JP5043316B2 - レーザ加工モニタリング装置 - Google Patents

レーザ加工モニタリング装置 Download PDF

Info

Publication number
JP5043316B2
JP5043316B2 JP2005221686A JP2005221686A JP5043316B2 JP 5043316 B2 JP5043316 B2 JP 5043316B2 JP 2005221686 A JP2005221686 A JP 2005221686A JP 2005221686 A JP2005221686 A JP 2005221686A JP 5043316 B2 JP5043316 B2 JP 5043316B2
Authority
JP
Japan
Prior art keywords
laser
optical fiber
photoelectric conversion
laser processing
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005221686A
Other languages
English (en)
Other versions
JP2007038226A (ja
Inventor
恭 松田
純平 加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Miyachi Co Ltd
Original Assignee
Amada Miyachi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Miyachi Co Ltd filed Critical Amada Miyachi Co Ltd
Priority to JP2005221686A priority Critical patent/JP5043316B2/ja
Publication of JP2007038226A publication Critical patent/JP2007038226A/ja
Application granted granted Critical
Publication of JP5043316B2 publication Critical patent/JP5043316B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光ファイバを用いるレーザ加工のモニタリング装置に関する。
近年、高出力レーザは、溶接、切断あるいは表面処理等の加工業の分野で広く利用されている。特にレーザ溶接加工は、高精度および高速の加工を実現できること、被加工物(ワーク)に与える熱歪が小さいこと、高度の自動化が可能になることから、ますますその重要性を高めている。また、光ファイバを利用した遠隔でのレーザ溶接も可能であり、レーザ発振器からたとえば30m〜50mも離れた遠隔の場所で溶接加工が行われることもめずらしくない。一般のレーザ溶接機は、本体に内蔵のレーザ発振器より発振出力されたレーザ光のレーザ出力をモニタリングする機能が備わっており、レーザ発振器に異常があればレーザ出力のモニタリングを通じて即時にその事態を検知できるようになっている。
しかしながら、遠隔でのレーザ加工にあっては、レーザ発振器より発振出力されたレーザ光が入射ユニット、光ファイバおよびレーザ加工ヘッド等の光学系を経て遠隔の場所で被加工物へ照射されるため、レーザ光路上の何処かの光学部品に生じた汚れや損傷・劣化によって被加工物の加工点でのレーザ出力が異常に低下していても本体側はそれを把握できない。このため、加工後の検査(外観検査、破壊検査または非破壊検査等)に至ってはじめて不良を発見するはめになり、生産管理の面で(不良品の多発等の)問題がある。また、各部のメンテナンス(チェック、清掃、修理、部品交換等)を短いサイクルで定期的に行う対処法は、メンテナンス作業のために生産ラインを頻繁にストップしなければならず、生産効率の面で問題がある。また、従来より、レーザ加工ヘッドから出射されたレーザ光の出力状態をレーザパワーメータによる計測でモニタリングすることも行われている。しかし、この方法も、レーザ加工を止めて実施されるものであり、やはり生産性を下げるという不利点がある。
本発明は、上記のような従来技術の問題点に鑑みてなされたもので、光ファイバ伝送方式においてレーザ加工ヘッド側の実際のレーザ出力状態や加工状態あるいは光学系の状態等を信頼性の高いインライン方式でモニタリングしてレーザ加工の生産管理、品質管理、生産効率を向上させるレーザ加工モニタリング装置を提供することを目的とする。
上記の目的を達成するために、本発明のレーザ加工モニタリング装置は、レーザ発振部より発振出力されたレーザ光をレーザ伝送用の光ファイバに通してレーザ加工ヘッドまで伝送し、前記レーザ加工ヘッドより前記レーザ光を被加工物の加工点に照射するレーザ加工のモニタリング装置であって、前記被加工物の加工点から前記レーザ加工ヘッドの前記レーザ出射口の中に反射されてきた光の全部または一部を一端面に受光して遠隔の第1の光電変換部まで伝送する第1のモニタリング用光ファイバと、前記第1の光電変換部内で前記第1のモニタリング用光ファイバの他端面より出射された光を受光して第1の電気信号に変換する第1の光電変換素子と、前記第1の光電変換素子より出力された前記第1の電気信号に基づいて、前記被加工物の加工点におけるレーザパワーの状態を判定して判定結果を出力する信号処理部と、前記レーザ加工ヘッド内で前記レーザ伝送用光ファイバの終端面から出射された前記レーザ光の一部を一端面に受光して遠隔の第2の光電変換部まで伝送する第2のモニタリング用光ファイバと、前記第2の光電変換部内で前記第2のモニタリング用光ファイバの他端面より出射された光を受光して第2の電気信号に変換する第2の光電変換素子とを有し、 前記信号処理部が、前記第2の光電変換素子より出力された前記第2の電気信号に基づいて、前記レーザ光が通る光学部品の状態を判定して判定結果を出力する。
上記の構成においては、被加工物の加工点からレーザ加工ヘッド内に反射してきた光を第のモニタリング用光ファイバおよび第の光電変換素子により検出して第の電気信号に変換し、この第の電気信号を基に信号処理部がモニタリングの信号処理を行うため、加工点におけるレーザパワー状態や加工状態をインラインで適確に計測ないし監視することができる。しかも、レーザ加工ヘッドには光センサとして温度特性(温度依存性)の非常に小さい光ファイバを取り付け、温度特性の比較的大きい光電変換素子をレーザ加工ヘッドから遠く離れた光電変換部側に配置しているので、レーザ加工ヘッドの周囲の厳しい環境温度ないし温度変化の影響を受けずに、被加工物に照射されたレーザ光のレーザパワー状態や加工状態を適確にモニタリングすることができる。さらには、第のモニタリング用光ファイバにおける光伝送は周囲の電磁波ノイズの影響を全く受けないため、信号処理部に特別のノイズ除去回路を備える必要はなく、簡易な構成で高精度のモニタリングを実現することができる。
さらに、上記の構成においては、レーザ加工ヘッド内でレーザ光が出射される直前の光強度(レーザ出力)を第2のモニタリング用光ファイバおよび第2の光電変換素子により検出して第2の電気信号に変換し、この第2の電気信号を基に信号処理部がモニタリングの信号処理を行うため、レーザ伝送用光ファイバを含むレーザ光学系の状態をインラインで適確に計測ないし監視することができる。しかも、レーザ加工ヘッドには光センサとして温度特性(温度依存性)の非常に小さいモニタリング用の光ファイバを取り付け、温度特性の比較的大きい光電変換素子をレーザ加工ヘッドから遠く離れた光電変換部側に配置しているので、レーザ加工ヘッドの周囲の厳しい環境温度ないし温度変化の影響を受けずに、加工現場における照射直前のレーザ光のレーザパワー状態を適確にモニタリングすることができる。さらには、第2のモニタリング用光ファイバにおける光伝送は周囲の電磁波ノイズの影響を全く受けないため、信号処理部に特別のノイズ除去回路を備える必要はなく、簡易な構成で高精度のモニタリングを実現することができる。
本発明の好適な一態様によれば、第1の光電変換部内に、第1の光電変換素子の温度を設定温度に保つための第1の温度制御部を設けられ、第1のモニタリング用光ファイバの出射端面と第1の光電変換素子との間に第1の光学フィルタが設けられる。好ましくは、第1の光電変換部が、第1の光電変換素子の出力端子に第1の増幅器を介して電気的に接続される第1のコンタクトと、第1の増幅器の利得を調整するための第1のボリウムと、第1のコンタクト、第1の増幅器および第1のボリウムを保持し、かつ第1のモニタリング用光ファイバの終端部に一体に結合する絶縁性の第1のコネクタ本体とを有する。
また、第2の光電変換部内に、第2の光電変換素子の温度を設定温度に保つための第2の温度制御部を設けられ、第2のモニタリング用光ファイバの出射端面と第2の光電変換素子との間に第2の光学フィルタが設けられる。また、好ましくは、第2の光電変換部が、第2の光電変換素子の出力端子に第2の増幅器を介して電気的に接続される第2のコンタクトと、第2の増幅器の利得を調整するための第2のボリウムと、第2のコンタクト、第2の増幅器および第2のボリウムを保持し、かつ第2のモニタリング用光ファイバの終端部に一体に結合する絶縁性の第2のコネクタ本体とを有する。
上記の構成においては、モニタリング用光ファイバの終端部に取り付けられる光電変換部内に光電変換機能および関連機能が全て収まるため、レーザ加工ヘッドが嵩張るのを回避し、効率的かつコンパクトな構成でもってモニタリング精度の信頼性を一層向上させることができる。
また、好適な一態様によれば、レーザ加工ヘッド内に、レーザ伝送用光ファイバの終端面から出射されたレーザ光の大部分を被加工物の加工点側へ反射し、一部を漏れ光として透過させるミラーが設けられる。あるいは、光ファイバの終端面から出射されたレーザ光の大部分を被加工物の加工点側へ通し、一部を所定方向へ反射させるミラーが設けられてもよい。通常、レーザ照射ユニットの出射口に保護ガラスが取り付けられ、レーザ照射ユニット内にレーザ伝送用光ファイバの終端面から出射されたレーザ光を被加工物の加工点に集束させる光学レンズも設けられる。
また、好適な一態様によれば、第1のモニタリング用光ファイバ、第2のモニタリング用光ファイバおよびレーザ伝送用光ファイバが、レーザ加工ヘッドのレーザ出射口と反対側の面に取り付けられる。かかる構成によれば、ケーブル類をヘッド上方に集約して架空配線ないし敷設することができるため、加工ヘッドの取付または搭載が簡単であり、加工場所付近のスペース効率や使い勝手が改善され、加工ヘッド自体のメンテナンス性やレーザ漏れ時の安全性も向上する。
本発明のレーザ加工モニタリング装置によれば、上記のような構成および作用により、光ファイバ伝送方式においてレーザ加工ヘッド側の実際のレーザ出力状態や加工状態あるいは光学系の状態等を信頼性の高いインライン方式でモニタリングしてレーザ加工の生産管理、品質管理、生産効率を向上させることができる。
以下、添付図を参照して本発明の好適な実施の形態を説明する。
図1に、本発明の一実施形態におけるレーザ加工モニタリング装置の適用可能なレーザ加工装置の全体構成を示す。このレーザ加工装置は、基本構成として、レーザ加工用のレーザ光(たとえばパルスレーザ光)LBを発振出力するレーザ発振器10aを内蔵するレーザ加工機本体10と、所望の加工場所に配置されるレーザ加工ヘッド12と、レーザ加工機本体10とレーザ加工ヘッド12とを光学的に結ぶ光ファイバ14と、モニタリング用の所要の信号処理や表示出力等を行うモニタ装置本体16と、システム全体のシーケンスを制御するコントローラ18とを有する。
このレーザ加工装置において、レーザ加工機本体10内のレーザ発振器10aで生成または発振出力されたレーザ光LBは、光ファイバ14を通って遠隔のレーザ加工ヘッド12まで伝送され、レーザ加工ヘッド12よりワーク(被加工物)Wの加工点WPに向けて集光照射される。たとえば溶接加工の場合、ワークWの加工点WPでは、互いに重ね合わされた(または突き合わされた)2つの部材がレーザ光LBのレーザエネルギーにより溶融接合する。モニタ装置本体16は、モニタリング用の2つの光ファイバ20,22を介してレーザ加工ヘッド12と結ばれており、レーザ加工ヘッド12よりワークWの加工点WPに向けて照射される直前のレーザ光LBのレーザ出力状態、レーザ伝送路上の光学部品の状態、加工点WPにおける加工品質等に関するモニタリング情報を表示出力するようになっている。
レーザ発振器10aは、たとえばYAGレーザ、ファイバレーザ、ディスクレーザ等のような固体レーザのレーザ発振器あるいは炭酸ガスレーザ等のガスレーザのレーザ発振器を有している。レーザ加工機本体10には、レーザ発振器10aより出射されたレーザ光LBを光ファイバ14の一端面に集光入射させる入射ユニット(図示せず)や、光ファイバ14に入射する直前のレーザ光LBのレーザ出力を測定するレーザ出力測定部(図示せず)等も設けられている。光ファイバ14は、たとえば任意のマルチモード光ファイバでよい。
レーザ加工ヘッド12は、たとえばアルミニウムからなる中空のハウジングまたはヘッド本体24を有し、このヘッド本体24内の所定位置に後述する光学レンズやミラー等を配置している。このヘッド本体24において、ワークWの加工点WPと向き合う本体下面にはレーザ出射口26が設けられ、このレーザ出射口26とは反対側の本体上面にレーザ伝送用光ファイバ14およびモニタリング用光ファイバ20,22が取り付けられる。
図2に、この実施形態におけるレーザ加工ヘッド12の具体的な構成を示す。ヘッド本体24の下面中心部から下方に延びる筒部28が形成され、この筒部28の下端部に位置するレーザ出射口26に保護ガラス30が取り付けられ、この保護ガラス30の内奥近傍に集束レンズ32が配置されている。
集束レンズ32の直上にはヘッド本体20内部のほぼ中心位置にてベントミラー34がその反射面34aをたとえば45°の角度で斜め下方に向けて配置され、さらにその直上で反射光検出用の光ファイバ22がその受光面22aを垂直下方に向けてコネクタまたはレセプタクル36に取り付けられている。ベントミラー34と光ファイバ22の受光面22aとの間には、たとえばセラミックからなる拡散板38が配置されている。
ヘッド本体24の上面には、ヘッド中心軸線上の光ファイバ22より横にずれた位置、つまりベントミラー34、集束レンズ32を通る光軸から横(図2の右側)にオフセットした位置にて、筒状の光ファイバ出射部40が垂直上方に延びている。この光ファイバ出射(部40の上端には、光ファイバ14の終端部を着脱可能に受けるコネクタまたはレセプタクル42が設けられている。
光ファイバ出射部40の内部には、光ファイバ14の終端面14aから放射状に出たレーザ光LBを平行光にするためのコリメートレンズ44が配置されるとともに、このコリメートレンズ44の真下にベントミラー46がその反射面46aをたとえば45°の角度で斜め上方に向けて配置されている。ここで、ベントミラー46の反射面46aはベントミラー34の反射面34aと光学的に対向しており、光ファイバ14の終端面14aからのレーザ光LBはベントミラー46で光路を垂直方向から水平方向に直角に曲げてからベントミラー32に入射し、ベントミラー32で光路を水平方向から垂直下方に直角に曲げて集束レンズ32に入射するようになっている。集束レンズ32は、ワークWの加工点WPにレーザ光LBを集束させる。
ヘッド本体24の上面には、反射光検出用の光ファイバ22と並んで筒状の光ファイバ出射部40とは反対側(図2の左側)にオフセットした位置にレーザ光検出用の光ファイバ20がその受光面20aを垂直下方に向けてコネクタまたはレセプタクル48に取り付けられている。光ファイバ20の受光面20aの真下には、ベントミラー50がその反射面50aをたとえば45°の角度で斜め上方に向けて配置されている。ここで、ベントミラー50の反射面50aはベントミラー46の反射面46aとベントミラー34を介して光学的に対向しており、光ファイバ14の終端面14aからのレーザ光LBがベントミラー34で反射する際にベントミラー34の後方(左方)へ漏れた光MLBがベントミラー50に入射し、ベントミラー50で光路を水平方向から垂直上方に直角に曲げて光ファイバ20の受光面20aに入射するようになっている。ベントミラー34とベントミラー50との間には、たとえばセラミックからなる拡散板52が配置されている。
このレーザ加工ヘッド12においては、上記のように、レーザ加工機本体10側のレーザ発振器10aからのレーザ光LBが光ファイバ出射部40内で光ファイバ14の終端面14aから放射状に出射し、この放射状に出射したレーザ光LBはコリメートレンズ44を通って平行光となる。平行光となったレーザ光LBは、ベントミラー46で光路を垂直方向から水平方向に曲げ、次いでヘッド12内中心部のベントミラー34で光路を水平方向から垂直下方に曲げ、集束レンズ32および保護レンズ30を通ってレーザ出射口26よりワークWの加工点WPに向けて集光照射される。
ベントミラー34では、ベントミラー46側から入射したレーザ光LBの一部が背後へ水平方向に漏れる。この漏れ光MLBは、拡散板52を通ってベントミラー50に入射し、ベントミラー50で光路を垂直上方へ曲げて、直上に位置する光ファイバ20の受光面20aに入射する。光ファイバ20は、その受光面20aに入射した光MLBをモニタ本体16まで伝送する。
一方、ワークWの加工点WPからレーザ加工ヘッド12内に入ってくる反射光もあり、保護ガラス30、光学レンズ32、ベントミラー34、拡散板38を透過してきた反射光RLBは光ファイバ22の受光面22aに入射する。光ファイバ22も、その受光面22aに入射した光RLBをモニタ本体16まで伝送する。
光ファイバ20,22はたとえばマルチモード光ファイバからなり、それぞれの他方の端部(終端部)には光電変換部54,56がそれぞれ取り付けられており、これらの光電変換コネクタ54,56がモニタ装置本体16側の信号処理回路にたとえばコネクタ形式で電気的に接続される。図3に、光電変換コネクタ54,56の具体的構成例を示す。以下、片方の光電変換コネクタ54について説明するが、他方の光電変換コネクタ56も実質的に同じ構成・機能を有する。
図3において、光電変換コネクタ54は、絶縁体たとえば樹脂からなる筐体状のコネクタ本体58Aを有し、このコネクタ本体58Aの中に光電変換素子60A、光学フィルタ62A、温度制御部64A、回路基板66A、増幅器68A、ボリウム70A等を収容し保持している。光ファイバ20の終端部もコネクタ本体58A内に挿入されている。
光電変換素子60Aは、たとえばフォトダイオードからなり、その受光面を光ファイバ20の終端面20bに向けて配置される。光ファイバ20の出射端面20bと光電変換素子60Aとの間に設けられる光学フィルタ62Aは、たとえば、レーザ光LBの波長を選択的に通す透過フィルタや減衰用のNDフィルタ等を含んでいる。温度制御部64Aは、光電変換素子60Aおよび光学フィルタ62Aを収容する筒状の熱伝導性ブロック63Aと、この熱伝導性ブロック65Aに取り付けられた発熱素子(たとえば抵抗発熱素子)65Aおよび温度センサ(たとえばサーミスタ)67Aとを有している。温度制御部64Aの温度制御回路(図示せず)は、光電変換素子60Aおよび光学フィルタ62Aの温度を設定温度に保つように、温度センサ67Aの出力信号(温度検出信号)をフィードバック信号として発熱素子65Aに対する供給電力を制御する。増幅器68Aは、光電変換素子60Aの出力信号を所望の利得で増幅する回路であり、ボリウム70Aは増幅器68Aの利得をマニュアルで調整するものである。これら増幅器68Aおよびボリウム70Aは、光ファイバ20の受光面20aから光電変換コネクタ54の出力端子までの光計測系の精度を較正するために備えられている。回路基板66Aは、光電変換素子60A、増幅器68A、ボリウム70A、上記温度制御回路およびその他の関連回路を搭載する。
光電変換コネクタ54は、光ファイバ20の終端面20b側から見てコネクタ本体58Aの背部に、モニタ装置本体16側のコネクタに差し込まれるプラグ部72Aを有しており、このプラグ部72A内に複数のコンタクトピン74Aを備えている。これらのコンタクトピン74Aの一部は増幅器68Aを介して光電変換素子60Aの出力端子に電気的に接続されており、他の一部は温度制御部64Aの温度制御回路等に電気的に接続されている。
この光電変換コネクタ54において、光ファイバ20の終端面20bより出射された光(レーザ光LBに対応する漏れ光)MLBは、光学フィルタ62Aを通って光電変換素子60Aの受光面に入射する。光電変換素子60Aは、その受光面に入射した光MLBの光強度を表す電気信号(レーザ光強度検出信号)SLを出力する。この光電変換素子60Aからのレーザ光強度検出信号SLは、増幅器68Aで増幅ののちコンタクトピン74Aより後述するモニタ本体16内の信号処理回路へ送られる。
他方の光電変換コネクタ56においては、光ファイバ22の終端面22bより出射された光(反射光)RLBは、光学フィルタ62Bを通って光電変換素子60Bの受光面に入射する。光電変換素子60Bは、その受光面に入射した光RLBの光強度を表す電気信号(反射光強度検出信号)SRを出力する。この光電変換素子60Bからの反射光強度検出信号SRは、増幅器68Bで増幅ののちコンタクトピン74Bより後述するモニタ本体16内の信号処理回路へ送られる。
図1において、モニタ装置本体16は、正面のパネルにキーまたはボタン類を含むパネル入力部16aや液晶画面等のパネル表示部16bを備えるとともに、本実施形態のモニタリングに必要な各種演算処理を行う電子回路を内蔵している。このモニタ装置本体16内の電子回路は、たとえばマイクロコンピュータを含み、機能的には図4に示すように制御部80、レーザ光計測演算部82、反射光計測演算部84、比較部86,88、モニタ区設定部90、演算区間設定部92等を有している。制御部80は、パネル入力部16aおよびパネル表示部16bを通じてユーザとマン・マシン・インタフェースを行うほか、レーザ溶接機本体10でレーザ光LBが発振出力される度に本体10より同期用のタイミング信号を受け取り、コントローラ18からはレーザ加工条件または条件番号を受け取って、ユニット内の各部に所要の制御信号またはデータを与える。
において、レーザ光計測演算部82は、光ファイバ20の終端部に結合された光電変換コネクタ54のコンタクトピン(出力端子)74Aより入力されるレーザ光強度検出信号SLを基に、レーザ加工ヘッド12内で光ファイバ14の終端面14aより出射された直後のレーザ光LBの光強度測定値PLを求める。一般に、レーザ溶接用のレーザ光LBは、図5の(a)に示すように略矩形のレーザ出力波形を有するパルスレーザ光として発振出力される。このようなパルスレーザ光LBを光ファイバ14に通すと、図5の(b)に示すように振幅または光強度(レーザ出力)がファイバ伝送中に減衰するものの、光ファイバ14から出た直後も略矩形のレーザ出力波形は大体維持されている。レーザ光計測演算部82は、入力した光強度検出信号SLのピーク値または平均値を求め、それに所定の係数を乗じてレーザ光LBのファイバ出射直後の光強度測定値PLを求める。レーザ光計測演算部82で得られたレーザ光強度測定値PLは、制御部80に与えられるとともに、両比較部86,88にも与えられる。制御部80は、レーザ光計測演算部82からのレーザ光強度測定値PLをそのままパネル表示部16bに表示出力してもよい。
比較部86には、制御部80より比較基準値APLと判定基準値Jとが与えられる。ここで、比較基準値APLは、コントローラ18より与えられるレーザ光LBのレーザ出力設定値、あるいは溶接機本体10のレーザ出力測定部より与えられるレーザ光LBのレーザ出力測定値に対応している。比較判定部86は、比較基準値APLに対するレーザ光強度測定値PLの割合または比率(PL/APL)を求め、その比率(PL/APL)と判定基準値Jとを比較する。制御部80は、比較部86からの比較結果を受け、比率(PL/APL)>Jのときはレーザ加工ヘッド12内で光ファイバ14の終端面より出射された直後のレーザ光LBのレーザ出力が基準値を超えている、つまり正常と判定し、比率(PL/APL)≦Jのときは該レーザ光LBのレーザ出力は基準値よりも低下している、つまり異常であると判定する。
このように光ファイバ20を通じてレーザ出力の異常低下が検出されるときは、レーザ発振元のレーザ発振器10aからレーザ加工ヘッド12内のベントミラー34に至るレーザ伝送路上の光学部品の何れかに許容度を超える汚れ・損傷・劣化等がある場合である。レーザ発振器10a回りに異常があれば、レーザ加工機本体10内のレーザ出力測定部によるモニタリングで検出される。本体10側の異常でなければ、通常は、ベントミラー46,34に汚れ・損傷・劣化等は殆ど発生しないので、光ファイバ14の何処かに原因(主に損傷・劣化)があると断定ないし推定することができる。制御部80は、パネル表示部16aを通じて判定結果を表示出力し、異常の判定結果を出すときは適当な警報またはメッセージを発してもよい。さらにコントローラ18にも判定結果を送ることができる。
反射光計測演算部84は、光ファイバ22の終端部に結合された光電変換コネクタ56のコンタクトピン(出力端子)74Bより送られてくる反射光強度検出信号SRを基に、レーザ溶接中にワークWの加工点WPから加工ヘッド12側へ放射された反射光RLBの光強度測定値PRを求める。一般に、この種の反射光RLBは、図5の(c)に示すように矩形から相当崩れたレーザ出力波形として検知される。この実施形態では、モニタ区間設定部86および演算区間設定部88が設けられており、ユーザがパネル入力部16aを通じて所望のモニタ区間TMよび演算区間TCを任意に設定入力できるようになっている。
モニタ区間TMは、たとえば、図6および図7に示すように1個(単ショット)のパルスレーザ光のみを含む期間に設定することも可能であれば、図8および図9に示すように複数個(複数ショット)のパルスレーザ光を含む期間に設定することも可能である。後者(複数ショット)の場合は、パルス列全体(一括)で良否判定の評価を行うことも可能である。演算区間TCは、パルスレーザ光の立ち上がりエッジ(ta)より所望時間後の第1の時点(tb)から立ち下がりエッジ(td)よりも所望時間前の第2の時点(tc)までの区間(ta〜tb)として設定することができる。実際、ワークWからの反射光RLBは、パルスレーザ光の立ち上がり時にはワーク表面状態の影響を受けて不安定なオーバーシュート波形を示し、それが落ち着いた後に本来のレーザ出力に応じた反射光強度を示す。反射光計測演算部84は、制御部80(あるいはユーザ)からの指示にしたがい、反射光RLBの光強度測定値PRを求めるために、演算区間TCでたとえば積分値ERあるいは平均値PAVを演算する。積分値ERは、当該パルスレーザ光のレーザエネルギー(ジュール)に相当する。平均値PAVは、光強度検出信号SRを適当な周期でサンプリングして相加平均としてよい。図示省略するが、演算区間TC内の最大値またはピーク値をもって光強度測定値PRとすることもできる。1パルス毎のモニタリングと複数ショット分のモニタリングとは、基本的にはユーザの設定するモニタ区間TMの長さが違うだけであり、アルゴリズムやハードウェアまたはソフトウェアで特別な切り替えを要しない。
反射光計測演算部84で得られた反射光強度測定値PRは、制御部80に与えられるとともに比較部88にも与えられる。制御部80は、反射光計測演算部84からの光強度測定値PRをそのまま表示パネル16bに表示出力してもよい。比較部88には、上記のようにレーザ光計測演算部82から光強度測定値PLBを与えられ、制御部80からは加工部正常/異常判定用の判定基準値Dおよび溶接良否判定用の判定基準値Fや所要の係数Kを与えられる。ここで、係数Kは、レーザ加工条件(特にワークWの材質等)に応じて設定される。加工良否判定用の判定基準値Dは、コントローラ18より与えられるレーザ光LBのレーザ出力設定値、あるいはレーザ加工機本体10のレーザ出力測定部より与えられるレーザ光LBのレーザ出力測定値に対応したものでよく、上限値FHおよび下限値FLとして設定されてよい。
加工部正常/異常判定のために、比較部88は、光ファイバ出射直後のレーザ光強度測定値PLBに対する反射光強度測定値PRの割合または比率(PR/PLB)を求め、その比率(PR/PLB)を判定基準値Dと比較する。制御部80は、比較部88からの比較結果を受け、比率(PR/PLB)>Dのときはレーザ光LBの加工点WPにおけるレーザ出力が基準値または閾値を超えている、つまり加工部は正常(異常なし)であると判定し、比率(PR/PLB)≦Dのときはレーザ光LBの加工点WPにおけるレーザ出力が基準値または閾値よりも低下している、つまり加工部に異常ありと判定する。
このように加工部に異常ありと判定されるときは、ワークWの状態(特に表面状態)に異常があるか、あるいはレーザ加工ヘッド12内の光路上の光学部品つまりベントミラー40,34、集束レンズ32および保護レンズ30のいずれかに許容度を超える汚れ・損傷・劣化等がある場合である。いずれにしても、レーザ加工をいったん停止して加工部の検査を行うべき場面である。
ワークW側の異常が想定できないときは、光学部品側に原因があると断定ないし推定できる。通常、ユニット12に内蔵されているベントミラー40,34や集束レンズ32に原因(汚れ・損傷・劣化等)があることはめったになく、ワークWと向き合う保護レンズ30が汚れているケースが原因の殆どである。一般に、保護レンズ30の汚れは経時的に増大する。したがって、比率(PR/PLB)が経時的に低下する様子をモニタリングすることも可能である。制御部80は、パネル表示部16aを通じて検査や点検を促す判定結果を表示出力し、異常の判定結果を出すときは適当な警報またはメッセージを発してもよい。さらに、コントローラ18に判定結果を送ってもよい。
溶接(加工)良否判定のために、比較部88は、反射光強度測定値PRを判定基準値F(上限値FHおよび下限値FL)と比較する。制御部80は、比較部88からの比較結果を受け、FL<PR<FHのときはレーザ光LBの加工点WPにおけるレーザ出力が正常範囲内にあり溶接良好と判定し、PR≦FLまたはPR≧FHときはレーザ光LBの加工点WPにおけるレーザ出力が正常範囲外にあり、溶接不良と判定する。制御部80は、加工良否についての判定結果をパネル表示部16aを通じて表示出力したり、コントローラ18に送る。さらに、レーザ出力フィードバック制御のために判定結果あるいは反射光強度測定値PRをレーザ加工機本体10に送ることもできる。
上記したモニタ装置本体16では、加工部正常/異常判定のために、比較部88において光ファイバ出射直後のレーザ光強度測定値PLBと反射光強度測定値PRとの比率(PR/PLB)を求めて判定基準値Dと比較した。しかし、別の手法として、レーザ光強度測定値PLBおよび反射光強度測定値PRのいずれもレーザ光LBの加工点WPにおけるレーザパワー状態と一定の関係にある点を利用して、レーザ光強度測定値PLBおよび反射光強度測定値PRの両面から加工点のレーザパワー状態を総合的または複合的に評価することも可能である。
上記のように、この実施形態のレーザ加工モニタリング装置は、レーザ加工ヘッド12に光センサとして光ファイバ20,22を取り付け、この加工ヘッド12内で光ファイバ14の終端面14aより出射された直後のレーザ光LBの光強度を光ファイバ20を介してモニタ本体16側で測定するとともに、ワークWの加工点WPからレーザ加工ヘッド12に反射されてきた光RLBの光強度を光ファイバ22を介してモニタ本体16側で測定し、レーザ光LBの光強度測定値PLBと反射光RLBの光強度測定値PRとに基づいてレーザ光LBの通る光学部品の状態、ワークWの状態、レーザ出力状態等について光学的計測や良否判定をインラインで行えるようにしており、生産管理または品質管理の面でユーザに信頼性の高い有益なモニタリング情報を提供することができる。また、異常・故障の発見・通報が適時に出されるため、保護ガラス交換等のメンテナンスのために生産ラインをストップさせる時間を必要最小限に食い止めることができる。
とりわけ、このレーザ加工モニタリング装置は、各モニタリング用光ファイバ20,22の終端部に光電変換コネクタ54,56を取り付け、これらの光電変換コネクタ54,56内で光ファイバ20,22の出射端面20b,22bに光電変換素子60A,60Bを光学的に結合している。このように、レーザ加工ヘッド12には温度特性(温度依存性)の非常に小さい光ファイバ20,22を取り付け、温度特性の比較的大きい光電変換素子60A,60Bをレーザ加工ヘッド12から遠く離れたモニタ本体16側に配置しているので、レーザ加工ヘッド12の周囲の厳しい環境温度ないし温度変化の影響を受けずに、加工現場におけるレーザ光LBのレーザパワー状態や加工点WPの加工状態等を適確にモニタリングすることができる。
また、一般にモニタ本体16はレーザ加工機本体10側に配置されるため、光ファイバ20,22の長さは10メートルないし数十メートルに及ぶこともめずらしくないが、光ファイバ20,22の光伝送は周囲の電磁波ノイズの影響を全く受けない。このことにより、モニタ本体16側の信号処理回路に特別のノイズ除去回路を備える必要はなく、簡易な構成で高精度のモニタリングを実現することができる。
また、光電変換コネクタ54,56内に光電変換素子60A,60B及び光学フィルタ62A,62Bを温調する温度制御部64A,64Bや計測精度の較正を行うための増幅器68A,68B、ボリウム70A,70B等も装備しており、レーザ加工ヘッド12を嵩張らせることなく効率的にモニタリング精度の信頼性を一層向上させることができる。
さらに、この実施形態のレーザ加工ヘッド12においては、レーザ伝送用光ファイバ14、モニタリング用光ファイバ20,22をレーザ加工ヘッド12の上面に接続または取付しているので、ケーブル類の全部をヘッド上方に集約して架空配線ないし敷設することができる。このことにより、図示しないヘッド支持部またはロボットアーム等への加工ヘッド12の取付または搭載が簡単になり、加工場所付近のスペース効率や使い勝手が改善され、加工ヘッド12自体のメンテナンス性も改善される。また、何らかの原因で光ファイバ20,22の取付口が開いて加工ヘッド12の中から外部へレーザ光が出たとしても、加工ヘッド12の側方ではなく上方へ漏れるため、付近の作業者に照射するおそれはなく、安全面でも優れている。
次に、図10〜図13につき本発明の別の実施形態を説明する。
図10に、この第2の実施形態におけるレーザ加工装置の全体構成を示す。このレーザ加工装置は、主に銅や金の溶接に用いて好適なもので、基本波長(1064nm)のYAG基本波パルスレーザ光と高調波たとえば第2高調波(532nm)のYAG高調波パルスレーザ光とを重畳してワークWの加工点WPに照射する方式のレーザ加工装置である。上記した第1の実施形態と異なる主要な部分は、レーザ加工機本体94にYAG基本波レーザ光LAおよびYAG高調波レーザ光SHGをそれぞれ発振出力する2台のYAGパルスレーザ発振器96,98が設けられる点と、レーザ加工ヘッド100内にYAG基本波レーザ光LAとYAG高調波レーザ光SHGとを重畳させる光学系が内蔵されている点である。
両YAGパルスレーザ発振器96,98とレーザ加工ヘッド100とはそれぞれレーザ伝送用の光ファイバ102,104によって光学的に結ばれている。レーザ加工ヘッド100は、たとえばアルミニウムからなる中空のハウジングまたはヘッド本体106を有し、このヘッド本体106内の所定位置に後述する光学レンズやミラー等を配置している。このヘッド本体106において、ワークWの加工点WPと向き合う本体下面にはレーザ出射口108が設けられ、このレーザ出射口108とは反対側の本体上面にはレーザ加工用の光ファイバ102,104およびモニタリング用の光ファイバ114,116,118が取り付けられている。
図11〜図13に、レーザ加工ヘッド100の具体的な構成を示す。図11は上面図、図12は図11のX−X線についての縦断面図、図13は図11のY−Y線についての縦断面図である。
図12および図13に示すように、ヘッド本体106の下面中心部から下方に延びる筒部120が形成され、この筒部120の下端部つまりレーザ出射口108に保護ガラス122が取り付けられ、この保護ガラス122の内奥近傍に集束レンズ124が配置されている。
集束レンズ124の直上にはヘッド本体106内部のほぼ中心位置にて、YAG基本波系のベントミラー126がその反射面126aをたとえば45°の角度でX方向斜め下方に向けて配置され(図12)、その直上にYAG高調波系のベントミラー128がその反射面128aをたとえば45°の角度でY方向斜め下方に向けて配置され(図13)、さらにその直上には反射光検出用の光ファイバ118がその受光面118aを垂直下方に向けてコネクタまたはレセプタクル130に取り付けられている(図12、図13)。ベントミラー128と光ファイバ118の受光面118aとの間には拡散板132が配置されている。
図12に示すように、ヘッド本体106の上面には、ヘッド中心軸線上の光ファイバ118よりX方向にオフセットした位置にて、筒状の光ファイバ出射部134が垂直上方に延びている。この光ファイバ出射部134の上端には、光ファイバ102の終端部を着脱可能に受けるコネクタまたはレセプタクル136が設けられている。
光ファイバ出射部134の内部には、光ファイバ102の終端面102aから放射状に出たYAG基本波レーザ光LAを平行光にするためのコリメートレンズ138が配置されるとともに、このコリメートレンズ138の真下にベントミラー140がその反射面140aをたとえば−X方向45°の角度で斜め上方に向けて配置されている。ここで、ベントミラー140の反射面140aはベントミラー126の反射面126aと光学的に対向しており、光ファイバ102の終端面102aからのYAG基本波パルスレーザ光LAがベントミラー140で光路を垂直方向から水平方向(−X方向)に直角に曲げてからベントミラー126に入射し、ベントミラー126で光路を水平方向(−X方向)から垂直下方に直角に曲げて集束レンズ124に入射するようになっている。集束レンズ124は、ワークWの加工点WPにYAG基本波パルスレーザ光LAを集光させる。
ヘッド本体106の上面には、反射光検出用の光ファイバ118からYAG基本波系の光ファイバ取付部134とは反対側(−X方向)にオフセットした位置にYAG基本波レーザ光検出用の光ファイバ114がその受光面114aを垂直下方に向けてレセプタクル145に取り付けられている。この光ファイバ114の受光面114aの真下には、ベントミラー142がその反射面142aをたとえばX方向45°の角度で斜め上方に向けて配置されている。ここで、ベントミラー142の反射面142aはベントミラー140の反射面140aとベントミラー126を介して光学的に対向しており、レーザ伝送用光ファイバ102の終端面102aからのYAG基本波レーザ光LAがベントミラー140で垂直下方(集束レンズ124側)へ反射する際にベントミラー126の後方(−X方向)へ漏れた光MLAがベントミラー142に入射し、ベントミラー142で光路を水平方向から垂直上方へ直角に曲げてモニタリング用光ファイバ114の受光面114aに入射するようになっている。ベントミラー126とベントミラー142との間には拡散板144が配置されている。
さらに、図13に示すように、ヘッド本体106の上面には、ヘッド中心軸線上のモニタリング用光ファイバ118よりY方向にオフセットした位置にて、筒状の光ファイバ出射部146が垂直上方に延びている。この光ファイバ出射部146の上端には、レーザ伝送用光ファイバ104の終端部を着脱可能に受けるコネクタまたはレセプタクル148が設けられている。
光ファイバ出射部146の内部には、光ファイバ104の終端面104aから放射状に出たYAG高調波パルスレーザ光SHGを平行光にするためのコリメートレンズ150が配置されるとともに、このコリメートレンズ150の真下にベントミラー152がその反射面152aをたとえばY方向45°の角度で斜め上方に向けて配置されている。ここで、ベントミラー152の反射面152aはベントミラー128の反射面128aと光学的に対向しており、光ファイバ104の終端面104aからのYAG高調波パルスレーザ光SHGがベントミラー152で光路を垂直方向から水平方向(−Y方向)に直角に曲げてからベントミラー128に入射し、ベントミラー128で光路を水平方向(−Y方向)から垂直下方に直角に曲げ、ベントミラー126を通り抜けて集束レンズ124に入射するようになっている。集束レンズ124は、ワークWの加工点WPにYAG高調波パルスレーザ光SHGを集光させる。
図13において、ヘッド本体76の上面には、反射光検出用の光ファイバプローブ118からYAG高調波系の光ファイバ取付部146とは反対側(−Y方向)にオフセットした位置にYAG高調波レーザ光検出用の光ファイバ116がその受光面116aを垂直下方に向けてレセプタクル155に取り付けられている。この光ファイバ116の受光面116aの真下には、ベントミラー154がその反射面154aをたとえばY方向45°の角度で斜め上方に向けて配置されている。ここで、ベントミラー154の反射面154aはベントミラー152の反射面152aとベントミラー128を介して光学的に対向しており、レーザ伝送用光ファイバ104の終端面104aからのYAG高調波レーザ光SHGがベントミラー128で垂直下方(集束レンズ124側)へ反射する際にベントミラー128の後方(−Y方向)へ漏れた光MSHGがベントミラー154に入射し、ベントミラー154で光路を水平方向(−Y方向)から垂直上方へ直角に曲げてモニタリング用光ファイバ116の受光面116aに入射するようになっている。ベントミラー128とベントミラー154との間には拡散板156が配置されている。
図10において、モニタリング用光ファイバ114,116,118はたとえばマルチモード光ファイバからなり、それらの他方の端部(終端部)には光電変換コネクタタ158,160,162がそれぞれ取り付けられており、これらの光電変換コネクタ158,160,162がモニタ装置本体16側のコネクタ(図示せず)に電気的に接続される。各光電変換コネクタ158,160,162は、上記第1の実施形態における光電変換コネクタ54,56(図3)と実質的に同一の構成および機能を有し、レーザ加工ヘッド100から光ファイバ114,116,118により伝送されてくる光MLA、MSHG、RLAの光強度を表す電気信号つまりYAG基本波レーザ光強度検出信号SLA、YAG高調波レーザ光強度検出信号SSHG、反射光強度検出信号SR'をそれぞれ出力する。
モニタ装置本体16は、光電変換コネクタ158,160,162より与えられるYAG基本波レーザ光強度検出信号SLA、YAG高調波レーザ光強度検出信号SSHG、反射光強度検出信号SR'に基づいてYAG基本波レーザ光LA,YAG高調波レーザ光SHGの通る光学部品の状態、ワークWの状態、レーザ出力状態等について光学的計測や良否判定をインラインで行う。
この実施形態においても、上記した第1の実施形態と同様の作用効果が得られる。特に、レーザ加工用の光ファイバ102,104およびモニタリング用の光ファイバ114,116,118の本数が多い分だけ、モニタリングの精度・信頼性・効率性、装置構成の簡便性、スペース効率・使い勝手・メンテナンス性および安全性の面で一層大なる利点を奏することができる。
上記した実施形態ではレーザ伝送用光ファイバ14(102,104)およびモニタリング用光ファイバ20,22(114,116,118)の全部をレーザ加工ヘッド12(100)の上面に取り付けたが、一変形例としてその一部または全部をレーザ加工ヘッド12(100)の側面に取り付ける構成も可能である。また、図示省略するが、レーザ加工ヘッドにおいて光ファイバの終端面をレーザ出射口または保護レンズと対向する位置に取り付け、光ファイバの終端面より出たレーザ光をベントミラーを介さずにまっすぐ直進させて保護レンズの外に出射させることも可能である。その場合は、途中に反射率の非常に低いミラーを配置し、該ミラーで反射した光をモニタリング用光ファイバの受光面に導くようにすればよい。本発明は、上記実施形態におけるようなレーザ溶接に限定されるものではなく、光ファイバを利用する任意のレーザ加工に適用可能である。
本発明の一実施形態におけるレーザ加工装置の全体構成を示す図である。 実施形態におけるレーザ加工ヘッドの具体的な構成を示す縦断面図である。 実施形態における光電変換コネクタの具体的な構成を示す縦断面図である。 実施形態におけるモニタ装置本体内の信号処理部の機能的な構成を示すブロック図である。 実施形態のレーザ加工装置の各部における光の波形を示す波形図である。 実施形態において単一のパルスレーザ光に対するモニタ区間および演算区間および光強度測定演算の方法(一例)を示す図である。 実施形態において単一のパルスレーザ光に対するモニタ区間および演算区間および光強度測定演算の方法(一例)を示す図である。 実施形態において一連(複数ショット)のパルスレーザ光に対するモニタ区間および演算区間および光強度測定演算の方法(一例)を示す図である。 実施形態において一連(複数ショット)のパルスレーザ光に対するモニタ区間および演算区間および光強度測定演算の方法(一例)を示す図である。 別の実施形態におけるレーザ加工装置の全体構成を示す図である。 別の実施形態におけるレー加工ヘッドの構成を示す上面図である。 図11のX−X線についての縦断面図である。 図10のY−Y線についての縦断面図である。
符号の説明
10 レーザ加工機本体
10a レーザ発振器
12 レーザ加工ヘッド
14 レーザ伝送用光ファイバ
16 モニタ装置本体
18 コントローラ
20,22 モニタリング用光ファイバ
30 保護ガラス
32 集光レンズ
34,46,50 ベントミラー
44 コリメータレンズ
54,56 光電変換コネクタ
58A,58B コネクタ本体
60A,60B 光電変換素子
62A,62B 光学フィルタ
64A,64B 温度制御部
68A,68B 増幅器
70A,70B ボリウム
74A,74B コンタクトピン
94 レーザ加工機本体
100 レーザ加工ヘッド
102,104 レーザ伝送用光ファイバ
114,116,118 モニタリング用光ファイバ
158,160,162 光電変換コネクタ

Claims (16)

  1. レーザ発振部より発振出力されたレーザ光をレーザ伝送用の光ファイバに通してレーザ加工ヘッドまで伝送し、前記レーザ加工ヘッドより前記レーザ光を被加工物の加工点に照射するレーザ加工のモニタリング装置であって、
    前記被加工物の加工点から前記レーザ加工ヘッドの前記レーザ出射口の中に反射されてきた光の全部または一部を一端面に受光して遠隔の第1の光電変換部まで伝送する第1のモニタリング用光ファイバと、
    前記第1の光電変換部内で前記第1のモニタリング用光ファイバの他端面より出射された光を受光して第1の電気信号に変換する第1の光電変換素子と、
    前記第1の光電変換素子より出力された前記第1の電気信号に基づいて、前記被加工物の加工点におけるレーザパワーの状態を判定して判定結果を出力する信号処理部と
    前記レーザ加工ヘッド内で前記レーザ伝送用光ファイバの終端面から出射された前記レーザ光の一部を一端面に受光して遠隔の第2の光電変換部まで伝送する第2のモニタリング用光ファイバと、
    前記第2の光電変換部内で前記第2のモニタリング用光ファイバの他端面より出射された光を受光して第2の電気信号に変換する第2の光電変換素子と
    を有し、
    前記信号処理部が、前記第2の光電変換素子より出力された前記第2の電気信号に基づいて、前記レーザ光が通る光学部品の状態を判定して判定結果を出力する、
    レーザ加工モニタリング装置。
  2. 前記第1の光電変換部内に、前記第1の光電変換素子の温度を設定温度に保つための第1の温度制御部を設ける、請求項1に記載のレーザ加工モニタリング装置。
  3. 前記第1のモニタリング用光ファイバの出射端面と前記第1の光電変換素子との間に第1の光学フィルタを設ける、請求項1または請求項2に記載のレーザ加工モニタリング装置。
  4. 前記第1の光電変換部が、
    第1の光電変換素子の出力端子に第1の増幅器を介して電気的に接続される第1のコンタクトと、
    前記第1の増幅器の利得を調整するための第1のボリウムと、
    前記第1のコンタクト、前記第1の増幅器および前記第1のボリウムを保持し、かつ前記第1のモニタリング用光ファイバの終端部に一体に結合する絶縁性の第1のコネクタ本体と
    を有する、請求項1〜のいずれか一項に記載のレーザ加工モニタリング装置。
  5. 前記第2の光電変換部に、前記第2の光電変換素子の温度を設定温度に保つための第2の温度制御部を設ける、請求項のいずれか一項に記載のレーザ加工モニタリング装置。
  6. 前記第2のモニタリング用光ファイバの出射端面と前記第2の光電変換素子との間に第2の光学フィルタを設ける、請求項のいずれか一項に記載のレーザ加工モニタリング装置。
  7. 前記第2の光電変換部が、
    第2の光電変換素子の出力端子に第2の増幅器を介して電気的に接続される第2のコンタクトと、
    前記第2の増幅器の利得を調整するための第2のボリウムと、
    前記第2のコンタクト、前記第2の増幅器および前記第2のボリウムを保持し、かつ前記第2のモニタリング用光ファイバの終端部に一体に結合する絶縁性の第2のコネクタ本体と
    を有する、請求項のいずれか一項に記載のレーザ加工モニタリング装置。
  8. 前記レーザ加工ヘッド内に、前記レーザ伝送用光ファイバの終端面から出射された前記レーザ光の大部分を前記被加工物の加工点側へ反射し、一部を漏れ光として透過させるミラーが設けられる、請求項1〜のいずれか一項に記載のレーザ加工モニタリング装置。
  9. 前記レーザ加工ヘッド内に、前記レーザ伝送用光ファイバの終端面から出射された前記レーザ光の大部分を前記被加工物の加工点側へ通し、一部を所定方向へ反射させるミラーが設けられる、請求項のいずれか一項に記載のレーザ加工モニタリング装置。
  10. 前記第1のモニタリング用光ファイバの受光端面が、前記ミラーを介して前記光ファイバの終端面と光学的に対向して配置される、請求項または請求項に記載のレーザ加工モニタリング装置。
  11. 前記第1のモニタリング用光ファイバが、前記レーザ加工ヘッドの前記レーザ出射口と反対側の面に取り付けられる、請求項1〜10のいずれか一項に記載のレーザ加工モニタリング装置。
  12. 前記レーザ加工ヘッド内に、前記レーザ伝送用光ファイバの終端面から出射された前記レーザ光を前記被加工物の加工点に集束させる光学レンズが設けられる、請求項1〜11のいずれか一項に記載のレーザ加工モニタリング装置。
  13. 前記第2のモニタリング用光ファイバが、前記被加工物の加工点から前記光学レンズを通ってきた光を一端面に受光する、請求項12に記載のレーザ加工モニタリング装置。
  14. 前記第2のモニタリング用光ファイバが、前記レーザ加工ヘッドの前記レーザ出射口と反対側の面に取り付けられる、請求項1〜13のいずれか一項に記載のレーザ加工モニタリング装置。
  15. 前記レーザ伝送用光ファイバが、前記レーザ加工ヘッドの前記レーザ出射口と反対側の面に取り付けられる、請求項1〜14のいずれか一項に記載のレーザ加工モニタリング装置。
  16. 前記レーザ加工ヘッドのレーザ出射口に保護ガラスが取り付けられる、請求項1〜15のいずれか一項に記載のレーザ加工モニタリング装置。
JP2005221686A 2005-07-29 2005-07-29 レーザ加工モニタリング装置 Active JP5043316B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005221686A JP5043316B2 (ja) 2005-07-29 2005-07-29 レーザ加工モニタリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005221686A JP5043316B2 (ja) 2005-07-29 2005-07-29 レーザ加工モニタリング装置

Publications (2)

Publication Number Publication Date
JP2007038226A JP2007038226A (ja) 2007-02-15
JP5043316B2 true JP5043316B2 (ja) 2012-10-10

Family

ID=37796690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005221686A Active JP5043316B2 (ja) 2005-07-29 2005-07-29 レーザ加工モニタリング装置

Country Status (1)

Country Link
JP (1) JP5043316B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541329B2 (en) 2006-05-23 2013-09-24 Ivoclar Vivadent Ag Process for the preparation of coloured blanks and dental shaped parts

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101503543B1 (ko) * 2007-02-15 2015-03-24 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 강판의 레이저 용접 방법 및 레이저 용접 장치
IT1397985B1 (it) * 2010-02-08 2013-02-04 Prima Ind Spa Procedimento di monitoraggio della qualità di processi di lavorazione laser e relativo sistema
KR102302409B1 (ko) * 2013-03-06 2021-09-15 아이피지 포토닉스 코포레이션 불균일하게 구성된 광섬유간 로드 다중모드 증폭기를 가진 초고출력 단일모드 광섬유 레이저 시스템
KR102306771B1 (ko) * 2013-03-06 2021-09-30 아이피지 포토닉스 코포레이션 불균일하게 구성된 광섬유간 로드 다중모드 증폭기를 가진 초고출력 단일모드 광섬유 레이저 시스템
JP5909537B1 (ja) * 2014-10-14 2016-04-26 株式会社アマダホールディングス ダイレクトダイオードレーザ発振器、ダイレクトダイオードレーザ加工装置及び反射光検出方法
US10307867B2 (en) 2014-11-05 2019-06-04 Asm Technology Singapore Pte Ltd Laser fiber array for singulating semiconductor wafers
JP2018129389A (ja) 2017-02-08 2018-08-16 株式会社フジクラ ファイバレーザ
JP2020199517A (ja) 2019-06-07 2020-12-17 ファナック株式会社 レーザ加工システム
JP2021030286A (ja) * 2019-08-28 2021-03-01 株式会社豊田中央研究所 レーザ加工方法およびレーザ加工装置
JP6824355B1 (ja) * 2019-09-25 2021-02-03 株式会社アマダウエルドテック レーザ加工監視方法及びレーザ加工監視装置
JP2021171807A (ja) * 2020-04-29 2021-11-01 株式会社レーザックス レーザ加工装置、加工点出力モニタ、検知ユニット、およびレーザ加工装置用のプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2864355B2 (ja) * 1995-03-30 1999-03-03 住友重機械工業株式会社 ファイバ損傷モニタを備えたレーザ加工装置
JPH11241946A (ja) * 1998-02-24 1999-09-07 Miyachi Technos Corp レーザ出力測定装置
JP3595511B2 (ja) * 2001-04-13 2004-12-02 三菱重工業株式会社 レーザ加工ヘッド及びこれを備えたレーザ加工装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541329B2 (en) 2006-05-23 2013-09-24 Ivoclar Vivadent Ag Process for the preparation of coloured blanks and dental shaped parts

Also Published As

Publication number Publication date
JP2007038226A (ja) 2007-02-15

Similar Documents

Publication Publication Date Title
JP5043316B2 (ja) レーザ加工モニタリング装置
JP2007044739A (ja) レーザ加工モニタリング装置
JP2006247681A (ja) レーザ加工用モニタリング装置
JP2007054881A (ja) レーザ加工モニタリング装置
US4556875A (en) Irradiated power monitoring system for optical fiber
EP2856092B1 (en) Laser power sensor
JP4757557B2 (ja) レーザ加工ヘッド
JP2005161361A (ja) レーザ加工機の管理方法及びレーザ加工機
JP2005007482A (ja) 工作物熱加工機械の加工ヘッドの光学素子を監視する装置
WO2018185973A1 (ja) レーザ加工監視方法及びレーザ加工監視装置
JP5209290B2 (ja) レーザ加工モニタリング装置及びレーザ加工装置
CN107991061A (zh) 高功率光纤激光器qbh光缆光束质量检测系统及其检测方法
JP2006292424A (ja) 光ファイバモニタ装置およびレーザ加工システム
US20210060696A1 (en) Laser device and laser processing device using same
CN112045301A (zh) 激光加工系统
JP7308355B2 (ja) レーザ加工モニタ装置、レーザ加工モニタ方法、およびレーザ加工装置
EP4035818A1 (en) Laser processing monitoring method, and laser processing monitoring device
CN114354538A (zh) 激光气体传感装置及气体探测方法
JP7122671B2 (ja) 集光光学ユニット及びそれを用いたレーザ発振器、レーザ加工装置、レーザ発振器の異常診断方法
JP2010110796A (ja) レーザ加工モニタリング方法および装置
JP4204384B2 (ja) レーザ装置
CN219767134U (zh) 激光加工头
US20220331911A1 (en) Method for comparing laser processing systems and method for monitoring a laser processing process and associated laser processing system
CN116735611A (zh) 激光焊接监测装置
CN117368219A (zh) 半导体激光器芯片腔体缺陷检测系统及检测方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120712

R150 Certificate of patent or registration of utility model

Ref document number: 5043316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250