JP5043038B2 - 眼球の動きを追跡するシステムおよび方法 - Google Patents

眼球の動きを追跡するシステムおよび方法 Download PDF

Info

Publication number
JP5043038B2
JP5043038B2 JP2008545976A JP2008545976A JP5043038B2 JP 5043038 B2 JP5043038 B2 JP 5043038B2 JP 2008545976 A JP2008545976 A JP 2008545976A JP 2008545976 A JP2008545976 A JP 2008545976A JP 5043038 B2 JP5043038 B2 JP 5043038B2
Authority
JP
Japan
Prior art keywords
eyeball
points
orbit
movement
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008545976A
Other languages
English (en)
Other versions
JP2009519780A (ja
Inventor
リチャード・エル・セバスチャン
ケンドル・エル・ベルスレイ
Original Assignee
デジタル シグナル コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デジタル シグナル コーポレイション filed Critical デジタル シグナル コーポレイション
Publication of JP2009519780A publication Critical patent/JP2009519780A/ja
Application granted granted Critical
Publication of JP5043038B2 publication Critical patent/JP5043038B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/113Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/145Arrangements specially adapted for eye photography by video means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、一般に、眼球の動きの追跡に関し、より詳細には検出および測距システム(detection
and ranging system)を使用する眼球の動きの追跡に関する。
本出願は、2005年12月14日に出願された「System and Method
for Tracking Eyeball Motion」と題する米国仮特許出願番号60/750,045の優先権を主張し、この出願の内容は、援用により本明細書に組み込まれる。本出願は、2005年2月14日に出願された「Chirped
Coherent Laser Radar System and Method」と題する米国仮特許出願番号60/651,989と、2006年12月14日に出願された「System
and Method for Tracking Eyeball Motion」と題する米国特許出願番号[代理人整理番号021636−0358730]に関連し、これらの出願の内容は、援用により本明細書に組み込まれる。
個人の眼球の動きの決定は、多くの環境で実用化されている。例えば、眼球の動きは、虹彩および/または角膜認識システム、刺激応答測定、医療処置、仮想現実システム、または他の環境で監視される。眼球の動きの情報は、眼球、虹彩または網膜の画像化を改善することができる。また、眼球の動きの情報は、他の方法よりも大きな範囲の眼球、虹彩または角膜の画像化を可能にすることがある。
しかしながら、ステレオシステム(stereo system)などの従来の眼球運動追跡システムは、眼球と関連した位置情報を、眼球運動追跡のすべての応用例に十分な速度および/または精度で提供しない場合がある。また、一般に、これらのシステムは、比較的遠い距離から眼球と関連した位置情報を決定できないために十分に機能できない場合がある。
従来の眼球運動追跡システムおよび方法と関連した以上その他の欠点が存在する。
本発明の1つの態様は、レーダー(「RADAR」:Radio Detection
And Ranging)システムやライダー(「LIDAR」:Light Detection And Ranging)システムなどの検出および測距システム(detection
and ranging system)を使用して、顔、より詳細には顔内の眼球と関連した位置情報を検出することに関する。位置情報は、眼球がその眼窩内で回転するときの眼球の位置、眼球と関連した並進動き情報(例えば、変位、速度、加速、痙動(jerk)など)、眼球と関連した回転動き情報(例えば、回転変位、回転速度、回転加速度など)を含む。眼球と関連した位置情報を検出する際の検出および測距システムの実施態様の利点の1つには、短時間で位置情報を決定できることがある。実際には、いくつかの実施態様では、位置情報の決定は、実質的に待ち時間のない実質的に瞬間的である。眼球と関連した位置情報を検出する際の検出および測距システムの実施態様の別の利点には、遠い距離からかつ/または個人への少ない侵襲性で眼球の動きを決定できることがある。
前述のように、検出および測距システムは、コヒーレントLIDARシステムを含んでもよい。これらの実施態様では、第1組の電磁放射ビームは、眼球上の1つまたは複数の位置で眼球に入射することができる。第1組の電磁放射ビームは、眼球上のそのような位置からLIDARシステムに戻され(例えば、後方散乱、反射などによって)、戻された電磁放射の周波数偏移が測定される。
コヒーレントLIDARシステムは、眼球上の各測定位置における位置(例えば、x,y,z)と回転速度(例えば、入射電磁放射ビームと平行な眼球の表面の速度成分)の一方または両方に関連した情報を決定することができる。眼球の半径が既知の場合、この情報は、眼球上の3つの別々の測定位置に集束された3つの測定ビームによって決定されてもよい。半径が分かっていない場合は、眼球上の第4の別の測定位置に集束された第4の測定ビームによって決定することができる。目の位置を特定した後(例えば、半径が分かっている場合は3つの測定ビーム、半径が分かっていない場合は4つの測定ビームで)、分かっている位置に基づいて目の中心と目の最も近いポイントを決定することができる。
個々の測定位置において、眼球の表面に対して接線方向にある眼窩内の眼球の動きを表す速度ベクトルを決定することができる。この速度ベクトルの有効な決定が、(i)最も近いポイントでなく(ii)互いに同一大円上になく最も近いポイントでもない眼球上の少なくとも2つの測定位置に関して行われた場合は、眼窩内の眼球の回転運動をLIDARシステムによって決定することができる。これにより、眼球の横回転運動と、更には眼球の表面の特徴(例えば、虹彩、瞳など)の追跡が可能になる。眼球が完全な球体として形成されておらず、眼球の形状の非対称性が、眼球上の所定の測定位置で計算された速度ベクトルに影響を及ぼす場合があることを理解されたい。しかしながら、眼球の概略的な形状は、一般に、眼球の不均一さがごく僅かで球形に十分近く、従って、眼球は、いくつかの実施形態では(また、本明細書の説明的な目的のために)完全に球形であると仮定されてもよい。
いくつかの実施態様では、眼球と共に眼窩を移動させる顔の横方向または縦方向の動きは、LIDARシステムと共に使用されるビデオ撮像システムによってキャプチャされたビデオ映像のビデオ光学的フロー処理によって決定されてもよい。ビデオ撮像システムの像平面での回転もそのように決定されてもよい。ビデオ撮像システムによってキャプチャされた画像の平面からの顔の動き(例えば、変位や回転など)は、LIDARシステムによって決定することができる。例えば、第2組の電磁気ビームが、LIDARシステムから顔上の1つまたは複数の位置(眼球以外)に放射され、顔上の1つまたは複数の位置のレンジ(range)とレンジレート(range rate)測定を行って、ビデオ撮像システムによってキャプチャされた画像の平面からの顔の動きと関連した情報を決定することができる。
比較的少ない頻度の頭の動きと多くの測定により、この方式または何らかの他の方式で、頭の動きを比較的高精度で決定することができる。これが行われると、眼球の三次元中心点の位置と速度を決定することができ、その結果、眼窩内の眼球の残りの部分の動きを、眼球が静止した眼窩内にあるかのように、眼窩の動きと別に決定することができる。
本発明の様々な実施形態の別の態様は、標的がレーザレーダーシステムに対して移動しているときの標的のレンジとレンジレートを明白に検出するレーザレーダーシステムに関する。本発明の様々な実施形態の別の態様は、複数のレーザレーダーセクションを使って複数の同時測定値(または実質的に同時)を取得し、それにより単一レーザセクションを使用して連続測定値を取得するシステムによって導入される様々な時間的影響なしにレンジおよびレンジレートを両方とも決定することができるレーザレーダーシステムに関する。更に、本発明の様々な実施形態の他の態様は、標的のレンジおよびレンジレートをより高速に決定し、標的のレンジおよびレンジレートをより正確に決定し、かつ/または他の利点を提供することができる。
本発明のいくつかの実施形態では、レーザレーダーシステムは、第1の標的ビームと第2の標的ビームを標的に放射してもよい。第1の標的ビームと第2の標的ビームは、標的によってレーザレーダーシステムの方に反射されてもよい。レーザレーダーシステムは、反射された第1の標的ビームと第2の標的ビームを受け取り、レーザレーダーシステムからの標的のレンジおよび標的のレンジレートの少なくとも一方を決定することができる。本発明のいくつかの実施形態では、レーザレーダーシステムは、第1のレーザレーダーセクション、第2のレーザレーダーセクションおよびプロセッサを含んでもよい。
本発明のいくつかの実施形態では、第1のレーザレーダーセクションは、第1の標的ビームと第1の基準ビームを生成してもよい。第1の標的ビームと第1の基準ビームは、第1のレーザ源によって、第1のチャープレートで変調された第1の周波数で生成されてもよい。第1の標的ビームは、標的上の測定ポイントの方に導かれてもよい。第1のレーザレーダーセクションは、標的の方に導かれ標的から反射された第1の標的ビームの一部分を組み合わせてもよい。局部発振器ビームと呼ばれる第1の標的ビームの別の部分は、既知の方法または他の方法で決定された経路長を有する経路上で導かれてもよい。これにより、第1の複合標的ビームが生成される。
本発明の様々な実施形態によれば、第2のレーザレーダーセクションは、第1のレーザレーダーセクションに対して配置され固定されてもよい。より詳細には、それぞれのレーザビームを送受信するための関連光学構成要素が適当な順序で配置され固定される。第2のレーザレーダーセクションは、第2の標的ビームと第2の基準ビームを生成することができる。第2の標的ビームと第2の基準ビームは、第2のレーザ源によって、第2のチャープレートで変調された第2の周波数で生成されてもよい。第2のチャープレートは、第1のチャープレートとは異なってもよい。これにより、信号識別や後処理の他の態様など、後処理の1つまたは複数の態様が容易になる。第2の標的ビームは、標的上の第1の標的ビームと同じ測定ポイントの方に導かれてもよい。第2のレーザレーダーセクションは、標的の方に導かれ反射される第2の標的ビームの一部分と、既知の方法または他の方法で決定された経路長を有する経路上で導かれる第2の標的ビームの別の部分とを組み合わせることがある。これにより、組み合わされた第2の標的ビームが得られる。
本発明の様々な実施形態によれば、プロセッサは、第1と第2の複合標的ビームを受け取り、それぞれの反射された標的ビームとその対応する局部発振器ビームのそれぞれとの間の経路長の差と、レーザレーダーシステムに対する標的の動きによって生成される任意のドップラ周波数偏移とによって作成されるうなり周波数を測定する。次に、うなり周波数を線形的に組み合わせて、それぞれの局部発振器ビームとその反射された標的ビームとの間のうなり周波数が、反射された標的ビームの同時(または実質的に同時)の時間的成分に対応する限り、標的のレンジおよびレンジレートの明白な決定を生成することができる。反射された標的ビームの同時(または、実質的に同時)時間的成分は、標的ビームの時間的成分を含むことができ、これらの時間的成分は、1)標的の同じ部分に実質的に入射し、2)類似の伝達効果による影響を受け、3)走査光学素子によって実質的に同じ条件で導かれ、かつ/または4)他の類似性を共有する。線形結合のための反射標的ビームの同時(または、実質的に同時)時間的成分に対応するうなり周波数を利用することにより、環境上または他の作用によってデータに導入されるノイズを有効に相殺することができる。
複合標的ビームは、第1の局部発振器ビームと第2の局部発振器ビームを異なる標的ビームまたは同じ標的ビームの異なる部分と別々に組み合わせることによって作成されるので、第1の複合標的ビームと第2の複合標的ビームは、最終処理の直前に、2つの別々であるが一致する単一源周波数変調レーザレーダーシステム内にある光学信号となり得る。例えば、複合標的ビームは、単一源システム内の標的干渉計によって作成された光学信号となり得る。
様々な実施形態によれば、標的ビームは、別々の光路で標的に導かれかつ/またはその標的から受け取ることができる。いくつかの実施形態では、これらの光路は、類似しているが互いに異なってもよい。他の実施形態では、第1の標的ビームおよび第2の標的ビームは、放射前に結合されて、共通の光路に沿って標的の方へ導かれる複合標的ビームを作成してもよい。いくつかの実施形態では、標的ビームは、標的によって反射され、また標的ビームを標的に導く共通光路と別の受信光路に沿ってレーザレーダーシステムによって受け取られてもよい。そのような実施形態は、「バイスタティック(bistatic)」と呼ばれることがある。または、複合標的ビームは、共通光路に沿ってレーザレーダーシステムによって受け取られてもよい。これらの後者の実施形態は、「モノスタティック(monostatic)」と呼ばれることがある。モノスタティック実施形態は、相補的な光学素子と共に動作するときにバイスタティック実施形態よりも優れた利点を提供することができる。より詳細には、本発明のモノスタティック実施形態は、とりわけ差分ドップラ効果とスペックルによるひずみによる影響を受けにくい。差分ドップラ効果は、例えば、標的ビームを標的上の様々な位置に導く走査ミラーによって作り出される。ミラーの様々な部分が様々な速度で動くので、標的ビームの様々な部品は、様々なドップラ遷移を受ける。その結果、レンジおよび/またはレンジレートの測定値に誤差が導入される可能性がある。これらの効果は、例えば、Digital Signal Corporation, 8003 Forbes Place, Springfield, VA.22131から提出された「NASA
Langley Contract No. NAS1-18890 (May 1991) Phase II Final Report, Appendix K」で、Anthony
Slotwinskiらにより研究され分析されており、この論文は、援用により全体が本明細書に組み込まれる。
いくつかの例では、第1のレーザ源と第2のレーザ源は、それぞれ第1の搬送周波数と第2の搬送周波数の電磁放射を生成する。第1の搬送周波数は、実質的に第2の搬送周波数と同じでよい。こうすると、例えば、スペックルによる歪みの最小化や他の強化などの、レーザレーダーシステムに対する様々な強化を提供することができる。
いくつかの実施形態では、第1のレーザ源と第2のレーザ源は、極めて線形化された周波数チャープを有する電磁放射を提供する。このために、第1のレーザ源と第2のレーザ源によって放射される電磁放射の線形化は、周波数ベース(例えば、各チャープごと)または実施形態によっては連続的(または、実質的に連続的)に較正される。この線形化された電磁放射の周波数チャープによって、オペレータが低下したシステム性能に気づいたとき、オペレータが低下した性能の可能性に基づいて線形化するように促されたとき、または1つまたは複数のシステムパラメータが許容範囲から外れたときなどに、起動時に線形化が行われる従来のシステムよりも高いレンジ測定精度や他の強化を提供することができる。頻繁かつ/または自動化された線形化は、高速走査中のミラー差動ドップラノイズの影響を少なくし、レンジの推定に対する以上またその他のノイズ寄与を打ち消す二重チャープ法の効果を最大化することができる。
本発明のいくつかの実施形態では、レーザレーダーシステムからの標的のレンジが、最小レンジから最大レンジまでの1組のレンジの範囲内にあるとき、レーザレーダーシステムは、標的のレンジとレンジレートを高精度に決定することができる。標的のレンジが1組のレンジの範囲内にないときは、レーザレーダーシステムの精度が低下することがある。この低下は、第1のレーザ源および第2のレーザ源のコヒーレンス長が本質的に有限であることによるものである。例えば、最小レンジと最大レンジとの間の距離は、コヒーレンス長の関数である。第1のレーザ源および第2のレーザ源のコヒーレンス長が大きいほど、最小レンジと最大レンジとの間の距離が大きくなる。従って、第1のレーザ源および第2のレーザ源のコヒーレンス長を大きくすると、広い1組のレンジにわたる決定を行う能力が提供され、レーザレーダーシステムによるレンジおよびレンジレートの決定が強化される。
本発明のいくつかの実施形態では、第1のレーザ源および第2のレーザ源の一方または両方は、放射源からの電磁放射を制御可能にチャープするシステムおよび方法を実現することができる。このシステムおよび方法は、設定可能な期間を有する実質的に線形のチャープレートで電磁放射を作成することができる。いくつかの実施形態では、放射は、単一の周波数偏移された共振モードを含む。
本発明のいくつかの実施形態において、システムは、放射源、光共振器を構成する1つまたは複数の光学素子、周波数シフタ、光スイッチ、および光増幅器を含んでもよい。いくつかの実施形態では、周波数シフタは、光共振器から電磁放射を受け取り、受け取った電磁放射の周波数偏移部分を光共振器に戻すように光共振器内に配置される。光スイッチは、光共振器から電磁放射を受け取るために光共振器内に配置される。光スイッチは、受け取った電磁放射を光共振器から遠くに導くか、受け取った電磁放射を光共振器に戻すように制御可能である。いくつかの例では、光スイッチは、受け取った電磁放射を光共振器から遠ざけると同時に放射源から光共振器に放射を結合するように制御可能でよく、放射源から受け取った放射は、初期周波数で光スイッチに受け取られる。
本発明の様々な実施形態によれば、光共振器は、レーザ源から初期周波数で放射された放射を、光共振器の光学長に対応する期間、光共振器に導くことによって「満たされる」。いくつかの実施形態では、レーザ源からの放射は、光スイッチによって光共振器に導かれてもよい。レーザ源からの電磁放射は、光共振器内に導かれるが、光スイッチを制御して、光スイッチが受け取った放射を光共振器から遠ざけるかまたは光共振器から「ダンプ」されるように導くことができる。光共振器が「満たされた」後(例えば、光共振器の光学長に対応する時間期間が過ぎた後)、レーザ源から光共振器への放射の流れが停止される。いくつかの実施形態では、レーザ源から光共振器への放射の流れは、レーザ源の電源を遮断することにより停止される。他の実施形態では、レーザ源から光共振器への放射の流れは、レーザ源からの放射を光共振器から遠くにダンプするように光スイッチを制御することによって停止される。光共振器が満たされている間に光共振器に注入された放射は、光スイッチによって光共振器内で循環されてもよく、この光スイッチは、光共振器から受け取った放射を光共振器内に導くように制御される。
本発明のいくつかの実施形態では、電磁放射が光共振器内で循環されるとき、放射の周波数は、光共振器を回るたびに周波数シフタによって漸進的に調整されてもよい。この定期的な漸進的調整により、光共振器内の放射の周波数は、実質的に線形にチャープされる。電磁放射の周波数をチャープするレートは、周波数シフタによって適用される漸進的周波数調整と光共振器の光学長の一方または両方と関連付けられる。従って、放射の周波数をチャープするレートは、これらの変量の一方または両方によって制御されてもよい。
いくつかの実施形態では、光共振器のQ値(quality factor)は、光共振器内の様々な損失によって低下する。例えば、光共振器から装置に出力される放射は、損失が生じることがある。また、光学素子の欠陥による損失や他の寄生損失などの他の損失がある場合もある。Q値の低下を防ぐために、光共振器内に光増幅器が配置されてもよい。光増幅器は、光共振器の損失の和を抑えるために光共振器内で放射に十分な利得を提供するように選択され制御される。その結果、光共振器から出力される放射の所定の強度または制御された強度が維持される。また、光増幅器は、例えば均一な線幅、利得帯域幅または他の仕様などの1つまたは複数の他の特性に基づいて選択されてもよい。
本発明のいくつかの実施形態では、チャープレートの1つはゼロに設定されてもよい。換言すると、レーザ源の1つは、定周波数の放射を放出してもよい。これにより、定周波数で放射するレーザ源を、より単純な設計、小さな占有面積、より軽い重量、低コスト、またはシステム全体に利点を提供する他の強化で実現することができる。これらの実施形態では、チャープレートがゼロに設定されたレーザレーダーセクションを使用して標的のレンジレートだけを決定することができる。
本発明のいくつかの実施形態では、プロセッサは、第1の複合標的ビームと第2の複合標的ビームとを線形的に結合してレンジ信号とレンジレート信号をデジタル的に生成してもよい。例えば、プロセッサは、第1の検出器および第2の検出器を含む。第1の検出器は、第1の複合標的ビームを受け取り、第1の複合標的ビームに対応する第1のアナログ信号を生成する。第1のアナログ信号は、第1のコンバータによって第1のデジタル信号に変換される。プロセッサは、第1のデジタル信号の1つまたは複数の周波数成分に対応する第1組の周波数データを決定する第1の周波数データモジュールを含む。
第2の検出器は、第2の複合標的ビームを受け取り、第2の複合標的ビームに対応する第2のアナログ信号を生成する。第2のアナログ信号は、第2のコンバータによって第2のデジタル信号に変換される。プロセッサは、第2のデジタル信号の周波数成分の1つまたは複数に対応する第2組の周波数データを決定する第2の周波数データモジュールを含む。
第1組の周波数データおよび第2組の周波数データは、周波数データ結合モジュールによって受け取られる。周波数データ結合モジュールは、第1組の周波数データおよび第2組の周波数データから導出されたレンジレート信号およびレンジ信号を生成することができる。
本発明の他の実施形態では、プロセッサは、第1の複合標的ビームと第2の複合標的ビームとを電子的に結合して、レンジ信号およびレンジレート信号を電子的に生成することができる。例えば、プロセッサは、変調器を含んでもよい。変調器は、第1の検出器によって生成された第1のアナログ信号と第2の検出器によって生成された第2のアナログ信号とを乗算して、複合アナログ信号を作成することができる。そのような実施形態では、プロセッサは、複合アナログ信号を受け取る第1のフィルタおよび第2のフィルタを備えてもよい。第1のフィルタは、複合アナログ信号をフィルタリングして第1のフィルタ信号を生成することができる。第1のフィルタ信号は、第1のコンバータによって変換されてレンジレート信号が生成される。第2のフィルタは、複合アナログ信号をフィルタリングして第2のフィルタ信号を生成することができる。第2のフィルタ信号は、第2のコンバータによって変換されてレンジ信号が生成される。
本発明の他の実施形態によれば、プロセッサは、第1の複合標的ビームと第2の複合標的ビームとを光学的に結合してレンジ信号およびレンジレート信号を生成してもよい。例えば、プロセッサは、第1の複合標的ビームおよび第2の複合標的ビームを受け取り且つ第1の複合標的ビームおよび第2の複合標的ビームの検出に基づいて複合アナログ信号を生成する検出器を含んでもよい。そのような実施形態では、プロセッサは、複合アナログ信号を受け取る第1のフィルタおよび第2のフィルタを含む。第1のフィルタは、複合アナログ信号をフィルタリングして第1のフィルタ信号を生成することができる。第1のフィルタ信号は、第1のコンバータによって変換されてレンジレート信号が生成される。第2のフィルタは、複合アナログ信号をフィルタリングして第2のフィルタ信号を生成することができる。第2のフィルタ信号は、第2のコンバータによって変換されてレンジ信号が生成される。
本発明の以上その他の目的、特徴および特性は、操作方法や構造の関連要素、部品の組み合わせ、製造の経済性等と共に、添付図面に関する以下の説明および添付の特許請求の範囲を検討することにより明かになる。添付図面はすべて、本明細書の一部を構成し、同じ参照符号は様々な図面において対応する部分を指す。しかしながら、図面は、単に例示と説明のためのものであり、本発明の範囲を定義するものではないことを明確に理解されたい。明細書と特許請求の範囲で使用されるとき、単数形の「a」、「an」および「the」は、文脈で明瞭に指定されない限り複数の物も指す。
図1は、本発明のいくつかの実施形態による、顔、より詳細には個人112の顔内の眼球と関連した位置情報を検出するシステム110の例示的な説明図である。システム110は、個人112の眼球と関連した位置情報を決定することができる。システム110は、個人112の表面上のポイント(例えば、皮膚、衣服、唇など)までのレンジおよび/またはそのポイントのレンジレート(すなわち、速度)を決定することができるレーザレーダーシステム116を含む。システム110は、レーザレーダーシステム116の決定に基づいて個人112の眼球と関連した位置情報を決定することができるモニタモジュール118を備える。システム110は、個人112と直接接触することなく、個人112の眼球と関連した位置情報を個人112からリモートで監視し決定することができる。
本発明のいくつかの実施形態では、レーザレーダーシステム116は、個人112に対する電磁放射ビーム114を、測定される個人112の表面上のポイントで個人112に入射するように導く。個人112の表面上のポイントに導かれた放射114の一部または全ては、表面で反射され、次にレーザレーダーシステム116内に戻されることがある。後述するように、レーザレーダーシステム116は、放射前および/または反射後の放射114の1つまたは複数の側面(例えば、周波数、位相、強度など)に基づいて、レーザレーダーシステム116に対する表面上のポイントのレンジおよびレンジレートの一方または両方を決定することができる。
本発明の様々な実施形態によれば、レーザレーダーシステム116は、ある期間にわたって(例えば、定期的に)個人112の眼球の表面上の1組の測定ポイントのレンジおよび/またはレンジレートの決定を何度も行うことができる。モニタモジュール118は、決定されたレンジおよびレンジレートを利用して眼球と関連した位置情報を決定することができる。
本発明の様々な実施形態によれば、モニタモジュール118は、更に、個人112の眼球と関連した位置情報をより正確に決定するために、個人112の頭の動きを監視してもよい。これらの実施形態のいくつかでは、システム110は、個人112のビデオ映像(連続画像)をキャプチャするビデオ撮像システムを含む。眼球と共に眼窩を動かす個人112の顔(ビデオ撮像システムによってキャプチャされる像の平面内)の横方向または縦方向の動きは、ビデオ撮像システムによってキャプチャされたビデオ映像のビデオ光学フロー処理(または、何らかの他の動き追跡処理)によって決定される。同様に、像平面内の個人112の顔の回転を決定することができる。このようにして、ビデオ撮像システムによって動きの3つの度合いを測定することができる。この光学フロー処理は、モニタモジュール118によって実行される。ビデオ撮像システムによってキャプチャされた像の平面からの個人112の顔の動きは、レーザレーダーシステム116によって顔(眼窩の外側)の測定を行うことにより決定される。これらの動きは、レンジ運動(並進自由度)と、ビデオ撮像システムの像平面と垂直な2つの回転自由度とを含む。従って、ビデオ撮像システムによってキャプチャされたビデオ映像から決定された情報と、レーザレーダーシステム116の測定値とを組み合わせることによって、モニタモジュール118は、個人112の顔の動きを6つの自由度で決定することができる。
個人112の顔の動きを決定することによって、モニタモジュール118は、個人112の眼窩の動きおよび/または位置を追跡することができる。モニタモジュール118は、個人112の眼窩の動きおよび/または位置を使用して、眼窩内の眼球の回転だけ(または、実質的に眼窩内の眼球の回転だけ)を反映するように個人112の眼球の位置および/または動きの決定を調整する。
図2は、本発明のいくつかの実施形態による、システム110内にレーザレーダーシステム116として実現される周波数変調レーザレーダーシステム210を示す。システム210は、電磁放射のビーム214を放射するレーザ源212を含む。ビーム214は、連続的に変更された、またはチャープ(chirp)された周波数で放射される。いくつかの例では、周波数をチャープすることは、周波数を下限周波数と上限周波数(またはこの逆)の間で周期的に掃引することを含む(例えば、のこぎり波形、三角形波形など)。ビーム214は、光カプラ216によって標的ビーム218と基準ビーム220に分割される。次に、レーザレーダーシステム210を単一ビームシステムとして示し説明するが、ビーム214は、個人の眼球上の複数のポイントに電磁放射ビームを提供するために、複数のビームに分割され、その後でそれぞれのビームが、後述するように処理されてもよい。
従来の実施形態では、システム210は、標的干渉計222と基準干渉計224を含む。標的干渉計222は、標的ビーム218を受け取り、標的ビームを光カプラ226で分割する。標的干渉計222は、一般に、標的干渉計222からの標的230(例えば、個人112)のレンジに依存する標的信号を生成するために使用される。標的干渉計は、これを、標的ビーム218の一部分228を標的230の方に導き、標的ビーム218の他の部分232を一定経路長の光路を介して標的周波数差モジュール234に導くことによって達成することができる。標的ビーム218の一部分228は、標的230によって反射され、また光カプラ226と光ファイバ236を介して標的周波数差モジュール234に送られる。カプラ248での部分236,232間の干渉に基づいて、標的周波数差モジュール234は、標的ビーム218の部分236,232の経路長の違いによるうなり周波数に対応する標的信号を生成することができる。
本発明の様々な実施形態によれば、基準干渉計224は、基準ビーム220を受け取り、既知の経路長差を有する2つの別個の一定経路で導かれた基準ビーム224の2つの部分間の周波数差に対応する基準信号を生成することができる。より詳細には、基準ビーム220は、光カプラ240によって第1の部分242と第2の部分244とに分割される。第1の部分242は、第2の部分244に対して一定光路長差を有する。基準周波数差モジュール250は、カプラ246での部分242,244間の干渉に基づいて、基準ビーム220の部分242,244の経路長の一定の差によって生じるうなり周波数に対応する基準信号を生成する。
標的干渉計222および基準干渉計224をマッハ・ツェンダ干渉計として示し説明したことを理解されるであろう。しかしながら、他の干渉計構成を利用することができる。例えば、標的干渉計222および基準干渉計224は、マイケルソン・モーレー干渉計を構成する実施形態を含むことができる。
いくつかの実施形態では、システム210は、プロセッサ238を含む。プロセッサ238は、標的信号と基準信号を受け取り、これらの信号を処理して標的230のレンジを決定することができる。標的信号と基準信号に基づいて決定したレンジ情報を使用して、標的干渉計222に対する標的230のレンジレートを決定する。
図3は、本発明のいくつかの実施形態により、個人112の眼球の表面上の1つまたは複数のポイントを監視するために、レーザレーダーシステム116のようにシステム110内で実現されるレーザレーダーシステム310の例示的実施形態を示す。レーザレーダーシステム310は、複数のレーザレーダーセクションを使用し、各セクションは標的放射ビームを標的の方に放射する。例えば、第1のレーザレーダーセクション374は、第1の標的ビーム312を放射し、第2のレーザレーダーセクション376は、第2の標的ビーム314を標的316(例えば、個人112)に放射する。本発明のいくつかの実施形態では、第1の標的ビーム312と第2の標的ビーム314がチャープされて2重チャープシステムが作成される。システム110における個人112の眼球の表面上の1つまたは複数のポイントを監視するレーザレーダーシステム310の実施態様は、個人112の眼球の表面上のポイントのシステム110に対するレンジおよびレンジレートを明白に決定し、監視モジュール118による個人112の眼球と関連した位置情報の強化された決定を可能にすることができる。例えば、個人112の眼球の表面上のポイントへのレンジおよび/またはレンジレートを明白に決定することにより、決定されたレンジおよび/またはレンジレートのノイズの量が減少する。ノイズは、存在すると、レンジおよび/またはレンジレートを決定する精度に影響を及ぼすことがある。決定されたレンジおよび/またはレンジレートの不正確さは、決定したレンジおよび/またはレンジレートを個人112の眼球と関連した位置情報に活用する決定を妨げることがある。
レーザレーダーシステム310を単一ポイントに入射する2つのビームを提供する2重ビームシステムとして示し説明するが、この説明は限定ではなく、眼球上の複数のポイントの監視を可能にするために、標的ビームのそれぞれが複数のビームに分割され、次に各ビームが後で述べる方式で処理されてもよいことを理解されたい。いくつかの実施態様では、(例えば、眼球上の複数のポイントのそれぞれに対して単一放射ポイントを連続的に走査することにより)眼球上の複数のポイントを単一のポイント放射によって連続的に監視できる。これらの実施態様では、眼球上のポイントは完全に同時に監視されなくてもよいが、得られたデータ群を複数のポイントを同時に監視したかのように処理できるほど素早く眼球上の複数のポイントのそれぞれに単一ポイント放射を行うことができる。いくつかの実施態様では、複合的手法が実施されてもよく、その場合、レーザレーダーシステム310によって単一放射ポイントとして提供されるビームが、複数の放射ポイントを提供するように分割され、複数の放射ポイントがそれぞれ、眼球(および/または個人112)上の様々なポイントに連続的に走査される。
本発明の様々な実施形態によれば、レーザセクション374は、レーザ源コントローラ336、第1のレーザ源318、第1の光カプラ322、第1のビーム遅延機構344、第1の局部発振器光カプラ330および/または他の構成要素を含む。第2のレーザレーダーセクション376は、レーザ源コントローラ338、第2のレーザ源320、第2の光カプラ324、第2のビーム遅延機構350、第2の局部発振器光カプラ332、および/または他の構成要素を含む。例えば、各レーザレーダーセクション374,376の構成要素のいくつかまたはすべては、米国Metris社によるコヒーレントレーザレーダーシステムとして得られる。米国Metris社によるコヒーレントレーザレーダーシステムは、標的316のレンジおよびレンジレートを決定する際に、高度な線形機能、高度な位相ゆらぎ(phase wandering)補正などの様々な利点を、レーザレーダーシステム310に提供することができる。
本発明のいくつかの実施形態では、第1の標的ビーム312および第2の標的ビーム314は、標的316によってレーザレーダーシステム310の方に反射される。レーザレーダーシステム310は、第1の標的ビーム312および第2の標的ビーム314を受け取り、レーザレーダーシステム310からの少なくとも1つの標的316までのレンジと標的316のレンジレートとを決定することができる。
本発明の様々な実施形態によれば、第1のレーザ源318は、第1の搬送周波数を有する。第1のレーザ源318は、第1の周波数の第1のレーザビーム340を放射することができる。第1の周波数は、第1のチャープレートで変調される。第1の周波数は、電気的、機械的、音響光学的、または他の明白な方法で変調される。第1のレーザビーム340は、第1の光カプラ322によって第1の標的ビーム312と第1の局部発振器ビーム342に分割される。第1の局部発振器ビーム342は、第1のビーム遅延機構344で第1の遅延期間の間保持される。
本発明のいくつかの実施形態では、第2のレーザ源320は、第2の周波数の第2のレーザビーム346を放射する。第2の周波数は、第1のチャープレートと異なる第2のチャープレートで変調される。第2の周波数は、電気的、機械的、音響光学的または他の方法で変調される。この第1のチャープレートおよび第2のチャープレートは、第1のレーザビーム340と第2のレーザビーム346との間で逆のチャープを作成してもよい。
いくつかの例では、第2の搬送周波数は、実質的に第1の搬送周波数と同じである。例えば、いくつかの実施形態では、第1のベースライン周波数と第2のベースライン周波数の差の割合は0.05%より少ない。これは、例えばスペックルによる歪みの最小化や他の強化などの様々な強化をレーザシステム310に提供することがある。第2のレーザビーム346は、第2の光カプラ324によって第2の標的ビーム314と第2の局部発振器ビーム348に分割される。第2の局部発振器ビーム348は、第2のビーム遅延機構350で第2の遅延期間の間保持される。第2の遅延期間は、第1の遅延期間と異なる。
いくつかの実施形態では、第1のレーザ源318および/または第2のレーザ源320(例えば、第1のレーザビーム340および/または第2のレーザビーム346)の出力は、例えば米国Metris社のモデルMV200に提供されている機構を使用して線形化される。第1のレーザ源318および/または第2のレーザ源320の出力の位相ゆらぎは、例えば米国Metris社のモデルMV200に提供された機構を使用して修正される。
本発明のいくつかの実施形態では、レーザレーダーシステム310は、標的316のレーザレーダーシステム310からのレンジが最小レンジから最大レンジまでの1組のレンジの範囲内にあるときに、標的316のレンジおよびレンジレートを高い精度で決定することができる。標的316のレンジが上記1組のレンジの範囲内にないときは、レーザレーダーシステム310の精度が低下する。
本発明の様々な実施形態によれば、第1のビーム遅延機構344および第2のビーム遅延機構350は調整可能である。第1のビーム遅延機構344および第2のビーム遅延機構350を調整することにより、より正確な決定を行える1組のレンジをレーザレーダーシステム310に近づけるか遠ざけるようにレーザレーダーシステム310を調整することができる。第1のビーム遅延機構344および第2のビーム遅延機構350は、標的316のレンジが最小レンジから最大レンジまでの1組のレンジの範囲内にあり、その結果標的316のレンジとレンジレートが正確に決定されるように調整される。第1のビーム遅延機構344および第2のビーム遅延機構350は、ユーザによって調整されてもよく、自動的に調整されてもよい。
標的316のレンジが上記1組のレンジの外にあるときはレンジおよびレンジレートの決定精度が低下するので、第1のレーザ源318および第2のレーザ源320のコヒーレンス長が有限になる。例えば、最小レンジと最大レンジとの間の距離は、コヒーレンス長の関数になる。第1のレーザ源318および第2のレーザ源320のコヒーレンス長が長いほど、最小レンジと最大レンジとの間の距離が大きくなる。従って、第1のレーザ源318と第2のレーザ源320のコヒーレンス長を長くすると、強化された1組のレンジにわたって決定できるようになることにより、レーザレーダーシステム310によるレンジおよびレンジレートの決定精度が向上する。
本発明のいくつかの実施形態では、第1の局部発振器ビーム342は、複数の第1の局部発振器ビームに分割され、第2の局部発振器ビーム348は、複数の第2の局部発振器ビームに分割される。そのような例では、レーザレーダーシステム310は、変化する遅延期間の遅延を複数の第1の局部発振器ビームと複数の第2の局部発振器ビームに適用することができる複数のビーム遅延機構を含む。これにより、複数の第1の局部発振器ビームのうちの1つと複数の第2の局部発振器ビームのうちの1つが、標的のレンジおよびレンジレートを正確に決定することを可能にする遅延期間だけ遅延されるようになる。
従って、本発明のいくつかの実施形態では、第1のレーザ源318と第2のレーザ源320は、長いコヒーレンス長のチャープされた電磁放射を放射することができる。例えば、第1のレーザ源318および/または第2のレーザ源320は、前に図3に示し説明したようなシステム310を含む。
様々な実施形態によれば、第1の標的ビーム312と第2の標的ビーム314は、別々の光路で標的316から導かれかつ/または受け取られる。いくつかの実施形態では、これらの光路は、類似しているが異なっている。他の実施形態では、第1の標的ビーム312と第2の標的ビーム314は、放射前に、標的光カプラ326によって、共通光路に沿って標的316の方に導かれる複合標的ビーム352に結合される。いくつかの実施形態では、複合標的ビーム352(または、標的316の方に別々に導かれる場合は第1の標的ビーム312と第2の標的ビーム314)は、標的316によって反射され、複合標的ビーム352を標的316の方に導いた共通光路とは別の受光光路に沿ってレーザレーダーシステム310によって受け取られる。そのような実施形態は、「バイスタティック(bistatic)」と示される。または、複合標的ビーム352は、共通光路に沿った反射標的ビーム356としてレーザレーダーシステム310によって受け取られる。これらの後者の実施形態は、「モノスタティック(monostatic)」と呼ばれる。モノスタティック実施形態は、相互光学素子と動作するときにそのバイスタティック相当物より優れた利点を提供することができる。モノスタティック実施形態では、共通光路は、複合標的ビーム352を放射し、反射された標的ビーム356を受け取るための共通ポートを提供する光学部材328を含む。光学部材328は、光サーキュレータ、光カプラ、または明白な他の光学部材を含む。
いくつかの実施形態では、共通光路は、走査要素337を含む。走査要素337は、複合標的ビーム352に標的316を走査させるように振動され、回転され、または他の方法で操作される例えばミラー、レンズ、アンテナまたは他の光学素子などの光学素子を含んでもよい。いくつかの例では、走査要素337は、高速での走査を可能にする。従来のシステムでは、走査要素は、これらのシステムの精度を低下させる可能性のあるスペックルや他の光学効果によるミラー差動ドップラノイズ効果の原因になることがある。しかしながら、レーザレーダーシステム310の様々な実施形態が、レンジおよびレンジレートを明白に決定するために同時(または実質的に同時)測定を使用するので、高速走査によって生じる不正確さを回避することができる。
本発明のいくつかの実施形態では、標的光カプラ354は、反射された標的ビーム356を第1の反射標的ビーム部分358と第2の反射標的ビーム部分360に分割する。第1の局部発振器光カプラ330は、第1の局部発振器ビーム342を第1の反射標的ビーム部分358と第1の複合標的ビーム362に組み合わせる。第2の局部発振器光カプラ332は、第2の局部発振器ビーム348を第2の反射標的ビーム部分360と第2の複合標的ビーム364に組み合わせる。図面に示していないいくつかの実施形態では、例えば第1の標的ビーム312と第2の標的ビーム314が別々に標的316に導かれかつ/または標的316から受け取られ、第1の局部発振器光カプラ330は、反射された第1の標的ビーム312を第1の局部発振器ビーム342と合成して第1の複合標的ビーム362を作成し、反射された第2の標的ビーム314を第2の局部発振器ビーム348と合成して第2の複合標的ビーム364を作成する。
第1の局部発振器ビーム342と第2の局部発振器ビーム348が、異なる標的ビームまたは同じ標的ビーム(例えば、反射標的ビーム356)の異なる部分と合成されるので、第1の複合標的ビーム362と第2の複合標的ビーム364は、最終処理の直前に、2つの別々であるが一致する単一レーザ源周波数変調レーザレーダーシステム内にある光信号となり得る。例えば、レーザ源コントローラ336、第1のレーザ源318、第1の光カプラ322、第1のビーム遅延機構344および第1の局部発振器光カプラ330は、第2のレーザレーダーセクション376によって生成される第2の複合標的ビーム364とは別の第1の複合標的ビーム362を生成する第1のレーザレーダーセクション374と見なされる。第2のレーザレーダーセクション376は、レーザ源コントローラ338、第2のレーザ源320、第2の光カプラ324、第2のビーム遅延機構350および第2の局部発振器光カプラ332を含む。
いくつかの実施形態では、レーザレーダーシステム310は、プロセッサ334を含む。プロセッサ334は、検出モジュール366、混合モジュール368、処理モジュール370および/または他のモジュールを含む。モジュールは、ハードウェア(光学構成要素と検出構成要素を含む)、ソフトウェア、ファームウェア、またはハードウェア、ソフトウェアおよび/またはファームウェアの組み合わせで実現される。プロセッサ334は、第1の複合標的ビーム362と第2の複合標的ビーム364を受け取る。プロセッサ334は、第1の複合標的ビーム362と第2の複合標的ビーム364に基づいて、レンジ信号およびレンジレート信号を生成する。レンジ信号およびレンジレート信号に基づいて、標的316のレンジおよびレンジレートを明白に決定することができる。
本発明のいくつかの実施形態では、プロセッサ334は、第1の複合局部発振器ビーム362の第1のうなり周波数を決定する。第1のうなり周波数は、第1の局部発振器ビーム342と、標的316から反射された第1の標的ビーム312に対応する反射標的ビーム356の成分との周波数の差(経路長の差に起因する)を含む。プロセッサ334は、第2の複合局部発振器ビーム364の第2のうなり周波数を決定する。第2のうなり周波数は、第2の局部発振器ビーム348と、標的316から反射された第2の標的ビーム314に対応する反射標的ビーム356の成分との周波数の差(経路長の差に起因する)を含む。第1のうなり周波数および第2のうなり周波数は、環境的作用や他の作用によって導入されるノイズを打ち消すために同時(または、実質的に同時)に決定される。第1のうなり周波数および第2のうなり周波数を、第1の複合標的ビーム362内の他の周波数成分、第2の複合標的ビーム364内の他の周波数成分および/または互いと区別できるように1つまたは複数の段階を実行する。例えば、そのような処置は、第1のチャープレートおよび第2のチャープレートとして2つの別のチャープレートを使用して、第1のビーム遅延機構344および第2のビーム遅延機構350で異なる遅延時間だけ第1の局部発振器ビーム342および第2の局部発振器ビーム350を遅延させる処理を含んでもよく、他の処置が取られてもよい。
図3は、主に光ファイバと光カプラを使用して実現された本発明の例示的実施形態を示すが、この実施形態は全く限定されるべきでないことを理解されたい。本発明の範囲内の代替の実施形態が存在し、その代替の実施形態では、例えばプリズム、ミラー、ハーフミラー、ビームスプリッタ、ダイクロイックフィルム、ダイクロイックプリズム、レンズ、または他の光学素子を使用して、電子放射を導き、結合し、導き、集束し、拡散させ、増幅し、または他の方法で処理する。
本発明の様々な実施形態によれば、プロセッサ334は、第1の複合標的ビーム362と第2の複合標的ビーム364を混合して混合信号を作成することができる。混合信号は、第1のうなり周波数と第2のうなり周波数との和に対応するうなり周波数和成分と、第1のうなり周波数と第2のうなり周波数との差に対応するうなり周波数差成分を含む。一定速度を有する標的の場合、第1のレーザビーム340と第2のレーザビーム346のうなり周波数は、それぞれ次のように表すことができる。
Figure 0005043038
Figure 0005043038
ここで、f1(t)は、第1のうなり周波数を表わし、f2(t)は、第2のうなり周波数を表し、λ1とλ2は2つの光波長であり、vは標的速度であり、γ1とγ2はそれぞれのチャープレートに比例し、Rは測定されたレンジを表し、RO1とRO2は、2台のレーザレーダーのレンジオフセットを表わす。ここで、λ1=λ2=λであると仮定する。式を減算すると次の式が得られる。
Figure 0005043038
項を並べ替えると、次のような修正されたレンジ測定値が得られる。
Figure 0005043038
同様に、式(1)と式(2)を組み合わせて、標的速度の速さを提供する次の式を得ることができる。
Figure 0005043038
本発明の様々な実施形態によれば、式(4)で前述したうなり周波数和成分を混合信号からフィルタリングしてレンジ信号を作成することができる。レンジ信号(例えば、f1(t)+f2(t))に含まれるうなり周波数和成分から、レーザレーダーシステム310から標的316までの距離を決定することができる。レンジ信号に基づく決定は明白な場合があり、瞬間的挙動とドップラ周波数偏移(例えば、v/λ)の平均的挙動のどちらにも依存しない場合がある。
いくつかの実施形態では、式(4)で前述したうなり周波数差成分を混合信号からフィルタリングしてレンジレート信号を生成することができる。レンジレート信号に含まれるうなり周波数差成分から、標的316のレンジレートを明白に決定することができる。標的316のレンジレートを決定するために、第1のチャープレートと第2のチャープレート間とのチャープレートの差に比例する値としてf1(t)−(γ1/γ2)f2(t)を表わすことができる。これにより、ドップラ偏移情報を抽出することができ、この情報は、標的316の瞬間速度(即ち、レンジレート)を表わす。
本発明のいくつかの実施形態では、第2のチャープレートをゼロに設定する。換言すると、第2のレーザ源318は、定周波数の放射を放出することができる。これにより、より単純な設計、小さな占有面積、より軽い重量、低コスト、またはシステム全体に利点を提供することができる他の強化を有する第2のレーザ源318を実現することができる。そのような実施形態では、レーザレーダーシステム310は、周波数偏移装置を含む。周波数偏移装置は、音響光学変調器372や他の装置を含む。音響光学変調器372は、第2の局部発振器ビーム348に周波数オフセットを提供し、後処理を強化することができる。例えば、周波数オフセットによって、静止標的のレンジレートを表す第2の局部発振器ビーム348と第2の反射標的ビーム部分360の間の静止標的うなり周波数をゼロからオフセットすることができ、その結果、そのうなり周波数から標的の動きの方向ならびに動きの速度を決定することができる。本発明のこの実施形態には、更に、チャープターンアラウンド(chirp turn-around)またはフライバックによって中断されない標的レンジレートの連続監視を可能にするという利点がある。チャープターンアラウンドまたはフライバックは、チャープされたレーザレーダーセクションでは正確な測定が不可能な時間間隔を作り出すことができる。これらの実施形態では、レーザレーダーセクション376は、標的316のレンジレートだけを決定することができ、一方レーザレーダーシステム310は、レンジおよびレンジレートの両方を測定することができる。
図4は、本発明の一実施形態によるプロセッサ334を示す。プロセッサ334は、第1の複合標的ビーム362と第2の複合標的ビーム364をデジタル的に混合することができる。例えば、プロセッサ334は、第1の検出器410と第2の検出器412を有する。第1の検出器410は、第1の複合標的ビーム362を受け取り、第1の複合標的ビーム362に対応する第1のアナログ信号を生成する。第1のアナログ信号は、第1のコンバータ414によって第1のデジタル信号に変換される。プロセッサ334は、第1のデジタル信号の1つまたは複数の周波数成分に対応する第1組の周波数データを決定する第1の周波数データモジュール416を備える。いくつかの例では、第1のデジタル信号は、第1の平均化モジュール418で平均化される。そのような例では、次に、平均化された第1のデジタル信号は、第1の周波数データモジュール416に送られる。
第2の検出器412は、第2の複合標的ビーム364を受け取り、第2の複合標的ビーム364に対応する第2のアナログ信号を生成する。第2のアナログ信号は、第2のコンバータ420によって第2のデジタル信号に変換される。プロセッサ334は、第2のデジタル信号の周波数成分の1つまたは複数に対応する第2組の周波数データを決定する第2の周波数データモジュール422を備える。いくつかの例では、第2のデジタル信号は、第2の平均化モジュール424で平均化される。そのような例では、次に、平均化された第2のデジタル信号は、第2の周波数データモジュール422に送られる。
周波数データ結合モジュール426は、第1組の周波数データと第2組の周波数データを受け取ることができる。周波数データ結合モジュール426は、第1組の周波数データと第2組の周波数データを線形的に組み合わせ、混合された周波数データから導出されたレンジレート信号およびレンジ信号を生成する。
図5は、本発明の別の実施形態によるプロセッサ334を示す。プロセッサ334は、第1の複合標的ビーム362および第2の複合標的ビーム364をそれぞれ受け取る第1の検出器510および第2の検出器512を備える。第1の検出器510および第2の検出器512はそれぞれ、第1の複合標的ビーム362および第2の複合標的ビーム364と関連付けられた第1のアナログ信号および第2のアナログ信号を生成する。プロセッサ334は、レンジ信号およびレンジレート信号を生成するために第1の複合標的ビーム362および第2の複合標的ビーム364を電子的に混合する。例えば、プロセッサ334は、変調器514を含む。変調器514は、第1の検出器510によって生成された第1のアナログ信号と第2の検出器512によって生成された第2のアナログ信号とを乗算して、複合アナログ信号を作成することができる。そのような実施形態では、プロセッサ334は、複合アナログ信号を受け取る第1のフィルタ516および第2のフィルタ518を含む。第1のフィルタ516は、複合アナログ信号をフィルタリングして第1のフィルタ信号を生成する。いくつかの例では、第1のフィルタ516は、低域フィルタを含む。第1のフィルタ信号は、第1のコンバータ520によって変換されてレンジレート信号を生成する。第2のフィルタ518は、複合アナログ信号をフィルタリングして第2のフィルタリングされた信号を生成する。例えば、第2のフィルタ518は高域フィルタを含む。第2のフィルタ信号は、第2のコンバータ522によって変換されてレンジ信号を生成する。
図6は、本発明の更に別の実施形態によるプロセッサ334を示す。プロセッサ334は、第1の複合標的ビーム362と第2の複合標的ビーム364を光学的に混合してレンジ信号とレンジレート信号を生成する。例えば、プロセッサ334は、第1の複合標的ビーム362と第2の複合標的ビーム364を受け取り、検出に基づいて複合アナログ信号を生成する検出器610を含む。そのような実施形態では、プロセッサ334は、複合アナログ信号を受け取る第1のフィルタ612および第2のフィルタ614を含む。第1のフィルタ612は、複合アナログ信号をフィルタリングして第1のフィルタリングされた信号を生成する。第1のフィルタ612は、低域フィルタを含む。第1のフィルタリングされた信号は、第1のコンバータ616によって変換されてレンジレート信号を生成する。第2のフィルタ614は、複合アナログ信号をフィルタリングして第2のフィルタ信号を生成する。第2のフィルタ14は、高域フィルタを含む。第2のフィルタ信号は、第2のコンバータ618によって変換されてレンジ信号を生成する。
本発明を、現在最も実際的で好ましい実施形態と見なされる実施形態に基づいて例示のために詳細に説明したが、そのような詳細が単に例示のためのものであり、本発明が、開示された実施形態に限定されず、添付の特許請求の範囲の趣旨および意図の範囲内にある修正および等価な構成を対象として含むように意図されていることを理解されたい。例えば、本発明は、可能な範囲内で、任意の実施形態の1つまたは複数の特徴を他の実施形態の1つまたは複数の特徴と組み合わせることができるものであることを理解されたい。
本発明の1つまたは複数の実施形態による個人の眼球の動きを監視するシステムを示す図である。 本発明の1つまたは複数の実施形態による個人の眼球を監視するシステム内に実装されたレーザレーダーシステムを示す図である。 本発明の1つまたは複数の実施形態による個人の眼球を監視するシステム内に実装されたレーザレーダーシステムを示す図である。 本発明の1つまたは複数の実施形態により2つの複合標的ビームをデジタル的に混合するプロセッサを示す図である。 本発明の1つまたは複数の実施形態により2つの複合標的ビームを電気的に混合するプロセッサを示す図である。 本発明の1つまたは複数の実施形態により2つの複合標的ビームを光学的に混合するプロセッサを示す図である。

Claims (19)

  1. 個人の眼窩内にある前記個人の眼球と関連した位置および/または動き情報を決定するシステムであって、
    電磁放射を提供し、前記眼球の表面上の1つまたは複数のポイントから反射された電磁放射を受け取り、実質的に同じ時点の前記眼球の表面上の前記1つまたは複数のポイントの距離および瞬間速度を決定するレーザレーダーシステムと、
    前記レーザレーダーシステムによって決定された前記距離および前記瞬間速度に少なくとも部分的に基づいて前記眼球の前記位置および/または前記動きと関連した情報を決定するモニタモジュールとを備えるシステム。
  2. 前記眼球の表面上の1つまたは複数のポイントが、前記眼球の表面上の3つ以上のポイントを含む請求項1に記載のシステム。
  3. 前記眼球の表面上の前記3つ以上のポイントが、前記眼球の同一大円上にない前記眼球の表面上の少なくとも3つのポイントを含む請求項2に記載のシステム。
  4. 前記レーザレーダーシステムが、放射ビームを前記眼球上の複数のポイントに同時に放射し、それにより、同じ時点の前記3つ以上のポイントのうちの少なくとも2つのポイントの前記距離および前記瞬間速度が決定される請求項2に記載のシステム。
  5. 前記レーザレーダーシステムが、前記眼球の表面上の前記3つ以上のポイントのうちの少なくとも2つのポイントに連続的に走査されるビーム放射を放出し、その結果、実質的に同じ時点の前記眼球の表面上の少なくとも2つのポイントの前記距離および前記瞬間速度が決定される請求項2に記載のシステム。
  6. 前記眼球の前記位置および/または前記動きと関連した情報が、前記眼球の位置、前記電磁放射の方向に交差する方向の前記眼球の並進速度、前記眼球の並進加速度、前記眼球の並進痙動、前記眼窩内の前記眼球の回転速度、または眼窩内の眼球の回転加速度のうちの1つまたは複数を含む請求項1に記載のシステム。
  7. モニタモジュールが、前記眼窩の前記位置および/または前記動きと関連した情報を決定し、前記眼窩の前記位置および/または前記動きと関連した前記情報を使用して、前記眼窩内の前記眼球の前記位置および/または前記動きと関連した情報を決定する請求項1に記載のシステム。
  8. 前記眼窩のビデオ映像をキャプチャするビデオ撮像システムを更に備え、前記モニタモジュールは、前記ビデオ撮像システムによってキャプチャされた前記眼窩の前記ビデオ映像の処理に少なくとも部分的に基づいて前記眼窩の前記位置および/または前記動きと関連した前記情報を決定する請求項7に記載のシステム。
  9. 前記レーザレーダーシステムが、
    第1のレーザビームを生成するレーザ源と、前記第1のレーザビームを第1の標的ビームと第1の局部発振器ビームに分割し、前記眼球上の前記1つまたは複数のポイントのうちの1つのポイントから反射された前記第1の標的ビームの第1の反射部分と前記第1の局部発振器ビームとから第1の複合標的ビームを生成する干渉計とを備える第1のコヒーレントレーザレーダーセクションと、
    第2のレーザビームを生成するレーザ源と、前記第2のレーザビームを、前記第1の標的ビームと同じ位置で標的に入射する第2の標的ビームと第2の局部発振器ビームとに分割し、前記眼球上の前記1つまたは複数のポイントのうちの1つのポイントから反射された前記第2の標的ビームの第2の反射部分と前記第2の局部発振器ビームとから第2の複合標的ビームを生成する干渉計とを備える第2のコヒーレントレーザレーダーセクションと、
    前記第1の複合標的ビームおよび前記第2の複合標的ビームから、前記眼球上の前記1つまたは複数のポイントのうちの前記1つのポイントの距離および瞬間速度レートを明白に決定するプロセッサとを備える請求項7に記載のシステム。
  10. 個人の眼窩内にある前記個人の眼球の位置および/または動きと関連した情報を決定する方法であって、
    レーザレーダーシステムが、前記眼球の表面上の1つまたは複数のポイントに電磁放射を提供する行程と、
    前記レーザレーダーシステムが、前記眼球の表面上の前記1つまたは複数のポイントから反射された電磁放射を受け取る行程と、
    前記レーザレーダーシステムが、前記眼球の表面上の前記1つまたは複数のポイントから反射された電磁放射から、同じ時点または実質的に同じ時点の前記眼球の表面上の前記1つまたは複数のポイントの距離および瞬間速度を決定する行程と、
    前記決定した距離および瞬間速度に少なくとも部分的に基づいて前記眼球の前記位置および/または前記動きと関連した情報を決定する行程とを備える方法。
  11. 前記眼球の表面上の前記1つまたは複数のポイントが、前記眼球の表面上の3つ以上のポイントを含む請求項10に記載の方法。
  12. 前記眼球の表面上の前記3つ以上のポイントが、前記眼球の同一大円上にない前記眼球の表面上の少なくとも3つのポイントを含む請求項11に記載の方法。
  13. 前記レーザレーダーシステムから前記眼球の表面上の前記3つ以上のポイントのうちの少なくとも2つのポイントに放射ビームを同時に導く行程を更に備える請求項11に記載の方法。
  14. 前記レーザレーダーシステムから前記眼球の表面上の前記3つ以上のポイントのうちの少なくとも2つのポイントに単一放射ビームを連続的に導く行程を更に備える請求項11に記載の方法。
  15. 前記眼球の前記位置および/または前記動きと関連した前記情報が、前記眼球の位置、前記眼球の並進速度、前記眼球の並進加速度、前記眼球の並進痙動、前記眼窩内の前記眼球の回転速度、または眼窩内の眼球の回転加速のうちの1つまたは複数を含む請求項10に記載の方法。
  16. 前記眼球の前記位置および/または前記動きと関連した情報を決定する行程が、
    前記眼窩の前記位置および/または前記動きと関連した情報を決定する行程と、
    前記眼窩の前記位置および/または前記動きと関連した前記情報を使用して、前記眼窩内の前記眼球の前記位置および/または前記動きと関連した情報を決定する行程とを更に備える請求項10に記載の方法。
  17. 前記眼窩のビデオ映像をキャプチャする行程を更に備え、前記決定された距離および瞬間速度に少なくとも部分的に基づいて前記眼球の前記位置および/または前記動きと関連した情報を決定する行程が、(i)前記決定された距離および瞬間速度と(ii)前記キャプチャしたビデオ映像とに少なくとも部分的に基づいて前記眼球の前記位置および/または前記動きと関連した情報を決定する行程を備える請求項10に記載の方法。
  18. 記眼窩のビデオ映像をキャプチャするビデオ撮像システムを更に備え
    前記モニタモジュールが
    (i)前記ビデオ撮像システムによってキャプチャされた前記眼窩の前記ビデオ映像の処理に少なくとも部分的に基づいて前記眼窩の前記動きと関連した情報と、(ii)前記レーザレーダーシステムによって決定された前記瞬間速度と、前記眼窩の前記動きと関連した前記情報とに少なくとも部分的に基づいて前記眼窩内の前記眼球の前記動きと関連した情報を決定する請求項1に記載のシステム
  19. 前記眼窩内の前記眼球の動きと関連した前記情報が、2つの回転自由度に対する前記眼窩内の前記眼球の回転速度を含む請求項18に記載のシステム。
JP2008545976A 2005-12-14 2006-12-14 眼球の動きを追跡するシステムおよび方法 Expired - Fee Related JP5043038B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US75004505P 2005-12-14 2005-12-14
US60/750,045 2005-12-14
PCT/US2006/062096 WO2007070853A2 (en) 2005-12-14 2006-12-14 System and method for tracking eyeball motion

Publications (2)

Publication Number Publication Date
JP2009519780A JP2009519780A (ja) 2009-05-21
JP5043038B2 true JP5043038B2 (ja) 2012-10-10

Family

ID=38163639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008545976A Expired - Fee Related JP5043038B2 (ja) 2005-12-14 2006-12-14 眼球の動きを追跡するシステムおよび方法

Country Status (7)

Country Link
US (10) US7699469B2 (ja)
EP (1) EP1959817B1 (ja)
JP (1) JP5043038B2 (ja)
CN (1) CN101437440B (ja)
AU (1) AU2006325781A1 (ja)
CA (1) CA2634033C (ja)
WO (1) WO2007070853A2 (ja)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5227023B2 (ja) * 2004-09-21 2013-07-03 ディジタル シグナル コーポレイション 生理学的機能を遠隔的にモニターするシステムおよび方法
WO2006088822A2 (en) 2005-02-14 2006-08-24 Digital Signal Corporation Laser radar system and system and method for providing chirped electromagnetic radiation
CN101437440B (zh) * 2005-12-14 2011-09-07 数字信号公司 跟踪眼球运动的系统和方法
US8081670B2 (en) * 2006-02-14 2011-12-20 Digital Signal Corporation System and method for providing chirped electromagnetic radiation
US7971998B2 (en) * 2006-11-16 2011-07-05 Rsem, Limited Partnership Apparatus and method for measuring a displacement within an eye in vivo in situ, and method of assessment
US8531915B2 (en) * 2008-04-20 2013-09-10 Stalix Llc Acoustic and ultrasonic concealed object detection
US7986397B1 (en) * 2008-04-30 2011-07-26 Lockheed Martin Coherent Technologies, Inc. FMCW 3-D LADAR imaging systems and methods with reduced Doppler sensitivity
US8687173B2 (en) * 2008-09-11 2014-04-01 Nikon Metrology N.V. Compact fiber optic geometry for a counter chirp FMCW coherent laser radar
AU2010257107B2 (en) * 2009-02-20 2015-07-09 Digital Signal Corporation System and method for generating three dimensional images using lidar and video measurements
CN102721951B (zh) * 2012-05-04 2013-12-25 西安电子科技大学 一种高机动目标跟踪方法
JP6210447B2 (ja) * 2013-02-18 2017-10-11 公立大学法人岩手県立大学 視線計測装置、注視点の表示方法、注視領域の表示方法および注視点のガウス分布の表示方法
WO2015027289A1 (en) * 2013-09-02 2015-03-05 Seeing Machines Limited Method and apparatus for eye detection from glints
US10018711B1 (en) * 2014-01-28 2018-07-10 StereoVision Imaging, Inc System and method for field calibrating video and lidar subsystems using independent measurements
US10552675B2 (en) * 2014-03-12 2020-02-04 Seeing Machines Limited Method and apparatus for eye detection from glints
US10012734B2 (en) 2014-05-21 2018-07-03 DSCG Solutions, Inc. Devices, systems, and methods for real time tracking of an object
DE102015001078A1 (de) * 2015-01-28 2016-07-28 Wavelight Gmbh System und Steuerungsverfahren desselben zur Durchführung von Messungen an einem Auge
US10016130B2 (en) 2015-09-04 2018-07-10 University Of Massachusetts Eye tracker system and methods for detecting eye parameters
US9857871B2 (en) 2015-09-04 2018-01-02 Sony Interactive Entertainment Inc. Apparatus and method for dynamic graphics rendering based on saccade detection
US10169846B2 (en) 2016-03-31 2019-01-01 Sony Interactive Entertainment Inc. Selective peripheral vision filtering in a foveated rendering system
US10401952B2 (en) 2016-03-31 2019-09-03 Sony Interactive Entertainment Inc. Reducing rendering computation and power consumption by detecting saccades and blinks
US10372205B2 (en) * 2016-03-31 2019-08-06 Sony Interactive Entertainment Inc. Reducing rendering computation and power consumption by detecting saccades and blinks
US10192528B2 (en) 2016-03-31 2019-01-29 Sony Interactive Entertainment Inc. Real-time user adaptive foveated rendering
US20180068449A1 (en) * 2016-09-07 2018-03-08 Valve Corporation Sensor fusion systems and methods for eye-tracking applications
US20190041865A1 (en) * 2017-08-02 2019-02-07 GM Global Technology Operations LLC Method and Apparatus for Parallel Acquisition in Lidar Array
US10838047B2 (en) 2018-04-17 2020-11-17 Santec Corporation Systems and methods for LIDAR scanning of an environment over a sweep of wavelengths
US10942564B2 (en) 2018-05-17 2021-03-09 Sony Interactive Entertainment Inc. Dynamic graphics rendering based on predicted saccade landing point
US11262839B2 (en) 2018-05-17 2022-03-01 Sony Interactive Entertainment Inc. Eye tracking with prediction and late update to GPU for fast foveated rendering in an HMD environment
US10630384B2 (en) * 2018-06-13 2020-04-21 Infineon Technologies Ag Dual-mode optical devices for time-of-flight sensing and information transfer, and apparatus, systems, and methods utilizing same
CN111123383B (zh) * 2019-12-25 2021-12-28 中国科学院上海微系统与信息技术研究所 一种稀疏阵列信号处理方法、装置、电路和成像系统
US11754711B2 (en) 2019-12-31 2023-09-12 Luminar Technologies, Inc. Frequency chirp for lidar for high-velocity targets
US11513228B2 (en) 2020-03-05 2022-11-29 Santec Corporation Lidar sensing arrangements
US11486792B2 (en) 2020-06-05 2022-11-01 Santec Corporation Tunable light source for optical fiber proximity and testing
US11324400B2 (en) * 2020-07-07 2022-05-10 Scintellite, Llc Apparatus and method for automated non-contact eye examination
US11675069B2 (en) * 2020-10-08 2023-06-13 Oewaves, Inc. Dual Lidar and radar photonic instrument
DE102020127593A1 (de) 2020-10-20 2022-04-21 Robert Bosch Gesellschaft mit beschränkter Haftung Blickverfolgungsanordnung
KR102416469B1 (ko) * 2020-11-15 2022-07-05 주식회사 제이씨레이다 독거노인 안전사고 예방탐지 시스템
US20220334260A1 (en) * 2021-04-16 2022-10-20 Santec Corporation Systems and methods for lidar sensing

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US361182A (en) * 1887-04-12 Water-engine
US3363248A (en) 1966-02-17 1968-01-09 Army Usa Chirp radar technique for suppressing second time around echoes
US4153900A (en) 1967-12-20 1979-05-08 Rockwell International Corporation Phase-coded pulse compression type pulsed energy system
US3611182A (en) 1968-11-19 1971-10-05 United Aircraft Corp Optical chirp pulse generator
US4100498A (en) 1977-06-20 1978-07-11 The United States Of America As Represented By The Secretary Of The Navy Discrete chirp frequency synthesizer
US4333080A (en) 1977-07-18 1982-06-01 Raytheon Company Signal processor
US4339954A (en) 1978-03-09 1982-07-20 National Research Development Corporation Measurement of small movements
US4272193A (en) 1979-04-13 1981-06-09 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for timing of laser beams in a multiple laser beam fusion system
US4314210A (en) * 1979-11-23 1982-02-02 Jersey Nuclear-Avco Isotopes, Inc. Mode-locking and chirping system for lasers
US4319807A (en) 1980-03-24 1982-03-16 Jersey Nuclear-Avco Isotopes, Inc. Rotating optical frequency chirp device
US4697888A (en) 1982-04-21 1987-10-06 Chevron Research Company Frequency shifted cavity for electromagnetic radiation
US4532603A (en) 1983-03-09 1985-07-30 The United States Of America As Represented By The Secretary Of The Army Chirp transform correlator
US4666295A (en) 1983-03-17 1987-05-19 Hughes Aircraft Company Linear FM chirp laser
US4662741A (en) 1983-03-17 1987-05-05 Hughes Aircraft Company Linear FM chirp laser
FR2543690B1 (fr) 1983-03-29 1986-01-17 Thomson Csf Systeme de telemetrie laser et de mesure doppler, a compression d'impulsions
US4578677A (en) 1983-09-23 1986-03-25 The United States Of America As Represented By The Secretary Of The Navy Range doppler coupling magnifier
US4830486A (en) * 1984-03-16 1989-05-16 Goodwin Frank E Frequency modulated lasar radar
DE3513400A1 (de) 1985-04-15 1986-10-16 Philips Patentverwaltung Gmbh, 2000 Hamburg Optischer bewegungssensor
FR2604890A1 (fr) 1986-10-14 1988-04-15 Thomson Csf Dispositif optique de detection simultanee des mouvements du coeur et de la respiration et son utilisation a la synchronisation d'appareils d'acquisition d'images a resonance magnetique nucleaire
DE3807077A1 (de) 1987-10-02 1989-04-20 Bochumer Eisen Heintzmann Vorrichtung zur beruehrungslosen optischen entfernungsmessung nach dem triangulationsverfahren
US4849760A (en) 1987-11-20 1989-07-18 Unisys Corporation Surface acoustic wave doppler detector
US4969736A (en) 1988-06-17 1990-11-13 Slotwinski Anthony R Integrated fiber optic coupled proximity sensor for robotic end effectors and tools
US4983979A (en) 1989-03-28 1991-01-08 Canadian Marconi Company Radar detection of targets at short and long range
IL91491A0 (en) 1989-08-31 1990-04-29 Dan Atlas Displacement detector device and method
US5106192A (en) * 1990-03-16 1992-04-21 Eastman, Inc. Polarization insensitive absolute interferometeric method and apparatus for measuring position angular bearing and optical paths
US5101291A (en) 1990-12-28 1992-03-31 At&T Bell Laboratories Optical frequency conversion device
US5508759A (en) * 1991-01-08 1996-04-16 Canon Kabushiki Kaisha Visual axis detection apparatus
US5170218A (en) * 1991-03-29 1992-12-08 Raytheon Company Apparatus and method for detecting wind direction
ATE143007T1 (de) * 1991-07-05 1996-10-15 Duphar Int Res Vitamin-d derivat, verfahren zu dessen herstellung sowie zwischenprodukte dafür
US6573982B1 (en) 1991-09-18 2003-06-03 Raytheon Company Method and arrangement for compensating for frequency jitter in a laser radar system by utilizing double-sideband chirped modulator/demodulator system
US5715166A (en) 1992-03-02 1998-02-03 General Motors Corporation Apparatus for the registration of three-dimensional shapes
JP3142364B2 (ja) 1992-03-31 2001-03-07 株式会社東芝 レーダ装置
US5283795A (en) 1992-04-21 1994-02-01 Hughes Aircraft Company Diffraction grating driven linear frequency chirped laser
US5371587A (en) 1992-05-06 1994-12-06 The Boeing Company Chirped synthetic wavelength laser radar
US5298962A (en) 1992-11-05 1994-03-29 Hughes Aircraft Company Pulse compression signal processor utilizing identical saw matched filters for both up and down chirps
US5289252A (en) 1992-12-08 1994-02-22 Hughes Aircraft Company Linear frequency modulation control for FM laser radar
US5428361A (en) 1993-08-06 1995-06-27 Rockwell International Corporation Large time-bandwidth chirp pulse generator
CA2187373C (en) 1994-04-08 2001-06-05 Kristian Hohla Method and apparatus for providing precise location of points on the eye
US5632742A (en) * 1994-04-25 1997-05-27 Autonomous Technologies Corp. Eye movement sensing method and system
US5980513A (en) 1994-04-25 1999-11-09 Autonomous Technologies Corp. Laser beam delivery and eye tracking system
US5521930A (en) 1994-07-19 1996-05-28 Suni; Paul J. M. Device for injection-seeding, frequency-shifting, and q-switching a laser source
NL9401514A (nl) * 1994-09-19 1996-05-01 Eyelight Research Nv Methode en inrichting voor het meten van de visuële aandacht van personen of dieren voor een zichtbaar object.
US5644642A (en) * 1995-04-03 1997-07-01 Carl Zeiss, Inc. Gaze tracking using optical coherence tomography
US5647360A (en) 1995-06-30 1997-07-15 Siemens Corporate Research, Inc. Digital subtraction angiography for 3D diagnostic imaging
DE19528676C2 (de) 1995-08-04 1997-05-22 Zeiss Carl Jena Gmbh Interferometeranordnung zur absoluten Distanzmessung
US6062216A (en) 1996-12-27 2000-05-16 Children's Medical Center Corporation Sleep apnea detector system
JP3713354B2 (ja) 1997-03-21 2005-11-09 株式会社トプコン 位置測定装置
US6181463B1 (en) 1997-03-21 2001-01-30 Imra America, Inc. Quasi-phase-matched parametric chirped pulse amplification systems
US5949546A (en) 1997-05-14 1999-09-07 Ahead Optoelectronics, Inc. Interference apparatus for measuring absolute and differential motions of same or different testing surface
US5903358A (en) * 1997-06-20 1999-05-11 The Board Of Trustees Of The Leland Stanford Junior University Spectroscopy using active diode laser stabilization by optical feedback
US7028899B2 (en) 1999-06-07 2006-04-18 Metrologic Instruments, Inc. Method of speckle-noise pattern reduction and apparatus therefore based on reducing the temporal-coherence of the planar laser illumination beam before it illuminates the target object by applying temporal phase modulation techniques during the transmission of the plib towards the target
US6299307B1 (en) * 1997-10-10 2001-10-09 Visx, Incorporated Eye tracking device for laser eye surgery using corneal margin detection
JP3577417B2 (ja) 1998-08-18 2004-10-13 博志 松本 冠状動脈病変診断装置および診断方法
ATE265253T1 (de) 1998-10-23 2004-05-15 Varian Med Sys Inc Verfahren und system zur physiologischen steuerung von radiotherapie
US6556854B1 (en) * 1998-11-20 2003-04-29 Fuji Photo Film Co., Ltd. Blood vessel imaging system using homodyne and heterodyne effects
AU2843200A (en) 1998-11-24 2000-06-13 Hughes Electronics Corporation Synchronization in mobile satellite systems using dual-chirp waveform
US6191862B1 (en) * 1999-01-20 2001-02-20 Lightlab Imaging, Llc Methods and apparatus for high speed longitudinal scanning in imaging systems
US6625191B2 (en) 1999-12-10 2003-09-23 Cymer, Inc. Very narrow band, two chamber, high rep rate gas discharge laser system
US6988660B2 (en) 1999-06-07 2006-01-24 Metrologic Instruments, Inc. Planar laser illumination and imaging (PLIIM) based camera system for producing high-resolution 3-D images of moving 3-D objects
US6120461A (en) * 1999-08-09 2000-09-19 The United States Of America As Represented By The Secretary Of The Army Apparatus for tracking the human eye with a retinal scanning display, and method thereof
US6445942B1 (en) 1999-09-15 2002-09-03 Resmed Ltd Measurement of respiratory effort using a suprasternal sensor
DE59900103D1 (de) 1999-10-01 2001-06-28 Storz Karl Gmbh & Co Kg Bildgebendes Verfahren zum Ermitteln des Zustands von Gewebe
JP2001201573A (ja) 2000-01-20 2001-07-27 Mitsubishi Electric Corp コヒーレントレーザレーダ装置および目標測定方法
US6687521B2 (en) 2000-02-03 2004-02-03 Hamamatsu Photonics K.K. Noninvasion biological optical measuring instrument, measured portion holding device, and method for manufacturing the same
JP3749646B2 (ja) 2000-02-21 2006-03-01 独立行政法人科学技術振興機構 偏波モード分散測定装置および偏波モード分散測定方法
JP3631653B2 (ja) 2000-02-21 2005-03-23 独立行政法人科学技術振興機構 群速度分散測定装置および群速度分散測定方法
JP3580488B2 (ja) 2000-03-23 2004-10-20 日本電信電話株式会社 周波数シフト帰還型モード同期レーザ及び周波数シフト帰還型再生モード同期レーザ。
GB0009311D0 (en) 2000-04-17 2000-05-31 Logica Uk Ltd Vibration analysis
AU2001259435A1 (en) 2000-05-03 2001-11-12 Stephen T Flock Optical imaging of subsurface anatomical structures and biomolecules
US6533729B1 (en) 2000-05-10 2003-03-18 Motorola Inc. Optical noninvasive blood pressure sensor and method
JP2001349397A (ja) * 2000-06-05 2001-12-21 Tsubakimoto Chain Co 張力付与装置
US6871084B1 (en) 2000-07-03 2005-03-22 Srico, Inc. High-impedance optical electrode
JP2002136522A (ja) 2000-11-02 2002-05-14 Japan Science & Technology Corp 超音波測定装置
JP3584883B2 (ja) 2001-01-17 2004-11-04 日本電気株式会社 合成開口ソーナー及び合成開口処理方法
WO2002064031A2 (en) * 2001-02-09 2002-08-22 Sensomotoric Instruments Gmbh Multidimensional eye tracking and position measurement system
US6839363B2 (en) 2001-03-16 2005-01-04 Calmar Optcom, Inc. Digital control of actively mode-locked lasers
US7769430B2 (en) * 2001-06-26 2010-08-03 Varian Medical Systems, Inc. Patient visual instruction techniques for synchronizing breathing with a medical procedure
US20030043467A1 (en) * 2001-08-28 2003-03-06 Harald Rosenfeldt Polarization delay unit
EP1318579A1 (en) 2001-12-10 2003-06-11 Corning Incorporated Multi-wavelength raman laser
WO2003061084A1 (de) 2002-01-19 2003-07-24 Spheron Vr Ag Verfahren und vorrichtung zur entfernungsmessung
US6606052B1 (en) 2002-03-07 2003-08-12 Visteon Global Technologies, Inc. Method and apparatus for detecting multiple objects with frequency modulated continuous wave radar
US7204425B2 (en) * 2002-03-18 2007-04-17 Precision Dynamics Corporation Enhanced identification appliance
WO2003105678A2 (en) * 2002-06-12 2003-12-24 Advanced Research And Technology Institute, Inc. Method and apparatus for improving both lateral and axial resolution in ophthalmoscopy
US7010339B2 (en) * 2002-07-29 2006-03-07 The United States Of America As Represented By The Secretary Of The Navy Hybrid lidar-radar for medical diagnostics
US20040133079A1 (en) 2003-01-02 2004-07-08 Mazar Scott Thomas System and method for predicting patient health within a patient management system
ATE553520T1 (de) 2003-02-14 2012-04-15 Univ Heidelberg Verfahren zur erzeugung von mindestens ein puls und/oder einer pulssequenz mit kontrollierbaren parametern
US7242460B2 (en) * 2003-04-18 2007-07-10 Sarnoff Corporation Method and apparatus for automatic registration and visualization of occluded targets using ladar data
US7319782B2 (en) * 2003-06-18 2008-01-15 Hogan Josh N Real-time imaging and analysis system
US7353055B2 (en) 2003-06-18 2008-04-01 Hogan Josh N Non-invasive analysis system
US20050033200A1 (en) 2003-08-05 2005-02-10 Soehren Wayne A. Human motion identification and measurement system and method
US7196780B2 (en) 2003-08-08 2007-03-27 Sharp Kabushiki Kaisha Velocimeter, displacement meter, vibrometer and electronic device
US7128714B1 (en) 2003-12-24 2006-10-31 The United States Of America As Represented By The Secretary Of The Navy Non-contact waveform monitor
US7689321B2 (en) 2004-02-13 2010-03-30 Evolution Robotics, Inc. Robust sensor fusion for mapping and localization in a simultaneous localization and mapping (SLAM) system
US7089796B2 (en) 2004-03-24 2006-08-15 Hrl Laboratories, Llc Time-reversed photoacoustic system and uses thereof
US20060072014A1 (en) * 2004-08-02 2006-04-06 Geng Z J Smart optical sensor (SOS) hardware and software platform
US20060056480A1 (en) 2004-09-15 2006-03-16 Mielke Michael M Actively stabilized systems for the generation of ultrashort optical pulses
JP5227023B2 (ja) * 2004-09-21 2013-07-03 ディジタル シグナル コーポレイション 生理学的機能を遠隔的にモニターするシステムおよび方法
TWI278682B (en) 2004-11-23 2007-04-11 Ind Tech Res Inst Fiber optic interferometric position sensor and measuring method thereof
WO2006088822A2 (en) * 2005-02-14 2006-08-24 Digital Signal Corporation Laser radar system and system and method for providing chirped electromagnetic radiation
US7139446B2 (en) 2005-02-17 2006-11-21 Metris Usa Inc. Compact fiber optic geometry for a counter-chirp FMCW coherent laser radar
US7391794B2 (en) 2005-05-25 2008-06-24 Jds Uniphase Corporation Injection seeding of frequency-converted Q-switched laser
DE102005046130A1 (de) 2005-09-27 2007-03-29 Bausch & Lomb Inc. System und Verfahren zur Behandlung eines Auges eines Patienten, das mit hoher Geschwindigkeit arbeitet
EP1783517A1 (en) 2005-11-04 2007-05-09 AGELLIS Group AB Multi-dimensional imaging method and apparatus
CN101437440B (zh) * 2005-12-14 2011-09-07 数字信号公司 跟踪眼球运动的系统和方法
JP5281342B2 (ja) 2008-09-04 2013-09-04 三菱重工業株式会社 固体高分子形水電解装置およびその組立方法
CN103090819A (zh) 2008-10-06 2013-05-08 曼蒂斯影像有限公司 用于提供三维和距离面间判定的方法和系统
AU2010257107B2 (en) 2009-02-20 2015-07-09 Digital Signal Corporation System and method for generating three dimensional images using lidar and video measurements

Also Published As

Publication number Publication date
US8177363B2 (en) 2012-05-15
US20240156341A1 (en) 2024-05-16
US11672420B2 (en) 2023-06-13
JP2009519780A (ja) 2009-05-21
EP1959817A2 (en) 2008-08-27
US10791925B2 (en) 2020-10-06
US8579439B2 (en) 2013-11-12
US20210259544A1 (en) 2021-08-26
US7699469B2 (en) 2010-04-20
CA2634033A1 (en) 2007-06-21
US20200008671A1 (en) 2020-01-09
US20180184896A1 (en) 2018-07-05
CN101437440A (zh) 2009-05-20
US10188290B2 (en) 2019-01-29
EP1959817A4 (en) 2011-09-07
CN101437440B (zh) 2011-09-07
US20100201945A1 (en) 2010-08-12
AU2006325781A1 (en) 2007-06-21
CA2634033C (en) 2015-11-17
US20120224143A1 (en) 2012-09-06
US20140139806A1 (en) 2014-05-22
US20140320818A1 (en) 2014-10-30
US20160353989A1 (en) 2016-12-08
EP1959817B1 (en) 2016-08-10
WO2007070853A3 (en) 2008-01-24
US9723980B2 (en) 2017-08-08
US20070171367A1 (en) 2007-07-26
US8757804B2 (en) 2014-06-24
WO2007070853A2 (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP5043038B2 (ja) 眼球の動きを追跡するシステムおよび方法
US11937916B2 (en) System and method for remotely monitoring physiological functions
CA2597712C (en) Laser radar system and system and method for providing chirped electromagnetic radiation
AU2013222042A1 (en) System and method for tracking eyeball motion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120319

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120327

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120420

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees