceiling portion of the chamber 8 to be heated from above the substrate G. It is laid. A driving current is supplied to the lower planar heater 23 and the upper planar heater 24 by a heater power supply 39, and the heater power supply 39 is controlled by a control unit 40.

また、この加熱処理ユニット1にあっては、基板搬入部3の所定位置に、基板搬送路2を搬送される基板Gを検出するための基板検出センサ45(基板検出手段)が設けられ、その検出信号を制御部40に出力するようになされている。
この基板検出センサ45は、例えばチャンバ8の搬入口51より手前側に所定距離を空けて設けられ、センサ上を基板Gの所定箇所(例えば先端)が通過して所定時間の経過後に、基板Gが搬入口51からチャンバ8内(プレヒータ部4)に搬入されるようになされている。
In the heat treatment unit 1, a substrate detection sensor 45 (substrate detection means) for detecting the substrate G transported on the substrate transport path 2 is provided at a predetermined position of the substrate carry-in unit 3. A detection signal is output to the control unit 40.
The substrate detection sensor 45 is provided, for example, at a predetermined distance from the carry-in port 51 of the chamber 8 with a predetermined distance, and after a predetermined time (e.g., the tip) of the substrate G passes over the sensor, the substrate G is detected. Is carried into the chamber 8 (preheater unit 4) from the carry-in entrance 51.

また、プレヒータ部4内において、基板搬入口51の付近には、基板Gの下方から基板下面に対し、必要に応じて冷却されたエア(冷却エアと呼ぶ)を吹き付けるためのエアブローノズル41(第二の手段)が設けられている。このエアブローノズル41は、基板幅方向に沿って長いスリット状のノズル口41aを有し、このノズル口41aから一様な風力、且つ所定温度(例えば40℃)の冷却エアを基板下面に吹き付け可能となされている。尚、この冷却エアを基板Gの所定領域に吹き付けることによって、その所定領域においては、(冷却エアが吹き付けられない他の領域のような)高速昇温が抑制される。
また、このエアブローノズル41には、所定温度に冷却調整されたエアの供給源であるポンプ等からなるエア供給部42(第二の手段)が接続され、その駆動制御(冷却動作のオン/オフ切換)は制御部40によって行われる。
Further, in the preheater unit 4, an air blow nozzle 41 (first cooling air) for blowing air (called cooling air), which is cooled as necessary, from below the substrate G to the lower surface of the substrate near the substrate carry-in port 51. Two means) are provided. The air blow nozzle 41 has a slit-like nozzle port 41a that is long along the substrate width direction. Uniform wind power and cooling air having a predetermined temperature (for example, 40 ° C.) can be blown from the nozzle port 41a to the lower surface of the substrate. It has been. Note that by blowing this cooling air to a predetermined region of the substrate G, high-speed temperature rise (such as other regions where the cooling air is not blown) is suppressed in the predetermined region.
The air blow nozzle 41 is connected to an air supply unit 42 (second means) including a pump that is an air supply source adjusted to be cooled to a predetermined temperature, and its drive control (on / off of cooling operation) is performed. Switching) is performed by the control unit 40.

より具体的には、プレヒータ部4に搬入されてきた基板Gの前部領域、及び後部領域が、ノズル41上方を通過する間のみ、冷却エアをノズル口41aから吹き出すように制御される。
これにより、プレヒータ部4において基板Gが加熱開始される際に、基板Gの前部領域及び後部領域に対してのみ冷却エアが吹き付けられ、加熱開始時における基板Gの前部領域及び後部領域の基板温度が、中央部領域よりも低い状態となされる。
More specifically, the cooling air is controlled to be blown out from the nozzle port 41 a only while the front region and the rear region of the substrate G carried into the preheater unit 4 pass over the nozzle 41.
Thereby, when the heating of the substrate G is started in the preheater unit 4, the cooling air is blown only to the front region and the rear region of the substrate G, and the front region and the rear region of the substrate G at the time of heating start. The substrate temperature is set lower than that in the central region.

また、チャンバ8内においてメインヒータ部5の中央領域には、このメインヒータ部5に搬入される基板Gに対し、例えば赤外線照射により非接触に基板温度の検出を行う基板温度検出センサ46(基板温度検出手段)が設けられ、その検出信号を制御部40に出力するようになされている。即ち、制御部40は、基板温度検出センサ46の出力に基づき、プレヒータ部4によって加熱された基板Gの温度を取得することができる。   Further, in the central region of the main heater unit 5 in the chamber 8, a substrate temperature detection sensor 46 (substrate) that detects the substrate temperature in a non-contact manner by, for example, infrared irradiation with respect to the substrate G carried into the main heater unit 5. Temperature detection means) is provided, and the detection signal is output to the control unit 40. That is, the control unit 40 can acquire the temperature of the substrate G heated by the preheater unit 4 based on the output of the substrate temperature detection sensor 46.

続いて、このように構成された加熱処理ユニット1による熱処理工程について、更に図3、図4を用いて説明する。尚、図3は、加熱処理ユニット1のプレヒータ部4における動作制御の流れを示すフローであり、図4は、加熱処理ユニット1における基板搬送状態を示す断面図である。   Next, the heat treatment step by the heat treatment unit 1 configured as described above will be further described with reference to FIGS. FIG. 3 is a flowchart showing a flow of operation control in the preheater unit 4 of the heat treatment unit 1, and FIG. 4 is a cross-sectional view showing a substrate transport state in the heat treatment unit 1.

先ず、ヒータ電源36からの駆動電流の供給により、プレヒータ部4の下部面状ヒータ17及び上部面状ヒータ18の温度が予備加熱温度(例えば160℃)に設定される。また、ヒータ電源39からの駆動電流の供給により、メインヒータ部5の下部面状ヒータ23及び上部面状ヒータ24の温度が、プレヒータ部4において加熱された基板Gの温度を維持するための熱処理温度(例えば100℃)に設定される。   First, the temperature of the lower planar heater 17 and the upper planar heater 18 of the preheater unit 4 is set to a preheating temperature (for example, 160 ° C.) by supplying a drive current from the heater power source 36. Further, by supplying a drive current from the heater power supply 39, the temperature of the lower planar heater 23 and the upper planar heater 24 of the main heater unit 5 is maintained for maintaining the temperature of the substrate G heated in the preheater unit 4. The temperature is set (for example, 100 ° C.).

このヒータ温度の設定により、チャンバ8内の雰囲気はプレヒータ部4がメインヒータ部5よりも所定温度高い状態となされる。即ち、基板Gは、高温(160℃)の雰囲気となされたプレヒータ部4を通過することにより、その基板温度が所定の熱処理温度(例えば100℃)まで昇温され、メインヒータ部5を通過する間、基板温度が維持される構成となされている。   By setting the heater temperature, the atmosphere in the chamber 8 is brought to a state in which the preheater unit 4 is higher than the main heater unit 5 by a predetermined temperature. That is, when the substrate G passes through the preheater section 4 that is in a high temperature (160 ° C.) atmosphere, the substrate temperature is raised to a predetermined heat treatment temperature (for example, 100 ° C.) and passes through the main heater section 5. During this time, the substrate temperature is maintained.

前記のように基板搬入前においてチャンバ8内の雰囲気温度が調整された後、コロ駆動装置10a〜10dによりコロ20の駆動がなされ、被処理基板である基板Gは所定速度(例えば50mm/sec)で、基板搬入部3の基板搬送路2を搬送される。
そして、図4(a)に示すように基板検出センサ45によって基板Gが検出されると(図3のステップS1)、制御部40にその基板検出信号が供給される。
As described above, after the atmospheric temperature in the chamber 8 is adjusted before the substrate is carried in, the rollers 20 are driven by the roller driving devices 10a to 10d, and the substrate G as the substrate to be processed has a predetermined speed (for example, 50 mm / sec). Thus, the substrate is transported along the substrate transport path 2 of the substrate carry-in unit 3.
When the substrate G is detected by the substrate detection sensor 45 as shown in FIG. 4A (step S1 in FIG. 3), the substrate detection signal is supplied to the control unit 40.

制御部40は、前記基板検出信号と基板搬送速度とに基づいて、基板Gの搬送位置を取得(検出)開始する。そして、制御部40は、図4(a)に示すように、基板Gがチャンバ8の搬入口51からプレヒータ部4に搬入されるタイミングにおいて(図3のステップS2)、エア供給部42を駆動し、エアブローノズル41のノズル口41aから所定温度(例えば40℃)の冷却エアを噴出する(図3のステップS3)。
これにより図4(b)に示すように、プレヒータ部4に搬入された基板Gの下面に冷却エアが吹き付けられ、基板Gの前部領域が所定温度に冷却される。
即ち、基板Gの前部領域は、高速昇温が抑制され、その基板温度が基板Gの中央部領域を加熱する際の温度よりも低い状態から、プレヒータ部4において加熱処理が開始される。
The control unit 40 starts acquiring (detecting) the transfer position of the substrate G based on the substrate detection signal and the substrate transfer speed. Then, as shown in FIG. 4A, the control unit 40 drives the air supply unit 42 at the timing when the substrate G is carried into the preheater unit 4 from the carry-in port 51 of the chamber 8 (step S2 in FIG. 3). Then, cooling air of a predetermined temperature (for example, 40 ° C.) is ejected from the nozzle port 41a of the air blow nozzle 41 (step S3 in FIG. 3).
As a result, as shown in FIG. 4B, cooling air is blown to the lower surface of the substrate G carried into the preheater unit 4, and the front region of the substrate G is cooled to a predetermined temperature.
That is, in the front region of the substrate G, the high temperature rise is suppressed, and the heat treatment is started in the preheater unit 4 from a state where the substrate temperature is lower than the temperature when the central region of the substrate G is heated.

また、制御部40は、基板Gの中央部がプレヒータ部4に搬入され、エアブローノズル41の直上部を通過するタイミングにおいて(図3のステップS4)、図4(c)に示すようにエア供給部42の駆動を停止し、エアブローノズル41からのエア噴出を停止する(図3のステップS5)。
即ち、基板Gの中央部領域は、冷却される(高速昇温が抑制される)ことなく、プレヒータ部4において加熱処理が開始される。
Further, the control unit 40 supplies air as shown in FIG. 4C at a timing when the central portion of the substrate G is carried into the pre-heater unit 4 and passes immediately above the air blow nozzle 41 (step S4 in FIG. 3). The drive of the part 42 is stopped and the air ejection from the air blow nozzle 41 is stopped (step S5 in FIG. 3).
That is, the heat treatment is started in the preheater unit 4 without cooling the central region of the substrate G (fast temperature rise is suppressed).

また、制御部40は、基板Gの後部領域がプレヒータ部4に搬入され、エアブローノズル41の直上部を通過するタイミングにおいて(図3のステップS6)、エア供給部42を駆動し、エアブローノズル41のノズル口41aから冷却エアを噴出開始する(図3のステップS7)。
これにより図4(d)に示すように、プレヒータ部4に搬入された基板後部の下面に冷却エアが吹き付けられ、基板Gの後部領域が冷却される。
即ち、基板Gの後部領域は、高速昇温が抑制され、その基板温度が基板Gの中央部領域を加熱する際の温度よりも低い状態から、プレヒータ部4において加熱処理が開始される。
Further, the control unit 40 drives the air supply unit 42 at a timing when the rear region of the substrate G is carried into the pre-heater unit 4 and passes immediately above the air blow nozzle 41 (step S6 in FIG. 3), and the air blow nozzle 41 The cooling air starts to be ejected from the nozzle port 41a (step S7 in FIG. 3).
As a result, as shown in FIG. 4D, cooling air is blown to the lower surface of the rear portion of the substrate carried into the preheater portion 4, and the rear region of the substrate G is cooled.
That is, in the rear region of the substrate G, the rapid heating is suppressed, and the preheater unit 4 starts the heat treatment from a state where the substrate temperature is lower than the temperature when the central region of the substrate G is heated.

また、制御部40は、基板Gの全体がエアブローノズル41の上方を通過すると(図3のステップS8)、エア供給部42の駆動を停止し、エアブローノズル41からのエア噴出を停止する(図3のステップS9)。
このようにプレヒータ部4を搬送される基板Gにあっては、所定のタイミングにおいてエアブローノズル41により冷却エアが吹き付けられつつ所定温度(100℃)まで加熱され、さらにメインヒータ部5に搬送されて所定の加熱処理が施される。
尚、前記ステップS3,7において、エアブローノズル41から噴出する冷却エアの温度は、メインヒータ部5において基板温度検出センサ46により検出した基板Gの中央部領域、前部領域及び後部領域の温度に基づき決定するのが好ましい。
In addition, when the entire substrate G passes over the air blow nozzle 41 (step S8 in FIG. 3), the control unit 40 stops driving the air supply unit 42 and stops air ejection from the air blow nozzle 41 (FIG. 3). 3 step S9).
As described above, the substrate G transported through the preheater unit 4 is heated to a predetermined temperature (100 ° C.) while being blown by the air blow nozzle 41 at a predetermined timing, and is further transported to the main heater unit 5. A predetermined heat treatment is performed.
In steps S3 and S7, the temperature of the cooling air ejected from the air blow nozzle 41 is the temperature of the central region, front region, and rear region of the substrate G detected by the substrate temperature detection sensor 46 in the main heater unit 5. It is preferable to determine based on this.

以上のように、本発明に係る第一の実施形態によれば、プレヒータ部4における加熱処理の開始時において、基板Gの前部領域及び後部領域は、その基板温度が中央部領域の温度よりも低い状態となされる。これにより、プレヒータ部4での加熱処理後における基板温度の目標値(100℃)に対する必要昇温幅は、基板Gの前部領域及び後部領域において、中央部領域よりも大きくなる。
しかしながら、プレヒータ部4において、所定温度(160℃)の高温雰囲気中を搬送される基板Gにあっては、その前部領域及び後部領域の受ける熱量は、中央部領域の受ける熱量よりも大きい。そのため、メインヒータ部5に搬送された際の基板Gの温度は、結果的に略面内均一となり、基板面内における温度ばらつきが抑制され、配線パターンの線幅をより均一化することができる。
As described above, according to the first embodiment of the present invention, at the start of the heat treatment in the preheater unit 4, the substrate temperature of the front region and the rear region of the substrate G is higher than the temperature of the central region. Is also low. As a result, the necessary temperature increase width with respect to the target value (100 ° C.) of the substrate temperature after the heat treatment in the preheater unit 4 is larger in the front region and the rear region of the substrate G than in the central region.
However, in the preheater unit 4, in the substrate G transported in a high temperature atmosphere at a predetermined temperature (160 ° C.), the amount of heat received by the front region and the rear region is larger than the amount of heat received by the central region. Therefore, the temperature of the board | substrate G at the time of being conveyed by the main heater part 5 becomes substantially in-plane uniform as a result, the temperature dispersion in a board | substrate surface is suppressed, and the line width of a wiring pattern can be made more uniform. .

尚、前記第一の実施の形態においては、基板Gの下方から基板下面に対し冷却エアを吹き付けるためのエアブローノズル41を、プレヒータ部4内(チャンバ8内)の基板搬入口51付近に設けたが、その構成に限定されるものではない。
即ち、プレヒータ部4における加熱処理が終了する前に、基板Gの前部領域及び後部領域に対し冷却エアを吹きつけ、その領域の基板温度を所定温度低下させる構成であればよく、例えば、エアブローノズル41をプレヒータ部4内の下流側の位置に設けてもよい。
或いは、前記エアブローノズル41をプレヒータ部4(チャンバ8)の外側の基板搬入口51付近に設け、プレヒータ部4への基板搬入直前に、基板Gの前部領域及び後部領域に対して冷却エアを吹き付け、その領域の温度を所定温度(例えば17℃)低下させるようにしてもよい。
In the first embodiment, the air blow nozzle 41 for blowing cooling air from below the substrate G to the lower surface of the substrate is provided near the substrate carry-in port 51 in the preheater section 4 (in the chamber 8). However, it is not limited to the configuration.
That is, before the heat treatment in the preheater unit 4 is completed, it is sufficient that the cooling air is blown to the front region and the rear region of the substrate G, and the substrate temperature in the region is lowered by a predetermined temperature. The nozzle 41 may be provided at a downstream position in the preheater unit 4.
Alternatively, the air blow nozzle 41 is provided in the vicinity of the substrate inlet 51 outside the preheater unit 4 (chamber 8), and cooling air is supplied to the front region and the rear region of the substrate G immediately before the substrate is loaded into the preheater unit 4. The temperature in the region may be decreased by a predetermined temperature (for example, 17 ° C.).

続いて、本発明に係る熱処理装置の第二の実施形態について説明する。この第二の実施形態にあっては、前記した第一の実施形態に示したエアブローノズル41及びエア供給部42は具備せず、代わりに、例えば、図5に示すように、プレヒータ部4における搬入口51側の下部面状ヒータ17(図では2枚の下部面状ヒータ17)を昇降移動させる機能を備える。
具体的には、図5に示すように基板搬入口51側の2枚の下部面状ヒータ17(熱源)は、それぞれ昇降軸43(第二の手段)によって下方から支持され、昇降軸43はボールねじ機構等からなる昇降駆動部44(第二の手段)によって昇降移動するように構成される。また、昇降駆動部44は、制御部40によって駆動制御が行われる。
Subsequently, a second embodiment of the heat treatment apparatus according to the present invention will be described. In the second embodiment, the air blow nozzle 41 and the air supply unit 42 shown in the first embodiment described above are not provided. Instead, for example, as shown in FIG. The lower planar heater 17 (two lower planar heaters 17 in the figure) on the carry-in entrance 51 side has a function of moving up and down.
Specifically, as shown in FIG. 5, the two lower planar heaters 17 (heat sources) on the substrate carry-in entrance 51 side are supported from below by lift shafts 43 (second means), respectively. It is configured to move up and down by an elevating drive unit 44 (second means) comprising a ball screw mechanism or the like. The elevating drive unit 44 is controlled by the control unit 40.

このように構成された加熱処理ユニット1による熱処理工程について、更に図6、図7を用いて説明する。尚、図6は、加熱処理ユニット1のプレヒータ部4における動作制御の流れを示すフローであり、図7は、加熱処理ユニット1における基板搬送状態を示す断面図である。
先ず、ヒータ電源36からの駆動電流の供給により、プレヒータ部4の下部面状ヒータ17及び上部面状ヒータ18の温度が予備加熱温度(例えば160℃)に設定される。また、ヒータ電源39からの駆動電流の供給により、メインヒータ部5の下部面状ヒータ23及び上部面状ヒータ24の温度が、プレヒータ部4において加熱された基板Gの温度を維持するための熱処理温度(例えば100℃)に設定される。
このヒータ温度の設定により、前記第一の実施形態と同様に、チャンバ8内の雰囲気はプレヒータ部4がメインヒータ部5よりも所定温度高い状態となされる。
The heat treatment process by the heat treatment unit 1 configured as described above will be further described with reference to FIGS. 6 is a flow showing the flow of operation control in the preheater unit 4 of the heat treatment unit 1, and FIG. 7 is a cross-sectional view showing a substrate transport state in the heat treatment unit 1. As shown in FIG.
First, the temperature of the lower planar heater 17 and the upper planar heater 18 of the preheater unit 4 is set to a preheating temperature (for example, 160 ° C.) by supplying a drive current from the heater power source 36. Further, by supplying a drive current from the heater power supply 39, the temperature of the lower planar heater 23 and the upper planar heater 24 of the main heater unit 5 is maintained for maintaining the temperature of the substrate G heated in the preheater unit 4. The temperature is set (for example, 100 ° C.).
By setting the heater temperature, the atmosphere in the chamber 8 is set to a state in which the preheater unit 4 is higher than the main heater unit 5 by a predetermined temperature, as in the first embodiment.

前記のように基板搬入前においてチャンバ8内の雰囲気温度が調整された後、コロ駆動装置10a〜10dによりコロ20の駆動がなされ、被処理基板である基板Gは所定速度(例えば50mm/sec)で、基板搬入部3の基板搬送路2を搬送される。
そして、図7(a)に示すように基板検出センサ45によって基板Gが検出されると(図6のステップSt1)、制御部40にその基板検出信号が供給される。
As described above, after the atmospheric temperature in the chamber 8 is adjusted before the substrate is carried in, the rollers 20 are driven by the roller driving devices 10a to 10d, and the substrate G as the substrate to be processed has a predetermined speed (for example, 50 mm / sec). Thus, the substrate is transported along the substrate transport path 2 of the substrate carry-in unit 3.
7A, when the substrate G is detected by the substrate detection sensor 45 (step St1 in FIG. 6), the substrate detection signal is supplied to the control unit 40.

制御部40は、前記基板検出信号と基板搬送速度とに基づいて、基板Gの搬送位置を取得(検出)開始する。
そして、制御部40は、基板Gがチャンバ8の搬入口51からプレヒータ部4に搬入されるタイミングにおいて(図6のステップSt2)、図7(b)に示すように、搬入口51側の2枚の下部面状ヒータ17が下方に移動するよう昇降駆動部44を制御する(図6のステップSt3)。即ち、搬入口51付近において、基板Gの前部領域から下部面状ヒータ17が遠ざけられ、前部領域が受ける熱量が低い状態となされる。
The control unit 40 starts acquiring (detecting) the transfer position of the substrate G based on the substrate detection signal and the substrate transfer speed.
Then, at the timing when the substrate G is carried into the preheater unit 4 from the carry-in port 51 of the chamber 8 (step St2 in FIG. 6), the control unit 40, as shown in FIG. 7B, 2 on the carry-in port 51 side. The lift drive unit 44 is controlled so that the lower sheet heater 17 moves downward (step St3 in FIG. 6). That is, in the vicinity of the carry-in entrance 51, the lower planar heater 17 is moved away from the front region of the substrate G, and the amount of heat received by the front region is reduced.

また、制御部40は、基板Gの中央部がプレヒータ部4に搬入されるタイミングにおいて(図6のステップSt4)、図7(c)に示すように、搬入口51側の2枚の下部面状ヒータ17が上方に移動するよう昇降駆動部44を制御する(図6のステップSt5)。即ち、搬入口51付近において、基板Gの中央部領域に下部面状ヒータ17が近づけられ、中央部領域が受ける熱量がより高い状態となされる。   Further, at the timing when the central portion of the substrate G is carried into the pre-heater unit 4 (step St4 in FIG. 6), the control unit 40 has two lower surfaces on the carry-in entrance 51 side as shown in FIG. 7C. The elevating drive unit 44 is controlled so that the heater 17 moves upward (step St5 in FIG. 6). That is, in the vicinity of the carry-in entrance 51, the lower planar heater 17 is brought close to the central region of the substrate G, and the amount of heat received by the central region is made higher.

更に、制御部40は、基板Gの後部領域がプレヒータ部4に搬入されるタイミングにおいて(図6のステップSt6)、図7(d)に示すように、搬入口51側の2枚の下部面状ヒータ17が下方に移動するよう昇降駆動部44を制御する(図6のステップSt7)。即ち、搬入口51付近において、基板Gの後部領域から下部面状ヒータ17が遠ざけられ、後部領域が受ける熱量が低い状態となされる。
尚、前記ステップSt3,5,7において、基板Gに対して昇降移動させる下部面状ヒータ17の高さ(即ち、昇降可能な下部面状ヒータ17が基板Gに対して与える熱量)は、メインヒータ部5において基板温度検出センサ46により検出した基板Gの中央部領域、前部領域及び後部領域の温度に基づき決定するのが好ましい。
Further, at the timing when the rear region of the substrate G is carried into the preheater unit 4 (step St6 in FIG. 6), the control unit 40 has two lower surfaces on the carry-in entrance 51 side as shown in FIG. The elevating drive unit 44 is controlled so that the heater 17 moves downward (step St7 in FIG. 6). That is, in the vicinity of the carry-in entrance 51, the lower planar heater 17 is moved away from the rear region of the substrate G, and the amount of heat received by the rear region is reduced.
In steps St3, 5, and 7, the height of the lower planar heater 17 that moves up and down relative to the substrate G (that is, the amount of heat applied to the substrate G by the lower planar heater 17 that can be moved up and down) is the main level. It is preferable to determine the temperature based on the temperatures of the central region, the front region, and the rear region of the substrate G detected by the substrate temperature detection sensor 46 in the heater unit 5.

このようにプレヒータ部4を搬送される基板Gにあっては、基板搬入口51付近において基板Gの中央部領域が受ける熱量が、前部領域及び後部領域が受ける熱量より高くなされる。即ち、プレヒータ部4での加熱開始時において、中央部領域の基板温度が、前部領域及び後部領域の温度よりも高い状態となされた後に、予備加熱が施され、基板全体が所定温度(100℃)まで加熱される。
そして、プレヒータ部4において所定温度(100℃)まで加熱された基板Gは、さらにメインヒータ部5に搬送されて所定の加熱処理が施される。
Thus, in the board | substrate G conveyed by the preheater part 4, the calorie | heat amount which the center part area | region of the board | substrate G receives in the vicinity of the board | substrate carrying-in entrance 51 is made higher than the calorie | heat amount which a front part area | region and a rear part area | region receive. That is, at the start of heating in the preheater unit 4, after the substrate temperature in the central region is higher than the temperatures in the front region and the rear region, preheating is performed and the entire substrate is heated to a predetermined temperature (100 C.).
Then, the substrate G heated to a predetermined temperature (100 ° C.) in the preheater unit 4 is further transferred to the main heater unit 5 and subjected to a predetermined heat treatment.

以上のように、本発明に係る第二の実施形態によれば、プレヒータ部4における加熱処理の開始時において、基板Gの中央部領域は、その基板温度が、前部領域及び後部領域の温度よりも高い状態となされる。これにより、プレヒータ部4での加熱処理後における基板温度の目標値(100℃)に対する必要昇温幅は、基板Gの前部領域及び後部領域において、中央部領域よりも大きくなる。
しかしながら、プレヒータ部4において、所定温度(160℃)の高温雰囲気中を搬送される基板Gにあっては、その前部領域及び後部領域の受ける熱量は、中央部領域の受ける熱量よりも大きい。そのため、メインヒータ部5に搬送された際の基板Gの温度は、結果的に略面内均一となり、基板面内における温度ばらつきが抑制され、配線パターンの線幅をより均一化することができる。
As described above, according to the second embodiment of the present invention, at the start of the heat treatment in the preheater unit 4, the central region of the substrate G has the substrate temperature of the front region and the rear region. It will be in a higher state. As a result, the necessary temperature increase width with respect to the target value (100 ° C.) of the substrate temperature after the heat treatment in the preheater unit 4 is larger in the front region and the rear region of the substrate G than in the central region.
However, in the preheater unit 4, in the substrate G transported in a high temperature atmosphere at a predetermined temperature (160 ° C.), the amount of heat received by the front region and the rear region is larger than the amount of heat received by the central region. Therefore, the temperature of the board | substrate G at the time of being conveyed by the main heater part 5 becomes substantially in-plane uniform as a result, the temperature dispersion in a board | substrate surface is suppressed, and the line width of a wiring pattern can be made more uniform. .

尚、前記第二の実施形態においては、基板搬入口51側の2枚の下部面状ヒータ17を昇降移動させる構成としたが、昇降移動可能な下部面状ヒータ17の枚数は限定されるものではない。即ち、プレヒータ部4における加熱処理が終了する前に、基板Gの中央部領域に対し前部領域及び後部領域よりも熱量を与え、その領域の基板温度を所定温度上昇させる構成であればよい。
このため、前記昇降移動可能な下部面状ヒータ17は、例えば、1枚、或いは3枚であってもよい。
或いは、図8に示すように、プレヒータ部4の全ての下部面状ヒータ17を昇降移動可能な構成としてもよい。この場合、基板Gがプレヒータ部4を搬送される間、基板Gの前部領域及び後部領域に対しては下部面状ヒータ17を遠ざけ、中央部領域に対しては下部面状ヒータ17を近づけるよう制御することで、基板温度の調整をより細かく行うことが出来る。
In the second embodiment, the two lower planar heaters 17 on the substrate carry-in entrance 51 side are moved up and down, but the number of lower planar heaters 17 that can be moved up and down is limited. is not. That is, before the heat treatment in the preheater unit 4 is finished, it is only necessary to apply a heat amount to the central region of the substrate G from the front region and the rear region, and to raise the substrate temperature in that region by a predetermined temperature.
For this reason, the number of the lower planar heaters 17 that can be moved up and down may be one or three, for example.
Alternatively, as shown in FIG. 8, all the lower planar heaters 17 of the preheater unit 4 may be configured to be movable up and down. In this case, while the substrate G is transported through the preheater unit 4, the lower planar heater 17 is moved away from the front region and the rear region of the substrate G, and the lower planar heater 17 is moved closer to the central region. By controlling so, the substrate temperature can be adjusted more finely.

また、前記第二の実施形態においては、下部面状ヒータ17により基板Gの中央部領域に与える熱量が、前部領域及び後部領域よりも多くなるよう下部面状ヒータ17を昇降移動させる構成としたが、その他の構成により基板Gの中央部領域に対し、更に加熱を行う構成としてもよい。
例えば、図9に示すように下部面状ヒータ17の高さ位置は固定の構成において、基板搬入口51側に、基板幅方向に延びるカーボンヒータ47(熱源)等の赤外線ランプヒータを設けた構成でもよい。具体的には、上方に(基板Gの下面に対して)輻射熱を放射可能なカーボンヒータ47を昇降軸48(第二の手段)により支持し、この昇降軸48を介して昇降装置49(第二の手段)により昇降移動させる構成が考えられる。
In the second embodiment, the lower planar heater 17 is moved up and down so that the amount of heat given to the central region of the substrate G by the lower planar heater 17 is larger than that in the front and rear regions. However, it is good also as a structure which heats further with respect to the center part area | region of the board | substrate G by another structure.
For example, as shown in FIG. 9, in a configuration in which the lower planar heater 17 is fixed in height, an infrared lamp heater such as a carbon heater 47 (heat source) extending in the substrate width direction is provided on the substrate carry-in entrance 51 side. But you can. Specifically, a carbon heater 47 capable of radiating radiant heat upward (to the lower surface of the substrate G) is supported by a lifting shaft 48 (second means), and a lifting device 49 (first The structure which moves up and down by 2nd means) can be considered.

この場合、基板Gが搬入口51から搬入されると、その中央部領域がカーボンヒータ47の上方を通過する間のみ、カーボンヒータ47を上昇移動させて基板Gの下面に近づけ、中央部領域のみを更に加熱する制御を行えばよい。
このような構成によっても、プレヒータ部4における加熱処理の開始時において、基板Gの中央部領域の受ける熱量が前部領域及び後部領域の受ける熱量よりも多くなり、基板Gがメインヒータ部5に搬入された際に、結果的に基板面内の温度を均一とすることができる。
尚、カーボンヒータ47は、前記のように昇降軸を用いなくてもよく、また、加熱のタイミングに応じて、その点灯をオン/オフさせる構成であってもよい。
In this case, when the substrate G is carried in from the carry-in entrance 51, the carbon heater 47 is moved up and brought close to the lower surface of the substrate G only while the central region passes over the carbon heater 47, and only the central region is obtained. What is necessary is just to control to heat further.
Even with such a configuration, the amount of heat received by the central region of the substrate G is greater than the amount of heat received by the front region and the rear region at the start of the heat treatment in the preheater unit 4, so that the substrate G is transferred to the main heater unit 5. As a result, the temperature in the substrate surface can be made uniform when being carried in.
Note that the carbon heater 47 does not need to use a lifting shaft as described above, and may be configured to turn on / off its lighting according to the timing of heating.

或いは、図10、図11(一部拡大平面図)に示すように、基板搬入口51側の熱源である下部面状ヒータ17(図では2枚の下部面状ヒータ17)の上面に、基板搬送方向(X方向)とは反対方向に流れる高温(例えば160℃)の対流を強制的に形成してもよい。具体的には、例えば、図示するように、下部面状ヒータ17の前方に、複数本のエア噴出ノズル53(第二の手段)がノズル口を上方に向けて配置され、下部面状ヒータ17の後方に、複数本のエア吸引ノズル54(第二の手段)がノズル口を上方に向けて配置される。
また、エア噴出ノズル53は、送風ポンプ等からなるエア供給部55(第二の手段)に接続され、エア吸引ノズル54は、吸引ポンプ等からなるエア回収部56(第二の手段)に接続され、エア供給部55及びエア回収部56は、制御部40によって駆動制御される。
Alternatively, as shown in FIGS. 10 and 11 (partially enlarged plan view), the substrate is placed on the upper surface of the lower planar heater 17 (two lower planar heaters 17 in the figure), which is a heat source on the substrate carry-in entrance 51 side. High temperature (for example, 160 ° C.) convection flowing in the direction opposite to the transport direction (X direction) may be forcibly formed. Specifically, for example, as shown in the drawing, a plurality of air ejection nozzles 53 (second means) are disposed in front of the lower planar heater 17 with the nozzle ports facing upward, and the lower planar heater 17 is disposed. A plurality of air suction nozzles 54 (second means) are disposed behind the nozzle ports with the nozzle ports facing upward.
The air ejection nozzle 53 is connected to an air supply unit 55 (second means) composed of a blower pump or the like, and the air suction nozzle 54 is connected to an air recovery unit 56 (second means) composed of a suction pump or the like. The air supply unit 55 and the air recovery unit 56 are driven and controlled by the control unit 40.

このような構成において、基板Gが搬入口51から搬入されると、その中央部領域が搬入口51側の下部面状ヒータ17の上方を通過する間のみ、エア供給部55及びエア回収部56が駆動され、下部面状ヒータ17の上面に高温(160℃)の強制対流が形成される。
これにより、基板Gの中央部領域においては、熱交換量が増加し、効率的に基板中央部の昇温がなされる。
即ち、このような構成によっても、プレヒータ部4での加熱処理の開始時において、基板Gの中央部領域の受ける熱量が、前部領域及び後部領域の受ける熱量よりも高くなり、基板Gがメインヒータ部5に搬入された際に、結果的に基板面内の温度を均一とすることができる。
In such a configuration, when the substrate G is loaded from the carry-in port 51, the air supply unit 55 and the air collection unit 56 are only while the central region passes over the lower planar heater 17 on the carry-in port 51 side. Is driven, and high-temperature (160 ° C.) forced convection is formed on the upper surface of the lower planar heater 17.
As a result, in the central region of the substrate G, the amount of heat exchange increases, and the temperature of the central portion of the substrate is efficiently increased.
That is, even with such a configuration, the amount of heat received by the central region of the substrate G at the start of the heat treatment in the preheater unit 4 is higher than the amount of heat received by the front region and the rear region. As a result, the temperature in the substrate surface can be made uniform when being carried into the heater unit 5.

尚、図10、図11に示す構成においては、下部面状ヒータ17とは別体のエア噴出ノズル53及びエア吸引ノズル54を設けるものとしたが、それに限定されず、下部面状ヒータ17上に強制対流を形成可能な構成であればよい。
例えば、エア噴出、吸引のためのノズル口を下部面状ヒータ17の上面に設け、エアの流路をヒータ17内に形成したものであってもよい。
In the configuration shown in FIGS. 10 and 11, the air ejection nozzle 53 and the air suction nozzle 54 which are separate from the lower planar heater 17 are provided. Any configuration that can form forced convection is acceptable.
For example, a nozzle opening for air ejection and suction may be provided on the upper surface of the lower planar heater 17, and an air flow path may be formed in the heater 17.

また、前記第一、第二の実施形態においては、本発明に係る熱処理装置を、被処理基板Gに対し加熱処理を施す加熱処理ユニット1に適用するものとしたが、それに限定されず、基板Gに対し冷却処理を施す基板冷却装置に適用してもよい。
その場合、冷却手段として、例えばペルチェ素子により冷却されたプレートを用いることができる。
また、その場合、従来の課題として、基板Gの前部領域及び後部領域の温度が、中央部領域の温度よりも低くなることが考えられる。
In the first and second embodiments, the heat treatment apparatus according to the present invention is applied to the heat treatment unit 1 that heat-treats the substrate G to be processed. You may apply to the board | substrate cooling device which performs the cooling process with respect to G.
In that case, for example, a plate cooled by a Peltier element can be used as the cooling means.
In that case, as a conventional problem, it is conceivable that the temperatures of the front and rear regions of the substrate G are lower than the temperature of the central region.

そのため、前記第一の実施形態にあっては、基板Gの中央部領域のみを予め冷却し、基板Gの前部領域及び後部領域よりも低温としておくことにより、基板面内における熱処理(冷却)温度のばらつきを抑制することができる。
また、前記第二の実施形態(図10,図11の強制対流を形成する構成を除く)にあっては、基板Gの前部領域及び後部領域のみを予め加熱し、基板Gの中央部領域よりも高温としておくことにより、基板面内における熱処理(冷却)温度のばらつきを抑制することができる。
Therefore, in the first embodiment, only the central region of the substrate G is cooled in advance, and the temperature is lower than the front region and the rear region of the substrate G, whereby heat treatment (cooling) in the substrate surface is performed. Variation in temperature can be suppressed.
In the second embodiment (except for the configuration for forming forced convection in FIGS. 10 and 11), only the front region and the rear region of the substrate G are heated in advance, and the central region of the substrate G By setting the temperature higher than that, it is possible to suppress variations in the heat treatment (cooling) temperature in the substrate surface.

尚、図10,図11に示した、熱源上に強制対流を形成する構成にあっては、例えば冷却源の上方に強制対流を形成するものであるため、基板Gに対し局所的に更に冷却する構成となる。したがって、冷却源上に強制対流を形成して基板Gの中央部領域のみを予め冷却し、基板Gの前部領域及び後部領域よりも低温とすることにより、基板面内における熱処理(冷却)温度のばらつきを抑制することができる。   10 and 11, the forced convection is formed on the heat source. For example, the forced convection is formed above the cooling source, so that the substrate G is further locally cooled. It becomes the composition to do. Therefore, a forced convection is formed on the cooling source to cool only the central region of the substrate G in advance and lower temperature than the front region and the rear region of the substrate G. Can be suppressed.

1 加熱処理ユニット(熱処理装置)
2 基板搬送路
8 チャンバ
8A 第一のチャンバ
8B 第二のチャンバ
17 下部面状ヒータ(第一の手段、熱源)
18 上部面状ヒータ(第一の手段)
20 コロ(基板搬送手段)
40 制御部(制御手段)
41 エアブローノズル(第二の手段)
43 昇降軸(第二の手段)
44 昇降駆動部(第二の手段)
45 基板検出センサ(基板検出手段)
47 カーボンヒータ(熱源)
48 昇降軸(第二の手段)
49 昇降装置(第二の手段)
53 エア噴出ノズル(第二の手段)
54 エア吸引ノズル(第二の手段)
55 エア供給部(第二の手段)
56 エア回収部(第二の手段)
G 基板(被処理基板)
1 Heat treatment unit (heat treatment equipment)
2 substrate transfer path 8 chamber 8A first chamber 8B second chamber 17 lower planar heater (first means, heat source)
18 Upper planar heater (first means)
20 Roller (substrate transport means)
40 Control unit (control means)
41 Air blow nozzle (second means)
43 Elevating shaft (second means)
44 Elevating drive unit (second means)
45 Substrate detection sensor (Substrate detection means)
47 Carbon heater (heat source)
48 Elevating shaft (second means)
49 Lifting device (second means)
53 Air ejection nozzle (second means)
54 Air suction nozzle (second means)
55 Air supply part (second means)
56 Air recovery unit (second means)
G substrate (substrate to be processed)

Claims (8)

平流し搬送される被処理基板に対し熱処理を施す熱処理装置であって、
基板搬送路を形成し、前記被処理基板を前記基板搬送路に沿って平流し搬送する基板搬送手段と、前記基板搬送路の所定区間を覆うと共に、前記基板搬送路を搬送される前記被処理基板に対する熱処理空間を形成する第一のチャンバと、前記第一のチャンバ内を加熱可能な第一の手段と、前記基板搬送路を搬送される前記被処理基板に対し所定温度に冷却されたエアを吹き付け、局所的に冷却可能な第二の手段と、前記第一のチャンバの前段に設けられ、前記基板搬送路を搬送される前記被処理基板を検出する基板検出手段と、前記基板検出手段の検出信号が供給されると共に、前記第二の手段による冷却動作のオン/オフ切換を行う制御手段とを備え、
前記制御手段は、前記基板検出手段の検出信号により被処理基板の搬送位置を取得し、基板搬送方向に沿って複数に分けられた被処理基板の領域ごとに、前記第二の手段による冷却動作のオン/オフ切換を行い、
前記被処理基板は、前記第二の手段の冷却動作により、その前部領域及び後部領域の温度が、中央部領域の温度よりも低い状態となされ、更に前記第一の手段による加熱処理が施されることを特徴とする熱処理装置。
A heat treatment apparatus for performing a heat treatment on a substrate to be transported in a flat flow,
A substrate transport unit that forms a substrate transport path, and transports the substrate to be processed in a flat flow along the substrate transport path, and covers the predetermined section of the substrate transport path and is transported through the substrate transport path. A first chamber for forming a heat treatment space for the substrate; a first means capable of heating the inside of the first chamber; and air cooled to a predetermined temperature with respect to the substrate to be processed being transported through the substrate transport path. , A second means capable of locally cooling, a substrate detection means provided in a preceding stage of the first chamber, for detecting the substrate to be processed being conveyed on the substrate conveyance path, and the substrate detection means And a control means for switching on / off the cooling operation by the second means,
The control means acquires the transfer position of the substrate to be processed by the detection signal of the substrate detection means, and performs the cooling operation by the second means for each area of the substrate to be processed divided into a plurality along the substrate transfer direction. Switch on / off,
The substrate to be processed is brought into a state in which the temperature of the front region and the rear region is lower than the temperature of the central region by the cooling operation of the second means, and the heat treatment by the first means is further performed. A heat treatment apparatus characterized by being made.
平流し搬送される被処理基板に対し熱処理を施す熱処理装置であって、
基板搬送路を形成し、前記被処理基板を前記基板搬送路に沿って平流し搬送する基板搬送手段と、前記基板搬送路の所定区間を覆うと共に、前記基板搬送路を搬送される前記被処理基板に対する熱処理空間を形成する第一のチャンバと、前記第一のチャンバ内を加熱可能な第一の手段と、前記基板搬送路を搬送される被処理基板の下方に昇降移動可能な熱源を有し、前記熱源を被処理基板に近づけることにより前記被処理基板を局所的に加熱可能な第二の手段と、前記第一のチャンバの前段に設けられ、前記基板搬送路を搬送される前記被処理基板を検出する基板検出手段と、前記基板検出手段の検出信号が供給されると共に、前記第二の手段が有する熱源の昇降移動を制御する制御手段とを備え、
前記制御手段は、前記基板検出手段の検出信号により被処理基板の搬送位置を取得し、基板搬送方向に沿って複数に分けられた被処理基板の領域ごとに、前記第二の手段が有する熱源の昇降移動を制御し、
前記被処理基板は、前記第二の手段の加熱動作により、その中央部領域の温度が、前部領域及び後部領域の温度よりも高い状態となされ、更に前記第一の手段による加熱処理が施されることを特徴とする熱処理装置。
A heat treatment apparatus for performing a heat treatment on a substrate to be transported in a flat flow,
A substrate transport unit that forms a substrate transport path, and transports the substrate to be processed in a flat flow along the substrate transport path, and covers the predetermined section of the substrate transport path and is transported through the substrate transport path. A first chamber that forms a heat treatment space for the substrate; a first means that can heat the inside of the first chamber; and a heat source that can be moved up and down below the substrate to be processed that is transported through the substrate transport path. And a second means capable of locally heating the substrate to be processed by bringing the heat source close to the substrate to be processed, and the substrate to be transported through the substrate transport path, provided in front of the first chamber. A substrate detection means for detecting a processing substrate; and a control means for supplying a detection signal of the substrate detection means and for controlling the raising and lowering movement of the heat source of the second means,
The control means acquires the transfer position of the substrate to be processed by the detection signal of the substrate detection means, and the second means has a heat source for each area of the substrate to be processed divided into a plurality along the substrate transfer direction. Control the up and down movement of
The substrate to be processed is brought into a state where the temperature of the central region is higher than the temperatures of the front region and the rear region by the heating operation of the second means, and further, the heat treatment by the first means is performed. A heat treatment apparatus characterized by being made.
平流し搬送される被処理基板に対し熱処理を施す熱処理装置であって、
基板搬送路を形成し、前記被処理基板を前記基板搬送路に沿って平流し搬送する基板搬送手段と、前記基板搬送路の所定区間を覆うと共に、前記基板搬送路を搬送される前記被処理基板に対する熱処理空間を形成する第一のチャンバと、前記第一のチャンバ内を加熱可能な第一の手段と、前記基板搬送路を搬送される被処理基板の下方に設けられた熱源の上方に強制対流を形成することにより前記被処理基板を局所的に加熱可能な第二の手段と、前記第一のチャンバの前段に設けられ、前記基板搬送路を搬送される前記被処理基板を検出する基板検出手段と、前記基板検出手段の検出信号が供給されると共に、前記第二の手段による強制対流形成動作のオン/オフ切換を行う制御手段とを備え、
前記制御手段は、前記基板検出手段の検出信号により被処理基板の搬送位置を取得し、基板搬送方向に沿って複数に分けられた被処理基板の領域ごとに、前記第二の手段による強制対流形成動作のオン/オフ切換を行い、
前記被処理基板は、前記第二の手段の加熱動作により、その中央部領域の温度が、前部領域及び後部領域の温度よりも高い状態となされ、更に前記第一の手段による加熱処理が施されることを特徴とする熱処理装置。
A heat treatment apparatus for performing a heat treatment on a substrate to be transported in a flat flow,
A substrate transport unit that forms a substrate transport path, and transports the substrate to be processed in a flat flow along the substrate transport path, and covers the predetermined section of the substrate transport path and is transported through the substrate transport path. A first chamber for forming a heat treatment space for the substrate; a first means capable of heating the inside of the first chamber; and a heat source provided below a substrate to be processed that is transported through the substrate transport path. A second means capable of locally heating the substrate to be processed by forming forced convection and a substrate to be processed which is provided in the front stage of the first chamber and is transported through the substrate transport path. A substrate detecting means; and a control means for switching on / off the forced convection forming operation by the second means while being supplied with a detection signal of the substrate detecting means,
The control means acquires the transport position of the substrate to be processed based on the detection signal of the substrate detection means, and the forced convection by the second means is performed for each region of the substrate to be processed divided into a plurality along the substrate transport direction. Switch on / off the forming operation,
The substrate to be processed is brought into a state where the temperature of the central region is higher than the temperatures of the front region and the rear region by the heating operation of the second means, and further, the heat treatment by the first means is performed. A heat treatment apparatus characterized by being made.
前記基板搬送路に沿って前記第一のチャンバの後段に設けられ、前記基板搬送路の所定区間を覆うと共に、前記基板搬送路を搬送される前記被処理基板に対する熱処理空間を形成する第二のチャンバと、
前記第二のチャンバ内を加熱可能な第三の手段と、
前記第二のチャンバ内を搬送される前記被処理基板の前部領域と中央部領域と後部領域の温度をそれぞれ検出し、検出信号を前記制御手段に供給する基板温度検出手段とを更に備え、
前記制御部は、前記基板温度検出手段から取得した前記被処理基板における前部領域の温度と中央部領域の温度と後部領域の温度とを比較し、その比較結果に基づいて、前記第二の手段により前記被処理基板の領域ごとに与える熱量を決定することを特徴とする請求項1乃至請求項3のいずれかに記載された熱処理装置。
A second stage that is provided downstream of the first chamber along the substrate transport path, covers a predetermined section of the substrate transport path, and forms a heat treatment space for the substrate to be processed transported through the substrate transport path. A chamber;
A third means capable of heating the second chamber;
Substrate temperature detecting means for detecting the temperatures of the front area, the central area and the rear area of the substrate to be processed conveyed in the second chamber, respectively, and supplying a detection signal to the control means,
The control unit compares the temperature of the front region, the temperature of the central region, and the temperature of the rear region of the substrate to be processed obtained from the substrate temperature detection unit, and based on the comparison result, the second region The heat treatment apparatus according to any one of claims 1 to 3, wherein an amount of heat given to each region of the substrate to be processed is determined by means.
被処理基板を基板搬送路に沿って平流し搬送し、所定温度に加熱された第一のチャンバ内に前記被処理基板を搬入すると共に、前記第一のチャンバ内に搬入された被処理基板に対し所定の熱処理を施す熱処理方法であって、
前記基板搬送路を搬送される被処理基板を前記第一のチャンバへの搬入前に検出するステップと、
前記被処理基板の検出により被処理基板の搬送位置を取得し、基板搬送方向に沿って分けられた被処理基板の前部領域と後部領域とに対し、所定温度に冷却されたエアを吹き付け、前記前部領域及び後部領域の温度が中央部領域の温度よりも低い状態とするステップと、
前記所定温度に加熱された前記第一のチャンバ内において前記被処理基板に対し所定の加熱処理を施すステップとを含むことを特徴とする熱処理方法。
The substrate to be processed is flown and conveyed along the substrate conveyance path, and the substrate to be processed is loaded into the first chamber heated to a predetermined temperature, and the substrate to be processed loaded into the first chamber is transferred to the substrate to be processed. A heat treatment method for performing predetermined heat treatment,
Detecting a substrate to be processed that is transported through the substrate transport path before being carried into the first chamber;
Obtaining the transport position of the substrate to be processed by detecting the substrate to be processed, and blowing air cooled to a predetermined temperature to the front region and the rear region of the substrate to be processed divided along the substrate transport direction, The temperature of the front region and the rear region is lower than the temperature of the central region; and
Applying a predetermined heat treatment to the substrate to be processed in the first chamber heated to the predetermined temperature.
被処理基板を基板搬送路に沿って平流し搬送し、所定温度に加熱された第一のチャンバ内に前記被処理基板を搬入すると共に、前記第一のチャンバ内に搬入された被処理基板に対し所定の熱処理を施す熱処理方法であって、
前記基板搬送路を搬送される被処理基板を前記第一のチャンバへの搬入前に検出するステップと、
前記被処理基板の検出により被処理基板の搬送位置を取得し、基板搬送方向に沿って分けられた被処理基板の中央部領域に対し、昇降移動可能に設けられた熱源を上昇移動させて近づけ、前記中央部領域の温度が前部領域及び後部領域の温度よりも高い状態とするステップと、
前記所定温度に加熱された前記第一のチャンバ内において前記被処理基板に対し所定の加熱処理を施すステップとを含むことを特徴とする熱処理方法。
The substrate to be processed is flown and conveyed along the substrate conveyance path, and the substrate to be processed is loaded into the first chamber heated to a predetermined temperature, and the substrate to be processed loaded into the first chamber is transferred to the substrate to be processed. A heat treatment method for performing predetermined heat treatment,
Detecting a substrate to be processed that is transported through the substrate transport path before being carried into the first chamber;
The transport position of the substrate to be processed is acquired by detecting the substrate to be processed, and the heat source provided so as to be moved up and down is moved closer to the central region of the substrate to be processed divided along the substrate transport direction. The step of setting the temperature of the central region higher than the temperatures of the front region and the rear region;
Applying a predetermined heat treatment to the substrate to be processed in the first chamber heated to the predetermined temperature.
被処理基板を基板搬送路に沿って平流し搬送し、所定温度に加熱された第一のチャンバ内に前記被処理基板を搬入すると共に、前記第一のチャンバ内に搬入された被処理基板に対し所定の熱処理を施す熱処理方法であって、
前記基板搬送路を搬送される被処理基板を前記第一のチャンバへの搬入前に検出するステップと、
前記被処理基板の検出により被処理基板の搬送位置を取得し、基板搬送方向に沿って分けられた被処理基板の中央部領域に対し、基板下方に設けられた熱源の上方に強制対流を形成することにより更に加熱し、前記中央部領域の温度が前部領域及び後部領域の温度よりも高い状態とするステップと、
前記所定温度に加熱された前記第一のチャンバ内において前記被処理基板に対し所定の加熱処理を施すステップとを含むことを特徴とする熱処理方法。
The substrate to be processed is flown and conveyed along the substrate conveyance path, and the substrate to be processed is loaded into the first chamber heated to a predetermined temperature, and the substrate to be processed loaded into the first chamber is transferred to the substrate to be processed. A heat treatment method for performing predetermined heat treatment,
Detecting a substrate to be processed that is transported through the substrate transport path before being carried into the first chamber;
The substrate transfer position is acquired by detecting the substrate to be processed, and forced convection is formed above the heat source provided below the substrate with respect to the central region of the substrate to be processed divided along the substrate transfer direction. Further heating, and the temperature of the central region is higher than the temperatures of the front region and the rear region,
Applying a predetermined heat treatment to the substrate to be processed in the first chamber heated to the predetermined temperature.
更に、前記基板搬送路に沿って前記第一のチャンバの後段に設けられた第二のチャンバにおいて、前記被処理基板に所定の熱処理を施しながら前記被処理基板を搬送するステップと、
前記第二のチャンバ内を搬送される前記被処理基板の前部領域と中央部領域と後部領域の温度をそれぞれ検出するステップと、
取得した前記被処理基板における前部領域の温度と中央部領域の温度と後部領域の温度とを比較し、その比較結果に基づいて、前記被処理基板の領域ごとに与える熱量を決定することを特徴とする請求項5乃至請求項7のいずれかに記載された熱処理方法。
A step of transporting the substrate to be processed while performing a predetermined heat treatment on the substrate to be processed in a second chamber provided downstream of the first chamber along the substrate transport path;
Detecting the temperatures of the front region, the central region, and the rear region of the substrate to be processed conveyed in the second chamber, respectively.
Comparing the temperature of the front region, the temperature of the central region, and the temperature of the rear region of the acquired substrate to be processed, and determining the amount of heat given to each region of the substrate to be processed based on the comparison result The heat treatment method according to claim 5, wherein the heat treatment method is performed.
JP2010142366A 2010-06-23 2010-06-23 Heat treatment apparatus and heat treatment method Expired - Fee Related JP5048810B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010142366A JP5048810B2 (en) 2010-06-23 2010-06-23 Heat treatment apparatus and heat treatment method
KR1020110060677A KR20110139663A (en) 2010-06-23 2011-06-22 Thermal processing apparatus and thermal processing method
TW100121820A TW201216365A (en) 2010-06-23 2011-06-22 Thermal treatment device and thermal treatment method
CN2011101850029A CN102299047A (en) 2010-06-23 2011-06-23 heat treatment device and heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010142366A JP5048810B2 (en) 2010-06-23 2010-06-23 Heat treatment apparatus and heat treatment method

Publications (2)

Publication Number Publication Date
JP2012009527A JP2012009527A (en) 2012-01-12
JP5048810B2 true JP5048810B2 (en) 2012-10-17

Family

ID=45359374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142366A Expired - Fee Related JP5048810B2 (en) 2010-06-23 2010-06-23 Heat treatment apparatus and heat treatment method

Country Status (4)

Country Link
JP (1) JP5048810B2 (en)
KR (1) KR20110139663A (en)
CN (1) CN102299047A (en)
TW (1) TW201216365A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013112313A1 (en) * 2012-01-26 2013-08-01 Applied Materials, Inc. Thermal processing chamber with top substrate support assembly
CN102799082B (en) * 2012-09-06 2015-02-11 深圳市华星光电技术有限公司 Oven and adjustable baking system
KR101878578B1 (en) * 2013-11-27 2018-07-13 도쿄엘렉트론가부시키가이샤 Substrate tuning system and method using optical projection
JP6442339B2 (en) * 2015-03-26 2018-12-19 株式会社Screenホールディングス Heat treatment apparatus and heat treatment method
CN112839450B (en) * 2021-03-02 2021-08-24 福建钰辰微电子有限公司 Heat treatment device for roll-to-roll production process of flexible circuit board
CN116873605B (en) * 2023-09-06 2023-12-01 溧阳吉达电子材料有限公司 Transfer device is used in silica gel production

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354043A (en) * 2004-07-22 2004-12-16 Ngk Insulators Ltd Heat treatment method for substrate, and continuous heat treatment furnace used therefor
JP4672538B2 (en) * 2005-12-06 2011-04-20 東京エレクトロン株式会社 Heat treatment device
JP4407971B2 (en) * 2007-02-19 2010-02-03 東京エレクトロン株式会社 Substrate processing equipment
JP4757217B2 (en) * 2007-03-09 2011-08-24 東京エレクトロン株式会社 Substrate processing equipment
JP4973267B2 (en) * 2007-03-23 2012-07-11 東京エレクトロン株式会社 Substrate transport apparatus, substrate transport module, substrate transport method, and storage medium
KR100921523B1 (en) * 2008-05-30 2009-10-12 세메스 주식회사 Method and apparatus for fabricating substrates used in manufacturing flat panel display

Also Published As

Publication number Publication date
KR20110139663A (en) 2011-12-29
JP2012009527A (en) 2012-01-12
CN102299047A (en) 2011-12-28
TW201216365A (en) 2012-04-16

Similar Documents

Publication Publication Date Title
JP5048810B2 (en) Heat treatment apparatus and heat treatment method
JP4755233B2 (en) Substrate processing equipment
JP4542577B2 (en) Normal pressure drying apparatus, substrate processing apparatus, and substrate processing method
JP4592787B2 (en) Substrate processing equipment
JP4384685B2 (en) Normal pressure drying apparatus, substrate processing apparatus, and substrate processing method
JP4384686B2 (en) Normal pressure drying apparatus, substrate processing apparatus, and substrate processing method
JP4936567B2 (en) Heat treatment equipment
JP6317933B2 (en) Bonded substrate manufacturing apparatus and bonded substrate manufacturing method
JP5226037B2 (en) Heat treatment apparatus and heat treatment method
JP2008160011A (en) Substrate treating equipment
JP4638931B2 (en) Substrate processing equipment
JP4813583B2 (en) Substrate processing equipment
JP2011155032A (en) Substrate processing apparatus, and substrate processing method
JP2008159768A (en) Baking apparatus, and substrate treating apparatus
JP2008226981A (en) Reflow device
JP5063741B2 (en) Heat treatment apparatus and heat treatment method
JP4954642B2 (en) Development processing apparatus and development processing method
JP2004296773A (en) Method and device for controlling temperature of substrate
JP2004044985A (en) Continuous drying device
JPH1082583A (en) Method for drying large substrate and drier
JP2003292154A (en) Heat-treating apparatus for thick-film printed circuit board, and carrier roller
JP2013098300A (en) Thermal treatment apparatus and thermal treatment method
JP2005134013A (en) Device and method for manufacturing substrate
KR101510996B1 (en) Apparatus for drying film having air cushion function
JP2007317724A (en) Substrate heat treatment method, and substrate heat treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees