JP3749646B2 - 偏波モード分散測定装置および偏波モード分散測定方法 - Google Patents

偏波モード分散測定装置および偏波モード分散測定方法 Download PDF

Info

Publication number
JP3749646B2
JP3749646B2 JP2000042175A JP2000042175A JP3749646B2 JP 3749646 B2 JP3749646 B2 JP 3749646B2 JP 2000042175 A JP2000042175 A JP 2000042175A JP 2000042175 A JP2000042175 A JP 2000042175A JP 3749646 B2 JP3749646 B2 JP 3749646B2
Authority
JP
Japan
Prior art keywords
frequency
light
measured
optical fiber
mode dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000042175A
Other languages
English (en)
Other versions
JP2001228054A (ja
Inventor
弘昌 伊藤
真人 吉田
敏行 宮本
孝一郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000042175A priority Critical patent/JP3749646B2/ja
Priority to US10/182,697 priority patent/US6850318B1/en
Priority to EP00961193A priority patent/EP1258719A4/en
Priority to PCT/JP2000/006509 priority patent/WO2001061303A1/ja
Publication of JP2001228054A publication Critical patent/JP2001228054A/ja
Application granted granted Critical
Publication of JP3749646B2 publication Critical patent/JP3749646B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3181Reflectometers dealing with polarisation

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光伝送用ファイバの分散特性のうち、特に偏波モード分散を測定する偏波モード分散測定装置および偏波モード分散測定方法に関する。
【0002】
【従来の技術】
長距離光通信の分野では、伝送速度の高速化に伴なって、光伝送用ファイバの分散特性の管理が重要な課題になっている。分散の要因の一つに偏波モード分散(PMD:Polarization Mode Dispersion)があり、これは直交する2つの偏波モード間の群遅延によるものである。
通常の光通信で用いられる光ファイバは、熱、張力、圧力といった様々な外部応力によりコア径が理想的な円形から崩れ、コア内部に複屈折性が存在し、PMDが生じる。PMDは高速光通信において伝送容量制限の要因になるため、PMDの管理の必要性が近年高まってきている。
【0003】
【発明が解決しようとする課題】
PMD測定には、大きく分けて時間領域による測定と、周波数領域による測定方法があり、前者には干渉法、後者には固定アナライザ法およびポラリメトリック法(ポアンカレ球法、ジョーンズマトリクス(JME)法、SOP(State of Polarization)法等がある。しかし、これらの測定方法では、被測定光ファイバの出力端に光検出系を配置する必要があるため、既設の光通信網での測定は困難であり、さらに測定系も複雑になる傾向がある。
【0004】
本発明は、このような点に鑑みてなされたものであり、その目的は、簡易な手法で高感度にPMD測定を行うことが可能な偏波モード分散測定装置および偏波モード分散測定方法を提供することにある。また、本発明は、PMD値が小さい場合にも、発生するビート信号がDC成分の中に埋もれることなく、偏波モード分散測定を十分可能とすることを目的とする。
【0005】
【課題を解決するための手段】
上述した課題を解決するために、本発明の第1の解決手段によると、
周波数が時間に比例して変化する周波数チャープ光を生成するチャープ光生成手段と、
前記チャープ光生成手段により生成された周波数チャープ光に対して、直交する2つの直線偏光成分に分岐して、両直線偏光成分に光路差を与えるオフセット手段と、
前記オフセット手段からの周波数チャープ光の直線偏光方向を所定の角度回転させる波長板と、
前記波長板を通過した周波数チャープ光が被測定光ファイバに伝搬した後に、測定に必要な偏光成分を透過する検光子と、
前記検光子を透過した光波を検波し、検波された光波のビート信号に基づいて、被測定光ファイバの偏波モード分散値を検出する検波手段と
を備えた偏波モード分散測定装置を提供する。
【0006】
また、本発明の第2の解決手段によると、
周波数が時間に比例して変化する周波数チャープ光を生成するステップと、
生成された周波数チャープ光に対して、直交する2つの直線偏光成分に分岐して、両直線偏光成分に光路差を与えるステップと、
周波数チャープ光の直線偏光方向を所定の角度回転させるステップと、
光路差を与えられた周波数チャープ光を被測定光ファイバに伝搬するステップと、
周波数チャープ光が被測定光ファイバに伝搬した後に、測定に必要な偏光成分を透過するステップと、
透過した後の光波を検波し、検波された光波のビート信号に基づいて、被測定光ファイバの偏波モード分散値を検出するステップと
を備えた偏波モード分散測定方法を提供する。
【0007】
また、本発明では、偏波モード分散により生ずる被測定光ファイバの速波軸および遅波軸を伝搬する各光波間の群遅延時間を、各光波間で生ずるビート信号の周波数より算出するため、感度よく偏波モード分散を算出できる。また、本発明では、被測定光ファイバの速波軸および遅波軸に対して略45度の角度に設定した検光子を設けるため、速波軸および遅波軸を伝搬する各光波から測定に必要な偏光成分を取り出すことができる。
【0008】
また、本発明では、ドップラー効果により周波数シフトされた1次回折光を帰還させて周波数チャープ光を生成することで、線形性に優れた周波数チャープ光を生成できる。また、本発明では、所定の利得媒質、所定の励起光源、波長分割用光結合器、出力カプラ、偏波制御素子、光アイソレータ、および周波数シフト素子をリング状に接続したリング共振器により周波数チャープ光を生成することで、リング共振器一周回ごとに、所定の周波数幅だけ高感度に周波数をシフトさせることができる。
【0009】
また、本発明では、オフセット手段で光路差を与えた2つの光波のビート周波数の変動量に基づいて偏波モード分散値を検出するため、簡易かつ高感度に偏波モード分散値を検出できる。また、本発明では、オフセット手段を透過した後の光波の入射角度によりビートスペクトル波形が異なることを考慮に入れ、入射角度に対するビートスペクトル強度に基づいてビート周波数の変化量を測定することができる。
【0010】
【発明の実施の形態】
以下、本発明に係る偏波モード分散測定装置および偏波モード分散測定方法について、図面を参照しながら具体的に説明する。
【0011】
本発明は、特に光周波数領域リフレクトメトリ(OFDR:Optical Frequency Domain Reflectometry)を用いてPMD測定を行うようにした。具体的には、主に、PMDによって生じる伝搬時間の偏波状態依存性をビート周波数より求めるものである。光源には、本出願人が開発した周波数シフト帰還型レーザ(FSFレーザ:Frequency-Shifted Feedback laser)を使用し、被測定光ファイバの片側端面のみでPMD測定が可能でかつ簡便な偏波モード分散測定装置を用いるようにした。以下、本発明に係る偏波モード分散測定装置及びその方法について詳細に説明する。
【0012】
図1は、本発明に係る偏波モード分散測定装置のPMD測定原理を説明する図であり、図1(a)は、光ファイバ1内を伝搬する光波の瞬時周波数成分を模式的に示し、図1(b)及び(c)は、それぞれ、光ファイバ1内に入射する周波数チャープ光の瞬時周波数、及び、光ファイバ1内に伝播する周波数チャープ光の瞬時周波数を示している。ここで、周波数チャープ光とは、周波数が時間に応じて変化する光波をいう。
【0013】
光ファイバ1がPMDをもつ場合には、光ファイバ1の速波軸および遅波軸を伝搬する各光波間に伝搬時間差が生じ、光ファイバ1の伝搬後には図1(c)のような特性になる。これら2つの光波は互いに直交しているので、これら光波から測定に必要な偏光成分を取り出すために、被測定光ファイバ(FUT)1の出射側に、速波軸および遅波軸に対して45度(又は略45度)の角度に設定した検光子2を配置し、周波数チャープ光が被測定光ファイバ1を伝搬後に、さらに検光子2を透過した後の光波を検波する。このときに得られる自己ビート信号により、PMD値を検出することができる。
【0014】
このようなPMD値の測定手法では、周波数チャープ光源の線形性が重要であり、線形性に優れたFSFレーザを使用することで、高精度のPMD測定が可能となる。
ここで、周波数チャープ光のチャープレートをγ、OFDRにより生じるビート周波数をfBとするとき、PMD値τは(1)式で与えられる。
τ=fB/γ (1)
ここで、γ=νFSRT
(τRTは共振器の周回時間、νFSは共振器の周回当たりの周波数シフト量)
【0015】
図2は、本発明に係る偏波モード分散測定装置の一実施形態の全体構成を示すブロック図である。同図の偏波モード分散測定装置は、周波数チャープ光を生成するFSFレーザ(FSFL:チャープ光生成手段)3と、偏波制御素子(P.C.:Polarization Contoroller)4と、周波数チャープ光を増幅する光増幅器(AMP)5と、周波数チャープ光の直交する2つの直線偏光成分に光路差を与える二個の偏光ビームスプリッタ(PBS)6a及び6bをもつマッハツェンダー干渉計等により構成されるオフセット回路(オフセット手段)7と、λ/2板8と、光路を切り替えるビームスプリッタ(BS)9と、被測定光ファイバ1の速波軸および遅波軸に対して所定の角度を有し、被測定光ファイバ1を伝搬後の各光波が透過して、測定に必要な偏光成分を取り出すようにした検光子2と、検光子2を透過した光波を集束させるレンズ10と、レンズ10を透過した光波を検出する光検出器(PD)11と、光波のスペクトル波形を観測するRFスペクトルアナライザ(RFSA:検波手段)12と、RFSA12の観測結果に基づいてPMDを検出するコンピュータ(PC)14とを備えている。なお、被測定光ファイバ1の出口端(BS9と反対側の端子)又はその近傍には、反射鏡を設けるようにしてもよい。
【0016】
このような構成において、光源であるFSFレーザ3から出力された周波数チャープ光(測定光)は、偏波制御素子4、AMP5を経て、オフセット回路7に入射される。オフセット回路7では、PBS6aにより、FSFレーザ3からの周波数チャープ光のうち互いに直交する直線偏光のうち1方向の直線偏光光はPBS6aを直進させ、他方向の直線偏光光は反射させることで、直交する2つの直線偏光成分に分岐するとともに、両者に光路差を与える。このような光路差を与えた2つの光波を、オフセット回路7内のもう一方のPBS6bにより再び結合させた後、λ/2板8により各直線偏光成分の偏光方向が所定の偏光角度となり、被測定光ファイバ1に入射される。被測定光ファイバの出口端又は出口近傍に設けられた鏡等で反射され、その反射光は、被測定光ファイバ1の入射端から出射され、BS9を経て、検光子2を透過することにより測定に必要な偏光成分が取り出されPD11により受光され、各直線偏光成分間におけるビート信号を受信する。受信されたビート信号により、PMD値が算出される(詳細は後述)。
【0017】
ここで、周波数チャープ光を発生するためのFSFレーザ3について詳説する。
図2におけるFSFレーザ3は、共振器内部に周波数シフト素子である音響光学変調器(AOM:Acoust-Optic Modulator)を挿入し、ドップラー効果によって周波数シフトされた1次回折光を帰還させて発振するレーザである。
【0018】
本出願人は、FSFレーザ3の出力の瞬時周波数成分が時間とともにチャープする複数の成分(チャープ周波数コム)からなることを理論的・実験的に解明している。このような共振器では、定在波は存在できず、その瞬時周波数ν(t)は()式で与えられる。
【0019】
【数1】
Figure 0003749646
【0020】
)式において、ここで、τRTは共振器の周回時間(1/τRTは共振器の縦モード周波数)、νFSは共振器の周回当たりの周波数シフト量、qは整数である。
【0021】
FSFレーザ3で用いられる周波数シフト帰還型の共振器では、ある瞬間に許される瞬時周波数は共振器縦モード周波数(1/τRT)間隔毎に存在し、かつそれぞれの瞬時周波数成分(周波数コム成分)は、共振器周回当りの周波数シフト量に等しい割合(γ=νFSRT)で連続に周波数チャープを受けている。また、周波数チャープ幅νBWは利得媒質のスペクトル形状によりある一定の幅に制限され、各周波数成分は利得のスペクトル形状に従って強度変化しながら周波数チャープする。
【0022】
図3は、FSFレーザ3の出力の瞬時周波数成分を模式的に表した図である。図中グレー階調はその強度変化を示している。また、チャープレートγは、νFS
RTとなっている。
【0023】
図4は、FSFレーザ3の詳細構成を示すブロック図である。FSFレーザ1は、周波数シフト素子であるAOM(伝搬媒質は、例えば、TeO2)21を用いて、リング状のレーザ共振器を構成している。このレーザ共振器内には、光ファイバとの整合性に優れたエルビウム添加ファイバ(EDF:例えば、Er3+ドープ量900ppm、ファイバ長15m)22と、励起光源である半導体レーザ(LD:例えば、1.48μm帯、最大励起電力67mW)が入射される波長分割用光結合器(WDM:Wavelength Division Multiplexing coupler)23と、光アイソレータ(OI:Optical Isolator )24と、出力カプラ(Output Coupler、分岐比は、例えば、90:10(10dB))25と、偏波制御素子(PC:Polarization Contoroller)26と、コリメータ27と、バンドパスフィルタ(BPF)28とAOM21を駆動する信号発生器(SG)29と、を備える。
【0024】
AOM21は一対のコリメータ27の間に挿入されており、その回折効率を含む光結合効率は、例えば25%である。共振器一周回当りの周波数シフト量νFSは、AOM21の駆動周波数に等しく、例えば120MHzであり、共振器縦モード周波数1/τRTは、例えば9.38MHzである。これにより、周波数が変化する速さを表すチャープレートγ=νFSRTは1.13PHz/sとなる。
【0025】
図5は、図4のFSFレーザ3の発振スペクトルを光スペクトラムアナライザで観測した結果を示す図である。この例では、発振スペクトルの半値全幅より、周波数チャープ幅νBWは110GHzである。また、発振の中心波長は1.556μmである。
【0026】
なお、周波数シフト素子としてAOMの代わりに音響光学波長可変フィルタ(Acousto-Optic Tunable Filter:AOTF)を用いるようにしてもよい。AOTFは、狭帯域な波長透過特性をもつ周波数シフト素子である。AOTFにより、発振波長の電子同調が可能となるので、共振器内のBPFが不要となり、装置構成の簡素化が可能となる。
【0027】
つぎに、FSFレーザを用いたPMD測定について詳述する。
図6は、検波時の瞬時周波数成分を示す図である。FSFレーザ3からの周波数チャープ光が被測定光ファイバ1を伝搬し、さらに検光子2を透過した後に検波すると、遅延時間toffsetに比例したビート信号(fBoffset:以下、オフセット周波数と呼ぶ)の両側に、PMDの遅延時間に依存するビート信号fB1,fB2が生じる。これら3つのビート信号fBoffset,fB1,fB2の信号強度は、光波の被測定光ファイバ1への入射角度ならびに検光子2の角度に依存する。
ここで、検波時におけるビート信号強度は以下の行列式で与えられる。
【0028】
【数2】
Figure 0003749646
【0029】
図7は、オフセット回路における光波及び検光子の透過成分についての説明図である。図8は、光波の入射角度とビート強度との関係を示す図である。
図7(a)及び(b)に示すように、(3)式および(4)式におけるαはオフセット回路7のpath2成分と被測定光ファイバ1の遅波軸とのなす角、βは検光子2と遅波軸とのなす角を表している。
【0030】
(3)式の各行列成分は左からそれぞれ、検光子2、被測定光ファイバ1のPMDτ、レーザ出力光の入射角度ならびにオフセット回路7の遅延時間toffsetの効果を示している。ここで、検光子2の角度が理想的にβ=45degに設定されている場合、ビート周波数は(5)式で与えられる。
B=fBoffset+cos2αγτ ・・・(5)
【0031】
図8(a),(b),(c)は被測定光ファイバ1への光波の入射角度αとビート成分との関係を示す図である。α=0degすなわちpath1成分と速波軸が一致している場合、全体の遅延時間はtoffset+τ となるため、図8(a)に示すように、ビートスペクトルはオフセット周波数よりも高周波側(fB1)に生じる。
【0032】
逆に、α=90degの場合はpath2成分と速波軸が一致し、全体の遅延時間はtoffset−τ となるため、図8(b)に示すように、ビートスペクトルはオフセット周波数より低周波側(fB2)に生じる。
一方、αが0degと90degの中間付近では、図8(c)に示すように、fB1およびfB2のそれぞれのビートスペクトルが存在するが、PMDが小さい場合は、2つのスペクトルが重なる。そこで、これらのスペクトルを、(4)式の理論式でフィッティングすることでビート周波数を求めている。
【0033】
以上より、入射角度を変化させた際のビート周波数の変化量をΔfBとすると、PMD値τは以下の式で求められる。
ΔfB=(fB1−fB2)/2 ・・・(6)
τ=ΔfB/γ ・・・(7)
【0034】
本実施の形態では、λ/2板8を用いて計測用光の偏光方向を制御し、その回転角度θをパラメータとしてビート信号の中心周波数を測定し、その結果のピーク・ツー・ピーク値ΔfBよりPMD値が求められる。より詳細には、まず、検光子2を被測定光ファイバ1の速波軸及び遅波軸に対して45度に設定する。そのためには、λ/2板8を180度ずつ回転させてビートスペクトル強度がフラットになる条件に固定することにより、設定することができる。つぎに、λ/2板8を半回転させて、ビート中心周波数のピーク・ツー・ピークの値を読み取る。この値が2ΔfBとなるので、(7)式よりPMD値を求めることができる。
【0035】
また、本実施の形態においては、周波数チャープ光が光ファイバ1を伝搬後、さらに検光子2を透過した後で検波し、ビート周波数の変化量を測定して(7)式によりPMD値を求めるため、簡易かつ高感度にPMD値を求めることができる。また、本実施の形態は、既設の光通信網におけるPMD測定も可能であり、測定系の構成が複雑になるおそれもない。
【0036】
次に、本発明の偏波モード分散測定装置により測定した結果について説明する。まず、偏波面保存光ファイバ(PMF)を用いた原理実証実験として、光ファイバ内部の複屈折性が高く、偏波モード結合の存在しないPMFの測定結果を示す。
【0037】
図9(a)はオフセット回路7を透過した後の光波の入射角度とビートスペクトル強度との関係を示す図、図9(b)はオフセット回路7を透過した後の光波の入射角度とビート周波数との関係を示す図である。なお、各図は、検光子の角度βをパラメータとして測定したものであり、それぞれ実線は理論計算結果を表し、破線は測定結果を表している。
【0038】
図9(a)の結果より、ビートスペクトル強度がほぼ一定の値になる状態は、検光子2の角度がβ=45degに設定されている場合である。また、図9(b)より、このときのビート周波数の変化量は2ΔfB=400Hzである。この結果から、PMD値τは0.18ps(1.51ps/m)と求められた。
【0039】
次に、実際に光通信に用いられる単一モード光ファイバ(SMF)の測定結果を示す。ここでは、通常の光通信を想定し、光ファイバ内部で偏波モード結合が存在する場合として、単一モードファイバ(この例では、ファイバ長L=20km)を使用して、PMD測定を行った結果を示す。
【0040】
図10(a)は入射角度とビートスペクトル強度との関係を示す図、図10(b)は入射角度とビート周波数との関係を示す図である。なお、実線は理論計算結果を示している。図10(a)より、上述した原理実証実験結果と同様に、ビートスペクトル強度は入射角度によらず、ほぼ一定の強度を保つ状態が検光子2の角度βが45度の場合である。図10(b)より、ビート周波数の変化量は2ΔfB=390Hzである。この結果から、この例では、PMD値τは、0.17ps(0.04ps/√km)と求められた。
【0041】
また、図11は光ファイバ長とPMDとの関係を示す図である。図示のように、PMD値τが光ファイバ1長の平方根に比例して増大している様子がわかる。なお、ここで、今回のPMD測定における測定精度は、上述した(6)式よりビート周波数の読取精度に起因する。
【0042】
図12はビート周波数の読取精度を評価した結果を示す図である。同図の結果より、FSFレーザ3を用いたPMD測定精度は、dτ=±0.01psであることが求められる。測定精度は、レーザー出力光の周波数チャープ幅およびスペクトラムアナライザの読取精度に依存する。したがって、より高精度の測定を行うには、周波数チャープ幅を広帯域にし、かつ、周波数カウンタを用いてビート周波数の測定を行う必要がある。
【0043】
つぎに、本発明の他の実施の形態を説明する。
図13に、本発明に係る偏波モード分散測定装置の第2の実施の形態の全体構成を示すブロック図を示す。
この実施の形態では、上述の構成のほかに、駆動部101,102、制御部103、バンドパスフィルタ110、周波数カウンタ(Frequency Counter)111、パワーメータ(Power meter)112を備える。
【0044】
PMD測定を行う上で重要となる検光子の角度の最適条件は入射角度によらず、ビートスペクトル強度が一定の状態を保つ条件を満たせば良いことから、λ/2板8および検光子2をモーター等の駆動部101、102およびモータードライバ等の制御部103により自動制御することで、これまで手動でおこなってきた測定作業を全自動にすることが可能となる。
【0045】
詳細には、まず、駆動部102を制御部103で制御して、検光子2を被測定光ファイバ1の速波軸及び遅波軸に対して45度に設定する。そのためには、λ/2板8を180度ずつ回転させてビートスペクトル強度がフラットになる条件に固定することにより、設定することができる。つぎに、駆動部101を制御部103で制御して、λ/2板8を半回転させて、ビート中心周波数のピーク・ツー・ピークの値を読み取る。この値が微小変動量2ΔfBとなるので、(1)式に代入することによりPMD値を求めることができる。
【0046】
また、ビート周波数の測定には、現在使用しているRFスペクトルアナライザ(Real Time Spectrum Analyzer)の代わりに、周波数カウンタ111、パワーメータ112およびバンドパスフィルタ(BPF)110を用いることで、より簡素な装置構成が可能である。
【0047】
以下に、チャープ光生成手段の他の実施の形態を示す。これらのチャープ光生成手段は、上述の測定装置におけるFSFレーザ3に置換され得る構成である。
【0048】
図14に、チャープ光生成手段の他の実施の形態2の構成図を示す。図4における周波数チャープ素子として音響光学波長可変フィルタ(AOTF)200を用い、BPF28を省略したものである。駆動信号源である信号発生器29をPC14で制御することで、発振波長を電子制御できる。
【0049】
図15に、チャープ光生成手段の他の実施の形態3の構成図を示す。図4における周波数チャープ素子として、媒体に光ファイバを用いた全ファイバ構成の音響光学素子(All-fiber AOM)300を用い、コリメータ27を省略したものであるり、測定装置を全ファイバ構成にできる。
【0050】
なお、周波数チャープ光源は、時間に対して発振周波数がシフトするような光源であれば、適宜のものを採用することができる。また、以上のべたように、被測定光ファイバ1の入射側で測定する場合のほかに、出口側に測定系を設けるようにしても良い。また、上述の実施の形態の全体構成において、挿入損失の低減のため、ビームスプリッタ9の代わりにサーキュレータを用いるようにしてもよい。
【0051】
【発明の効果】
以上詳細に説明したように、本発明によれば、周波数チャープ光が光ファイバを伝搬後、さらに検光子を透過した後で検波し、このとき得られる自己ビート信号に基づいて偏波モード分散を測定するため、簡易な構成で高感度に偏波モード分散を測定することができる。また、本発明によれば、PMD値が小さい場合にも、発生するビート信号がDC成分の中に埋もれることなく、偏波モード分散測定を十分可能とする。
【図面の簡単な説明】
【図1】本発明に係る偏波モード分散測定装置のPMD測定原理を説明する図。
【図2】本発明に係る偏波モード分散測定装置の第1の実施形態の全体構成を示すブロック図。
【図3】FSFレーザ出力の瞬時周波数成分を模式的に表した図。
【図4】FSFレーザの詳細構成を示すブロック図。
【図5】図4のFSFレーザの発振スペクトルを光スペクトラムアナライザで観測した結果を示す図。
【図6】検波時の瞬時周波数成分を示す図。
【図7】オフセット回路における光波及び検光子の透過成分についての説明図。
【図8】光波の入射角度とビート強度との関係を示す図。
【図9】(a)オフセット回路を透過した後の光波の入射角度とビートスペクトル強度との関係を示す図、及び、(b)オフセット回路を透過した後の光波の入射角度とビート周波数との関係を示す図。
【図10】(a)入射角度とビートスペクトル強度との関係を示す図、及び、(b)入射角度とビート周波数との関係を示す図。
【図11】光ファイバ長とPMDとの関係を示す図。
【図12】ビート周波数の読取精度を評価した結果を示す図。
【図13】本発明に係る偏波モード分散測定装置の第2の実施形態の全体構成を示すブロック図。
【図14】チャープ光生成手段の第2の実施の形態の構成図を示す。
【図15】チャープ光生成手段の第3の実施の形態の構成図を示す。
【符号の説明】
1 被測定光ファイバ(FUT)
2 検光子
3 FSFレーザ(FSFL)
4 偏波制御素子(P.C.)
5 光増幅器(AMP)
6a,6b 偏光ビームスプリッタ(PBS)
7 オフセット回路
8 λ/2板
9 ビームスプリッタ(BS)
10 レンズ
11 光検出器(PD)
12 RFスペクトルアナライザ(RFSA)
14 コンピュータ(PC)
21 音響光学素子(AOM)
22 エルビウム添加ファイバ(EDF)
23 波長分割用光結合器(WDM)
24 光アイソレータ(OI)
25 出力カプラ
26 偏波制御素子(PC)
27 コリメータ
28 バンドパスフィルタ(BPF)
29 信号発生器(SG)
101 モーター1
102 モーター2
103 モーター駆動装置
110 バンドパスフィルタ
111 周波数カウンタ(Frequency Counter)
112 パワーメータ(Power meter)
200 音響光学波長可変フィルタ(AOTF)
300 全ファイバ構成音響光学素子

Claims (8)

  1. 周波数が時間に比例して変化する周波数チャープ光を生成するチャープ光生成手段と、
    前記チャープ光生成手段により生成された周波数チャープ光に対して、直交する2つの直線偏光成分に分岐して、両直線偏光成分に光路差を与えて再び結合するオフセット手段と、
    前記オフセット手段からの周波数チャープ光の直線偏光方向を所定の角度回転させる波長板と、
    被測定光ファイバの入射端に設けられたビームスプリッタと、
    前記波長板及び前記ビームスプリッタを通過した周波数チャープ光が被測定光ファイバの前記入射端に入射されて伝搬し、出口端又は出口近傍で反射されて前記被測定光ファイバを伝搬した後に前記入射端から出射された光波を、前記ビームスプリッタを介して入射し、測定に必要な偏光成分を透過する検光子と、
    前記検光子を透過した光波を検波し、スペクトル波形を測定する検波手段と
    前記検光子及び前記波長板の回転角度を制御する駆動部と、
    前記駆動部を制御し、前記検波手段からの出力により偏波モード分散値τを求めるコンピュータと
    を備え、
    前記検光子の被測定光ファイバの速波軸又は遅波軸に対する角度を固定し、
    前記波長板の回転角度をパラメータとして変化させたときのビート信号の中心周波数を測定し、
    測定されたビート中心周波数のピーク・ツー・ピーク値 2Δf を求め、偏波モード分散値τを、
    τ=Δf /γ、
    γ=ν FS /τ RT
    (τ RT は共振器の周回時間、ν FS は共振器の周回当たりの周波数シフト量)
    により算出するようにした
    偏波モード分散測定装置。
  2. 前記検光子は、
    被測定光ファイバの速波軸および遅波軸に対して略45度の角度となるように配置されることを特徴とする請求項1に記載の偏波モード分散測定装置。
  3. 前記チャープ光生成手段は、
    周波数をシフトするための周波数シフト素子を有し、周波数シフトされた回折光を帰還させて周波数チャープ光を生成することを特徴とする請求項1又は2に記載の偏波モード分散測定装置。
  4. 前記チャープ光生成手段は、
    バンドパスフィルタをさらに備え、
    周波数チャープ光の発振波長を同調させることを特徴とする請求項1乃至のいずれかに記載の偏波モード分散測定装置。
  5. 前記チャープ光生成手段は、
    周波数シフト素子として音響光学波長可変フィルタを用い、その駆動周波数により発振波長を同調させることを特徴とする請求項1乃至のいずれかに記載の偏波モード分散測定装置。
  6. 前記チャープ光生成手段は、
    周波数シフト素子として媒体に光ファイバを用いた全ファイバ構成の音響光学素子を用い、測定装置を全ファイバ構成にできることを特徴とする請求項1乃至のいずれかに記載の偏波モード分散測定装置。
  7. 前記チャープ光生成手段は、
    時間に対して発振周波数がシフトするような光源を備えるようにしたことを特徴とする請求項1乃至6のいずれかに記載の偏波モード分散測定装置。
  8. 周波数が時間に比例して変化する周波数チャープ光を生成するステップと、
    生成された周波数チャープ光に対して、直交する2つの直線偏光成分に分岐して、両直線偏光成分に光路差を与えて再び結合するステップと、
    周波数チャープ光の直線偏光方向を所定の角度回転させるステップと、
    光路差を与えられた周波数チャープ光を被測定光ファイバに伝搬するステップと、
    周波数チャープ光が前記被測定光ファイバの入射端に入射されて伝搬し、出口端又は出口近傍で反射されて前記被測定光ファイバを伝搬した後に前記入射端から出射された光波を入射し、測定に必要な偏光成分を透過するステップと、
    透過した後の光波を検波し、スペクトル波形を測定するステップと
    含み、
    さらに、
    前記被測定光ファイバの前記入射端から出射された光波から、測定に必要な偏光成分を透過するように、被測定光ファイバの速波軸又は遅波軸に対する角度を固定するステップと、
    前記被測定光ファイバに入射される直線偏光方向を所定の角度回転させ、その回転角度をパラメータとして変化させたときのビート信号の中心周波数を測定するステップと、
    測定されたビート中心周波数のピーク・ツー・ピーク値 2Δf を求め、偏波モード分散値τを、
    τ=Δf /γ、
    γ=ν FS /τ RT
    (τ RT は共振器の周回時間、ν FS は共振器の周回当たりの周波数シフト量)
    により算出するステップと
    を含む偏波モード分散測定方法。
JP2000042175A 2000-02-21 2000-02-21 偏波モード分散測定装置および偏波モード分散測定方法 Expired - Fee Related JP3749646B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000042175A JP3749646B2 (ja) 2000-02-21 2000-02-21 偏波モード分散測定装置および偏波モード分散測定方法
US10/182,697 US6850318B1 (en) 2000-02-21 2000-09-22 Polarization mode dispersion measuring device and polarization mode dispersion measuring method
EP00961193A EP1258719A4 (en) 2000-02-21 2000-09-22 METHOD AND SYSTEM FOR MEASURING THE POLARIZATION MODEM DISPERSION AND METHOD FOR MEASURING THE POLARISATION MODE DISPERSION
PCT/JP2000/006509 WO2001061303A1 (fr) 2000-02-21 2000-09-22 Dispositif et procede de mesure par dispersion de polarisation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000042175A JP3749646B2 (ja) 2000-02-21 2000-02-21 偏波モード分散測定装置および偏波モード分散測定方法

Publications (2)

Publication Number Publication Date
JP2001228054A JP2001228054A (ja) 2001-08-24
JP3749646B2 true JP3749646B2 (ja) 2006-03-01

Family

ID=18565283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000042175A Expired - Fee Related JP3749646B2 (ja) 2000-02-21 2000-02-21 偏波モード分散測定装置および偏波モード分散測定方法

Country Status (4)

Country Link
US (1) US6850318B1 (ja)
EP (1) EP1258719A4 (ja)
JP (1) JP3749646B2 (ja)
WO (1) WO2001061303A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867918B2 (en) 2000-12-07 2005-03-15 Jay N. Damask Methods and apparatus for generation and control of coherent polarization mode dispersion
US6891674B2 (en) 2000-12-07 2005-05-10 Yafo Networks, Inc. Methods and apparatus for frequency shifting polarization mode dispersion spectra
US6847484B2 (en) 2001-03-15 2005-01-25 Jay N. Damask Methods and apparatus for generating polarization mode dispersion
JP4008470B2 (ja) * 2002-07-19 2007-11-14 株式会社フジクラ 光ファイバの偏波モード分散の測定方法及びその測定装置
US6704100B2 (en) * 2002-08-08 2004-03-09 Fitel Usa Corp. Systems and methods for accurately measuring low values of polarization mode dispersion in an optical fiber using localized external perturbation induced low mode coupling
JP5227023B2 (ja) 2004-09-21 2013-07-03 ディジタル シグナル コーポレイション 生理学的機能を遠隔的にモニターするシステムおよび方法
EP2386245B1 (en) 2005-02-14 2012-12-19 Digital Signal Corporation Laser radar system for providing chirped electromagnetic radiation
US7282698B2 (en) 2005-09-08 2007-10-16 Baker Hughes Incorporated System and method for monitoring a well
US20080100828A1 (en) * 2005-09-29 2008-05-01 Normand Cyr Polarization-sensitive optical time domain reflectometer and method for determining PMD
US9829429B2 (en) 2005-09-29 2017-11-28 Exfo Inc Determining a polarization-related characteristic of an optical link
US20100073667A1 (en) * 2007-03-28 2010-03-25 Normand Cyr Method and Apparatus for Determining Differential Group Delay and Polarization Mode Dispersion
CA2634033C (en) 2005-12-14 2015-11-17 Digital Signal Corporation System and method for tracking eyeball motion
US8081670B2 (en) * 2006-02-14 2011-12-20 Digital Signal Corporation System and method for providing chirped electromagnetic radiation
CA2753197C (en) 2009-02-20 2018-09-11 Digital Signal Corporation System and method for generating three dimensional images using lidar and video measurements
JP2010206250A (ja) * 2009-02-27 2010-09-16 Oki Electric Ind Co Ltd 偏波モード分散抑圧方法及び偏波モード分散抑圧装置
US9037414B1 (en) * 2011-01-14 2015-05-19 University Of Notre Dame Du Lac Methods and apparatus for electromagnetic signal polarimetry sensing
US9857316B2 (en) * 2012-01-13 2018-01-02 University Of Notre Dame Du Lac Methods and apparatus for electromagnetic signal polarimetry sensing
US8958060B2 (en) * 2013-02-21 2015-02-17 Verizon Patent And Licensing Inc. Optical fiber mechanical bend stress test system with optical time-domain reflectometer
CN104075875B (zh) * 2014-06-04 2017-05-24 华南师范大学 一种测量微纳器件延迟特性的测量装置和测量方法
CN104865052A (zh) * 2015-06-09 2015-08-26 西安炬光科技有限公司 多发光单元半导体激光器空间光束轮廓的测试方法及装置
CN107246952A (zh) * 2017-05-19 2017-10-13 北京邮电大学 一种偏振模色散测量精度提升方法和系统
CN113739917B (zh) * 2021-08-31 2022-08-05 华中科技大学 一种基于旋光纤的光谱测量系统
WO2023140339A1 (ja) * 2022-01-21 2023-07-27 国立研究開発法人理化学研究所 分光システムおよび分光方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731096B2 (ja) * 1984-08-13 1995-04-10 日本電信電話株式会社 光フアイバの群遅延時間差測定方法および測定装置
JP3131144B2 (ja) 1996-03-29 2001-01-31 株式会社アドバンテスト 偏波モード分散の測定装置
IT1291413B1 (it) * 1997-02-13 1999-01-11 Andrea Galtarossa Strumento riflettometrico per la misura di birifrangenza distribuita in fibre ottiche monomodali
JP2000081374A (ja) 1998-09-04 2000-03-21 Hiromasa Ito 波長分散測定方法および測定装置
US6144450A (en) * 1999-09-13 2000-11-07 Lucent Technologies Apparatus and method for improving the accuracy of polarization mode dispersion measurements
US6229606B1 (en) * 1999-10-08 2001-05-08 Mci Worldcom, Inc. Method and apparatus for measuring PMD of a dispersion compensation grating

Also Published As

Publication number Publication date
JP2001228054A (ja) 2001-08-24
WO2001061303A1 (fr) 2001-08-23
EP1258719A1 (en) 2002-11-20
EP1258719A4 (en) 2003-05-21
US6850318B1 (en) 2005-02-01

Similar Documents

Publication Publication Date Title
JP3749646B2 (ja) 偏波モード分散測定装置および偏波モード分散測定方法
Poole et al. Optical fiber-based dispersion compensation using higher order modes near cutoff
JP6211542B2 (ja) センシングシステム及びそのようなシステムに用いるための少数モード光ファイバ
CN100527549C (zh) 测量非线性光学特性的方法、光学放大器和光传输系统
TWI540307B (zh) 使用數模感測光纖之分散式布理淵感測系統及方法
US11248952B2 (en) Fiber distributed acoustic sensing system
JPH11160200A (ja) 分布型センサ装置と分布型センシング方法
JP3631653B2 (ja) 群速度分散測定装置および群速度分散測定方法
CN103900680A (zh) 一种利用光源抑制偏振串音测量噪声的装置及检测方法
CN110726468A (zh) 一种基于直波导相位调制器的分布式光纤声波传感系统
JP3306819B2 (ja) 光パルス試験器
US9766070B2 (en) Interferometric measurement device comprising a filtering interferometer
JPH05248996A (ja) 光ファイバの波長分散測定装置
JP3236661B2 (ja) 光パルス試験器
JP3152314B2 (ja) 後方散乱光の測定方法およびその装置
JP3465973B2 (ja) Otdr測定装置
JP2005283372A (ja) Ase光源とラマン増幅を使用したfbgによる温度または歪み測定装置
JP2000081374A (ja) 波長分散測定方法および測定装置
Angulo-Vinuesa et al. Hot spot detection over 100 km with 2 meter resolution in a Raman-assisted Brillouin distributed sensor
Noe et al. Spectral polarimeters based on integrated acousto-optical Ti: LiNbO3 TE-TM converters
CN107356276A (zh) 一种减弱光纤自发布里渊散射幅度振荡的方法及装置
US20230288466A1 (en) Electric field distribution fluctuation period measuring method and electric field distribution fluctuation period measuring device
CN114088123B (zh) 基于布里渊光时域分析的传感装置和传感方法
WO2024134773A1 (ja) 光ファイバの非線形係数の測定方法及び装置
TW201043942A (en) System and method for measuring dispersion

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees